diff --git a/lib/matplotlib/image.py b/lib/matplotlib/image.py index 7f6a023e91a5..14866cc1012c 100644 --- a/lib/matplotlib/image.py +++ b/lib/matplotlib/image.py @@ -534,9 +534,13 @@ def _make_image(self, A, in_bbox, out_bbox, clip_bbox, magnification=1.0, resampled_masked = np.ma.masked_array(A_resampled, out_mask) # we have re-set the vmin/vmax to account for small errors # that may have moved input values in/out of range + s_vmin, s_vmax = vrange + if isinstance(self.norm, mcolors.LogNorm): + if s_vmin < 0: + s_vmin = max(s_vmin, np.finfo(scaled_dtype).eps) with cbook._setattr_cm(self.norm, - vmin=vrange[0], - vmax=vrange[1], + vmin=s_vmin, + vmax=s_vmax, ): output = self.norm(resampled_masked) else: diff --git a/lib/matplotlib/tests/test_image.py b/lib/matplotlib/tests/test_image.py index 9e635b96d1b6..87e3c121d4c0 100644 --- a/lib/matplotlib/tests/test_image.py +++ b/lib/matplotlib/tests/test_image.py @@ -1117,3 +1117,22 @@ def test_exact_vmin(): @pytest.mark.flaky def test_https_imread_smoketest(): v = mimage.imread('https://matplotlib.org/1.5.0/_static/logo2.png') + + +@check_figures_equal(extensions=['png']) +def test_huge_range_log(fig_test, fig_ref): + data = np.full((5, 5), -1, dtype=np.float64) + data[0:2, :] = 1E20 + + ax = fig_test.subplots() + im = ax.imshow(data, norm=colors.LogNorm(vmin=100, vmax=data.max()), + interpolation='nearest', cmap='viridis') + + data = np.full((5, 5), -1, dtype=np.float64) + data[0:2, :] = 1000 + + cm = copy(plt.get_cmap('viridis')) + cm.set_under('w') + ax = fig_ref.subplots() + im = ax.imshow(data, norm=colors.Normalize(vmin=100, vmax=data.max()), + interpolation='nearest', cmap=cm)
Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.
Alternative Proxies: