Skip to content

Commit 486426e

Browse files
committed
Organize ToC and fix errors
1 parent 955c13a commit 486426e

24 files changed

+41
-216
lines changed

_toc.yml

Lines changed: 5 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -16,12 +16,10 @@
1616
# Learn more at https://jupyterbook.org/customize/toc.html
1717

1818
format: jb-book
19-
root: site/index
19+
root: content/index
2020
chapters:
2121
- title: Content
2222
sections:
23-
- file: content/pairing
24-
- file: content/tutorial-style-guide
2523
- title: Applications
2624
sections:
2725
- file: content/applications/index
@@ -47,5 +45,8 @@ chapters:
4745
- file: content/features/tutorial-ma
4846
- file: content/features/tutorial-svd
4947
- title: Contributing
50-
file: site/contributing
48+
sections:
49+
- file: content/contributing/index
50+
- file: content/contributing/pairing
51+
- file: content/contributing/tutorial-style-guide
5152

File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.

content/_static/numpylogo.svg

Lines changed: 1 addition & 0 deletions
Loading

content/applications/mooreslaw-tutorial.md

Lines changed: 9 additions & 9 deletions
Original file line numberDiff line numberDiff line change
@@ -77,7 +77,7 @@ You'll use these NumPy and Matplotlib functions:
7777
Your empirical model assumes that the number of transistors per
7878
semiconductor follows an exponential growth,
7979

80-
$\log(\text{transistor_count})= f(\text{year}) = A\cdot \text{year}+B,$
80+
$\log(\text{transistor\_count})= f(\text{year}) = A\cdot \text{year}+B,$
8181

8282
where $A$ and $B$ are fitting constants. You use semiconductor
8383
manufacturers' data to find the fitting constants.
@@ -87,17 +87,17 @@ rate for added transistors, 2, and giving an initial number of transistors for a
8787

8888
You state Moore's law in an exponential form as follows,
8989

90-
$\text{transistor_count}= e^{A_M\cdot \text{year} +B_M}.$
90+
$\text{transistor\_count}= e^{A_M\cdot \text{year} +B_M}.$
9191

9292
Where $A_M$ and $B_M$ are constants that double the number of transistors every two years and start at 2250 transistors in 1971,
9393

94-
1. $\dfrac{\text{transistor_count}(\text{year} +2)}{\text{transistor_count}(\text{year})} = 2 = \dfrac{e^{B_M}e^{A_M \text{year} + 2A_M}}{e^{B_M}e^{A_M \text{year}}} = e^{2A_M} \rightarrow A_M = \frac{\log(2)}{2}$
94+
1. $\dfrac{\text{transistor\_count}(\text{year} +2)}{\text{transistor\_count}(\text{year})} = 2 = \dfrac{e^{B_M}e^{A_M \text{year} + 2A_M}}{e^{B_M}e^{A_M \text{year}}} = e^{2A_M} \rightarrow A_M = \frac{\log(2)}{2}$
9595

9696
2. $\log(2250) = \frac{\log(2)}{2}\cdot 1971 + B_M \rightarrow B_M = \log(2250)-\frac{\log(2)}{2}\cdot 1971$
9797

9898
so Moore's law stated as an exponential function is
9999

100-
$\log(\text{transistor_count})= A_M\cdot \text{year}+B_M,$
100+
$\log(\text{transistor\_count})= A_M\cdot \text{year}+B_M,$
101101

102102
where
103103

@@ -242,7 +242,7 @@ B, A = model
242242
Did manufacturers double the transistor count every two years? You have
243243
the final formula,
244244

245-
$\dfrac{\text{transistor_count}(\text{year} +2)}{\text{transistor_count}(\text{year})} = xFactor =
245+
$\dfrac{\text{transistor\_count}(\text{year} +2)}{\text{transistor\_count}(\text{year})} = xFactor =
246246
\dfrac{e^{B}e^{A( \text{year} + 2)}}{e^{B}e^{A \text{year}}} = e^{2A}$
247247

248248
where increase in number of transistors is $xFactor,$ number of years is
@@ -263,19 +263,19 @@ Here, use
263263
to plot the number of transistors on a log-scale and the year on a
264264
linear scale. You have defined a three arrays to get to a final model
265265

266-
$y_i = \log(\text{transistor_count}),$
266+
$y_i = \log(\text{transistor\_count}),$
267267

268268
$y_i = A \cdot \text{year} + B,$
269269

270270
and
271271

272-
$\log(\text{transistor_count}) = A\cdot \text{year} + B,$
272+
$\log(\text{transistor\_count}) = A\cdot \text{year} + B,$
273273

274274
your variables, `transistor_count`, `year`, and `yi` all have the same
275275
dimensions, `(179,)`. NumPy arrays need the same dimensions to make a
276276
plot. The predicted number of transistors is now
277277

278-
$\text{transistor_count}_{\text{predicted}} = e^Be^{A\cdot \text{year}}$.
278+
$\text{transistor\_count}_{\text{predicted}} = e^Be^{A\cdot \text{year}}$.
279279

280280
+++
281281

@@ -324,7 +324,7 @@ comparator,
324324
Then, make a prediction for 2017 with `Moores_law` defined above
325325
and plugging in your best fit constants into your function
326326

327-
$\text{transistor_count} = e^{B}e^{A\cdot \text{year}}$.
327+
$\text{transistor\_count} = e^{B}e^{A\cdot \text{year}}$.
328328

329329
A great way to compare these measurements is to compare your prediction
330330
and Moore's prediction to the average transistor count and look at the

0 commit comments

Comments
 (0)
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy