|
| 1 | +// https://github.com/huggingface/candle/tree/main/candle-examples/examples/bert |
| 2 | +// https://huggingface.co/sentence-transformers/multi-qa-MiniLM-L6-cos-v1 |
| 3 | + |
| 4 | +use candle_core::{Device, Tensor}; |
| 5 | +use candle_nn::VarBuilder; |
| 6 | +use candle_transformers::models::bert::{BertModel, Config, DTYPE}; |
| 7 | +use hf_hub::api::sync::Api; |
| 8 | +use pgvector::Vector; |
| 9 | +use postgres::{Client, NoTls}; |
| 10 | +use std::error::Error; |
| 11 | +use std::fs::read_to_string; |
| 12 | +use tokenizers::{PaddingParams, PaddingStrategy, Tokenizer}; |
| 13 | + |
| 14 | +fn main() -> Result<(), Box<dyn Error + Send + Sync>> { |
| 15 | + let mut client = Client::configure() |
| 16 | + .host("localhost") |
| 17 | + .dbname("pgvector_example") |
| 18 | + .user(std::env::var("USER")?.as_str()) |
| 19 | + .connect(NoTls)?; |
| 20 | + |
| 21 | + client.execute("CREATE EXTENSION IF NOT EXISTS vector", &[])?; |
| 22 | + client.execute("DROP TABLE IF EXISTS documents", &[])?; |
| 23 | + client.execute( |
| 24 | + "CREATE TABLE documents (id serial PRIMARY KEY, content text, embedding vector(384))", |
| 25 | + &[], |
| 26 | + )?; |
| 27 | + client.execute( |
| 28 | + "CREATE INDEX ON documents USING GIN (to_tsvector('english', content))", |
| 29 | + &[], |
| 30 | + )?; |
| 31 | + |
| 32 | + let model = EmbeddingModel::new("sentence-transformers/multi-qa-MiniLM-L6-cos-v1")?; |
| 33 | + |
| 34 | + let input = [ |
| 35 | + "The dog is barking", |
| 36 | + "The cat is purring", |
| 37 | + "The bear is growling", |
| 38 | + ]; |
| 39 | + let embeddings = input |
| 40 | + .iter() |
| 41 | + .map(|text| model.embed(text)) |
| 42 | + .collect::<Result<Vec<_>, _>>()?; |
| 43 | + |
| 44 | + for (content, embedding) in input.iter().zip(embeddings) { |
| 45 | + client.execute( |
| 46 | + "INSERT INTO documents (content, embedding) VALUES ($1, $2)", |
| 47 | + &[&content, &Vector::from(embedding)], |
| 48 | + )?; |
| 49 | + } |
| 50 | + |
| 51 | + let sql = " |
| 52 | + WITH semantic_search AS ( |
| 53 | + SELECT id, RANK () OVER (ORDER BY embedding <=> $2) AS rank |
| 54 | + FROM documents |
| 55 | + ORDER BY embedding <=> $2 |
| 56 | + LIMIT 20 |
| 57 | + ), |
| 58 | + keyword_search AS ( |
| 59 | + SELECT id, RANK () OVER (ORDER BY ts_rank_cd(to_tsvector('english', content), query) DESC) |
| 60 | + FROM documents, plainto_tsquery('english', $1) query |
| 61 | + WHERE to_tsvector('english', content) @@ query |
| 62 | + ORDER BY ts_rank_cd(to_tsvector('english', content), query) DESC |
| 63 | + LIMIT 20 |
| 64 | + ) |
| 65 | + SELECT |
| 66 | + COALESCE(semantic_search.id, keyword_search.id) AS id, |
| 67 | + COALESCE(1.0 / ($3::double precision + semantic_search.rank), 0.0) + |
| 68 | + COALESCE(1.0 / ($3::double precision + keyword_search.rank), 0.0) AS score |
| 69 | + FROM semantic_search |
| 70 | + FULL OUTER JOIN keyword_search ON semantic_search.id = keyword_search.id |
| 71 | + ORDER BY score DESC |
| 72 | + LIMIT 5 |
| 73 | + "; |
| 74 | + |
| 75 | + let query = "growling bear"; |
| 76 | + let query_embedding = model.embed(query)?; |
| 77 | + let k = 60.0; |
| 78 | + |
| 79 | + for row in client.query(sql, &[&query, &Vector::from(query_embedding), &k])? { |
| 80 | + let id: i32 = row.get(0); |
| 81 | + let score: f64 = row.get(1); |
| 82 | + println!("document: {}, RRF score: {}", id, score); |
| 83 | + } |
| 84 | + |
| 85 | + Ok(()) |
| 86 | +} |
| 87 | + |
| 88 | +struct EmbeddingModel { |
| 89 | + tokenizer: Tokenizer, |
| 90 | + model: BertModel, |
| 91 | +} |
| 92 | + |
| 93 | +impl EmbeddingModel { |
| 94 | + pub fn new(model_id: &str) -> Result<Self, Box<dyn Error + Send + Sync>> { |
| 95 | + let api = Api::new()?; |
| 96 | + let repo = api.model(model_id.to_string()); |
| 97 | + let tokenizer_path = repo.get("tokenizer.json")?; |
| 98 | + let config_path = repo.get("config.json")?; |
| 99 | + let weights_path = repo.get("model.safetensors")?; |
| 100 | + |
| 101 | + let mut tokenizer = Tokenizer::from_file(tokenizer_path)?; |
| 102 | + let padding = PaddingParams { |
| 103 | + strategy: PaddingStrategy::BatchLongest, |
| 104 | + ..Default::default() |
| 105 | + }; |
| 106 | + tokenizer.with_padding(Some(padding)); |
| 107 | + |
| 108 | + let device = Device::Cpu; |
| 109 | + let config: Config = serde_json::from_str(&read_to_string(config_path)?)?; |
| 110 | + let vb = unsafe { VarBuilder::from_mmaped_safetensors(&[weights_path], DTYPE, &device)? }; |
| 111 | + let model = BertModel::load(vb, &config)?; |
| 112 | + |
| 113 | + Ok(Self { tokenizer, model }) |
| 114 | + } |
| 115 | + |
| 116 | + // embed one at a time since BertModel does not support attention mask |
| 117 | + // https://github.com/huggingface/candle/issues/1798 |
| 118 | + fn embed(&self, text: &str) -> Result<Vec<f32>, Box<dyn Error + Send + Sync>> { |
| 119 | + let tokens = self.tokenizer.encode(text, true)?; |
| 120 | + let token_ids = Tensor::new(vec![tokens.get_ids().to_vec()], &self.model.device)?; |
| 121 | + let token_type_ids = token_ids.zeros_like()?; |
| 122 | + let embeddings = self.model.forward(&token_ids, &token_type_ids)?; |
| 123 | + let embeddings = (embeddings.sum(1)? / (embeddings.dim(1)? as f64))?; |
| 124 | + let embeddings = embeddings.broadcast_div(&embeddings.sqr()?.sum_keepdim(1)?.sqrt()?)?; |
| 125 | + Ok(embeddings.squeeze(0)?.to_vec1::<f32>()?) |
| 126 | + } |
| 127 | +} |
0 commit comments