Skip to content

Commit 64290fd

Browse files
committed
Add 3.6.0 release candidate docs
1 parent ffb2934 commit 64290fd

File tree

8,423 files changed

+9982988
-0
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

8,423 files changed

+9982988
-0
lines changed

3.6.0/Matplotlib.pdf

51.6 MB
Binary file not shown.
Lines changed: 79 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,79 @@
1+
{
2+
"cells": [
3+
{
4+
"cell_type": "code",
5+
"execution_count": null,
6+
"metadata": {
7+
"collapsed": false
8+
},
9+
"outputs": [],
10+
"source": [
11+
"%matplotlib inline"
12+
]
13+
},
14+
{
15+
"cell_type": "markdown",
16+
"metadata": {},
17+
"source": [
18+
"\n# Line Collection\n\nPlotting lines with Matplotlib.\n\n`~matplotlib.collections.LineCollection` allows one to plot multiple\nlines on a figure. Below we show off some of its properties.\n"
19+
]
20+
},
21+
{
22+
"cell_type": "code",
23+
"execution_count": null,
24+
"metadata": {
25+
"collapsed": false
26+
},
27+
"outputs": [],
28+
"source": [
29+
"import matplotlib.pyplot as plt\nfrom matplotlib.collections import LineCollection\nfrom matplotlib import colors as mcolors\n\nimport numpy as np\n\n# In order to efficiently plot many lines in a single set of axes,\n# Matplotlib has the ability to add the lines all at once. Here is a\n# simple example showing how it is done.\n\nx = np.arange(100)\n# Here are many sets of y to plot vs. x\nys = x[:50, np.newaxis] + x[np.newaxis, :]\n\nsegs = np.zeros((50, 100, 2))\nsegs[:, :, 1] = ys\nsegs[:, :, 0] = x\n\n# Mask some values to test masked array support:\nsegs = np.ma.masked_where((segs > 50) & (segs < 60), segs)\n\n# We need to set the plot limits.\nfig, ax = plt.subplots()\nax.set_xlim(x.min(), x.max())\nax.set_ylim(ys.min(), ys.max())\n\n# *colors* is sequence of rgba tuples.\n# *linestyle* is a string or dash tuple. Legal string values are\n# solid|dashed|dashdot|dotted. The dash tuple is (offset, onoffseq) where\n# onoffseq is an even length tuple of on and off ink in points. If linestyle\n# is omitted, 'solid' is used.\n# See `matplotlib.collections.LineCollection` for more information.\ncolors = [mcolors.to_rgba(c)\n for c in plt.rcParams['axes.prop_cycle'].by_key()['color']]\n\nline_segments = LineCollection(segs, linewidths=(0.5, 1, 1.5, 2),\n colors=colors, linestyle='solid')\nax.add_collection(line_segments)\nax.set_title('Line collection with masked arrays')\nplt.show()"
30+
]
31+
},
32+
{
33+
"cell_type": "markdown",
34+
"metadata": {},
35+
"source": [
36+
"In order to efficiently plot many lines in a single set of axes,\nMatplotlib has the ability to add the lines all at once. Here is a\nsimple example showing how it is done.\n\n"
37+
]
38+
},
39+
{
40+
"cell_type": "code",
41+
"execution_count": null,
42+
"metadata": {
43+
"collapsed": false
44+
},
45+
"outputs": [],
46+
"source": [
47+
"N = 50\nx = np.arange(N)\n# Here are many sets of y to plot vs. x\nys = [x + i for i in x]\n\n# We need to set the plot limits, they will not autoscale\nfig, ax = plt.subplots()\nax.set_xlim(np.min(x), np.max(x))\nax.set_ylim(np.min(ys), np.max(ys))\n\n# colors is sequence of rgba tuples\n# linestyle is a string or dash tuple. Legal string values are\n# solid|dashed|dashdot|dotted. The dash tuple is (offset, onoffseq)\n# where onoffseq is an even length tuple of on and off ink in points.\n# If linestyle is omitted, 'solid' is used\n# See `matplotlib.collections.LineCollection` for more information\n\n# Make a sequence of (x, y) pairs.\nline_segments = LineCollection([np.column_stack([x, y]) for y in ys],\n linewidths=(0.5, 1, 1.5, 2),\n linestyles='solid')\nline_segments.set_array(x)\nax.add_collection(line_segments)\naxcb = fig.colorbar(line_segments)\naxcb.set_label('Line Number')\nax.set_title('Line Collection with mapped colors')\nplt.sci(line_segments) # This allows interactive changing of the colormap.\nplt.show()"
48+
]
49+
},
50+
{
51+
"cell_type": "markdown",
52+
"metadata": {},
53+
"source": [
54+
".. admonition:: References\n\n The use of the following functions, methods, classes and modules is shown\n in this example:\n\n - `matplotlib.collections`\n - `matplotlib.collections.LineCollection`\n - `matplotlib.cm.ScalarMappable.set_array`\n - `matplotlib.axes.Axes.add_collection`\n - `matplotlib.figure.Figure.colorbar` / `matplotlib.pyplot.colorbar`\n - `matplotlib.pyplot.sci`\n\n"
55+
]
56+
}
57+
],
58+
"metadata": {
59+
"kernelspec": {
60+
"display_name": "Python 3",
61+
"language": "python",
62+
"name": "python3"
63+
},
64+
"language_info": {
65+
"codemirror_mode": {
66+
"name": "ipython",
67+
"version": 3
68+
},
69+
"file_extension": ".py",
70+
"mimetype": "text/x-python",
71+
"name": "python",
72+
"nbconvert_exporter": "python",
73+
"pygments_lexer": "ipython3",
74+
"version": "3.10.4"
75+
}
76+
},
77+
"nbformat": 4,
78+
"nbformat_minor": 0
79+
}
Lines changed: 38 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,38 @@
1+
"""
2+
==========
3+
Hyperlinks
4+
==========
5+
6+
This example demonstrates how to set a hyperlinks on various kinds of elements.
7+
8+
This currently only works with the SVG backend.
9+
10+
"""
11+
12+
13+
import numpy as np
14+
import matplotlib.cm as cm
15+
import matplotlib.pyplot as plt
16+
17+
###############################################################################
18+
19+
fig = plt.figure()
20+
s = plt.scatter([1, 2, 3], [4, 5, 6])
21+
s.set_urls(['https://www.bbc.com/news', 'https://www.google.com/', None])
22+
fig.savefig('scatter.svg')
23+
24+
###############################################################################
25+
26+
fig = plt.figure()
27+
delta = 0.025
28+
x = y = np.arange(-3.0, 3.0, delta)
29+
X, Y = np.meshgrid(x, y)
30+
Z1 = np.exp(-X**2 - Y**2)
31+
Z2 = np.exp(-(X - 1)**2 - (Y - 1)**2)
32+
Z = (Z1 - Z2) * 2
33+
34+
im = plt.imshow(Z, interpolation='bilinear', cmap=cm.gray,
35+
origin='lower', extent=[-3, 3, -3, 3])
36+
37+
im.set_url('https://www.google.com/')
38+
fig.savefig('image.svg')
Lines changed: 28 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,28 @@
1+
"""
2+
================
3+
pyplot animation
4+
================
5+
6+
Generating an animation by calling `~.pyplot.pause` between plotting commands.
7+
8+
The method shown here is only suitable for simple, low-performance use. For
9+
more demanding applications, look at the :mod:`.animation` module and the
10+
examples that use it.
11+
12+
Note that calling `time.sleep` instead of `~.pyplot.pause` would *not* work.
13+
"""
14+
15+
import matplotlib.pyplot as plt
16+
import numpy as np
17+
18+
np.random.seed(19680801)
19+
data = np.random.random((50, 50, 50))
20+
21+
fig, ax = plt.subplots()
22+
23+
for i, img in enumerate(data):
24+
ax.clear()
25+
ax.imshow(img)
26+
ax.set_title(f"frame {i}")
27+
# Note that using time.sleep does *not* work here!
28+
plt.pause(0.1)
Lines changed: 97 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,97 @@
1+
{
2+
"cells": [
3+
{
4+
"cell_type": "code",
5+
"execution_count": null,
6+
"metadata": {
7+
"collapsed": false
8+
},
9+
"outputs": [],
10+
"source": [
11+
"%matplotlib inline"
12+
]
13+
},
14+
{
15+
"cell_type": "markdown",
16+
"metadata": {},
17+
"source": [
18+
"\n# Hatch style reference\n\nHatches can be added to most polygons in Matplotlib, including `~.Axes.bar`,\n`~.Axes.fill_between`, `~.Axes.contourf`, and children of `~.patches.Polygon`.\nThey are currently supported in the PS, PDF, SVG, OSX, and Agg backends. The WX\nand Cairo backends do not currently support hatching.\n\nSee also :doc:`/gallery/images_contours_and_fields/contourf_hatching` for\nan example using `~.Axes.contourf`, and\n:doc:`/gallery/shapes_and_collections/hatch_demo` for more usage examples.\n"
19+
]
20+
},
21+
{
22+
"cell_type": "code",
23+
"execution_count": null,
24+
"metadata": {
25+
"collapsed": false
26+
},
27+
"outputs": [],
28+
"source": [
29+
"import matplotlib.pyplot as plt\nfrom matplotlib.patches import Rectangle\n\nfig, axs = plt.subplots(2, 5, constrained_layout=True, figsize=(6.4, 3.2))\n\nhatches = ['/', '\\\\', '|', '-', '+', 'x', 'o', 'O', '.', '*']\n\n\ndef hatches_plot(ax, h):\n ax.add_patch(Rectangle((0, 0), 2, 2, fill=False, hatch=h))\n ax.text(1, -0.5, f\"' {h} '\", size=15, ha=\"center\")\n ax.axis('equal')\n ax.axis('off')\n\nfor ax, h in zip(axs.flat, hatches):\n hatches_plot(ax, h)"
30+
]
31+
},
32+
{
33+
"cell_type": "markdown",
34+
"metadata": {},
35+
"source": [
36+
"Hatching patterns can be repeated to increase the density.\n\n"
37+
]
38+
},
39+
{
40+
"cell_type": "code",
41+
"execution_count": null,
42+
"metadata": {
43+
"collapsed": false
44+
},
45+
"outputs": [],
46+
"source": [
47+
"fig, axs = plt.subplots(2, 5, constrained_layout=True, figsize=(6.4, 3.2))\n\nhatches = ['//', '\\\\\\\\', '||', '--', '++', 'xx', 'oo', 'OO', '..', '**']\n\nfor ax, h in zip(axs.flat, hatches):\n hatches_plot(ax, h)"
48+
]
49+
},
50+
{
51+
"cell_type": "markdown",
52+
"metadata": {},
53+
"source": [
54+
"Hatching patterns can be combined to create additional patterns.\n\n"
55+
]
56+
},
57+
{
58+
"cell_type": "code",
59+
"execution_count": null,
60+
"metadata": {
61+
"collapsed": false
62+
},
63+
"outputs": [],
64+
"source": [
65+
"fig, axs = plt.subplots(2, 5, constrained_layout=True, figsize=(6.4, 3.2))\n\nhatches = ['/o', '\\\\|', '|*', '-\\\\', '+o', 'x*', 'o-', 'O|', 'O.', '*-']\n\nfor ax, h in zip(axs.flat, hatches):\n hatches_plot(ax, h)"
66+
]
67+
},
68+
{
69+
"cell_type": "markdown",
70+
"metadata": {},
71+
"source": [
72+
".. admonition:: References\n\n The use of the following functions, methods, classes and modules is shown\n in this example:\n\n - `matplotlib.patches`\n - `matplotlib.patches.Rectangle`\n - `matplotlib.axes.Axes.add_patch`\n - `matplotlib.axes.Axes.text`\n\n"
73+
]
74+
}
75+
],
76+
"metadata": {
77+
"kernelspec": {
78+
"display_name": "Python 3",
79+
"language": "python",
80+
"name": "python3"
81+
},
82+
"language_info": {
83+
"codemirror_mode": {
84+
"name": "ipython",
85+
"version": 3
86+
},
87+
"file_extension": ".py",
88+
"mimetype": "text/x-python",
89+
"name": "python",
90+
"nbconvert_exporter": "python",
91+
"pygments_lexer": "ipython3",
92+
"version": "3.10.4"
93+
}
94+
},
95+
"nbformat": 4,
96+
"nbformat_minor": 0
97+
}

0 commit comments

Comments
 (0)
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy