Skip to content

Commit 048f078

Browse files
committed
Some small cleanup
1 parent 1d3fde6 commit 048f078

File tree

3 files changed

+8
-6
lines changed

3 files changed

+8
-6
lines changed

.gitignore

Lines changed: 2 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,2 @@
1+
venv
2+
lsp-ai-chat.md

README.md

Lines changed: 5 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -44,7 +44,7 @@ results = Document.vector_search("text_embedding", "some query to search against
4444

4545
### Example 2: Using mixedbread-ai/mxbai-embed-large-v1
4646

47-
This example shows how to use the `mixedbread-ai/mxbai-embed-large-v1` transformer, which has an embedding size of 512 and requires specific parameters for recall.
47+
This example shows how to use the `mixedbread-ai/mxbai-embed-large-v1` transformer, which has an embedding size of 1024 and requires specific parameters for recall.
4848

4949
```python
5050
from django.db import models
@@ -54,19 +54,19 @@ class Article(Embed):
5454
content = models.TextField()
5555
content_embedding = VectorField(
5656
field_to_embed="content",
57-
dimensions=512,
57+
dimensions=1024,
5858
transformer="mixedbread-ai/mxbai-embed-large-v1",
5959
transformer_recall_parameters={
60-
"query": "Represent this sentence for searching relevant passages: "
60+
"prompt": "Represent this sentence for searching relevant passages: "
6161
}
6262
)
6363

6464
# Searching
65-
results = Article.vector_search("content_embedding", "search query")
65+
results = Article.vector_search("content_embedding", "some query to search against")
6666
```
6767

6868
Note the differences between the two examples:
69-
1. The `dimensions` parameter is set to 384 for `intfloat/e5-small-v2` and 512 for `mixedbread-ai/mxbai-embed-large-v1`.
69+
1. The `dimensions` parameter is set to 384 for `intfloat/e5-small-v2` and 1024 for `mixedbread-ai/mxbai-embed-large-v1`.
7070
2. The `mixedbread-ai/mxbai-embed-large-v1` transformer requires additional parameters for recall, which are specified in the `transformer_recall_parameters` argument.
7171

7272
Both examples will automatically generate embeddings when instances are saved and allow for vector similarity searches using the `vector_search` method.

src/postgresml_django/main.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -61,7 +61,7 @@ def vector_search(
6161
# Generate an embedding for the text
6262
query_embedding = GenerateEmbedding(
6363
Value(query_text),
64-
"intfloat/e5-small-v2",
64+
field_instance.transformer,
6565
field_instance.transformer_recall_parameters,
6666
)
6767

0 commit comments

Comments
 (0)
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy