diff --git a/galleries/examples/statistics/bxp.py b/galleries/examples/statistics/bxp.py index d78747523325..b12bfebd16cc 100644 --- a/galleries/examples/statistics/bxp.py +++ b/galleries/examples/statistics/bxp.py @@ -1,107 +1,65 @@ """ -======================= -Boxplot drawer function -======================= - -This example demonstrates how to pass pre-computed box plot -statistics to the box plot drawer. The first figure demonstrates -how to remove and add individual components (note that the -mean is the only value not shown by default). The second -figure demonstrates how the styles of the artists can -be customized. - -A good general reference on boxplots and their history can be found -here: http://vita.had.co.nz/papers/boxplots.pdf -""" - -import matplotlib.pyplot as plt -import numpy as np - -import matplotlib.cbook as cbook +============================================= +Separate calculation and plotting of boxplots +============================================= -# fake data -np.random.seed(19680801) -data = np.random.lognormal(size=(37, 4), mean=1.5, sigma=1.75) -labels = list('ABCD') - -# compute the boxplot stats -stats = cbook.boxplot_stats(data, labels=labels, bootstrap=10000) +Drawing a `~.axes.Axes.boxplot` for a given data set, consists of two main operations, +that can also be used separately: -# %% -# After we've computed the stats, we can go through and change anything. -# Just to prove it, I'll set the median of each set to the median of all -# the data, and double the means +1. Calculating the boxplot statistics: `matplotlib.cbook.boxplot_stats` +2. Drawing the boxplot: `matplotlib.axes.Axes.bxp` -for n in range(len(stats)): - stats[n]['med'] = np.median(data) - stats[n]['mean'] *= 2 +Thus, ``ax.boxplot(data)`` is equivalent to :: -print(list(stats[0])) + stats = cbook.boxplot_stats(data) + ax.bxp(stats) -fs = 10 # fontsize - -# %% -# Demonstrate how to toggle the display of different elements: +All styling keyword arguments are identical between `~.axes.Axes.boxplot` and +`~.axes.Axes.bxp`, and they are passed through from `~.axes.Axes.boxplot` to +`~.axes.Axes.bxp`. However, the *tick_labels* parameter of `~.axes.Axes.boxplot` +translates to a generic *labels* parameter in `.boxplot_stats`, because the labels are +data-related and attached to the returned per-dataset dictionaries. -fig, axs = plt.subplots(nrows=2, ncols=3, figsize=(6, 6), sharey=True) -axs[0, 0].bxp(stats) -axs[0, 0].set_title('Default', fontsize=fs) +The following code demonstrates the equivalence between the two methods. -axs[0, 1].bxp(stats, showmeans=True) -axs[0, 1].set_title('showmeans=True', fontsize=fs) +""" +# sphinx_gallery_thumbnail_number = 2 -axs[0, 2].bxp(stats, showmeans=True, meanline=True) -axs[0, 2].set_title('showmeans=True,\nmeanline=True', fontsize=fs) +import matplotlib.pyplot as plt +import numpy as np -axs[1, 0].bxp(stats, showbox=False, showcaps=False) -tufte_title = 'Tufte Style\n(showbox=False,\nshowcaps=False)' -axs[1, 0].set_title(tufte_title, fontsize=fs) +from matplotlib import cbook -axs[1, 1].bxp(stats, shownotches=True) -axs[1, 1].set_title('notch=True', fontsize=fs) +np.random.seed(19680801) +data = np.random.randn(20, 3) -axs[1, 2].bxp(stats, showfliers=False) -axs[1, 2].set_title('showfliers=False', fontsize=fs) +fig, (ax1, ax2) = plt.subplots(1, 2) -for ax in axs.flat: - ax.set_yscale('log') - ax.set_yticklabels([]) +# single boxplot call +ax1.boxplot(data, tick_labels=['A', 'B', 'C'], + patch_artist=True, boxprops={'facecolor': 'bisque'}) -fig.subplots_adjust(hspace=0.4) -plt.show() +# separate calculation of statistics and plotting +stats = cbook.boxplot_stats(data, labels=['A', 'B', 'C']) +ax2.bxp(stats, patch_artist=True, boxprops={'facecolor': 'bisque'}) # %% -# Demonstrate how to customize the display different elements: - -boxprops = dict(linestyle='--', linewidth=3, color='darkgoldenrod') -flierprops = dict(marker='o', markerfacecolor='green', markersize=12, - linestyle='none') -medianprops = dict(linestyle='-.', linewidth=2.5, color='firebrick') -meanpointprops = dict(marker='D', markeredgecolor='black', - markerfacecolor='firebrick') -meanlineprops = dict(linestyle='--', linewidth=2.5, color='purple') - -fig, axs = plt.subplots(nrows=2, ncols=2, figsize=(6, 6), sharey=True) -axs[0, 0].bxp(stats, boxprops=boxprops) -axs[0, 0].set_title('Custom boxprops', fontsize=fs) - -axs[0, 1].bxp(stats, flierprops=flierprops, medianprops=medianprops) -axs[0, 1].set_title('Custom medianprops\nand flierprops', fontsize=fs) +# Using the separate functions allows to pre-calculate statistics, in case you need +# them explicitly for other purposes, or to reuse the statistics for multiple plots. +# +# Conversely, you can also use the `~.axes.Axes.bxp` function directly, if you already +# have the statistical parameters: -axs[1, 0].bxp(stats, meanprops=meanpointprops, meanline=False, - showmeans=True) -axs[1, 0].set_title('Custom mean\nas point', fontsize=fs) +fig, ax = plt.subplots() -axs[1, 1].bxp(stats, meanprops=meanlineprops, meanline=True, - showmeans=True) -axs[1, 1].set_title('Custom mean\nas line', fontsize=fs) +stats = [ + dict(med=0, q1=-1, q3=1, whislo=-2, whishi=2, fliers=[-4, -3, 3, 4], label='A'), + dict(med=0, q1=-2, q3=2, whislo=-3, whishi=3, fliers=[], label='B'), + dict(med=0, q1=-3, q3=3, whislo=-4, whishi=4, fliers=[], label='C'), +] -for ax in axs.flat: - ax.set_yscale('log') - ax.set_yticklabels([]) +ax.bxp(stats, patch_artist=True, boxprops={'facecolor': 'bisque'}) -fig.suptitle("I never said they'd be pretty") -fig.subplots_adjust(hspace=0.4) plt.show() # %% @@ -112,4 +70,5 @@ # in this example: # # - `matplotlib.axes.Axes.bxp` +# - `matplotlib.axes.Axes.boxplot` # - `matplotlib.cbook.boxplot_stats`
Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.
Alternative Proxies: