diff --git a/scripts/35_scrape_hacktoberfest_events.py b/scripts/35_scrape_hacktoberfest_events.py new file mode 100644 index 0000000..00bbfcd --- /dev/null +++ b/scripts/35_scrape_hacktoberfest_events.py @@ -0,0 +1,55 @@ +import requests +import pandas +from bs4 import BeautifulSoup + +# creating a soup object with html we got from the response +url = "https://hacktoberfest.digitalocean.com/events" +response = requests.get(url) +html = response.text +soup = BeautifulSoup(html) + +# creating array of datas +all_names = [] +all_locations = [] +all_dates = [] +all_time_zones = [] +all_urls = [] + +# iterating on all the "tr" elements. +for tr_element in soup.findAll("tr", attrs={"class": "past"}): + + # for each tr element we find the proper value and add it to its proper array + name_element = tr_element.find("td", attrs={"class": "event_name"}) + name = name_element.text.strip() + all_names.append(name) + + location_element = tr_element.find("td", attrs={"class": "location"}) + location = location_element.text.strip() + all_locations.append(location) + + date_element = tr_element.find("td", attrs={"data-label": "date"}) + date = date_element.text.strip() + all_dates.append(date) + + time_zone_element = tr_element.find("td", attrs={"data-label": "zone"}) + time_zone = time_zone_element.text.strip() + all_time_zones.append(time_zone) + + url_element = tr_element.find("a", attrs={"class": "emphasis"}) + url = url_element['href'] + all_urls.append(url) + +# setting up our Comma Seperated Values +csv_name = "events.csv" +csv_structure = { + "Name": all_names, + "Location": all_locations, + "Date": all_dates, + "Time Zone": all_time_zones, + "URL": all_urls, +} +# Creating a csv +dataFrame = pandas.DataFrame(csv_structure) +dataFrame.to_csv(csv_name, index=False, encoding='utf-8') + +
Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.
Alternative Proxies: