diff --git a/docs/esp32/general.rst b/docs/esp32/general.rst index 8137c042d9214..78cc23e4bbd98 100644 --- a/docs/esp32/general.rst +++ b/docs/esp32/general.rst @@ -51,7 +51,7 @@ For your convenience, some of technical specifications are provided below: * I2C: 2 I2C (bitbang implementation available on any pins) * I2S: 2 * ADC: 12-bit SAR ADC up to 18 channels -* DAC: 2 8-bit DACs +* DAC: 2 8-bit DACs with sine-wave generator * RMT: 8 channels allowing accurate pulse transmit/receive * Programming: using BootROM bootloader from UART - due to external FlashROM and always-available BootROM bootloader, the ESP32 is not brickable diff --git a/docs/esp32/quickref.rst b/docs/esp32/quickref.rst index c58f4aa760856..a65e5fb173a30 100644 --- a/docs/esp32/quickref.rst +++ b/docs/esp32/quickref.rst @@ -240,6 +240,73 @@ ESP32 specific ADC class method reference: - ``ADC.WIDTH_11BIT``: 11 bit data - ``ADC.WIDTH_12BIT``: 12 bit data - this is the default configuration +DAC (digital to analog conversion) +---------------------------------- + +On the ESP32 DAC functionality is available on Pins 25 and 26. Note that, when creating +the DAC object for a pin, the DAC value will be initialized at 0. + +Use the :ref:`machine.DAC ` class:: + + from machine import DAC + + dac = DAC(Pin(25)) # create DAC object on pin 25 + dac.write(128) # set the output voltage to 1.65V + + dac.cosine_enable() # enable the cosine generator + dac.frequency_set(7, 1) # set the output frequency using the RTC clock divider and + # frequency steps for the CW generator, (7, 1) -> ~15 Hz + + +ESP32 specific DAC class method reference: + +.. method:: DAC.cosine_enable() + + This method enables the cosine generator for the DAC. + +.. method:: DAC.cosine_disable() + + This method disables the cosine generator for the DAC. + +.. method:: DAC.frequency_step(frequency_step) + + This method sets the frequency steps of the CW generator. The base is the 8 MHz RTC clock. The + ``frequency_step`` adjusts the frequency as ``rtc_clock x frequency_step / 65536``. The RTC + clock is by default 8 MHz, and can be divided down by ``DAC.rtc_clk_div``. + +.. method:: DAC.rtc_clk_div(clk_8m_div) + This method sets the RTC clock divider. This allows to achieve lower frequencies of the CW generator. + ``clk_8m_div`` is the divider and must be between 0 and 7. + +.. Warning:: + Be cautious in changing this value as it might affect other peripherals that use the 8 MHz RTC clock! + +.. method:: DAC.scale_set(scale) + + This method allows to scale the sine wave: + + - 0 -> no scale + - 1 -> scale to 1/2 + - 2 -> scale to 1/4 + - 3 -> scale to 1/8 + +.. method:: DAC.offset_set(offset) + + This method allows to apply an offset. The range is from 0 to 255 + +.. method:: DAC.invert_set(invert) + + This method can invert the output pattern: + + - 0 -> does not invert anything + - 1 -> inverts all bits + - 2 -> inverts MSB + - 3 -> inverts all bits except the MSB + +.. method:: DAC.frequency_get() + + This method returns the current frequency in Hz. + Software SPI bus ---------------- diff --git a/ports/esp32/machine_dac.c b/ports/esp32/machine_dac.c index bd0804ec41514..bf8586bafc5ea 100644 --- a/ports/esp32/machine_dac.c +++ b/ports/esp32/machine_dac.c @@ -29,34 +29,45 @@ #include "esp_log.h" +#include "soc/sens_reg.h" +#include "soc/rtc_io_reg.h" +#include "soc/rtc_cntl_reg.h" +#include "soc/rtc.h" + #include "driver/gpio.h" #include "driver/dac.h" #include "py/runtime.h" #include "py/mphal.h" #include "modmachine.h" +#include "mphalport.h" typedef struct _mdac_obj_t { mp_obj_base_t base; gpio_num_t gpio_id; dac_channel_t dac_id; + int clk_8m_div; + int frequency_step; } mdac_obj_t; -STATIC const mdac_obj_t mdac_obj[] = { - {{&machine_dac_type}, GPIO_NUM_25, DAC_CHANNEL_1}, - {{&machine_dac_type}, GPIO_NUM_26, DAC_CHANNEL_2}, -}; - STATIC mp_obj_t mdac_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) { mp_arg_check_num(n_args, n_kw, 1, 1, true); gpio_num_t pin_id = machine_pin_get_id(args[0]); - const mdac_obj_t *self = NULL; - for (int i = 0; i < MP_ARRAY_SIZE(mdac_obj); i++) { - if (pin_id == mdac_obj[i].gpio_id) { self = &mdac_obj[i]; break; } + if (pin_id != GPIO_NUM_25 && pin_id != GPIO_NUM_26) mp_raise_ValueError("invalid Pin for DAC"); + + mdac_obj_t *self = m_new_obj(mdac_obj_t); + self->base.type = &machine_dac_type; + + self->gpio_id = pin_id; + if (pin_id == GPIO_NUM_25) { + self->dac_id = DAC_CHANNEL_1; + } else { + self->dac_id = DAC_CHANNEL_2; } - if (!self) mp_raise_ValueError("invalid Pin for DAC"); + self->clk_8m_div = 0; + self->frequency_step = 1; esp_err_t err = dac_output_enable(self->dac_id); if (err == ESP_OK) { @@ -82,8 +93,179 @@ STATIC mp_obj_t mdac_write(mp_obj_t self_in, mp_obj_t value_in) { } MP_DEFINE_CONST_FUN_OBJ_2(mdac_write_obj, mdac_write); +/* + * Enable cosine waveform generator on a DAC channel + */ +STATIC mp_obj_t mdac_cosine_enable(mp_obj_t self_in) { + mdac_obj_t *self = self_in; + // Enable tone generator common to both channels + SET_PERI_REG_MASK(SENS_SAR_DAC_CTRL1_REG, SENS_SW_TONE_EN); + switch(self->dac_id) { + case DAC_CHANNEL_1: + // Enable / connect tone tone generator on / to this channel + SET_PERI_REG_MASK(SENS_SAR_DAC_CTRL2_REG, SENS_DAC_CW_EN1_M); + // Invert MSB, otherwise part of waveform will have inverted + SET_PERI_REG_BITS(SENS_SAR_DAC_CTRL2_REG, SENS_DAC_INV1, 2, SENS_DAC_INV1_S); + break; + case DAC_CHANNEL_2: + SET_PERI_REG_MASK(SENS_SAR_DAC_CTRL2_REG, SENS_DAC_CW_EN2_M); + SET_PERI_REG_BITS(SENS_SAR_DAC_CTRL2_REG, SENS_DAC_INV2, 2, SENS_DAC_INV2_S); + break; + default : + mp_raise_ValueError("Parameter Error"); + } + return mp_const_none; +} +MP_DEFINE_CONST_FUN_OBJ_1(mdac_cosine_enable_obj, mdac_cosine_enable); + +/* + * Disable cosine waveform generator on a DAC channel + */ +STATIC mp_obj_t mdac_cosine_disable(mp_obj_t self_in) { + mdac_obj_t *self = self_in; + switch(self->dac_id) { + case DAC_CHANNEL_1: + // disable / connect tone tone generator on / to this channel + CLEAR_PERI_REG_MASK(SENS_SAR_DAC_CTRL2_REG, SENS_DAC_CW_EN1_M); + break; + case DAC_CHANNEL_2: + CLEAR_PERI_REG_MASK(SENS_SAR_DAC_CTRL2_REG, SENS_DAC_CW_EN2_M); + break; + default : + mp_raise_ValueError("Parameter Error"); + } + return mp_const_none; +} +MP_DEFINE_CONST_FUN_OBJ_1(mdac_cosine_disable_obj, mdac_cosine_disable); + +/* + * Set frequency steps of internal CW generator common to both DAC channels + * + * frequency_step: range 0x0001 - 0xFFFF + * + */ +STATIC mp_obj_t mdac_frequency_step(mp_obj_t self_in, mp_obj_t frequency_step_in) { + mdac_obj_t *self = self_in; + int frequency_step = mp_obj_get_int(frequency_step_in); + if (frequency_step < 1 || frequency_step > 0xffff) mp_raise_ValueError("Frequency_step out of range"); + self->frequency_step = frequency_step; + SET_PERI_REG_BITS(SENS_SAR_DAC_CTRL1_REG, SENS_SW_FSTEP, frequency_step, SENS_SW_FSTEP_S); + return mp_const_none; +} +MP_DEFINE_CONST_FUN_OBJ_2(mdac_frequency_step_obj, mdac_frequency_step); + +/* + * Set the RTC 8 MHz clock divider. This can be dangerous if other code uses the 8 MHz clock. + * + * clk_8m_div: range 0b000 - 0b111 + */ +STATIC mp_obj_t mdac_rtc_clk_div(mp_obj_t self_in, mp_obj_t clk_8m_div_in) { + mdac_obj_t *self = self_in; + int clk_8m_div = mp_obj_get_int(clk_8m_div_in); + if (clk_8m_div < 0 || clk_8m_div > 0b111) mp_raise_ValueError("Cl_8m_div out of range"); + self->clk_8m_div = clk_8m_div; + REG_SET_FIELD(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_CK8M_DIV_SEL, clk_8m_div); + return mp_const_none; +} +MP_DEFINE_CONST_FUN_OBJ_2(mdac_rtc_clk_div_obj, mdac_rtc_clk_div); + +/* + * Scale output of a DAC channel using two bit pattern: + * + * - 00: no scale + * - 01: scale to 1/2 + * - 10: scale to 1/4 + * - 11: scale to 1/8 + * + */ +STATIC mp_obj_t mdac_scale_set(mp_obj_t self_in, mp_obj_t scale_in) { + mdac_obj_t *self = self_in; + int scale = mp_obj_get_int(scale_in); + if (scale < 0 || scale > 0b11) mp_raise_ValueError("Scale out of range"); + switch(self->dac_id) { + case DAC_CHANNEL_1: + SET_PERI_REG_BITS(SENS_SAR_DAC_CTRL2_REG, SENS_DAC_SCALE1, scale, SENS_DAC_SCALE1_S); + break; + case DAC_CHANNEL_2: + SET_PERI_REG_BITS(SENS_SAR_DAC_CTRL2_REG, SENS_DAC_SCALE2, scale, SENS_DAC_SCALE2_S); + break; + default : + mp_raise_ValueError("Parameter Error"); + } + return mp_const_none; +} +MP_DEFINE_CONST_FUN_OBJ_2(mdac_scale_set_obj, mdac_scale_set); + +/* + * Offset output of a DAC channel + * + * Range 0x00 - 0xFF + * + */ +STATIC mp_obj_t mdac_offset_set(mp_obj_t self_in, mp_obj_t offset_in) { + mdac_obj_t *self = self_in; + int offset = mp_obj_get_int(offset_in); + if (offset < 0 || offset > 0xFF) mp_raise_ValueError("Offset out of range"); + switch(self->dac_id) { + case DAC_CHANNEL_1: + SET_PERI_REG_BITS(SENS_SAR_DAC_CTRL2_REG, SENS_DAC_DC1, offset, SENS_DAC_DC1_S); + break; + case DAC_CHANNEL_2: + SET_PERI_REG_BITS(SENS_SAR_DAC_CTRL2_REG, SENS_DAC_DC2, offset, SENS_DAC_DC2_S); + break; + default : + mp_raise_ValueError("Parameter Error"); + } + return mp_const_none; +} +MP_DEFINE_CONST_FUN_OBJ_2(mdac_offset_set_obj, mdac_offset_set); + +/* + * Invert output pattern of a DAC channel + * + * - 00: does not invert any bits, + * - 01: inverts all bits, + * - 10: inverts MSB, + * - 11: inverts all bits except for MSB + * + */ +STATIC mp_obj_t mdac_invert_set(mp_obj_t self_in, mp_obj_t invert_in) { + mdac_obj_t *self = self_in; + int invert = mp_obj_get_int(invert_in); + if (invert < 0 || invert > 0b11) mp_raise_ValueError("Invert out of range"); + switch(self->dac_id) { + case DAC_CHANNEL_1: + SET_PERI_REG_BITS(SENS_SAR_DAC_CTRL2_REG, SENS_DAC_INV1, invert, SENS_DAC_INV1_S); + break; + case DAC_CHANNEL_2: + SET_PERI_REG_BITS(SENS_SAR_DAC_CTRL2_REG, SENS_DAC_INV2, invert, SENS_DAC_INV2_S); + break; + default : + mp_raise_ValueError("Parameter Error"); + } + return mp_const_none; +} +MP_DEFINE_CONST_FUN_OBJ_2(mdac_invert_set_obj, mdac_invert_set); + +/* + * Get the current frequency + */ +STATIC mp_obj_t mdac_frequency_get(mp_obj_t self_in) { + mdac_obj_t *self = self_in; + return mp_obj_new_int(RTC_FAST_CLK_FREQ_APPROX / (1 + self->clk_8m_div) * (float) self->frequency_step / 65536); +} +MP_DEFINE_CONST_FUN_OBJ_1(mdac_frequency_get_obj, mdac_frequency_get); + STATIC const mp_rom_map_elem_t mdac_locals_dict_table[] = { { MP_ROM_QSTR(MP_QSTR_write), MP_ROM_PTR(&mdac_write_obj) }, + { MP_ROM_QSTR(MP_QSTR_cosine_enable), MP_ROM_PTR(&mdac_cosine_enable_obj) }, + { MP_ROM_QSTR(MP_QSTR_cosine_disable), MP_ROM_PTR(&mdac_cosine_disable_obj) }, + { MP_ROM_QSTR(MP_QSTR_frequency_step), MP_ROM_PTR(&mdac_frequency_step_obj) }, + { MP_ROM_QSTR(MP_QSTR_rtc_clk_div), MP_ROM_PTR(&mdac_rtc_clk_div_obj) }, + { MP_ROM_QSTR(MP_QSTR_scale_set), MP_ROM_PTR(&mdac_scale_set_obj) }, + { MP_ROM_QSTR(MP_QSTR_offset_set), MP_ROM_PTR(&mdac_offset_set_obj) }, + { MP_ROM_QSTR(MP_QSTR_invert_set), MP_ROM_PTR(&mdac_invert_set_obj) }, + { MP_ROM_QSTR(MP_QSTR_frequency_get), MP_ROM_PTR(&mdac_frequency_get_obj) } }; STATIC MP_DEFINE_CONST_DICT(mdac_locals_dict, mdac_locals_dict_table); pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy