Skip to content

Implement a better algorithm for pole placement #117

@vmatos

Description

@vmatos

Hello!
I've happened to compare pole placement with Matlab's, and found out that returned matrix doesn't make the poles fall in the chosen values.
I made an example script just like python-control/examples/slicot-test.py for matlab and python.

Matlab script:

A = [
[                0, 0, 0, 1],
[-42.7207306947135, 0, 0, 0],
[                0, 0, 0, 0],
[ 47.0334901743703, 0, 0, 0]];

C = [[ 1.,  0.,  0.,  0.],
       [ 0.,  1.,  0.,  0.],
       [ 0.,  0.,  1.,  0.],
       [ 0.,  0.,  0.,  1.]];

p = [-31., -21., -20., -30.];

L = place(A',C',p)
eigs(A' - C'*L)

% L= 31.0000  -42.7207         0   47.0335
%          0   21.0000         0         0
%          0         0   20.0000         0
%     1.0000         0         0   30.0000
% eigs = -20, -21, -30, -31

Python script:

import numpy as np              # Numerical library
from scipy import *             # Load the scipy functions
from control.matlab import *    # Load the controls systems library

A = matrix([
[                0, 0, 0, 1],
[-42.7207306947135, 0, 0, 0],
[                0, 0, 0, 0],
[ 47.0334901743703, 0, 0, 0]])

C = matrix([[ 1.,  0.,  0.,  0.],
       [ 0.,  1.,  0.,  0.],
       [ 0.,  0.,  1.,  0.],
       [ 0.,  0.,  0.,  1.]])

p = [-31., -21., -20., -30.]
L = place(A.T, C.T, p)
print "Pole place: L = ", L
print "Pole place: eigs = ", np.linalg.eig(A.T - C.T * L)[0]

#Pole place: L =  [[  0.73152698  -1.12180554  -0.           5.01688279]
# [ -1.12180554  22.72030247  -0.          -7.69345088]
# [ -0.          -0.          20.          -0.        ]
# [  5.01688279  -7.69345088  -0.          34.40626723]]
#Pole place: eigs =  [ -6.85809669 -30.         -21.         -20.        ]
# >>> control.__version__
# '0.7.0'

Am I using it wrong?

Metadata

Metadata

Assignees

No one assigned

    Type

    No type

    Projects

    No projects

    Milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions

      pFad - Phonifier reborn

      Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

      Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


      Alternative Proxies:

      Alternative Proxy

      pFad Proxy

      pFad v3 Proxy

      pFad v4 Proxy