diff --git a/doc/api/toolkits/mplot3d/view_angles.rst b/doc/api/toolkits/mplot3d/view_angles.rst index ce2c5f5698a5..75b24ba9c7b0 100644 --- a/doc/api/toolkits/mplot3d/view_angles.rst +++ b/doc/api/toolkits/mplot3d/view_angles.rst @@ -38,3 +38,168 @@ further documented in the `.mplot3d.axes3d.Axes3D.view_init` API. .. plot:: gallery/mplot3d/view_planes_3d.py :align: center + + +.. _toolkit_mouse-rotation: + +Rotation with mouse +=================== + +3D plots can be reoriented by dragging the mouse. +There are various ways to accomplish this; the style of mouse rotation +can be specified by setting :rc:`axes3d.mouserotationstyle`, see +:doc:`/users/explain/customizing`. + +Prior to v3.10, the 2D mouse position corresponded directly +to azimuth and elevation; this is also how it is done +in `MATLAB `_. +To keep it this way, set ``mouserotationstyle: azel``. +This approach works fine for spherical coordinate plots, where the *z* axis is special; +however, it leads to a kind of 'gimbal lock' when looking down the *z* axis: +the plot reacts differently to mouse movement, dependent on the particular +orientation at hand. Also, 'roll' cannot be controlled. + +As an alternative, there are various mouse rotation styles where the mouse +manipulates a virtual 'trackball'. In its simplest form (``mouserotationstyle: trackball``), +the trackball rotates around an in-plane axis perpendicular to the mouse motion +(it is as if there is a plate laying on the trackball; the plate itself is fixed +in orientation, but you can drag the plate with the mouse, thus rotating the ball). +This is more natural to work with than the ``azel`` style; however, +the plot cannot be easily rotated around the viewing direction - one has to +move the mouse in circles with a handedness opposite to the desired rotation, +counterintuitively. + +A different variety of trackball rotates along the shortest arc on the virtual +sphere (``mouserotationstyle: sphere``). Rotating around the viewing direction +is straightforward with it: grab the ball near its edge instead of near the center. + +Ken Shoemake's ARCBALL [Shoemake1992]_ is also available (``mouserotationstyle: Shoemake``); +it resembles the ``sphere`` style, but is free of hysteresis, +i.e., returning mouse to the original position +returns the figure to its original orientation; the rotation is independent +of the details of the path the mouse took, which could be desirable. +However, Shoemake's arcball rotates at twice the angular rate of the +mouse movement (it is quite noticeable, especially when adjusting roll), +and it lacks an obvious mechanical equivalent; arguably, the path-independent +rotation is not natural (however convenient), it could take some getting used to. +So it is a trade-off. + +Henriksen et al. [Henriksen2002]_ provide an overview. In summary: + +.. list-table:: + :width: 100% + :widths: 30 20 20 20 20 35 + + * - Style + - traditional [1]_ + - incl. roll [2]_ + - uniform [3]_ + - path independent [4]_ + - mechanical counterpart [5]_ + * - azel + - ✔️ + - ❌ + - ❌ + - ✔️ + - ✔️ + * - trackball + - ❌ + - ✓ [6]_ + - ✔️ + - ❌ + - ✔️ + * - sphere + - ❌ + - ✔️ + - ✔️ + - ❌ + - ✔️ + * - arcball + - ❌ + - ✔️ + - ✔️ + - ✔️ + - ❌ + + +.. [1] The way it was prior to v3.10; this is also MATLAB's style +.. [2] Mouse controls roll too (not only azimuth and elevation) +.. [3] Figure reacts the same way to mouse movements, regardless of orientation (no difference between 'poles' and 'equator') +.. [4] Returning mouse to original position returns figure to original orientation (rotation is independent of the details of the path the mouse took) +.. [5] The style has a corresponding natural implementation as a mechanical device +.. [6] While it is possible to control roll with the ``trackball`` style, this is not immediately obvious (it requires moving the mouse in large circles) and a bit counterintuitive (the resulting roll is in the opposite direction) + +You can try out one of the various mouse rotation styles using: + +.. code:: + + import matplotlib as mpl + mpl.rcParams['axes3d.mouserotationstyle'] = 'trackball' # 'azel', 'trackball', 'sphere', or 'arcball' + + import numpy as np + import matplotlib.pyplot as plt + from matplotlib import cm + + ax = plt.figure().add_subplot(projection='3d') + + X = np.arange(-5, 5, 0.25) + Y = np.arange(-5, 5, 0.25) + X, Y = np.meshgrid(X, Y) + R = np.sqrt(X**2 + Y**2) + Z = np.sin(R) + + surf = ax.plot_surface(X, Y, Z, cmap=cm.coolwarm, + linewidth=0, antialiased=False) + + plt.show() + +Alternatively, create a file ``matplotlibrc``, with contents:: + + axes3d.mouserotationstyle: trackball + +(or any of the other styles, instead of ``trackball``), and then run any of +the :ref:`mplot3d-examples-index` examples. + +The size of the virtual trackball, sphere, or arcball can be adjusted +by setting :rc:`axes3d.trackballsize`. This specifies how much +mouse motion is needed to obtain a given rotation angle (when near the center), +and it controls where the edge of the sphere or arcball is (how far from +the center, hence how close to the plot edge). +The size is specified in units of the Axes bounding box, +i.e., to make the arcball span the whole bounding box, set it to 1. +A size of about 2/3 appears to work reasonably well; this is the default. + +Both arcballs (``mouserotationstyle: sphere`` and +``mouserotationstyle: arcball``) have a noticeable edge; the edge can be made +less abrupt by specifying a border width, :rc:`axes3d.trackballborder`. +This works somewhat like Gavin Bell's arcball, which was +originally written for OpenGL [Bell1988]_, and is used in Blender and Meshlab. +Bell's arcball extends the arcball's spherical control surface with a hyperbola; +the two are smoothly joined. However, the hyperbola extends all the way beyond +the edge of the plot. In the mplot3d sphere and arcball style, the border extends +to a radius ``trackballsize/2 + trackballborder``. +Beyond the border, the style works like the original: it controls roll only. +A border width of about 0.2 appears to work well; this is the default. +To obtain the original Shoemake's arcball with a sharp border, +set the border width to 0. +For an extended border similar to Bell's arcball, where the transition from +the arcball to the border occurs at 45°, set the border width to +:math:`\sqrt 2 \approx 1.414`. +The border is a circular arc, wrapped around the arcball sphere cylindrically +(like a doughnut), joined smoothly to the sphere, much like Bell's hyperbola. + + +.. [Shoemake1992] Ken Shoemake, "ARCBALL: A user interface for specifying + three-dimensional rotation using a mouse", in Proceedings of Graphics + Interface '92, 1992, pp. 151-156, https://doi.org/10.20380/GI1992.18 + +.. [Bell1988] Gavin Bell, in the examples included with the GLUT (OpenGL + Utility Toolkit) library, + https://github.com/markkilgard/glut/blob/master/progs/examples/trackball.h + +.. [Henriksen2002] Knud Henriksen, Jon Sporring, Kasper Hornbæk, + "Virtual Trackballs Revisited", in IEEE Transactions on Visualization + and Computer Graphics, Volume 10, Issue 2, March-April 2004, pp. 206-216, + https://doi.org/10.1109/TVCG.2004.1260772 `[full-text]`__; + +__ https://www.researchgate.net/publication/8329656_Virtual_Trackballs_Revisited#fullTextFileContent diff --git a/doc/users/next_whats_new/mouse_rotation.rst b/doc/users/next_whats_new/mouse_rotation.rst index 64fca63ec472..c4eeab591da3 100644 --- a/doc/users/next_whats_new/mouse_rotation.rst +++ b/doc/users/next_whats_new/mouse_rotation.rst @@ -4,9 +4,42 @@ Rotating 3d plots with the mouse Rotating three-dimensional plots with the mouse has been made more intuitive. The plot now reacts the same way to mouse movement, independent of the particular orientation at hand; and it is possible to control all 3 rotational -degrees of freedom (azimuth, elevation, and roll). It uses a variation on -Ken Shoemake's ARCBALL [Shoemake1992]_. +degrees of freedom (azimuth, elevation, and roll). By default, +it uses a variation on Ken Shoemake's ARCBALL [1]_. +The particular style of mouse rotation can be set via +:rc:`axes3d.mouserotationstyle`. +See also :ref:`toolkit_mouse-rotation`. -.. [Shoemake1992] Ken Shoemake, "ARCBALL: A user interface for specifying - three-dimensional rotation using a mouse." in Proceedings of Graphics +To revert to the original mouse rotation style, +create a file ``matplotlibrc`` with contents:: + + axes3d.mouserotationstyle: azel + +To try out one of the various mouse rotation styles: + +.. code:: + + import matplotlib as mpl + mpl.rcParams['axes3d.mouserotationstyle'] = 'trackball' # 'azel', 'trackball', 'sphere', or 'arcball' + + import numpy as np + import matplotlib.pyplot as plt + from matplotlib import cm + + ax = plt.figure().add_subplot(projection='3d') + + X = np.arange(-5, 5, 0.25) + Y = np.arange(-5, 5, 0.25) + X, Y = np.meshgrid(X, Y) + R = np.sqrt(X**2 + Y**2) + Z = np.sin(R) + + surf = ax.plot_surface(X, Y, Z, cmap=cm.coolwarm, + linewidth=0, antialiased=False) + + plt.show() + + +.. [1] Ken Shoemake, "ARCBALL: A user interface for specifying + three-dimensional rotation using a mouse", in Proceedings of Graphics Interface '92, 1992, pp. 151-156, https://doi.org/10.20380/GI1992.18 diff --git a/lib/matplotlib/mpl-data/matplotlibrc b/lib/matplotlib/mpl-data/matplotlibrc index d419ed6e5af7..092b7a25a7d7 100644 --- a/lib/matplotlib/mpl-data/matplotlibrc +++ b/lib/matplotlib/mpl-data/matplotlibrc @@ -433,6 +433,11 @@ #axes3d.yaxis.panecolor: (0.90, 0.90, 0.90, 0.5) # background pane on 3D axes #axes3d.zaxis.panecolor: (0.925, 0.925, 0.925, 0.5) # background pane on 3D axes +#axes3d.mouserotationstyle: arcball # {azel, trackball, sphere, arcball} + # See also https://matplotlib.org/stable/api/toolkits/mplot3d/view_angles.html#rotation-with-mouse +#axes3d.trackballsize: 0.667 # trackball diameter, in units of the Axes bbox +#axes3d.trackballborder: 0.2 # trackball border width, in units of the Axes bbox (only for 'sphere' and 'arcball' style) + ## *************************************************************************** ## * AXIS * ## *************************************************************************** diff --git a/lib/matplotlib/rcsetup.py b/lib/matplotlib/rcsetup.py index e84b0539385b..4f7c0f8a241d 100644 --- a/lib/matplotlib/rcsetup.py +++ b/lib/matplotlib/rcsetup.py @@ -1132,6 +1132,10 @@ def _convert_validator_spec(key, conv): "axes3d.yaxis.panecolor": validate_color, # 3d background pane "axes3d.zaxis.panecolor": validate_color, # 3d background pane + "axes3d.mouserotationstyle": ["azel", "trackball", "sphere", "arcball"], + "axes3d.trackballsize": validate_float, + "axes3d.trackballborder": validate_float, + # scatter props "scatter.marker": _validate_marker, "scatter.edgecolors": validate_string, diff --git a/lib/mpl_toolkits/mplot3d/axes3d.py b/lib/mpl_toolkits/mplot3d/axes3d.py index 5d522cd0988a..f0e7346abee3 100644 --- a/lib/mpl_toolkits/mplot3d/axes3d.py +++ b/lib/mpl_toolkits/mplot3d/axes3d.py @@ -1510,20 +1510,35 @@ def _calc_coord(self, xv, yv, renderer=None): def _arcball(self, x: float, y: float) -> np.ndarray: """ - Convert a point (x, y) to a point on a virtual trackball - This is Ken Shoemake's arcball + Convert a point (x, y) to a point on a virtual trackball. + + This is Ken Shoemake's arcball (a sphere), modified + to soften the abrupt edge (optionally). See: Ken Shoemake, "ARCBALL: A user interface for specifying three-dimensional rotation using a mouse." in Proceedings of Graphics Interface '92, 1992, pp. 151-156, https://doi.org/10.20380/GI1992.18 - """ - x *= 2 - y *= 2 + The smoothing of the edge is inspired by Gavin Bell's arcball + (a sphere combined with a hyperbola), but here, the sphere + is combined with a section of a cylinder, so it has finite support. + """ + s = mpl.rcParams['axes3d.trackballsize'] / 2 + b = mpl.rcParams['axes3d.trackballborder'] / s + x /= s + y /= s r2 = x*x + y*y - if r2 > 1: - p = np.array([0, x/math.sqrt(r2), y/math.sqrt(r2)]) + r = np.sqrt(r2) + ra = 1 + b + a = b * (1 + b/2) + ri = 2/(ra + 1/ra) + if r < ri: + p = np.array([np.sqrt(1 - r2), x, y]) + elif r < ra: + dr = ra - r + p = np.array([a - np.sqrt((a + dr) * (a - dr)), x, y]) + p /= np.linalg.norm(p) else: - p = np.array([math.sqrt(1-r2), x, y]) + p = np.array([0, x/r, y/r]) return p def _on_move(self, event): @@ -1561,23 +1576,35 @@ def _on_move(self, event): if dx == 0 and dy == 0: return - # Convert to quaternion - elev = np.deg2rad(self.elev) - azim = np.deg2rad(self.azim) - roll = np.deg2rad(self.roll) - q = _Quaternion.from_cardan_angles(elev, azim, roll) - - # Update quaternion - a variation on Ken Shoemake's ARCBALL - current_vec = self._arcball(self._sx/w, self._sy/h) - new_vec = self._arcball(x/w, y/h) - dq = _Quaternion.rotate_from_to(current_vec, new_vec) - q = dq * q - - # Convert to elev, azim, roll - elev, azim, roll = q.as_cardan_angles() - azim = np.rad2deg(azim) - elev = np.rad2deg(elev) - roll = np.rad2deg(roll) + style = mpl.rcParams['axes3d.mouserotationstyle'] + if style == 'azel': + roll = np.deg2rad(self.roll) + delev = -(dy/h)*180*np.cos(roll) + (dx/w)*180*np.sin(roll) + dazim = -(dy/h)*180*np.sin(roll) - (dx/w)*180*np.cos(roll) + elev = self.elev + delev + azim = self.azim + dazim + roll = self.roll + else: + q = _Quaternion.from_cardan_angles( + *np.deg2rad((self.elev, self.azim, self.roll))) + + if style == 'trackball': + k = np.array([0, -dy/h, dx/w]) + nk = np.linalg.norm(k) + th = nk / mpl.rcParams['axes3d.trackballsize'] + dq = _Quaternion(np.cos(th), k*np.sin(th)/nk) + else: # 'sphere', 'arcball' + current_vec = self._arcball(self._sx/w, self._sy/h) + new_vec = self._arcball(x/w, y/h) + if style == 'sphere': + dq = _Quaternion.rotate_from_to(current_vec, new_vec) + else: # 'arcball' + dq = _Quaternion(0, new_vec) * _Quaternion(0, -current_vec) + + q = dq * q + elev, azim, roll = np.rad2deg(q.as_cardan_angles()) + + # update view vertical_axis = self._axis_names[self._vertical_axis] self.view_init( elev=elev, @@ -3984,7 +4011,7 @@ def rotate_from_to(cls, r1, r2): k = np.cross(r1, r2) nk = np.linalg.norm(k) th = np.arctan2(nk, np.dot(r1, r2)) - th = th/2 + th /= 2 if nk == 0: # r1 and r2 are parallel or anti-parallel if np.dot(r1, r2) < 0: warnings.warn("Rotation defined by anti-parallel vectors is ambiguous") @@ -3996,7 +4023,7 @@ def rotate_from_to(cls, r1, r2): else: q = cls(1, [0, 0, 0]) # = 1, no rotation else: - q = cls(math.cos(th), k*math.sin(th)/nk) + q = cls(np.cos(th), k*np.sin(th)/nk) return q @classmethod @@ -4021,10 +4048,11 @@ def as_cardan_angles(self): """ The inverse of `from_cardan_angles()`. Note that the angles returned are in radians, not degrees. + The angles are not sensitive to the quaternion's norm(). """ qw = self.scalar qx, qy, qz = self.vector[..., :] azim = np.arctan2(2*(-qw*qz+qx*qy), qw*qw+qx*qx-qy*qy-qz*qz) - elev = np.arcsin( 2*( qw*qy+qz*qx)/(qw*qw+qx*qx+qy*qy+qz*qz)) # noqa E201 - roll = np.arctan2(2*( qw*qx-qy*qz), qw*qw-qx*qx-qy*qy+qz*qz) # noqa E201 + elev = np.arcsin(np.clip(2*(qw*qy+qz*qx)/(qw*qw+qx*qx+qy*qy+qz*qz), -1, 1)) + roll = np.arctan2(2*(qw*qx-qy*qz), qw*qw-qx*qx-qy*qy+qz*qz) return elev, azim, roll diff --git a/lib/mpl_toolkits/mplot3d/tests/test_axes3d.py b/lib/mpl_toolkits/mplot3d/tests/test_axes3d.py index 0afcae99c980..b8a2cf76394a 100644 --- a/lib/mpl_toolkits/mplot3d/tests/test_axes3d.py +++ b/lib/mpl_toolkits/mplot3d/tests/test_axes3d.py @@ -1939,37 +1939,78 @@ def test_quaternion(): np.deg2rad(elev), np.deg2rad(azim), np.deg2rad(roll)) assert np.isclose(q.norm, 1) q = Quaternion(mag * q.scalar, mag * q.vector) - e, a, r = np.rad2deg(Quaternion.as_cardan_angles(q)) - assert np.isclose(e, elev) - assert np.isclose(a, azim) - assert np.isclose(r, roll) + np.testing.assert_allclose(np.rad2deg(Quaternion.as_cardan_angles(q)), + (elev, azim, roll), atol=1e-6) -def test_rotate(): +@pytest.mark.parametrize('style', + ('azel', 'trackball', 'sphere', 'arcball')) +def test_rotate(style): """Test rotating using the left mouse button.""" - for roll, dx, dy, new_elev, new_azim, new_roll in [ - [0, 0.5, 0, 0, -90, 0], - [30, 0.5, 0, 30, -90, 0], - [0, 0, 0.5, -90, 0, 0], - [30, 0, 0.5, -60, -90, 90], - [0, 0.5, 0.5, -45, -90, 45], - [30, 0.5, 0.5, -15, -90, 45]]: - fig = plt.figure() - ax = fig.add_subplot(1, 1, 1, projection='3d') - ax.view_init(0, 0, roll) - fig.canvas.draw() - - # drag mouse to change orientation - ax._button_press( - mock_event(ax, button=MouseButton.LEFT, xdata=0, ydata=0)) - ax._on_move( - mock_event(ax, button=MouseButton.LEFT, - xdata=dx*ax._pseudo_w, ydata=dy*ax._pseudo_h)) - fig.canvas.draw() - - assert np.isclose(ax.elev, new_elev) - assert np.isclose(ax.azim, new_azim) - assert np.isclose(ax.roll, new_roll) + if style == 'azel': + s = 0.5 + else: + s = mpl.rcParams['axes3d.trackballsize'] / 2 + s *= 0.5 + mpl.rcParams['axes3d.trackballborder'] = 0 + with mpl.rc_context({'axes3d.mouserotationstyle': style}): + for roll, dx, dy in [ + [0, 1, 0], + [30, 1, 0], + [0, 0, 1], + [30, 0, 1], + [0, 0.5, np.sqrt(3)/2], + [30, 0.5, np.sqrt(3)/2], + [0, 2, 0]]: + fig = plt.figure() + ax = fig.add_subplot(1, 1, 1, projection='3d') + ax.view_init(0, 0, roll) + ax.figure.canvas.draw() + + # drag mouse to change orientation + ax._button_press( + mock_event(ax, button=MouseButton.LEFT, xdata=0, ydata=0)) + ax._on_move( + mock_event(ax, button=MouseButton.LEFT, + xdata=s*dx*ax._pseudo_w, ydata=s*dy*ax._pseudo_h)) + ax.figure.canvas.draw() + + c = np.sqrt(3)/2 + expectations = { + ('azel', 0, 1, 0): (0, -45, 0), + ('azel', 0, 0, 1): (-45, 0, 0), + ('azel', 0, 0.5, c): (-38.971143, -22.5, 0), + ('azel', 0, 2, 0): (0, -90, 0), + ('azel', 30, 1, 0): (22.5, -38.971143, 30), + ('azel', 30, 0, 1): (-38.971143, -22.5, 30), + ('azel', 30, 0.5, c): (-22.5, -38.971143, 30), + + ('trackball', 0, 1, 0): (0, -28.64789, 0), + ('trackball', 0, 0, 1): (-28.64789, 0, 0), + ('trackball', 0, 0.5, c): (-24.531578, -15.277726, 3.340403), + ('trackball', 0, 2, 0): (0, -180/np.pi, 0), + ('trackball', 30, 1, 0): (13.869588, -25.319385, 26.87008), + ('trackball', 30, 0, 1): (-24.531578, -15.277726, 33.340403), + ('trackball', 30, 0.5, c): (-13.869588, -25.319385, 33.129920), + + ('sphere', 0, 1, 0): (0, -30, 0), + ('sphere', 0, 0, 1): (-30, 0, 0), + ('sphere', 0, 0.5, c): (-25.658906, -16.102114, 3.690068), + ('sphere', 0, 2, 0): (0, -90, 0), + ('sphere', 30, 1, 0): (14.477512, -26.565051, 26.565051), + ('sphere', 30, 0, 1): (-25.658906, -16.102114, 33.690068), + ('sphere', 30, 0.5, c): (-14.477512, -26.565051, 33.434949), + + ('arcball', 0, 1, 0): (0, -60, 0), + ('arcball', 0, 0, 1): (-60, 0, 0), + ('arcball', 0, 0.5, c): (-48.590378, -40.893395, 19.106605), + ('arcball', 0, 2, 0): (0, 180, 0), + ('arcball', 30, 1, 0): (25.658906, -56.309932, 16.102114), + ('arcball', 30, 0, 1): (-48.590378, -40.893395, 49.106605), + ('arcball', 30, 0.5, c): (-25.658906, -56.309932, 43.897886)} + new_elev, new_azim, new_roll = expectations[(style, roll, dx, dy)] + np.testing.assert_allclose((ax.elev, ax.azim, ax.roll), + (new_elev, new_azim, new_roll), atol=1e-6) def test_pan(): pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy