diff --git a/Lib/fractions.py b/Lib/fractions.py index 49a3f2841a2ed4..f718b35639beee 100644 --- a/Lib/fractions.py +++ b/Lib/fractions.py @@ -183,7 +183,7 @@ class Fraction(numbers.Rational): __slots__ = ('_numerator', '_denominator') # We're immutable, so use __new__ not __init__ - def __new__(cls, numerator=0, denominator=None, *, _normalize=True): + def __new__(cls, numerator=0, denominator=None): """Constructs a Rational. Takes a string like '3/2' or '1.5', another Rational instance, a @@ -279,12 +279,11 @@ def __new__(cls, numerator=0, denominator=None, *, _normalize=True): if denominator == 0: raise ZeroDivisionError('Fraction(%s, 0)' % numerator) - if _normalize: - g = math.gcd(numerator, denominator) - if denominator < 0: - g = -g - numerator //= g - denominator //= g + g = math.gcd(numerator, denominator) + if denominator < 0: + g = -g + numerator //= g + denominator //= g self._numerator = numerator self._denominator = denominator return self @@ -301,7 +300,7 @@ def from_float(cls, f): elif not isinstance(f, float): raise TypeError("%s.from_float() only takes floats, not %r (%s)" % (cls.__name__, f, type(f).__name__)) - return cls(*f.as_integer_ratio()) + return cls._from_coprime_ints(*f.as_integer_ratio()) @classmethod def from_decimal(cls, dec): @@ -313,7 +312,19 @@ def from_decimal(cls, dec): raise TypeError( "%s.from_decimal() only takes Decimals, not %r (%s)" % (cls.__name__, dec, type(dec).__name__)) - return cls(*dec.as_integer_ratio()) + return cls._from_coprime_ints(*dec.as_integer_ratio()) + + @classmethod + def _from_coprime_ints(cls, numerator, denominator, /): + """Convert a pair of ints to a rational number, for internal use. + + The ratio of integers should be in lowest terms and the denominator + should be positive. + """ + obj = super(Fraction, cls).__new__(cls) + obj._numerator = numerator + obj._denominator = denominator + return obj def is_integer(self): """Return True if the Fraction is an integer.""" @@ -380,9 +391,9 @@ def limit_denominator(self, max_denominator=1000000): # the distance from p1/q1 to self is d/(q1*self._denominator). So we # need to compare 2*(q0+k*q1) with self._denominator/d. if 2*d*(q0+k*q1) <= self._denominator: - return Fraction(p1, q1, _normalize=False) + return Fraction._from_coprime_ints(p1, q1) else: - return Fraction(p0+k*p1, q0+k*q1, _normalize=False) + return Fraction._from_coprime_ints(p0+k*p1, q0+k*q1) @property def numerator(a): @@ -703,13 +714,13 @@ def _add(a, b): nb, db = b._numerator, b._denominator g = math.gcd(da, db) if g == 1: - return Fraction(na * db + da * nb, da * db, _normalize=False) + return Fraction._from_coprime_ints(na * db + da * nb, da * db) s = da // g t = na * (db // g) + nb * s g2 = math.gcd(t, g) if g2 == 1: - return Fraction(t, s * db, _normalize=False) - return Fraction(t // g2, s * (db // g2), _normalize=False) + return Fraction._from_coprime_ints(t, s * db) + return Fraction._from_coprime_ints(t // g2, s * (db // g2)) __add__, __radd__ = _operator_fallbacks(_add, operator.add) @@ -719,13 +730,13 @@ def _sub(a, b): nb, db = b._numerator, b._denominator g = math.gcd(da, db) if g == 1: - return Fraction(na * db - da * nb, da * db, _normalize=False) + return Fraction._from_coprime_ints(na * db - da * nb, da * db) s = da // g t = na * (db // g) - nb * s g2 = math.gcd(t, g) if g2 == 1: - return Fraction(t, s * db, _normalize=False) - return Fraction(t // g2, s * (db // g2), _normalize=False) + return Fraction._from_coprime_ints(t, s * db) + return Fraction._from_coprime_ints(t // g2, s * (db // g2)) __sub__, __rsub__ = _operator_fallbacks(_sub, operator.sub) @@ -741,15 +752,17 @@ def _mul(a, b): if g2 > 1: nb //= g2 da //= g2 - return Fraction(na * nb, db * da, _normalize=False) + return Fraction._from_coprime_ints(na * nb, db * da) __mul__, __rmul__ = _operator_fallbacks(_mul, operator.mul) def _div(a, b): """a / b""" # Same as _mul(), with inversed b. - na, da = a._numerator, a._denominator nb, db = b._numerator, b._denominator + if nb == 0: + raise ZeroDivisionError('Fraction(%s, 0)' % db) + na, da = a._numerator, a._denominator g1 = math.gcd(na, nb) if g1 > 1: na //= g1 @@ -761,7 +774,7 @@ def _div(a, b): n, d = na * db, nb * da if d < 0: n, d = -n, -d - return Fraction(n, d, _normalize=False) + return Fraction._from_coprime_ints(n, d) __truediv__, __rtruediv__ = _operator_fallbacks(_div, operator.truediv) @@ -798,17 +811,17 @@ def __pow__(a, b): if b.denominator == 1: power = b.numerator if power >= 0: - return Fraction(a._numerator ** power, - a._denominator ** power, - _normalize=False) - elif a._numerator >= 0: - return Fraction(a._denominator ** -power, - a._numerator ** -power, - _normalize=False) + return Fraction._from_coprime_ints(a._numerator ** power, + a._denominator ** power) + elif a._numerator > 0: + return Fraction._from_coprime_ints(a._denominator ** -power, + a._numerator ** -power) + elif a._numerator == 0: + raise ZeroDivisionError('Fraction(%s, 0)' % + a._denominator ** -power) else: - return Fraction((-a._denominator) ** -power, - (-a._numerator) ** -power, - _normalize=False) + return Fraction._from_coprime_ints((-a._denominator) ** -power, + (-a._numerator) ** -power) else: # A fractional power will generally produce an # irrational number. @@ -832,15 +845,15 @@ def __rpow__(b, a): def __pos__(a): """+a: Coerces a subclass instance to Fraction""" - return Fraction(a._numerator, a._denominator, _normalize=False) + return Fraction._from_coprime_ints(a._numerator, a._denominator) def __neg__(a): """-a""" - return Fraction(-a._numerator, a._denominator, _normalize=False) + return Fraction._from_coprime_ints(-a._numerator, a._denominator) def __abs__(a): """abs(a)""" - return Fraction(abs(a._numerator), a._denominator, _normalize=False) + return Fraction._from_coprime_ints(abs(a._numerator), a._denominator) def __int__(a, _index=operator.index): """int(a)""" diff --git a/Lib/test/test_fractions.py b/Lib/test/test_fractions.py index 3bc6b409e05dc3..e112f49d2e7944 100644 --- a/Lib/test/test_fractions.py +++ b/Lib/test/test_fractions.py @@ -488,6 +488,7 @@ def testArithmetic(self): self.assertEqual(F(5, 6), F(2, 3) * F(5, 4)) self.assertEqual(F(1, 4), F(1, 10) / F(2, 5)) self.assertEqual(F(-15, 8), F(3, 4) / F(-2, 5)) + self.assertRaises(ZeroDivisionError, operator.truediv, F(1), F(0)) self.assertTypedEquals(2, F(9, 10) // F(2, 5)) self.assertTypedEquals(10**23, F(10**23, 1) // F(1)) self.assertEqual(F(5, 6), F(7, 3) % F(3, 2)) diff --git a/Lib/test/test_numeric_tower.py b/Lib/test/test_numeric_tower.py index 9cd85e13634c2b..337682d6bac96c 100644 --- a/Lib/test/test_numeric_tower.py +++ b/Lib/test/test_numeric_tower.py @@ -145,7 +145,7 @@ def test_fractions(self): # The numbers ABC doesn't enforce that the "true" division # of integers produces a float. This tests that the # Rational.__float__() method has required type conversions. - x = F(DummyIntegral(1), DummyIntegral(2), _normalize=False) + x = F._from_coprime_ints(DummyIntegral(1), DummyIntegral(2)) self.assertRaises(TypeError, lambda: x.numerator/x.denominator) self.assertEqual(float(x), 0.5) diff --git a/Misc/NEWS.d/next/Library/2023-02-10-11-59-13.gh-issue-101773.J_kI7y.rst b/Misc/NEWS.d/next/Library/2023-02-10-11-59-13.gh-issue-101773.J_kI7y.rst new file mode 100644 index 00000000000000..b577d93d28c2ae --- /dev/null +++ b/Misc/NEWS.d/next/Library/2023-02-10-11-59-13.gh-issue-101773.J_kI7y.rst @@ -0,0 +1,2 @@ +Optimize :class:`fractions.Fraction` for small components. The private argument +``_normalize`` of the :class:`fractions.Fraction` constructor has been removed.
Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.
Alternative Proxies: