diff --git a/benchmarks/flatsys_bench.py b/benchmarks/flatsys_bench.py index 05a2e7066..a2f8ae1d2 100644 --- a/benchmarks/flatsys_bench.py +++ b/benchmarks/flatsys_bench.py @@ -7,7 +7,6 @@ import numpy as np import math -import control as ct import control.flatsys as flat import control.optimal as opt diff --git a/benchmarks/optestim_bench.py b/benchmarks/optestim_bench.py index 612ee6bb3..534d1024d 100644 --- a/benchmarks/optestim_bench.py +++ b/benchmarks/optestim_bench.py @@ -6,7 +6,6 @@ # used for optimization-based estimation. import numpy as np -import math import control as ct import control.optimal as opt diff --git a/benchmarks/optimal_bench.py b/benchmarks/optimal_bench.py index 997b5a241..bd0c0cd6b 100644 --- a/benchmarks/optimal_bench.py +++ b/benchmarks/optimal_bench.py @@ -6,7 +6,6 @@ # performance of the functions used for optimization-base control. import numpy as np -import math import control as ct import control.flatsys as fs import control.optimal as opt @@ -21,7 +20,6 @@ 'RK23': ('RK23', {}), 'RK23_sloppy': ('RK23', {'atol': 1e-4, 'rtol': 1e-2}), 'RK45': ('RK45', {}), - 'RK45': ('RK45', {}), 'RK45_sloppy': ('RK45', {'atol': 1e-4, 'rtol': 1e-2}), 'LSODA': ('LSODA', {}), } @@ -129,9 +127,6 @@ def time_optimal_lq_methods(integrator_name, minimizer_name, method): Tf = 10 timepts = np.linspace(0, Tf, 20) - # Create the basis function to use - basis = get_basis('poly', 12, Tf) - res = opt.solve_ocp( sys, timepts, x0, traj_cost, constraints, terminal_cost=term_cost, solve_ivp_method=integrator[0], solve_ivp_kwargs=integrator[1], @@ -223,8 +218,6 @@ def time_discrete_aircraft_mpc(minimizer_name): # compute the steady state values for a particular value of the input ud = np.array([0.8, -0.3]) xd = np.linalg.inv(np.eye(5) - A) @ B @ ud - yd = C @ xd - # provide constraints on the system signals constraints = [opt.input_range_constraint(sys, [-5, -6], [5, 6])] @@ -234,7 +227,6 @@ def time_discrete_aircraft_mpc(minimizer_name): cost = opt.quadratic_cost(model, Q, R, x0=xd, u0=ud) # Set the time horizon and time points - Tf = 3 timepts = np.arange(0, 6) * 0.2 # Get the minimizer parameters to use diff --git a/examples/bdalg-matlab.py b/examples/bdalg-matlab.py index 8911d6579..eaafaa59a 100644 --- a/examples/bdalg-matlab.py +++ b/examples/bdalg-matlab.py @@ -1,7 +1,7 @@ -# bdalg-matlab.py - demonstrate some MATLAB commands for block diagram altebra +# bdalg-matlab.py - demonstrate some MATLAB commands for block diagram algebra # RMM, 29 May 09 -from control.matlab import * # MATLAB-like functions +from control.matlab import ss, ss2tf, tf, tf2ss # MATLAB-like functions # System matrices A1 = [[0, 1.], [-4, -1]] diff --git a/examples/check-controllability-and-observability.py b/examples/check-controllability-and-observability.py index 67ecdf26c..a8fc5c6ad 100644 --- a/examples/check-controllability-and-observability.py +++ b/examples/check-controllability-and-observability.py @@ -4,8 +4,8 @@ RMM, 6 Sep 2010 """ -import numpy as np # Load the scipy functions -from control.matlab import * # Load the controls systems library +import numpy as np # Load the numpy functions +from control.matlab import ss, ctrb, obsv # Load the controls systems library # Parameters defining the system diff --git a/examples/cruise-control.py b/examples/cruise-control.py index 5bb263830..77768aa86 100644 --- a/examples/cruise-control.py +++ b/examples/cruise-control.py @@ -247,7 +247,6 @@ def pi_update(t, x, u, params={}): # Assign variables for inputs and states (for readability) v = u[0] # current velocity vref = u[1] # reference velocity - z = x[0] # integrated error # Compute the nominal controller output (needed for anti-windup) u_a = pi_output(t, x, u, params) @@ -394,7 +393,7 @@ def sf_output(t, z, u, params={}): ud = params.get('ud', 0) # Get the system state and reference input - x, y, r = u[0], u[1], u[2] + x, r = u[0], u[2] return ud - K * (x - xd) - ki * z + kf * (r - yd) @@ -440,13 +439,13 @@ def sf_output(t, z, u, params={}): 4./180. * pi for t in T] t, y = ct.input_output_response( cruise_sf, T, [vref, gear, theta_hill], [X0[0], 0], - params={'K': K, 'kf': kf, 'ki': 0.0, 'kf': kf, 'xd': xd, 'ud': ud, 'yd': yd}) + params={'K': K, 'kf': kf, 'ki': 0.0, 'xd': xd, 'ud': ud, 'yd': yd}) subplots = cruise_plot(cruise_sf, t, y, label='Proportional', linetype='b--') # Response of the system with state feedback + integral action t, y = ct.input_output_response( cruise_sf, T, [vref, gear, theta_hill], [X0[0], 0], - params={'K': K, 'kf': kf, 'ki': 0.1, 'kf': kf, 'xd': xd, 'ud': ud, 'yd': yd}) + params={'K': K, 'kf': kf, 'ki': 0.1, 'xd': xd, 'ud': ud, 'yd': yd}) cruise_plot(cruise_sf, t, y, label='PI control', t_hill=8, linetype='b-', subplots=subplots, legend=True) diff --git a/examples/kincar.py b/examples/kincar.py index a12cdc774..ab026cba6 100644 --- a/examples/kincar.py +++ b/examples/kincar.py @@ -3,7 +3,6 @@ import numpy as np import matplotlib.pyplot as plt -import control as ct import control.flatsys as fs # diff --git a/examples/mrac_siso_mit.py b/examples/mrac_siso_mit.py index f8940e694..a821b65d0 100644 --- a/examples/mrac_siso_mit.py +++ b/examples/mrac_siso_mit.py @@ -46,7 +46,6 @@ def adaptive_controller_state(t, xc, uc, params): # Parameters gam = params["gam"] Am = params["Am"] - Bm = params["Bm"] signB = params["signB"] # Controller inputs diff --git a/examples/phase_plane_plots.py b/examples/phase_plane_plots.py index db989d5d9..44a47a29c 100644 --- a/examples/phase_plane_plots.py +++ b/examples/phase_plane_plots.py @@ -5,9 +5,8 @@ # using the phaseplot module. Most of these figures line up with examples # in FBS2e, with different display options shown as different subplots. -import time import warnings -from math import pi, sqrt +from math import pi import matplotlib.pyplot as plt import numpy as np diff --git a/examples/pvtol-nested-ss.py b/examples/pvtol-nested-ss.py index f53ac70f1..e8542a828 100644 --- a/examples/pvtol-nested-ss.py +++ b/examples/pvtol-nested-ss.py @@ -10,7 +10,6 @@ import os import matplotlib.pyplot as plt # MATLAB plotting functions -from control.matlab import * # MATLAB-like functions import numpy as np import math import control as ct @@ -23,12 +22,12 @@ c = 0.05 # damping factor (estimated) # Transfer functions for dynamics -Pi = tf([r], [J, 0, 0]) # inner loop (roll) -Po = tf([1], [m, c, 0]) # outer loop (position) +Pi = ct.tf([r], [J, 0, 0]) # inner loop (roll) +Po = ct.tf([1], [m, c, 0]) # outer loop (position) # Use state space versions -Pi = tf2ss(Pi) -Po = tf2ss(Po) +Pi = ct.tf2ss(Pi) +Po = ct.tf2ss(Po) # # Inner loop control design @@ -40,10 +39,10 @@ # Design a simple lead controller for the system k, a, b = 200, 2, 50 -Ci = k*tf([1, a], [1, b]) # lead compensator +Ci = k*ct.tf([1, a], [1, b]) # lead compensator # Convert to statespace -Ci = tf2ss(Ci) +Ci = ct.tf2ss(Ci) # Compute the loop transfer function for the inner loop Li = Pi*Ci @@ -51,49 +50,49 @@ # Bode plot for the open loop process plt.figure(1) -bode(Pi) +ct.bode(Pi) # Bode plot for the loop transfer function, with margins plt.figure(2) -bode(Li) +ct.bode(Li) # Compute out the gain and phase margins #! Not implemented # (gm, pm, wcg, wcp) = margin(Li); # Compute the sensitivity and complementary sensitivity functions -Si = feedback(1, Li) +Si = ct.feedback(1, Li) Ti = Li*Si # Check to make sure that the specification is met plt.figure(3) -gangof4(Pi, Ci) +ct.gangof4(Pi, Ci) # Compute out the actual transfer function from u1 to v1 (see L8.2 notes) # Hi = Ci*(1-m*g*Pi)/(1+Ci*Pi); -Hi = parallel(feedback(Ci, Pi), -m*g*feedback(Ci*Pi, 1)) +Hi = ct.parallel(ct.feedback(Ci, Pi), -m*g*ct.feedback(Ci*Pi, 1)) plt.figure(4) plt.clf() -bode(Hi) +ct.bode(Hi) # Now design the lateral control system a, b, K = 0.02, 5, 2 -Co = -K*tf([1, 0.3], [1, 10]) # another lead compensator +Co = -K*ct.tf([1, 0.3], [1, 10]) # another lead compensator # Convert to statespace -Co = tf2ss(Co) +Co = ct.tf2ss(Co) # Compute the loop transfer function for the outer loop Lo = -m*g*Po*Co plt.figure(5) -bode(Lo, display_margins=True) # margin(Lo) +ct.bode(Lo, display_margins=True) # margin(Lo) # Finally compute the real outer-loop loop gain + responses L = Co*Hi*Po -S = feedback(1, L) -T = feedback(L, 1) +S = ct.feedback(1, L) +T = ct.feedback(L, 1) # Compute stability margins #! Not yet implemented @@ -101,7 +100,7 @@ plt.figure(6) plt.clf() -out = ct.bode(L, logspace(-4, 3), initial_phase=-math.pi/2) +out = ct.bode(L, np.logspace(-4, 3), initial_phase=-math.pi/2) axs = ct.get_plot_axes(out) # Add crossover line to magnitude plot @@ -111,7 +110,7 @@ # Nyquist plot for complete design # plt.figure(7) -nyquist(L) +ct.nyquist(L) # set up the color color = 'b' @@ -126,10 +125,10 @@ # 'EdgeColor', color, 'FaceColor', color); plt.figure(9) -Yvec, Tvec = step(T, linspace(1, 20)) +Yvec, Tvec = ct.step_response(T, np.linspace(1, 20)) plt.plot(Tvec.T, Yvec.T) -Yvec, Tvec = step(Co*S, linspace(1, 20)) +Yvec, Tvec = ct.step_response(Co*S, np.linspace(1, 20)) plt.plot(Tvec.T, Yvec.T) #TODO: PZmap for statespace systems has not yet been implemented. @@ -142,7 +141,7 @@ # Gang of Four plt.figure(11) plt.clf() -gangof4(Hi*Po, Co, linspace(-2, 3)) +ct.gangof4(Hi*Po, Co, np.linspace(-2, 3)) if 'PYCONTROL_TEST_EXAMPLES' not in os.environ: plt.show() diff --git a/examples/pvtol.py b/examples/pvtol.py index 4f92f12fa..bc826a564 100644 --- a/examples/pvtol.py +++ b/examples/pvtol.py @@ -64,8 +64,6 @@ def _pvtol_flat_forward(states, inputs, params={}): F1, F2 = inputs # Use equations of motion for higher derivates - x1ddot = (F1 * cos(theta) - F2 * sin(theta)) / m - x2ddot = (F1 * sin(theta) + F2 * cos(theta) - m * g) / m thddot = (r * F1) / J # Flat output is a point above the vertical axis @@ -110,7 +108,6 @@ def _pvtol_flat_reverse(zflag, params={}): J = params.get('J', 0.0475) # inertia around pitch axis r = params.get('r', 0.25) # distance to center of force g = params.get('g', 9.8) # gravitational constant - c = params.get('c', 0.05) # damping factor (estimated) # Given the flat variables, solve for the state theta = np.arctan2(-zflag[0][2], zflag[1][2] + g) @@ -185,10 +182,6 @@ def _windy_update(t, x, u, params): def _noisy_update(t, x, u, params): # Get the inputs F1, F2, Dx, Dy = u[:4] - if u.shape[0] > 4: - Nx, Ny, Nth = u[4:] - else: - Nx, Ny, Nth = 0, 0, 0 # Get the system response from the original dynamics xdot, ydot, thetadot, xddot, yddot, thddot = \ @@ -196,7 +189,6 @@ def _noisy_update(t, x, u, params): # Get the parameter values we need m = params.get('m', 4.) # mass of aircraft - J = params.get('J', 0.0475) # inertia around pitch axis # Now add the disturbances xddot += Dx / m @@ -219,7 +211,6 @@ def _noisy_output(t, x, u, params): def pvtol_noisy_A(x, u, params={}): # Get the parameter values we need m = params.get('m', 4.) # mass of aircraft - J = params.get('J', 0.0475) # inertia around pitch axis c = params.get('c', 0.05) # damping factor (estimated) # Get the angle and compute sine and cosine diff --git a/examples/secord-matlab.py b/examples/secord-matlab.py index 6cef881c1..53fe69e6f 100644 --- a/examples/secord-matlab.py +++ b/examples/secord-matlab.py @@ -3,7 +3,8 @@ import os import matplotlib.pyplot as plt # MATLAB plotting functions -from control.matlab import * # MATLAB-like functions +import numpy as np +from control.matlab import ss, step, bode, nyquist, rlocus # MATLAB-like functions # Parameters defining the system m = 250.0 # system mass @@ -24,7 +25,7 @@ # Bode plot for the system plt.figure(2) -mag, phase, om = bode(sys, logspace(-2, 2), plot=True) +mag, phase, om = bode(sys, np.logspace(-2, 2), plot=True) plt.show(block=False) # Nyquist plot for the system @@ -32,7 +33,7 @@ nyquist(sys) plt.show(block=False) -# Root lcous plot for the system +# Root locus plot for the system rlocus(sys) if 'PYCONTROL_TEST_EXAMPLES' not in os.environ: diff --git a/examples/sisotool_example.py b/examples/sisotool_example.py index 6453bec74..44d7c0443 100644 --- a/examples/sisotool_example.py +++ b/examples/sisotool_example.py @@ -10,24 +10,24 @@ #%% import matplotlib.pyplot as plt -from control.matlab import * +import control as ct # first example, aircraft attitude equation -s = tf([1,0],[1]) +s = ct.tf([1,0],[1]) Kq = -24 T2 = 1.4 damping = 2/(13**.5) omega = 13**.5 H = (Kq*(1+T2*s))/(s*(s**2+2*damping*omega*s+omega**2)) plt.close('all') -sisotool(-H) +ct.sisotool(-H) #%% # a simple RL, with multiple poles in the origin plt.close('all') H = (s+0.3)/(s**4 + 4*s**3 + 6.25*s**2) -sisotool(H) +ct.sisotool(H) #%% @@ -43,4 +43,4 @@ plt.close('all') H = (b0 + b1*s + b2*s**2) / (a0 + a1*s + a2*s**2 + a3*s**3) -sisotool(H) +ct.sisotool(H) diff --git a/examples/slycot-import-test.py b/examples/slycot-import-test.py index 2df9b5b23..9c92fd2dc 100644 --- a/examples/slycot-import-test.py +++ b/examples/slycot-import-test.py @@ -5,7 +5,7 @@ """ import numpy as np -from control.matlab import * +import control as ct from control.exception import slycot_check # Parameters defining the system @@ -17,12 +17,12 @@ A = np.array([[1, -1, 1.], [1, -k/m, -b/m], [1, 1, 1]]) B = np.array([[0], [1/m], [1]]) C = np.array([[1., 0, 1.]]) -sys = ss(A, B, C, 0) +sys = ct.ss(A, B, C, 0) # Python control may be used without slycot, for example for a pole placement. # Eigenvalue placement w = [-3, -2, -1] -K = place(A, B, w) +K = ct.place(A, B, w) print("[python-control (from scipy)] K = ", K) print("[python-control (from scipy)] eigs = ", np.linalg.eig(A - B*K)[0]) diff --git a/examples/type2_type3.py b/examples/type2_type3.py index 52e0645e2..f0d79dc51 100644 --- a/examples/type2_type3.py +++ b/examples/type2_type3.py @@ -4,9 +4,10 @@ import os import matplotlib.pyplot as plt # Grab MATLAB plotting functions -from control.matlab import * # MATLAB-like functions -from numpy import pi -integrator = tf([0, 1], [1, 0]) # 1/s +import control as ct +import numpy as np + +integrator = ct.tf([0, 1], [1, 0]) # 1/s # Parameters defining the system J = 1.0 @@ -29,20 +30,20 @@ # System Transfer Functions # tricky because the disturbance (base motion) is coupled in by friction -closed_loop_type2 = feedback(C_type2*feedback(P, friction), gyro) +closed_loop_type2 = ct.feedback(C_type2*ct.feedback(P, friction), gyro) disturbance_rejection_type2 = P*friction/(1. + P*friction+P*C_type2) -closed_loop_type3 = feedback(C_type3*feedback(P, friction), gyro) +closed_loop_type3 = ct.feedback(C_type3*ct.feedback(P, friction), gyro) disturbance_rejection_type3 = P*friction/(1. + P*friction + P*C_type3) # Bode plot for the system plt.figure(1) -bode(closed_loop_type2, logspace(0, 2)*2*pi, dB=True, Hz=True) # blue -bode(closed_loop_type3, logspace(0, 2)*2*pi, dB=True, Hz=True) # green +ct.bode(closed_loop_type2, np.logspace(0, 2)*2*np.pi, dB=True, Hz=True) # blue +ct.bode(closed_loop_type3, np.logspace(0, 2)*2*np.pi, dB=True, Hz=True) # green plt.show(block=False) plt.figure(2) -bode(disturbance_rejection_type2, logspace(0, 2)*2*pi, Hz=True) # blue -bode(disturbance_rejection_type3, logspace(0, 2)*2*pi, Hz=True) # green +ct.bode(disturbance_rejection_type2, np.logspace(0, 2)*2*np.pi, Hz=True) # blue +ct.bode(disturbance_rejection_type3, np.logspace(0, 2)*2*np.pi, Hz=True) # green if 'PYCONTROL_TEST_EXAMPLES' not in os.environ: plt.show() diff --git a/examples/vehicle.py b/examples/vehicle.py index 07af35c9f..f89702d4e 100644 --- a/examples/vehicle.py +++ b/examples/vehicle.py @@ -3,7 +3,6 @@ import numpy as np import matplotlib.pyplot as plt -import control as ct import control.flatsys as fs # diff --git a/pyproject.toml b/pyproject.toml index d3754dc52..db70b8f48 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -60,7 +60,7 @@ filterwarnings = [ [tool.ruff] # TODO: expand to cover all code -include = ['control/**.py'] +include = ['control/**.py', 'benchmarks/*.py', 'examples/*.py'] [tool.ruff.lint] select = [ pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy