@@ -182,8 +182,8 @@ def build_discriminator():
182
182
train_history = defaultdict (list )
183
183
test_history = defaultdict (list )
184
184
185
- for epoch in range (epochs ):
186
- print ('Epoch {} of {}' .format (epoch + 1 , epochs ))
185
+ for epoch in range (1 , epochs + 1 ):
186
+ print ('Epoch {} of {}' .format (epoch , epochs ))
187
187
188
188
num_batches = int (X_train .shape [0 ] / batch_size )
189
189
progress_bar = Progbar (target = num_batches )
@@ -192,7 +192,6 @@ def build_discriminator():
192
192
epoch_disc_loss = []
193
193
194
194
for index in range (num_batches ):
195
- progress_bar .update (index )
196
195
# generate a new batch of noise
197
196
noise = np .random .uniform (- 1 , 1 , (batch_size , latent_size ))
198
197
@@ -232,7 +231,9 @@ def build_discriminator():
232
231
[noise , sampled_labels .reshape ((- 1 , 1 ))],
233
232
[trick , sampled_labels ]))
234
233
235
- print ('\n Testing for epoch {}:' .format (epoch + 1 ))
234
+ progress_bar .update (index + 1 )
235
+
236
+ print ('Testing for epoch {}:' .format (epoch ))
236
237
237
238
# evaluate the testing loss here
238
239
0 commit comments