diff --git a/Doc/library/functions.rst b/Doc/library/functions.rst index 1d82f92ea67857..17348dd907bf67 100644 --- a/Doc/library/functions.rst +++ b/Doc/library/functions.rst @@ -1934,6 +1934,10 @@ are always available. They are listed here in alphabetical order. .. versionchanged:: 3.12 Summation of floats switched to an algorithm that gives higher accuracy and better commutativity on most builds. + .. versionchanged:: 3.14 + Added specialization for summation of complexes, + using same algorithm as for summation of floats. + .. class:: super() super(type, object_or_type=None) diff --git a/Lib/test/test_builtin.py b/Lib/test/test_builtin.py index 9ff0f488dc4fa9..5818e96d61f480 100644 --- a/Lib/test/test_builtin.py +++ b/Lib/test/test_builtin.py @@ -1768,6 +1768,11 @@ def __getitem__(self, index): sum(([x] for x in range(10)), empty) self.assertEqual(empty, []) + xs = [complex(random.random() - .5, random.random() - .5) + for _ in range(10000)] + self.assertEqual(sum(xs), complex(sum(z.real for z in xs), + sum(z.imag for z in xs))) + @requires_IEEE_754 @unittest.skipIf(HAVE_DOUBLE_ROUNDING, "sum accuracy not guaranteed on machines with double rounding") @@ -1775,6 +1780,10 @@ def __getitem__(self, index): def test_sum_accuracy(self): self.assertEqual(sum([0.1] * 10), 1.0) self.assertEqual(sum([1.0, 10E100, 1.0, -10E100]), 2.0) + self.assertEqual(sum([1.0, 10E100, 1.0, -10E100, 2j]), 2+2j) + self.assertEqual(sum([2+1j, 10E100j, 1j, -10E100j]), 2+2j) + self.assertEqual(sum([1j, 1, 10E100j, 1j, 1.0, -10E100j]), 2+2j) + self.assertEqual(sum([0.1j]*10 + [fractions.Fraction(1, 10)]), 0.1+1j) def test_type(self): self.assertEqual(type(''), type('123')) diff --git a/Misc/NEWS.d/next/Core and Builtins/2024-06-30-03-48-10.gh-issue-121149.lLBMKe.rst b/Misc/NEWS.d/next/Core and Builtins/2024-06-30-03-48-10.gh-issue-121149.lLBMKe.rst new file mode 100644 index 00000000000000..38d618f06090fd --- /dev/null +++ b/Misc/NEWS.d/next/Core and Builtins/2024-06-30-03-48-10.gh-issue-121149.lLBMKe.rst @@ -0,0 +1,2 @@ +Added specialization for summation of complexes, this also improves accuracy +of builtin :func:`sum` for such inputs. Patch by Sergey B Kirpichev. diff --git a/Python/bltinmodule.c b/Python/bltinmodule.c index 6e50623cafa4ed..a5b45e358d9efb 100644 --- a/Python/bltinmodule.c +++ b/Python/bltinmodule.c @@ -2516,6 +2516,49 @@ Without arguments, equivalent to locals().\n\ With an argument, equivalent to object.__dict__."); +/* Improved Kahan–Babuška algorithm by Arnold Neumaier + Neumaier, A. (1974), Rundungsfehleranalyse einiger Verfahren + zur Summation endlicher Summen. Z. angew. Math. Mech., + 54: 39-51. https://doi.org/10.1002/zamm.19740540106 + https://en.wikipedia.org/wiki/Kahan_summation_algorithm#Further_enhancements + */ + +typedef struct { + double hi; /* high-order bits for a running sum */ + double lo; /* a running compensation for lost low-order bits */ +} CompensatedSum; + +static inline CompensatedSum +cs_from_double(double x) +{ + return (CompensatedSum) {x}; +} + +static inline CompensatedSum +cs_add(CompensatedSum total, double x) +{ + double t = total.hi + x; + if (fabs(total.hi) >= fabs(x)) { + total.lo += (total.hi - t) + x; + } + else { + total.lo += (x - t) + total.hi; + } + return (CompensatedSum) {t, total.lo}; +} + +static inline double +cs_to_double(CompensatedSum total) +{ + /* Avoid losing the sign on a negative result, + and don't let adding the compensation convert + an infinite or overflowed sum to a NaN. */ + if (total.lo && isfinite(total.lo)) { + return total.hi + total.lo; + } + return total.hi; +} + /*[clinic input] sum as builtin_sum @@ -2628,8 +2671,7 @@ builtin_sum_impl(PyObject *module, PyObject *iterable, PyObject *start) } if (PyFloat_CheckExact(result)) { - double f_result = PyFloat_AS_DOUBLE(result); - double c = 0.0; + CompensatedSum re_sum = cs_from_double(PyFloat_AS_DOUBLE(result)); Py_SETREF(result, NULL); while(result == NULL) { item = PyIter_Next(iter); @@ -2637,28 +2679,10 @@ builtin_sum_impl(PyObject *module, PyObject *iterable, PyObject *start) Py_DECREF(iter); if (PyErr_Occurred()) return NULL; - /* Avoid losing the sign on a negative result, - and don't let adding the compensation convert - an infinite or overflowed sum to a NaN. */ - if (c && isfinite(c)) { - f_result += c; - } - return PyFloat_FromDouble(f_result); + return PyFloat_FromDouble(cs_to_double(re_sum)); } if (PyFloat_CheckExact(item)) { - // Improved Kahan–Babuška algorithm by Arnold Neumaier - // Neumaier, A. (1974), Rundungsfehleranalyse einiger Verfahren - // zur Summation endlicher Summen. Z. angew. Math. Mech., - // 54: 39-51. https://doi.org/10.1002/zamm.19740540106 - // https://en.wikipedia.org/wiki/Kahan_summation_algorithm#Further_enhancements - double x = PyFloat_AS_DOUBLE(item); - double t = f_result + x; - if (fabs(f_result) >= fabs(x)) { - c += (f_result - t) + x; - } else { - c += (x - t) + f_result; - } - f_result = t; + re_sum = cs_add(re_sum, PyFloat_AS_DOUBLE(item)); _Py_DECREF_SPECIALIZED(item, _PyFloat_ExactDealloc); continue; } @@ -2667,15 +2691,70 @@ builtin_sum_impl(PyObject *module, PyObject *iterable, PyObject *start) int overflow; value = PyLong_AsLongAndOverflow(item, &overflow); if (!overflow) { - f_result += (double)value; + re_sum.hi += (double)value; + Py_DECREF(item); + continue; + } + } + result = PyFloat_FromDouble(cs_to_double(re_sum)); + if (result == NULL) { + Py_DECREF(item); + Py_DECREF(iter); + return NULL; + } + temp = PyNumber_Add(result, item); + Py_DECREF(result); + Py_DECREF(item); + result = temp; + if (result == NULL) { + Py_DECREF(iter); + return NULL; + } + } + } + + if (PyComplex_CheckExact(result)) { + Py_complex z = PyComplex_AsCComplex(result); + CompensatedSum re_sum = cs_from_double(z.real); + CompensatedSum im_sum = cs_from_double(z.imag); + Py_SETREF(result, NULL); + while (result == NULL) { + item = PyIter_Next(iter); + if (item == NULL) { + Py_DECREF(iter); + if (PyErr_Occurred()) { + return NULL; + } + return PyComplex_FromDoubles(cs_to_double(re_sum), + cs_to_double(im_sum)); + } + if (PyComplex_CheckExact(item)) { + z = PyComplex_AsCComplex(item); + re_sum = cs_add(re_sum, z.real); + im_sum = cs_add(im_sum, z.imag); + Py_DECREF(item); + continue; + } + if (PyLong_Check(item)) { + long value; + int overflow; + value = PyLong_AsLongAndOverflow(item, &overflow); + if (!overflow) { + re_sum.hi += (double)value; + im_sum.hi += 0.0; Py_DECREF(item); continue; } } - if (c && isfinite(c)) { - f_result += c; + if (PyFloat_Check(item)) { + double value = PyFloat_AS_DOUBLE(item); + re_sum.hi += value; + im_sum.hi += 0.0; + _Py_DECREF_SPECIALIZED(item, _PyFloat_ExactDealloc); + continue; } - result = PyFloat_FromDouble(f_result); + result = PyComplex_FromDoubles(cs_to_double(re_sum), + cs_to_double(im_sum)); if (result == NULL) { Py_DECREF(item); Py_DECREF(iter); pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy