|
| 1 | +// const int N = @@; |
| 2 | +// int n; |
| 3 | +// vector<int> adj[N]; |
| 4 | + |
| 5 | +namespace decomposition { |
| 6 | + int subtree[N], depth[N], f[N]; |
| 7 | + |
| 8 | + int dfs(int u, int p = -1) { |
| 9 | + subtree[u] = 1; |
| 10 | + for(const auto &v: adj[u]) |
| 11 | + if(v != p) |
| 12 | + subtree[u] += dfs(v, u); |
| 13 | + return subtree[u]; |
| 14 | + } |
| 15 | + |
| 16 | + int get_centroid(int u, int sz, int p = -1) { |
| 17 | + for(const auto &v: adj[u]) |
| 18 | + if(!depth[v] && v != p && subtree[v] > sz) |
| 19 | + return get_centroid(v, sz, u); |
| 20 | + return u; |
| 21 | + } |
| 22 | + |
| 23 | + int decompose(int u, int d=1) { |
| 24 | + int centroid = get_centroid(u, dfs(u) / 2); |
| 25 | + depth[u] = d; |
| 26 | + for(const auto &v: adj[u]) |
| 27 | + if(!depth[v]) |
| 28 | + f[decompose(v, d + 1)] = centroid; |
| 29 | + return centroid; |
| 30 | + } |
| 31 | + |
| 32 | + int lca(int u, int v) { |
| 33 | + for(; u != v; u = f[u]) |
| 34 | + if(depth[v] > depth[u]) |
| 35 | + swap(u, v); |
| 36 | + return u; |
| 37 | + } |
| 38 | + |
| 39 | + void clean(int n) { |
| 40 | + for(int i = 0; i < n; ++i){ |
| 41 | + subtree[i] = 0; |
| 42 | + depth[i] = 0; |
| 43 | + f[i] = 0; |
| 44 | + } |
| 45 | + } |
| 46 | + |
| 47 | + vector<int> get_centroids() { |
| 48 | + vector<int> centroids; |
| 49 | + // clean(n); |
| 50 | + dfs(0); |
| 51 | + int centroid = get_centroid(0, n / 2); |
| 52 | + centroids.push_back(centroid); |
| 53 | + clean(n); |
| 54 | + dfs(centroid); |
| 55 | + for(const auto &v: adj[centroid]) { |
| 56 | + if((subtree[centroid] - subtree[v]) == n / 2) { |
| 57 | + centroids.push_back(v); |
| 58 | + } |
| 59 | + } |
| 60 | + assert(0 < (int) centroids.size() && (int) centroids.size() <= 2); |
| 61 | + return centroids; |
| 62 | + } |
| 63 | +} |
| 64 | + |
| 65 | +using namespace decomposition; |
0 commit comments