diff --git a/Lib/test/test_fractions.py b/Lib/test/test_fractions.py index 1e97d5c6b37448..3d67f87f31cd9b 100644 --- a/Lib/test/test_fractions.py +++ b/Lib/test/test_fractions.py @@ -1,5 +1,6 @@ """Tests for Lib/fractions.py.""" +import cmath from decimal import Decimal from test.support import requires_IEEE_754 import math @@ -91,6 +92,187 @@ class DummyFraction(fractions.Fraction): def _components(r): return (r.numerator, r.denominator) +def typed_approx_eq(a, b): + return type(a) == type(b) and (a == b or math.isclose(a, b)) + +class Symbolic: + """Simple non-numeric class for testing mixed arithmetic. + It is not Integral, Rational, Real or Complex, and cannot be conveted + to int, float or complex. but it supports some arithmetic operations. + """ + def __init__(self, value): + self.value = value + def __mul__(self, other): + if isinstance(other, F): + return NotImplemented + return self.__class__(f'{self} * {other}') + def __rmul__(self, other): + return self.__class__(f'{other} * {self}') + def __truediv__(self, other): + if isinstance(other, F): + return NotImplemented + return self.__class__(f'{self} / {other}') + def __rtruediv__(self, other): + return self.__class__(f'{other} / {self}') + def __mod__(self, other): + if isinstance(other, F): + return NotImplemented + return self.__class__(f'{self} % {other}') + def __rmod__(self, other): + return self.__class__(f'{other} % {self}') + def __pow__(self, other): + if isinstance(other, F): + return NotImplemented + return self.__class__(f'{self} ** {other}') + def __rpow__(self, other): + return self.__class__(f'{other} ** {self}') + def __eq__(self, other): + if other.__class__ != self.__class__: + return NotImplemented + return self.value == other.value + def __str__(self): + return f'{self.value}' + def __repr__(self): + return f'{self.__class__.__name__}({self.value!r})' + +class Rat: + """Simple Rational class for testing mixed arithmetic.""" + def __init__(self, n, d): + self.numerator = n + self.denominator = d + def __mul__(self, other): + if isinstance(other, F): + return NotImplemented + return self.__class__(self.numerator * other.numerator, + self.denominator * other.denominator) + def __rmul__(self, other): + return self.__class__(other.numerator * self.numerator, + other.denominator * self.denominator) + def __truediv__(self, other): + if isinstance(other, F): + return NotImplemented + return self.__class__(self.numerator * other.denominator, + self.denominator * other.numerator) + def __rtruediv__(self, other): + return self.__class__(other.numerator * self.denominator, + other.denominator * self.numerator) + def __mod__(self, other): + if isinstance(other, F): + return NotImplemented + d = self.denominator * other.numerator + return self.__class__(self.numerator * other.denominator % d, d) + def __rmod__(self, other): + d = other.denominator * self.numerator + return self.__class__(other.numerator * self.denominator % d, d) + + return self.__class__(other.numerator / self.numerator, + other.denominator / self.denominator) + def __pow__(self, other): + if isinstance(other, F): + return NotImplemented + return self.__class__(self.numerator ** other, + self.denominator ** other) + def __float__(self): + return self.numerator / self.denominator + def __eq__(self, other): + if self.__class__ != other.__class__: + return NotImplemented + return (typed_approx_eq(self.numerator, other.numerator) and + typed_approx_eq(self.denominator, other.denominator)) + def __repr__(self): + return f'{self.__class__.__name__}({self.numerator!r}, {self.denominator!r})' +numbers.Rational.register(Rat) + +class Root: + """Simple Real class for testing mixed arithmetic.""" + def __init__(self, v, n=F(2)): + self.base = v + self.degree = n + def __mul__(self, other): + if isinstance(other, F): + return NotImplemented + return self.__class__(self.base * other**self.degree, self.degree) + def __rmul__(self, other): + return self.__class__(other**self.degree * self.base, self.degree) + def __truediv__(self, other): + if isinstance(other, F): + return NotImplemented + return self.__class__(self.base / other**self.degree, self.degree) + def __rtruediv__(self, other): + return self.__class__(other**self.degree / self.base, self.degree) + def __pow__(self, other): + if isinstance(other, F): + return NotImplemented + return self.__class__(self.base, self.degree / other) + def __float__(self): + return float(self.base) ** (1 / float(self.degree)) + def __eq__(self, other): + if self.__class__ != other.__class__: + return NotImplemented + return typed_approx_eq(self.base, other.base) and typed_approx_eq(self.degree, other.degree) + def __repr__(self): + return f'{self.__class__.__name__}({self.base!r}, {self.degree!r})' +numbers.Real.register(Root) + +class Polar: + """Simple Complex class for testing mixed arithmetic.""" + def __init__(self, r, phi): + self.r = r + self.phi = phi + def __mul__(self, other): + if isinstance(other, F): + return NotImplemented + return self.__class__(self.r * other, self.phi) + def __rmul__(self, other): + return self.__class__(other * self.r, self.phi) + def __truediv__(self, other): + if isinstance(other, F): + return NotImplemented + return self.__class__(self.r / other, self.phi) + def __rtruediv__(self, other): + return self.__class__(other / self.r, -self.phi) + def __pow__(self, other): + if isinstance(other, F): + return NotImplemented + return self.__class__(self.r ** other, self.phi * other) + def __eq__(self, other): + if self.__class__ != other.__class__: + return NotImplemented + return typed_approx_eq(self.r, other.r) and typed_approx_eq(self.phi, other.phi) + def __repr__(self): + return f'{self.__class__.__name__}({self.r!r}, {self.phi!r})' +numbers.Complex.register(Polar) + +class Rect: + """Other simple Complex class for testing mixed arithmetic.""" + def __init__(self, x, y): + self.x = x + self.y = y + def __mul__(self, other): + if isinstance(other, F): + return NotImplemented + return self.__class__(self.x * other, self.y * other) + def __rmul__(self, other): + return self.__class__(other * self.x, other * self.y) + def __truediv__(self, other): + if isinstance(other, F): + return NotImplemented + return self.__class__(self.x / other, self.y / other) + def __rtruediv__(self, other): + r = self.x * self.x + self.y * self.y + return self.__class__(other * (self.x / r), other * (self.y / r)) + def __rpow__(self, other): + return Polar(other ** self.x, math.log(other) * self.y) + def __complex__(self): + return complex(self.x, self.y) + def __eq__(self, other): + if self.__class__ != other.__class__: + return NotImplemented + return typed_approx_eq(self.x, other.x) and typed_approx_eq(self.y, other.y) + def __repr__(self): + return f'{self.__class__.__name__}({self.x!r}, {self.y!r})' +numbers.Complex.register(Rect) + class FractionTest(unittest.TestCase): @@ -593,6 +775,7 @@ def testMixedArithmetic(self): self.assertTypedEquals(0.9, 1.0 - F(1, 10)) self.assertTypedEquals(0.9 + 0j, (1.0 + 0j) - F(1, 10)) + def testMixedMultiplication(self): self.assertTypedEquals(F(1, 10), F(1, 10) * 1) self.assertTypedEquals(0.1, F(1, 10) * 1.0) self.assertTypedEquals(0.1 + 0j, F(1, 10) * (1.0 + 0j)) @@ -600,6 +783,24 @@ def testMixedArithmetic(self): self.assertTypedEquals(0.1, 1.0 * F(1, 10)) self.assertTypedEquals(0.1 + 0j, (1.0 + 0j) * F(1, 10)) + self.assertTypedEquals(F(3, 2) * DummyFraction(5, 3), F(5, 2)) + self.assertTypedEquals(DummyFraction(5, 3) * F(3, 2), F(5, 2)) + self.assertTypedEquals(F(3, 2) * Rat(5, 3), Rat(15, 6)) + self.assertTypedEquals(Rat(5, 3) * F(3, 2), F(5, 2)) + + self.assertTypedEquals(F(3, 2) * Root(4), Root(F(9, 1))) + self.assertTypedEquals(Root(4) * F(3, 2), 3.0) + + self.assertTypedEquals(F(3, 2) * Polar(4, 2), Polar(F(6, 1), 2)) + self.assertTypedEquals(F(3, 2) * Polar(4.0, 2), Polar(6.0, 2)) + self.assertTypedEquals(F(3, 2) * Rect(4, 3), Rect(F(6, 1), F(9, 2))) + self.assertRaises(TypeError, operator.mul, Polar(4, 2), F(3, 2)) + self.assertTypedEquals(Rect(4, 3) * F(3, 2), 6.0 + 4.5j) + + self.assertEqual(F(3, 2) * Symbolic('X'), Symbolic('3/2 * X')) + self.assertRaises(TypeError, operator.mul, Symbolic('X'), F(3, 2)) + + def testMixedDivision(self): self.assertTypedEquals(F(1, 10), F(1, 10) / 1) self.assertTypedEquals(0.1, F(1, 10) / 1.0) self.assertTypedEquals(0.1 + 0j, F(1, 10) / (1.0 + 0j)) @@ -607,6 +808,24 @@ def testMixedArithmetic(self): self.assertTypedEquals(10.0, 1.0 / F(1, 10)) self.assertTypedEquals(10.0 + 0j, (1.0 + 0j) / F(1, 10)) + self.assertTypedEquals(F(3, 2) / DummyFraction(3, 5), F(5, 2)) + self.assertTypedEquals(DummyFraction(5, 3) / F(2, 3), F(5, 2)) + self.assertTypedEquals(F(3, 2) / Rat(3, 5), Rat(15, 6)) + self.assertTypedEquals(Rat(5, 3) / F(2, 3), F(5, 2)) + + self.assertTypedEquals(F(2, 3) / Root(4), Root(F(1, 9))) + self.assertTypedEquals(Root(4) / F(2, 3), 3.0) + + self.assertTypedEquals(F(3, 2) / Polar(4, 2), Polar(F(3, 8), -2)) + self.assertTypedEquals(F(3, 2) / Polar(4.0, 2), Polar(0.375, -2)) + self.assertTypedEquals(F(3, 2) / Rect(4, 3), Rect(0.24, 0.18)) + self.assertRaises(TypeError, operator.truediv, Polar(4, 2), F(2, 3)) + self.assertTypedEquals(Rect(4, 3) / F(2, 3), 6.0 + 4.5j) + + self.assertEqual(F(3, 2) / Symbolic('X'), Symbolic('3/2 / X')) + self.assertRaises(TypeError, operator.truediv, Symbolic('X'), F(2, 3)) + + def testMixedIntegerDivision(self): self.assertTypedEquals(0, F(1, 10) // 1) self.assertTypedEquals(0.0, F(1, 10) // 1.0) self.assertTypedEquals(10, 1 // F(1, 10)) @@ -631,6 +850,21 @@ def testMixedArithmetic(self): self.assertTypedTupleEquals(divmod(-0.1, float('inf')), divmod(F(-1, 10), float('inf'))) self.assertTypedTupleEquals(divmod(-0.1, float('-inf')), divmod(F(-1, 10), float('-inf'))) + self.assertTypedEquals(F(3, 2) % DummyFraction(3, 5), F(3, 10)) + self.assertTypedEquals(DummyFraction(5, 3) % F(2, 3), F(1, 3)) + self.assertTypedEquals(F(3, 2) % Rat(3, 5), Rat(3, 6)) + self.assertTypedEquals(Rat(5, 3) % F(2, 3), F(1, 3)) + + self.assertRaises(TypeError, operator.mod, F(2, 3), Root(4)) + self.assertTypedEquals(Root(4) % F(3, 2), 0.5) + + self.assertRaises(TypeError, operator.mod, F(3, 2), Polar(4, 2)) + self.assertRaises(TypeError, operator.mod, Rect(4, 3), F(2, 3)) + + self.assertEqual(F(3, 2) % Symbolic('X'), Symbolic('3/2 % X')) + self.assertRaises(TypeError, operator.mod, Symbolic('X'), F(2, 3)) + + def testMixedPower(self): # ** has more interesting conversion rules. self.assertTypedEquals(F(100, 1), F(1, 10) ** -2) self.assertTypedEquals(F(100, 1), F(10, 1) ** 2) @@ -647,6 +881,35 @@ def testMixedArithmetic(self): self.assertRaises(ZeroDivisionError, operator.pow, F(0, 1), -2) + self.assertTypedEquals(F(3, 2) ** Rat(3, 1), F(27, 8)) + self.assertTypedEquals(F(3, 2) ** Rat(-3, 1), F(8, 27)) + self.assertTypedEquals(F(-3, 2) ** Rat(-3, 1), F(-8, 27)) + self.assertTypedEquals(F(9, 4) ** Rat(3, 2), 3.375) + self.assertIsInstance(F(4, 9) ** Rat(-3, 2), float) + self.assertAlmostEqual(F(4, 9) ** Rat(-3, 2), 3.375) + self.assertAlmostEqual(F(-4, 9) ** Rat(-3, 2), 3.375j) + + self.assertTypedEquals(Rat(9, 4) ** F(3, 2), 3.375) + self.assertTypedEquals(Rat(3, 2) ** F(3, 1), Rat(27, 8)) + self.assertTypedEquals(Rat(3, 2) ** F(-3, 1), F(8, 27)) + self.assertIsInstance(Rat(4, 9) ** F(-3, 2), float) + self.assertAlmostEqual(Rat(4, 9) ** F(-3, 2), 3.375) + + self.assertTypedEquals(Root(4) ** F(2, 3), Root(4, 3.0)) + self.assertTypedEquals(Root(4) ** F(2, 1), Root(4, F(1))) + self.assertTypedEquals(Root(4) ** F(-2, 1), Root(4, -F(1))) + self.assertTypedEquals(Root(4) ** F(-2, 3), Root(4, -3.0)) + + self.assertTypedEquals(F(3, 2) ** Rect(2, 0), Polar(2.25, 0.0)) + self.assertTypedEquals(F(1, 1) ** Rect(2, 3), Polar(1.0, 0.0)) + self.assertTypedEquals(Polar(4, 2) ** F(3, 2), Polar(8.0, 3.0)) + self.assertTypedEquals(Polar(4, 2) ** F(3, 1), Polar(64, 6)) + self.assertTypedEquals(Polar(4, 2) ** F(-3, 1), Polar(0.015625, -6)) + self.assertTypedEquals(Polar(4, 2) ** F(-3, 2), Polar(0.125, -3.0)) + + self.assertTypedEquals(F(3, 2) ** Symbolic('X'), Symbolic('1.5 ** X')) + self.assertTypedEquals(Symbolic('X') ** F(3, 2), Symbolic('X ** 1.5')) + def testMixingWithDecimal(self): # Decimal refuses mixed arithmetic (but not mixed comparisons) self.assertRaises(TypeError, operator.add,
Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.
Alternative Proxies: