@@ -77,7 +77,7 @@ You'll use these NumPy and Matplotlib functions:
77
77
Your empirical model assumes that the number of transistors per
78
78
semiconductor follows an exponential growth,
79
79
80
- $\log(\text{transistor_count })= f(\text{year}) = A\cdot \text{year}+B,$
80
+ $\log(\text{transistor \_ count })= f(\text{year}) = A\cdot \text{year}+B,$
81
81
82
82
where $A$ and $B$ are fitting constants. You use semiconductor
83
83
manufacturers' data to find the fitting constants.
@@ -87,17 +87,17 @@ rate for added transistors, 2, and giving an initial number of transistors for a
87
87
88
88
You state Moore's law in an exponential form as follows,
89
89
90
- $\text{transistor_count }= e^{A_M\cdot \text{year} +B_M}.$
90
+ $\text{transistor \_ count }= e^{A_M\cdot \text{year} +B_M}.$
91
91
92
92
Where $A_M$ and $B_M$ are constants that double the number of transistors every two years and start at 2250 transistors in 1971,
93
93
94
- 1 . $\dfrac{\text{transistor_count }(\text{year} +2)}{\text{transistor_count }(\text{year})} = 2 = \dfrac{e^{B_M}e^{A_M \text{year} + 2A_M}}{e^{B_M}e^{A_M \text{year}}} = e^{2A_M} \rightarrow A_M = \frac{\log(2)}{2}$
94
+ 1 . $\dfrac{\text{transistor \_ count }(\text{year} +2)}{\text{transistor \_ count }(\text{year})} = 2 = \dfrac{e^{B_M}e^{A_M \text{year} + 2A_M}}{e^{B_M}e^{A_M \text{year}}} = e^{2A_M} \rightarrow A_M = \frac{\log(2)}{2}$
95
95
96
96
2 . $\log(2250) = \frac{\log(2)}{2}\cdot 1971 + B_M \rightarrow B_M = \log(2250)-\frac{\log(2)}{2}\cdot 1971$
97
97
98
98
so Moore's law stated as an exponential function is
99
99
100
- $\log(\text{transistor_count })= A_M\cdot \text{year}+B_M,$
100
+ $\log(\text{transistor \_ count })= A_M\cdot \text{year}+B_M,$
101
101
102
102
where
103
103
@@ -242,7 +242,7 @@ B, A = model
242
242
Did manufacturers double the transistor count every two years? You have
243
243
the final formula,
244
244
245
- $\dfrac{\text{transistor_count }(\text{year} +2)}{\text{transistor_count }(\text{year})} = xFactor =
245
+ $\dfrac{\text{transistor \_ count }(\text{year} +2)}{\text{transistor \_ count }(\text{year})} = xFactor =
246
246
\dfrac{e^{B}e^{A( \text{year} + 2)}}{e^{B}e^{A \text{year}}} = e^{2A}$
247
247
248
248
where increase in number of transistors is $xFactor,$ number of years is
@@ -263,19 +263,19 @@ Here, use
263
263
to plot the number of transistors on a log-scale and the year on a
264
264
linear scale. You have defined a three arrays to get to a final model
265
265
266
- $y_i = \log(\text{transistor_count }),$
266
+ $y_i = \log(\text{transistor \_ count }),$
267
267
268
268
$y_i = A \cdot \text{year} + B,$
269
269
270
270
and
271
271
272
- $\log(\text{transistor_count }) = A\cdot \text{year} + B,$
272
+ $\log(\text{transistor \_ count }) = A\cdot \text{year} + B,$
273
273
274
274
your variables, ` transistor_count ` , ` year ` , and ` yi ` all have the same
275
275
dimensions, ` (179,) ` . NumPy arrays need the same dimensions to make a
276
276
plot. The predicted number of transistors is now
277
277
278
- $\text{transistor_count }_ {\text{predicted}} = e^Be^{A\cdot \text{year}}$.
278
+ $\text{transistor \_ count }_ {\text{predicted}} = e^Be^{A\cdot \text{year}}$.
279
279
280
280
+++
281
281
@@ -324,7 +324,7 @@ comparator,
324
324
Then, make a prediction for 2017 with ` Moores_law ` defined above
325
325
and plugging in your best fit constants into your function
326
326
327
- $\text{transistor_count } = e^{B}e^{A\cdot \text{year}}$.
327
+ $\text{transistor \_ count } = e^{B}e^{A\cdot \text{year}}$.
328
328
329
329
A great way to compare these measurements is to compare your prediction
330
330
and Moore's prediction to the average transistor count and look at the
0 commit comments