diff --git a/tutorials/introductory/quick_start.py b/tutorials/introductory/quick_start.py index 42edbc03b10f..882d1a23737a 100644 --- a/tutorials/introductory/quick_start.py +++ b/tutorials/introductory/quick_start.py @@ -28,7 +28,7 @@ # `.Axes.plot` to draw some data on the Axes: fig, ax = plt.subplots() # Create a figure containing a single axes. -ax.plot([1, 2, 3, 4], [1, 4, 2, 3]); # Plot some data on the axes. +ax.plot([1, 2, 3, 4], [1, 4, 2, 3]) # Plot some data on the axes. ############################################################################### # .. _figure_parts: @@ -126,7 +126,7 @@ fig, ax = plt.subplots(figsize=(5, 2.7), layout='constrained') ax.scatter('a', 'b', c='c', s='d', data=data) ax.set_xlabel('entry a') -ax.set_ylabel('entry b'); +ax.set_ylabel('entry b') ############################################################################## # .. _coding_styles: @@ -159,7 +159,7 @@ ax.set_xlabel('x label') # Add an x-label to the axes. ax.set_ylabel('y label') # Add a y-label to the axes. ax.set_title("Simple Plot") # Add a title to the axes. -ax.legend(); # Add a legend. +ax.legend() # Add a legend. ############################################################################### # or the pyplot-style: @@ -173,7 +173,7 @@ plt.xlabel('x label') plt.ylabel('y label') plt.title("Simple Plot") -plt.legend(); +plt.legend() ############################################################################### # (In addition, there is a third approach, for the case when embedding @@ -213,7 +213,7 @@ def my_plotter(ax, data1, data2, param_dict): data1, data2, data3, data4 = np.random.randn(4, 100) # make 4 random data sets fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(5, 2.7)) my_plotter(ax1, data1, data2, {'marker': 'x'}) -my_plotter(ax2, data3, data4, {'marker': 'o'}); +my_plotter(ax2, data3, data4, {'marker': 'o'}) ############################################################################### # Note that if you want to install these as a python package, or any other @@ -235,7 +235,7 @@ def my_plotter(ax, data1, data2, param_dict): x = np.arange(len(data1)) ax.plot(x, np.cumsum(data1), color='blue', linewidth=3, linestyle='--') l, = ax.plot(x, np.cumsum(data2), color='orange', linewidth=2) -l.set_linestyle(':'); +l.set_linestyle(':') ############################################################################### # Colors @@ -248,7 +248,7 @@ def my_plotter(ax, data1, data2, param_dict): # from the interior: fig, ax = plt.subplots(figsize=(5, 2.7)) -ax.scatter(data1, data2, s=50, facecolor='C0', edgecolor='k'); +ax.scatter(data1, data2, s=50, facecolor='C0', edgecolor='k') ############################################################################### # Linewidths, linestyles, and markersizes @@ -272,7 +272,7 @@ def my_plotter(ax, data1, data2, param_dict): ax.plot(data2, 'd', label='data2') ax.plot(data3, 'v', label='data3') ax.plot(data4, 's', label='data4') -ax.legend(); +ax.legend() ############################################################################### # @@ -298,7 +298,7 @@ def my_plotter(ax, data1, data2, param_dict): ax.set_title('Aardvark lengths\n (not really)') ax.text(75, .025, r'$\mu=115,\ \sigma=15$') ax.axis([55, 175, 0, 0.03]) -ax.grid(True); +ax.grid(True) ############################################################################### # All of the `~.Axes.text` functions return a `matplotlib.text.Text` @@ -342,7 +342,7 @@ def my_plotter(ax, data1, data2, param_dict): ax.annotate('local max', xy=(2, 1), xytext=(3, 1.5), arrowprops=dict(facecolor='black', shrink=0.05)) -ax.set_ylim(-2, 2); +ax.set_ylim(-2, 2) ############################################################################### # In this basic example, both *xy* and *xytext* are in data coordinates. @@ -360,7 +360,7 @@ def my_plotter(ax, data1, data2, param_dict): ax.plot(np.arange(len(data1)), data1, label='data1') ax.plot(np.arange(len(data2)), data2, label='data2') ax.plot(np.arange(len(data3)), data3, 'd', label='data3') -ax.legend(); +ax.legend() ############################################################################## # Legends in Matplotlib are quite flexible in layout, placement, and what @@ -391,7 +391,7 @@ def my_plotter(ax, data1, data2, param_dict): axs[0].plot(xdata, data) axs[1].set_yscale('log') -axs[1].plot(xdata, data); +axs[1].plot(xdata, data) ############################################################################## # The scale sets the mapping from data values to spacing along the Axis. This @@ -413,7 +413,7 @@ def my_plotter(ax, data1, data2, param_dict): axs[1].plot(xdata, data1) axs[1].set_xticks(np.arange(0, 100, 30), ['zero', '30', 'sixty', '90']) axs[1].set_yticks([-1.5, 0, 1.5]) # note that we don't need to specify labels -axs[1].set_title('Manual ticks'); +axs[1].set_title('Manual ticks') ############################################################################## # Different scales can have different locators and formatters; for instance @@ -435,7 +435,7 @@ def my_plotter(ax, data1, data2, param_dict): data = np.cumsum(np.random.randn(len(dates))) ax.plot(dates, data) cdf = mpl.dates.ConciseDateFormatter(ax.xaxis.get_major_locator()) -ax.xaxis.set_major_formatter(cdf); +ax.xaxis.set_major_formatter(cdf) ############################################################################## # For more information see the date examples @@ -447,7 +447,7 @@ def my_plotter(ax, data1, data2, param_dict): fig, ax = plt.subplots(figsize=(5, 2.7), layout='constrained') categories = ['turnips', 'rutabaga', 'cucumber', 'pumpkins'] -ax.bar(categories, np.random.rand(len(categories))); +ax.bar(categories, np.random.rand(len(categories))) ############################################################################## # One caveat about categorical plotting is that some methods of parsing @@ -561,7 +561,7 @@ def my_plotter(ax, data1, data2, param_dict): ['lowleft', 'right']], layout='constrained') axd['upleft'].set_title('upleft') axd['lowleft'].set_title('lowleft') -axd['right'].set_title('right'); +axd['right'].set_title('right') ############################################################################### # Matplotlib has quite sophisticated tools for arranging Axes: See pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy