From 66b71f059c401f5a70e8c16755b7bb98e24e88ec Mon Sep 17 00:00:00 2001 From: Acciaro Gennaro Daniele Date: Fri, 8 Nov 2024 11:43:40 +0100 Subject: [PATCH 001/159] FIX handle empty steps in `Pipeline` (#30203) Co-authored-by: Adrin Jalali Co-authored-by: Guillaume Lemaitre --- .../sklearn.pipeline/30203.fix.rst | 4 ++ sklearn/pipeline.py | 8 +++ sklearn/tests/test_pipeline.py | 55 ++++++++++++++++++- .../utils/tests/test_estimator_html_repr.py | 10 ++++ 4 files changed, 76 insertions(+), 1 deletion(-) create mode 100644 doc/whats_new/upcoming_changes/sklearn.pipeline/30203.fix.rst diff --git a/doc/whats_new/upcoming_changes/sklearn.pipeline/30203.fix.rst b/doc/whats_new/upcoming_changes/sklearn.pipeline/30203.fix.rst new file mode 100644 index 0000000000000..89355c522e541 --- /dev/null +++ b/doc/whats_new/upcoming_changes/sklearn.pipeline/30203.fix.rst @@ -0,0 +1,4 @@ +- Fixed an issue with tags and estimator type of :class:`~sklearn.pipeline.Pipeline` + when pipeline is empty. This allows the HTML representation of an empty + pipeline to be rendered correctly. + By :user:`Gennaro Daniele Acciaro ` \ No newline at end of file diff --git a/sklearn/pipeline.py b/sklearn/pipeline.py index 54fc572e12672..63438219143ff 100644 --- a/sklearn/pipeline.py +++ b/sklearn/pipeline.py @@ -348,6 +348,11 @@ def __getitem__(self, ind): # TODO(1.8): Remove this property @property def _estimator_type(self): + """Return the estimator type of the last step in the pipeline.""" + + if not self.steps: + return None + return self.steps[-1][1]._estimator_type @property @@ -1060,6 +1065,9 @@ def __sklearn_tags__(self): ), } + if not self.steps: + return tags + try: if self.steps[0][1] is not None and self.steps[0][1] != "passthrough": tags.input_tags.pairwise = get_tags( diff --git a/sklearn/tests/test_pipeline.py b/sklearn/tests/test_pipeline.py index d425c00f114a2..f0a064ddf9942 100644 --- a/sklearn/tests/test_pipeline.py +++ b/sklearn/tests/test_pipeline.py @@ -14,7 +14,13 @@ import pytest from sklearn import config_context -from sklearn.base import BaseEstimator, TransformerMixin, clone, is_classifier +from sklearn.base import ( + BaseEstimator, + TransformerMixin, + clone, + is_classifier, + is_regressor, +) from sklearn.cluster import KMeans from sklearn.datasets import load_iris from sklearn.decomposition import PCA, TruncatedSVD @@ -41,6 +47,7 @@ _Registry, check_recorded_metadata, ) +from sklearn.utils import get_tags from sklearn.utils._metadata_requests import COMPOSITE_METHODS, METHODS from sklearn.utils._testing import ( MinimalClassifier, @@ -867,6 +874,52 @@ def test_make_pipeline(): assert pipe.steps[2][0] == "fitparamt" +@pytest.mark.parametrize( + "pipeline, check_estimator_type", + [ + (make_pipeline(StandardScaler(), LogisticRegression()), is_classifier), + (make_pipeline(StandardScaler(), LinearRegression()), is_regressor), + ( + make_pipeline(StandardScaler()), + lambda est: get_tags(est).estimator_type is None, + ), + (Pipeline([]), lambda est: est._estimator_type is None), + ], +) +def test_pipeline_estimator_type(pipeline, check_estimator_type): + """Check that the estimator type returned by the pipeline is correct. + + Non-regression test as part of: + https://github.com/scikit-learn/scikit-learn/issues/30197 + """ + # Smoke test the repr + repr(pipeline) + assert check_estimator_type(pipeline) + + +def test_sklearn_tags_with_empty_pipeline(): + """Check that we propagate properly the tags in a Pipeline. + + Non-regression test as part of: + https://github.com/scikit-learn/scikit-learn/issues/30197 + """ + empty_pipeline = Pipeline(steps=[]) + be = BaseEstimator() + + expected_tags = be.__sklearn_tags__() + expected_tags._xfail_checks = { + "check_dont_overwrite_parameters": ( + "Pipeline changes the `steps` parameter, which it shouldn't." + "Therefore this test is x-fail until we fix this." + ), + "check_estimators_overwrite_params": ( + "Pipeline changes the `steps` parameter, which it shouldn't." + "Therefore this test is x-fail until we fix this." + ), + } + assert empty_pipeline.__sklearn_tags__() == expected_tags + + def test_feature_union_weights(): # test feature union with transformer weights X = iris.data diff --git a/sklearn/utils/tests/test_estimator_html_repr.py b/sklearn/utils/tests/test_estimator_html_repr.py index 580eb24584e2f..c1c35d29c4472 100644 --- a/sklearn/utils/tests/test_estimator_html_repr.py +++ b/sklearn/utils/tests/test_estimator_html_repr.py @@ -140,6 +140,16 @@ def test_get_visual_block_column_transformer(): assert est_html_info.name_details == (["num1", "num2"], [0, 3]) +def test_estimator_html_repr_an_empty_pipeline(): + """Check that the representation of an empty Pipeline does not fail. + + Non-regression test for: + https://github.com/scikit-learn/scikit-learn/issues/30197 + """ + empty_pipeline = Pipeline([]) + estimator_html_repr(empty_pipeline) + + def test_estimator_html_repr_pipeline(): num_trans = Pipeline( steps=[("pass", "passthrough"), ("imputer", SimpleImputer(strategy="median"))] From 56e7b8666a3f199d93f1a286bafbd75ba2839a8f Mon Sep 17 00:00:00 2001 From: Guillaume Lemaitre Date: Fri, 8 Nov 2024 12:18:27 +0100 Subject: [PATCH 002/159] MAINT fix fragments for the 1.6 release candidate (#30243) --- doc/api_reference.py | 2 ++ .../upcoming_changes/many-modules/29696.api.rst | 2 +- .../metadata-routing/28494.feature.rst | 9 +++++++-- .../metadata-routing/29136.feature.rst | 5 +++-- .../upcoming_changes/sklearn.base/30122.api.rst | 2 +- .../sklearn.calibration/30171.api.rst | 2 +- .../sklearn.decomposition/30097.enhancement.rst | 8 +++++--- .../sklearn.linear_model/19746.fix.rst | 2 +- .../sklearn.linear_model/28840.enhancement.rst | 2 +- .../sklearn.linear_model/30040.fix.rst | 2 +- .../sklearn.metrics/26367.enhancement.rst | 2 +- .../sklearn.metrics/29213.enhancement.rst | 3 ++- .../sklearn.neighbors/25330.enhancement.rst | 12 ++++++++---- .../sklearn.neighbors/30047.enhancement.rst | 2 +- .../sklearn.pipeline/29868.enhancement.rst | 3 ++- .../sklearn.utils/29540.enhancement.rst | 4 ++-- .../sklearn.utils/29874.enhancement.rst | 2 +- 17 files changed, 40 insertions(+), 24 deletions(-) diff --git a/doc/api_reference.py b/doc/api_reference.py index b3e658bd22120..3b7aab0825a39 100644 --- a/doc/api_reference.py +++ b/doc/api_reference.py @@ -123,6 +123,8 @@ def _get_submodule(module_name, submodule_name): "is_classifier", "is_clusterer", "is_regressor", + "is_transformer", + "is_outlier_detector", ], } ], diff --git a/doc/whats_new/upcoming_changes/many-modules/29696.api.rst b/doc/whats_new/upcoming_changes/many-modules/29696.api.rst index ab397ff000b72..77c85f82b29bc 100644 --- a/doc/whats_new/upcoming_changes/many-modules/29696.api.rst +++ b/doc/whats_new/upcoming_changes/many-modules/29696.api.rst @@ -1,5 +1,5 @@ - :func:`utils.validation.validate_data` is introduced and replaces previously private `base.BaseEstimator._validate_data` method. This is intended for third party estimator developers, who should use this function in most cases instead of - :func:`utils.validation.check_array` and :func:`utils.validation.check_X_y`. + :func:`utils.check_array` and :func:`utils.check_X_y`. By :user:`Adrin Jalali ` \ No newline at end of file diff --git a/doc/whats_new/upcoming_changes/metadata-routing/28494.feature.rst b/doc/whats_new/upcoming_changes/metadata-routing/28494.feature.rst index 92e8b0617711a..0bb407079f8ff 100644 --- a/doc/whats_new/upcoming_changes/metadata-routing/28494.feature.rst +++ b/doc/whats_new/upcoming_changes/metadata-routing/28494.feature.rst @@ -1,7 +1,12 @@ - :class:`semi_supervised.SelfTrainingClassifier` now supports metadata routing. The fit method now accepts ``**fit_params`` which are passed to the underlying estimators via their `fit` methods. - In addition, the `predict`, `predict_proba`, `predict_log_proba`, `score` - and `decision_function` methods also accept ``**params`` which are + In addition, the + :meth:`~semi_supervised.SelfTrainingClassifier.predict`, + :meth:`~semi_supervised.SelfTrainingClassifier.predict_proba`, + :meth:`~semi_supervised.SelfTrainingClassifier.predict_log_proba`, + :meth:`~semi_supervised.SelfTrainingClassifier.score` + and :meth:`~semi_supervised.SelfTrainingClassifier.decision_function` + methods also accept ``**params`` which are passed to the underlying estimators via their respective methods. By :user:`Adam Li ` diff --git a/doc/whats_new/upcoming_changes/metadata-routing/29136.feature.rst b/doc/whats_new/upcoming_changes/metadata-routing/29136.feature.rst index 280a41ac87eed..464667131784a 100644 --- a/doc/whats_new/upcoming_changes/metadata-routing/29136.feature.rst +++ b/doc/whats_new/upcoming_changes/metadata-routing/29136.feature.rst @@ -1,4 +1,5 @@ - :class:`compose.TransformedTargetRegressor` now supports metadata - routing in its `fit` and `predict` methods and routes the corresponding - params to the underlying regressor. + routing in its :meth:`~compose.TransformedTargetRegressor.fit` and + :meth:`~compose.TransformedTargetRegressor.predict` methods and routes the + corresponding params to the underlying regressor. By :user:`Omar Salman ` \ No newline at end of file diff --git a/doc/whats_new/upcoming_changes/sklearn.base/30122.api.rst b/doc/whats_new/upcoming_changes/sklearn.base/30122.api.rst index 370a2adc1996d..1ca6052340930 100644 --- a/doc/whats_new/upcoming_changes/sklearn.base/30122.api.rst +++ b/doc/whats_new/upcoming_changes/sklearn.base/30122.api.rst @@ -1,4 +1,4 @@ -- Passing a class object to:func:`~sklearn.base.is_classifier`, +- Passing a class object to :func:`~sklearn.base.is_classifier`, :func:`~sklearn.base.is_regressor`, :func:`~sklearn.base.is_transformer`, and :func:`~sklearn.base.is_outlier_detector` is now deprecated. Pass an instance instead. diff --git a/doc/whats_new/upcoming_changes/sklearn.calibration/30171.api.rst b/doc/whats_new/upcoming_changes/sklearn.calibration/30171.api.rst index 4d550af598278..eceae747a7def 100644 --- a/doc/whats_new/upcoming_changes/sklearn.calibration/30171.api.rst +++ b/doc/whats_new/upcoming_changes/sklearn.calibration/30171.api.rst @@ -1,4 +1,4 @@ - `cv="prefit"` is deprecated for :class:`~sklearn.calibration.CalibratedClassifierCV`. Use :class:`~sklearn.frozen.FrozenEstimator` instead, as `CalibratedClassifierCV(FrozenEstimator(estimator))`. - By `Adrin Jalali`_. + By `Adrin Jalali`_ diff --git a/doc/whats_new/upcoming_changes/sklearn.decomposition/30097.enhancement.rst b/doc/whats_new/upcoming_changes/sklearn.decomposition/30097.enhancement.rst index 6e636d78cdbf9..2477d288fa56b 100644 --- a/doc/whats_new/upcoming_changes/sklearn.decomposition/30097.enhancement.rst +++ b/doc/whats_new/upcoming_changes/sklearn.decomposition/30097.enhancement.rst @@ -1,4 +1,6 @@ - :class:`~sklearn.decomposition.LatentDirichletAllocation` now has a - ``normalize`` parameter in ``transform`` and ``fit_transform`` methods - to control whether the document topic distribution is normalized. - By `Adrin Jalali`_. + ``normalize`` parameter in + :meth:`~sklearn.decomposition.LatentDirichletAllocation.transform` and + :meth:`~sklearn.decomposition.LatentDirichletAllocation.fit_transform` + methods to control whether the document topic distribution is normalized. + By `Adrin Jalali`_ diff --git a/doc/whats_new/upcoming_changes/sklearn.linear_model/19746.fix.rst b/doc/whats_new/upcoming_changes/sklearn.linear_model/19746.fix.rst index 6508ca562afe1..c115d01455263 100644 --- a/doc/whats_new/upcoming_changes/sklearn.linear_model/19746.fix.rst +++ b/doc/whats_new/upcoming_changes/sklearn.linear_model/19746.fix.rst @@ -1,3 +1,3 @@ - In :class:`linear_model.Ridge` and :class:`linear_model.RidgeCV`, after `fit`, the `coef_` attribute is now of shape `(n_samples,)` like other linear models. - By :user:`Maxwell Liu`, `Guillaume Lemaitre`_, and `AdrinJalali`_ + By :user:`Maxwell Liu`, `Guillaume Lemaitre`_, and `Adrin Jalali`_ diff --git a/doc/whats_new/upcoming_changes/sklearn.linear_model/28840.enhancement.rst b/doc/whats_new/upcoming_changes/sklearn.linear_model/28840.enhancement.rst index 2180034ef76b8..3f5941e1ca9de 100644 --- a/doc/whats_new/upcoming_changes/sklearn.linear_model/28840.enhancement.rst +++ b/doc/whats_new/upcoming_changes/sklearn.linear_model/28840.enhancement.rst @@ -2,4 +2,4 @@ :class:`linear_model.LogisticRegression` and :class:`linear_model.LogisticRegressionCV` is extended to support the full multinomial loss in a multiclass setting. - By :user:`Christian Lorentzen `. + By :user:`Christian Lorentzen ` diff --git a/doc/whats_new/upcoming_changes/sklearn.linear_model/30040.fix.rst b/doc/whats_new/upcoming_changes/sklearn.linear_model/30040.fix.rst index f4a91911345e3..26220e71bd71f 100644 --- a/doc/whats_new/upcoming_changes/sklearn.linear_model/30040.fix.rst +++ b/doc/whats_new/upcoming_changes/sklearn.linear_model/30040.fix.rst @@ -3,4 +3,4 @@ more numerically robust results on rank-deficient data. In particular, it empirically fixes the expected equivalence property between fitting with reweighted or with repeated data points. - :pr:`30040` by :user:`Antoine Baker `. + By :user:`Antoine Baker ` diff --git a/doc/whats_new/upcoming_changes/sklearn.metrics/26367.enhancement.rst b/doc/whats_new/upcoming_changes/sklearn.metrics/26367.enhancement.rst index 0fc5bd059c42f..990e311c496ac 100644 --- a/doc/whats_new/upcoming_changes/sklearn.metrics/26367.enhancement.rst +++ b/doc/whats_new/upcoming_changes/sklearn.metrics/26367.enhancement.rst @@ -3,4 +3,4 @@ :meth:`metrics.PrecisionRecallDisplay.from_estimator`, and :meth:`metrics.PrecisionRecallDisplay.from_predictions` now accept a new keyword `despine` to remove the top and right spines of the plot in order to make it clearer. - By :user:`Yao Xiao `. \ No newline at end of file + By :user:`Yao Xiao ` \ No newline at end of file diff --git a/doc/whats_new/upcoming_changes/sklearn.metrics/29213.enhancement.rst b/doc/whats_new/upcoming_changes/sklearn.metrics/29213.enhancement.rst index 35ad57056050d..a0e6734102b87 100644 --- a/doc/whats_new/upcoming_changes/sklearn.metrics/29213.enhancement.rst +++ b/doc/whats_new/upcoming_changes/sklearn.metrics/29213.enhancement.rst @@ -1,3 +1,4 @@ - :func:`sklearn.metrics.accuracy_score` now includes a `zero_division` parameter to raise a warning when `y_true` and `y_pred` are empty. - By :user:`Jaimin Chauhan `. + By :user:`Jaimin Chauhan ` + diff --git a/doc/whats_new/upcoming_changes/sklearn.neighbors/25330.enhancement.rst b/doc/whats_new/upcoming_changes/sklearn.neighbors/25330.enhancement.rst index ed95889127afc..48d3b385ef32d 100644 --- a/doc/whats_new/upcoming_changes/sklearn.neighbors/25330.enhancement.rst +++ b/doc/whats_new/upcoming_changes/sklearn.neighbors/25330.enhancement.rst @@ -1,6 +1,10 @@ -- :class:`neighbors.NearestNeighbors`, :class:`KNeighborsClassifier`, - :class:`KNeighborsRegressor`, :class:`RadiusNeighborsClassifier`, - :class:`RadiusNeighborsRegressor`, :class:`KNeighborsTransformer`, - :class:`RadiusNeighborsTransformer`, and :class:`LocalOutlierFactor` +- :class:`neighbors.NearestNeighbors`, + :class:`neighbors.KNeighborsClassifier`, + :class:`neighbors.KNeighborsRegressor`, + :class:`neighbors.RadiusNeighborsClassifier`, + :class:`neighbors.RadiusNeighborsRegressor`, + :class:`neighbors.KNeighborsTransformer`, + :class:`neighbors.RadiusNeighborsTransformer`, and + :class:`neighbors.LocalOutlierFactor` now work with `metric="nan_euclidean"`, supporting `nan` inputs. By :user:`Carlo Lemos `, `Guillaume Lemaitre`_, and `Adrin Jalali`_ diff --git a/doc/whats_new/upcoming_changes/sklearn.neighbors/30047.enhancement.rst b/doc/whats_new/upcoming_changes/sklearn.neighbors/30047.enhancement.rst index ed91b39ed2e0d..79cd7a1b0c113 100644 --- a/doc/whats_new/upcoming_changes/sklearn.neighbors/30047.enhancement.rst +++ b/doc/whats_new/upcoming_changes/sklearn.neighbors/30047.enhancement.rst @@ -3,4 +3,4 @@ :class:`neighbors.RadiusNeighborsClassifier` accept `X=None` as input. In this case predictions for all training set points are returned, and points are not included into their own neighbors. - :pr:`30047` by :user:`Dmitry Kobak `. + By :user:`Dmitry Kobak ` diff --git a/doc/whats_new/upcoming_changes/sklearn.pipeline/29868.enhancement.rst b/doc/whats_new/upcoming_changes/sklearn.pipeline/29868.enhancement.rst index ec462a0b742e3..ef8c6592af651 100644 --- a/doc/whats_new/upcoming_changes/sklearn.pipeline/29868.enhancement.rst +++ b/doc/whats_new/upcoming_changes/sklearn.pipeline/29868.enhancement.rst @@ -1,3 +1,4 @@ - :class:`pipeline.Pipeline` now warns about not being fitted before calling methods that require the pipeline to be fitted. This warning will become an error in 1.8. - By `Adrin Jalali`_. + By `Adrin Jalali`_ + diff --git a/doc/whats_new/upcoming_changes/sklearn.utils/29540.enhancement.rst b/doc/whats_new/upcoming_changes/sklearn.utils/29540.enhancement.rst index 95741afa0f260..707998aebde56 100644 --- a/doc/whats_new/upcoming_changes/sklearn.utils/29540.enhancement.rst +++ b/doc/whats_new/upcoming_changes/sklearn.utils/29540.enhancement.rst @@ -1,4 +1,4 @@ -- :func:`utils.validation.check_array` now accepts `ensure_non_negative` +- :func:`utils.check_array` now accepts `ensure_non_negative` to check for negative values in the passed array, until now only available through - calling :func:`utils.validation.check_non_negative`. + calling :func:`utils.check_non_negative`. By :user:`Tamara Atanasoska ` diff --git a/doc/whats_new/upcoming_changes/sklearn.utils/29874.enhancement.rst b/doc/whats_new/upcoming_changes/sklearn.utils/29874.enhancement.rst index 58f3919af7c2c..6d1652906ee9d 100644 --- a/doc/whats_new/upcoming_changes/sklearn.utils/29874.enhancement.rst +++ b/doc/whats_new/upcoming_changes/sklearn.utils/29874.enhancement.rst @@ -2,4 +2,4 @@ :func:`~sklearn.utils.estimator_checks.parametrize_with_checks` now check and fail if the classifier has the `tags.classifier_tags.multi_class = False` tag but does not fail on multi-class data. - By `Adrin Jalali`_. + By `Adrin Jalali`_ From b0efa471e499a9f7cb7e657cc6012c1042e15c0c Mon Sep 17 00:00:00 2001 From: Guillaume Lemaitre Date: Fri, 8 Nov 2024 12:32:50 +0100 Subject: [PATCH 003/159] MAINT add Python 3.13 to metadata of pyproject.toml (#30245) --- pyproject.toml | 1 + 1 file changed, 1 insertion(+) diff --git a/pyproject.toml b/pyproject.toml index 7b1a31b80f0aa..8a7f4f0db86ff 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -32,6 +32,7 @@ classifiers=[ "Programming Language :: Python :: 3.10", "Programming Language :: Python :: 3.11", "Programming Language :: Python :: 3.12", + "Programming Language :: Python :: 3.13", "Programming Language :: Python :: Implementation :: CPython", ] From f0080beb4829b9e40979009689d89c5a4fde51d2 Mon Sep 17 00:00:00 2001 From: Adrin Jalali Date: Fri, 8 Nov 2024 19:28:02 +0300 Subject: [PATCH 004/159] ENH remove _xfail_checks, pass directly to check runners, return structured output from check_estimator (#30149) --- doc/api_reference.py | 2 + doc/glossary.rst | 3 +- .../sklearn.utils/30149.enhancement.rst | 23 + maint_tools/check_xfailed_checks.py | 37 ++ sklearn/cluster/_bicluster.py | 25 - sklearn/cluster/_kmeans.py | 10 - sklearn/compose/_column_transformer.py | 14 - sklearn/dummy.py | 4 - sklearn/ensemble/_bagging.py | 6 - sklearn/ensemble/_forest.py | 30 -- sklearn/ensemble/_gb.py | 20 - .../gradient_boosting.py | 6 - sklearn/ensemble/_iforest.py | 6 - sklearn/ensemble/_weight_boosting.py | 20 - sklearn/exceptions.py | 58 +++ sklearn/kernel_approximation.py | 5 - sklearn/linear_model/_bayes.py | 10 - sklearn/linear_model/_logistic.py | 11 - sklearn/linear_model/_perceptron.py | 10 - sklearn/linear_model/_ransac.py | 10 - sklearn/linear_model/_ridge.py | 27 -- sklearn/linear_model/_stochastic_gradient.py | 30 -- .../_classification_threshold.py | 8 - sklearn/model_selection/_search.py | 8 +- .../_search_successive_halving.py | 15 - sklearn/naive_bayes.py | 6 - sklearn/neighbors/_classification.py | 7 - sklearn/neighbors/_graph.py | 14 - sklearn/neighbors/_kde.py | 7 - sklearn/neighbors/_regression.py | 7 - sklearn/neural_network/_rbm.py | 8 - sklearn/pipeline.py | 19 - sklearn/preprocessing/_discretization.py | 10 - sklearn/preprocessing/_polynomial.py | 10 - sklearn/semi_supervised/_self_training.py | 7 - sklearn/svm/_classes.py | 84 ---- sklearn/tests/test_common.py | 21 +- sklearn/tests/test_pipeline.py | 10 - sklearn/utils/_tags.py | 13 - .../utils/_test_common/instance_generator.py | 388 +++++++++++++++- sklearn/utils/estimator_checks.py | 431 ++++++++++++++---- sklearn/utils/tests/test_estimator_checks.py | 147 +++++- sklearn/utils/validation.py | 9 +- 43 files changed, 1025 insertions(+), 571 deletions(-) create mode 100644 doc/whats_new/upcoming_changes/sklearn.utils/30149.enhancement.rst create mode 100644 maint_tools/check_xfailed_checks.py diff --git a/doc/api_reference.py b/doc/api_reference.py index 3b7aab0825a39..8952078881122 100644 --- a/doc/api_reference.py +++ b/doc/api_reference.py @@ -388,6 +388,7 @@ def _get_submodule(module_name, submodule_name): "InconsistentVersionWarning", "NotFittedError", "UndefinedMetricWarning", + "EstimatorCheckFailedWarning", ], }, ], @@ -1298,6 +1299,7 @@ def _get_submodule(module_name, submodule_name): "autosummary": [ "estimator_checks.check_estimator", "estimator_checks.parametrize_with_checks", + "estimator_checks.estimator_checks_generator", ], }, { diff --git a/doc/glossary.rst b/doc/glossary.rst index 691f8df0d308c..a5feb72a268f4 100644 --- a/doc/glossary.rst +++ b/doc/glossary.rst @@ -198,7 +198,8 @@ General Concepts This refers to the tests run on almost every estimator class in Scikit-learn to check they comply with basic API conventions. They are available for external use through - :func:`utils.estimator_checks.check_estimator`, with most of the + :func:`utils.estimator_checks.check_estimator` or + :func:`utils.estimator_checks.parametrize_with_checks`, with most of the implementation in ``sklearn/utils/estimator_checks.py``. Note: Some exceptions to the common testing regime are currently diff --git a/doc/whats_new/upcoming_changes/sklearn.utils/30149.enhancement.rst b/doc/whats_new/upcoming_changes/sklearn.utils/30149.enhancement.rst new file mode 100644 index 0000000000000..bf04bb4d91aab --- /dev/null +++ b/doc/whats_new/upcoming_changes/sklearn.utils/30149.enhancement.rst @@ -0,0 +1,23 @@ +- Changes to :func:`~utils.estimator_checks.check_estimator` and + :func:`~utils.estimator_checks.parametrize_with_checks`. + + - :func:`~utils.estimator_checks.check_estimator` introduces new arguments: + ``on_skip``, ``on_fail``, and ``callback`` to control the behavior of the check + runner. Refer to the API documentation for more details. + + - ``generate_only=True`` is deprecated in + :func:`~utils.estimator_checks.check_estimator`. Use + :func:`~utils.estimator_checks.estimator_checks_generator` instead. + + - The ``_xfail_checks`` estimator tag is now removed, and now in order to indicate + which tests are expected to fail, you can pass a dictionary to the + :func:`~utils.estimator_checks.check_estimator` as the ``expected_failed_checks`` + parameter. Similarly, the ``expected_failed_checks`` parameter in + :func:`~utils.estimator_checks.parametrize_with_checks` can be used, which is a + callable returning a dictionary of the form:: + + { + "check_name": "reason to mark this check as xfail", + } + + By `Adrin Jalali`_ diff --git a/maint_tools/check_xfailed_checks.py b/maint_tools/check_xfailed_checks.py new file mode 100644 index 0000000000000..d1108c6ab51a5 --- /dev/null +++ b/maint_tools/check_xfailed_checks.py @@ -0,0 +1,37 @@ +# This script checks that the common tests marked with xfail are actually +# failing. +# Note that in some cases, a test might be marked with xfail because it is +# failing on certain machines, and might not be triggered by this script. + +import contextlib +import io + +from sklearn.utils._test_common.instance_generator import ( + _get_expected_failed_checks, + _tested_estimators, +) +from sklearn.utils.estimator_checks import check_estimator + +for estimator in _tested_estimators(): + # calling check_estimator w/o passing expected_failed_checks will find + # all the failing tests in your environment. + # suppress stdout/stderr while running checks + with ( + contextlib.redirect_stdout(io.StringIO()), + contextlib.redirect_stderr(io.StringIO()), + ): + check_results = check_estimator(estimator, on_skip=None, on_fail=None) + failed_tests = [e for e in check_results if e["status"] == "failed"] + failed_test_names = set(e["check_name"] for e in failed_tests) + expected_failed_tests = set(_get_expected_failed_checks(estimator).keys()) + unexpected_failures = failed_test_names - expected_failed_tests + if unexpected_failures: + print(f"{estimator.__class__.__name__} failed with unexpected failures:") + for failure in unexpected_failures: + print(f" {failure}") + + expected_but_not_raised = expected_failed_tests - failed_test_names + if expected_but_not_raised: + print(f"{estimator.__class__.__name__} did not fail expected failures:") + for failure in expected_but_not_raised: + print(f" {failure}") diff --git a/sklearn/cluster/_bicluster.py b/sklearn/cluster/_bicluster.py index 08cd63b58cbaa..b3b129d205768 100644 --- a/sklearn/cluster/_bicluster.py +++ b/sklearn/cluster/_bicluster.py @@ -193,20 +193,6 @@ def _k_means(self, data, n_clusters): labels = model.labels_ return centroid, labels - def __sklearn_tags__(self): - tags = super().__sklearn_tags__() - tags._xfail_checks = { - "check_estimators_dtypes": "raises nan error", - "check_fit2d_1sample": "_scale_normalize fails", - "check_fit2d_1feature": "raises apply_along_axis error", - "check_estimator_sparse_matrix": "does not fail gracefully", - "check_estimator_sparse_array": "does not fail gracefully", - "check_methods_subset_invariance": "empty array passed inside", - "check_dont_overwrite_parameters": "empty array passed inside", - "check_fit2d_predict1d": "empty array passed inside", - } - return tags - class SpectralCoclustering(BaseSpectral): """Spectral Co-Clustering algorithm (Dhillon, 2001). @@ -362,17 +348,6 @@ def _fit(self, X): [self.column_labels_ == c for c in range(self.n_clusters)] ) - def __sklearn_tags__(self): - tags = super().__sklearn_tags__() - tags._xfail_checks.update( - { - # ValueError: Found array with 0 feature(s) (shape=(23, 0)) - # while a minimum of 1 is required. - "check_dict_unchanged": "FIXME", - } - ) - return tags - class SpectralBiclustering(BaseSpectral): """Spectral biclustering (Kluger, 2003). diff --git a/sklearn/cluster/_kmeans.py b/sklearn/cluster/_kmeans.py index 80958f8c845a2..4fdcb4d5eea0f 100644 --- a/sklearn/cluster/_kmeans.py +++ b/sklearn/cluster/_kmeans.py @@ -1177,16 +1177,6 @@ def score(self, X, y=None, sample_weight=None): ) return -scores - def __sklearn_tags__(self): - tags = super().__sklearn_tags__() - # TODO: replace by a statistical test, see meta-issue #16298 - tags._xfail_checks = { - "check_sample_weight_equivalence": ( - "sample_weight is not equivalent to removing/repeating samples." - ), - } - return tags - class KMeans(_BaseKMeans): """K-Means clustering. diff --git a/sklearn/compose/_column_transformer.py b/sklearn/compose/_column_transformer.py index be7b2f7faeea5..1985d352619af 100644 --- a/sklearn/compose/_column_transformer.py +++ b/sklearn/compose/_column_transformer.py @@ -1315,20 +1315,6 @@ def get_metadata_routing(self): return router - def __sklearn_tags__(self): - tags = super().__sklearn_tags__() - tags._xfail_checks = { - "check_estimators_empty_data_messages": "FIXME", - "check_estimators_nan_inf": "FIXME", - "check_estimator_sparse_array": "FIXME", - "check_estimator_sparse_matrix": "FIXME", - "check_fit1d": "FIXME", - "check_fit2d_predict1d": "FIXME", - "check_complex_data": "FIXME", - "check_fit2d_1feature": "FIXME", - } - return tags - def _check_X(X): """Use check_array only when necessary, e.g. on lists and other non-array-likes.""" diff --git a/sklearn/dummy.py b/sklearn/dummy.py index 6332ff43cd482..571c6e068099a 100644 --- a/sklearn/dummy.py +++ b/sklearn/dummy.py @@ -425,10 +425,6 @@ def __sklearn_tags__(self): tags = super().__sklearn_tags__() tags.classifier_tags.poor_score = True tags.no_validation = True - tags._xfail_checks = { - "check_methods_subset_invariance": "fails for the predict method", - "check_methods_sample_order_invariance": "fails for the predict method", - } return tags def score(self, X, y, sample_weight=None): diff --git a/sklearn/ensemble/_bagging.py b/sklearn/ensemble/_bagging.py index dd39b8cb607a8..ca133e9fed27a 100644 --- a/sklearn/ensemble/_bagging.py +++ b/sklearn/ensemble/_bagging.py @@ -628,12 +628,6 @@ def _get_estimator(self): def __sklearn_tags__(self): tags = super().__sklearn_tags__() tags.input_tags.allow_nan = get_tags(self._get_estimator()).input_tags.allow_nan - # TODO: replace by a statistical test, see meta-issue #16298 - tags._xfail_checks = { - "check_sample_weight_equivalence": ( - "sample_weight is not equivalent to removing/repeating samples." - ), - } return tags diff --git a/sklearn/ensemble/_forest.py b/sklearn/ensemble/_forest.py index 92713eecec9dd..a5475eb0e6e62 100644 --- a/sklearn/ensemble/_forest.py +++ b/sklearn/ensemble/_forest.py @@ -1557,16 +1557,6 @@ def __init__( self.monotonic_cst = monotonic_cst self.ccp_alpha = ccp_alpha - def __sklearn_tags__(self): - tags = super().__sklearn_tags__() - # TODO: replace by a statistical test, see meta-issue #16298 - tags._xfail_checks = { - "check_sample_weight_equivalence": ( - "sample_weight is not equivalent to removing/repeating samples." - ), - } - return tags - class RandomForestRegressor(ForestRegressor): """ @@ -1928,16 +1918,6 @@ def __init__( self.ccp_alpha = ccp_alpha self.monotonic_cst = monotonic_cst - def __sklearn_tags__(self): - tags = super().__sklearn_tags__() - # TODO: replace by a statistical test, see meta-issue #16298 - tags._xfail_checks = { - "check_sample_weight_equivalence": ( - "sample_weight is not equivalent to removing/repeating samples." - ), - } - return tags - class ExtraTreesClassifier(ForestClassifier): """ @@ -3012,13 +2992,3 @@ def transform(self, X): """ check_is_fitted(self) return self.one_hot_encoder_.transform(self.apply(X)) - - def __sklearn_tags__(self): - tags = super().__sklearn_tags__() - # TODO: replace by a statistical test, see meta-issue #16298 - tags._xfail_checks = { - "check_sample_weight_equivalence": ( - "sample_weight is not equivalent to removing/repeating samples." - ), - } - return tags diff --git a/sklearn/ensemble/_gb.py b/sklearn/ensemble/_gb.py index 8f85f2f7aa3cd..0e2781af22c29 100644 --- a/sklearn/ensemble/_gb.py +++ b/sklearn/ensemble/_gb.py @@ -1725,16 +1725,6 @@ def staged_predict_proba(self, X): "loss=%r does not support predict_proba" % self.loss ) from e - def __sklearn_tags__(self): - tags = super().__sklearn_tags__() - # TODO: investigate failure see meta-issue #16298 - tags._xfail_checks = { - "check_sample_weight_equivalence": ( - "sample_weight is not equivalent to removing/repeating samples." - ), - } - return tags - class GradientBoostingRegressor(RegressorMixin, BaseGradientBoosting): """Gradient Boosting for regression. @@ -2191,13 +2181,3 @@ def apply(self, X): leaves = super().apply(X) leaves = leaves.reshape(X.shape[0], self.estimators_.shape[0]) return leaves - - def __sklearn_tags__(self): - tags = super().__sklearn_tags__() - # TODO: investigate failure see meta-issue #16298 - tags._xfail_checks = { - "check_sample_weight_equivalence": ( - "sample_weight is not equivalent to removing/repeating samples." - ), - } - return tags diff --git a/sklearn/ensemble/_hist_gradient_boosting/gradient_boosting.py b/sklearn/ensemble/_hist_gradient_boosting/gradient_boosting.py index b136cd373a03f..24d8a55df4f7d 100644 --- a/sklearn/ensemble/_hist_gradient_boosting/gradient_boosting.py +++ b/sklearn/ensemble/_hist_gradient_boosting/gradient_boosting.py @@ -1389,12 +1389,6 @@ def _compute_partial_dependence_recursion(self, grid, target_features): def __sklearn_tags__(self): tags = super().__sklearn_tags__() tags.input_tags.allow_nan = True - # TODO: replace by a statistical test, see meta-issue #16298 - tags._xfail_checks = { - "check_sample_weight_equivalence": ( - "sample_weight is not equivalent to removing/repeating samples." - ), - } return tags @abstractmethod diff --git a/sklearn/ensemble/_iforest.py b/sklearn/ensemble/_iforest.py index 89ae067a43dbb..2195646ae855c 100644 --- a/sklearn/ensemble/_iforest.py +++ b/sklearn/ensemble/_iforest.py @@ -633,12 +633,6 @@ def _compute_score_samples(self, X, subsample_features): def __sklearn_tags__(self): tags = super().__sklearn_tags__() - # TODO: replace by a statistical test, see meta-issue #16298 - tags._xfail_checks = { - "check_sample_weight_equivalence": ( - "sample_weight is not equivalent to removing/repeating samples." - ), - } tags.input_tags.allow_nan = True return tags diff --git a/sklearn/ensemble/_weight_boosting.py b/sklearn/ensemble/_weight_boosting.py index 7780230b046cb..cbd5bfe74dba3 100644 --- a/sklearn/ensemble/_weight_boosting.py +++ b/sklearn/ensemble/_weight_boosting.py @@ -858,16 +858,6 @@ def predict_log_proba(self, X): """ return np.log(self.predict_proba(X)) - def __sklearn_tags__(self): - tags = super().__sklearn_tags__() - # TODO: replace by a statistical test, see meta-issue #16298 - tags._xfail_checks = { - "check_sample_weight_equivalence": ( - "sample_weight is not equivalent to removing/repeating samples." - ), - } - return tags - class AdaBoostRegressor(_RoutingNotSupportedMixin, RegressorMixin, BaseWeightBoosting): """An AdaBoost regressor. @@ -1176,13 +1166,3 @@ def staged_predict(self, X): for i, _ in enumerate(self.estimators_, 1): yield self._get_median_predict(X, limit=i) - - def __sklearn_tags__(self): - tags = super().__sklearn_tags__() - # TODO: replace by a statistical test, see meta-issue #16298 - tags._xfail_checks = { - "check_sample_weight_equivalence": ( - "sample_weight is not equivalent to removing/repeating samples." - ), - } - return tags diff --git a/sklearn/exceptions.py b/sklearn/exceptions.py index caba4e174817a..1c9162dc760f9 100644 --- a/sklearn/exceptions.py +++ b/sklearn/exceptions.py @@ -14,6 +14,7 @@ "UndefinedMetricWarning", "PositiveSpectrumWarning", "UnsetMetadataPassedError", + "EstimatorCheckFailedWarning", ] @@ -189,3 +190,60 @@ def __str__(self): "https://scikit-learn.org/stable/model_persistence.html" "#security-maintainability-limitations" ) + + +class EstimatorCheckFailedWarning(UserWarning): + """Warning raised when an estimator check from the common tests fails. + + Parameters + ---------- + estimator : estimator object + Estimator instance for which the test failed. + + check_name : str + Name of the check that failed. + + exception : Exception + Exception raised by the failed check. + + status : str + Status of the check. + + expected_to_fail : bool + Whether the check was expected to fail. + + expected_to_fail_reason : str + Reason for the expected failure. + """ + + def __init__( + self, + *, + estimator, + check_name: str, + exception: Exception, + status: str, + expected_to_fail: bool, + expected_to_fail_reason: str, + ): + self.estimator = estimator + self.check_name = check_name + self.exception = exception + self.status = status + self.expected_to_fail = expected_to_fail + self.expected_to_fail_reason = expected_to_fail_reason + + def __repr__(self): + expected_to_fail_str = ( + f"Expected to fail: {self.expected_to_fail_reason}" + if self.expected_to_fail + else "Not expected to fail" + ) + return ( + f"Test {self.check_name} failed for estimator {self.estimator!r}.\n" + f"Expected to fail reason: {expected_to_fail_str}\n" + f"Exception: {self.exception}" + ) + + def __str__(self): + return self.__repr__() diff --git a/sklearn/kernel_approximation.py b/sklearn/kernel_approximation.py index 96f9b7e9d4778..6364252c980be 100644 --- a/sklearn/kernel_approximation.py +++ b/sklearn/kernel_approximation.py @@ -1094,10 +1094,5 @@ def _get_kernel_params(self): def __sklearn_tags__(self): tags = super().__sklearn_tags__() - tags._xfail_checks = { - "check_transformer_preserves_dtypes": ( - "dtypes are preserved but not at a close enough precision" - ) - } tags.transformer_tags.preserves_dtype = ["float64", "float32"] return tags diff --git a/sklearn/linear_model/_bayes.py b/sklearn/linear_model/_bayes.py index 555b4ec13df69..b6527d4f22b1f 100644 --- a/sklearn/linear_model/_bayes.py +++ b/sklearn/linear_model/_bayes.py @@ -430,16 +430,6 @@ def _log_marginal_likelihood( return score - def __sklearn_tags__(self): - tags = super().__sklearn_tags__() - # TODO: fix sample_weight handling of this estimator, see meta-issue #16298 - tags._xfail_checks = { - "check_sample_weight_equivalence": ( - "sample_weight is not equivalent to removing/repeating samples." - ), - } - return tags - ############################################################################### # ARD (Automatic Relevance Determination) regression diff --git a/sklearn/linear_model/_logistic.py b/sklearn/linear_model/_logistic.py index fe5ee918066fa..ff7f09aee896a 100644 --- a/sklearn/linear_model/_logistic.py +++ b/sklearn/linear_model/_logistic.py @@ -1457,17 +1457,6 @@ def predict_log_proba(self, X): """ return np.log(self.predict_proba(X)) - def __sklearn_tags__(self): - tags = super().__sklearn_tags__() - tags._xfail_checks.update( - { - "check_non_transformer_estimators_n_iter": ( - "n_iter_ cannot be easily accessed." - ) - } - ) - return tags - class LogisticRegressionCV(LogisticRegression, LinearClassifierMixin, BaseEstimator): """Logistic Regression CV (aka logit, MaxEnt) classifier. diff --git a/sklearn/linear_model/_perceptron.py b/sklearn/linear_model/_perceptron.py index f656b44c0c676..e93200ba385fa 100644 --- a/sklearn/linear_model/_perceptron.py +++ b/sklearn/linear_model/_perceptron.py @@ -224,13 +224,3 @@ def __init__( class_weight=class_weight, n_jobs=n_jobs, ) - - def __sklearn_tags__(self): - tags = super().__sklearn_tags__() - # TODO: replace by a statistical test, see meta-issue #16298 - tags._xfail_checks = { - "check_sample_weight_equivalence": ( - "sample_weight is not equivalent to removing/repeating samples." - ), - } - return tags diff --git a/sklearn/linear_model/_ransac.py b/sklearn/linear_model/_ransac.py index b0678bf53d696..1203ce71c0534 100644 --- a/sklearn/linear_model/_ransac.py +++ b/sklearn/linear_model/_ransac.py @@ -721,13 +721,3 @@ def get_metadata_routing(self): .add(caller="predict", callee="predict"), ) return router - - def __sklearn_tags__(self): - tags = super().__sklearn_tags__() - # TODO: replace by a statistical test, see meta-issue #16298 - tags._xfail_checks = { - "check_sample_weight_equivalence": ( - "sample_weight is not equivalent to removing/repeating samples." - ), - } - return tags diff --git a/sklearn/linear_model/_ridge.py b/sklearn/linear_model/_ridge.py index 56bb9fbc50570..fab71feb2e140 100644 --- a/sklearn/linear_model/_ridge.py +++ b/sklearn/linear_model/_ridge.py @@ -1253,13 +1253,6 @@ def fit(self, X, y, sample_weight=None): def __sklearn_tags__(self): tags = super().__sklearn_tags__() tags.array_api_support = True - tags._xfail_checks.update( - { - "check_non_transformer_estimators_n_iter": ( - "n_iter_ cannot be easily accessed." - ) - } - ) return tags @@ -1577,17 +1570,6 @@ def fit(self, X, y, sample_weight=None): super().fit(X, Y, sample_weight=sample_weight) return self - def __sklearn_tags__(self): - tags = super().__sklearn_tags__() - tags._xfail_checks.update( - { - "check_non_transformer_estimators_n_iter": ( - "n_iter_ cannot be easily accessed." - ) - } - ) - return tags - def _check_gcv_mode(X, gcv_mode): if gcv_mode in ["eigen", "svd"]: @@ -2741,15 +2723,6 @@ def fit(self, X, y, sample_weight=None, **params): super().fit(X, y, sample_weight=sample_weight, **params) return self - def __sklearn_tags__(self): - tags = super().__sklearn_tags__() - tags._xfail_checks = { - "check_sample_weight_equivalence": ( - "GridSearchCV does not forward the weights to the scorer by default." - ), - } - return tags - class RidgeClassifierCV(_RidgeClassifierMixin, _BaseRidgeCV): """Ridge classifier with built-in cross-validation. diff --git a/sklearn/linear_model/_stochastic_gradient.py b/sklearn/linear_model/_stochastic_gradient.py index d5f2247e2af34..ab475f3e1f304 100644 --- a/sklearn/linear_model/_stochastic_gradient.py +++ b/sklearn/linear_model/_stochastic_gradient.py @@ -1382,16 +1382,6 @@ def predict_log_proba(self, X): """ return np.log(self.predict_proba(X)) - def __sklearn_tags__(self): - tags = super().__sklearn_tags__() - # TODO: replace by a statistical test, see meta-issue #16298 - tags._xfail_checks = { - "check_sample_weight_equivalence": ( - "sample_weight is not equivalent to removing/repeating samples." - ), - } - return tags - class BaseSGDRegressor(RegressorMixin, BaseSGD): loss_functions = { @@ -2073,16 +2063,6 @@ def __init__( average=average, ) - def __sklearn_tags__(self): - tags = super().__sklearn_tags__() - # TODO: replace by a statistical test, see meta-issue #16298 - tags._xfail_checks = { - "check_sample_weight_equivalence": ( - "sample_weight is not equivalent to removing/repeating samples." - ), - } - return tags - class SGDOneClassSVM(OutlierMixin, BaseSGD): """Solves linear One-Class SVM using Stochastic Gradient Descent. @@ -2653,13 +2633,3 @@ def predict(self, X): y = (self.decision_function(X) >= 0).astype(np.int32) y[y == 0] = -1 # for consistency with outlier detectors return y - - def __sklearn_tags__(self): - tags = super().__sklearn_tags__() - # TODO: replace by a statistical test, see meta-issue #16298 - tags._xfail_checks = { - "check_sample_weight_equivalence": ( - "sample_weight is not equivalent to removing/repeating samples." - ), - } - return tags diff --git a/sklearn/model_selection/_classification_threshold.py b/sklearn/model_selection/_classification_threshold.py index 8ac7a67a03433..4bd0ff9972fdc 100644 --- a/sklearn/model_selection/_classification_threshold.py +++ b/sklearn/model_selection/_classification_threshold.py @@ -206,14 +206,6 @@ def decision_function(self, X): def __sklearn_tags__(self): tags = super().__sklearn_tags__() tags.classifier_tags.multi_class = False - tags._xfail_checks = { - "check_classifiers_train": "Threshold at probability 0.5 does not hold", - "check_sample_weight_equivalence": ( - "Due to the cross-validation and sample ordering, removing a sample" - " is not strictly equal to putting is weight to zero. Specific unit" - " tests are added for TunedThresholdClassifierCV specifically." - ), - } return tags diff --git a/sklearn/model_selection/_search.py b/sklearn/model_selection/_search.py index a8431b74259b4..7515436af33da 100644 --- a/sklearn/model_selection/_search.py +++ b/sklearn/model_selection/_search.py @@ -488,12 +488,8 @@ def __sklearn_tags__(self): tags.classifier_tags = deepcopy(sub_estimator_tags.classifier_tags) tags.regressor_tags = deepcopy(sub_estimator_tags.regressor_tags) # allows cross-validation to see 'precomputed' metrics - tags.input_tags.pairwise = sub_estimator_tags.input_tags.pairwise - tags._xfail_checks = { - "check_supervised_y_2d": "DataConversionWarning not caught", - "check_requires_y_none": "Doesn't fail gracefully", - } - tags.array_api_support = sub_estimator_tags.array_api_support + tags.input_tags.pairwise = get_tags(self.estimator).input_tags.pairwise + tags.array_api_support = get_tags(self.estimator).array_api_support return tags def score(self, X, y=None, **params): diff --git a/sklearn/model_selection/_search_successive_halving.py b/sklearn/model_selection/_search_successive_halving.py index 67a1fde6cef0a..5ff5f1198121a 100644 --- a/sklearn/model_selection/_search_successive_halving.py +++ b/sklearn/model_selection/_search_successive_halving.py @@ -370,21 +370,6 @@ def _run_search(self, evaluate_candidates): def _generate_candidate_params(self): pass - def __sklearn_tags__(self): - tags = super().__sklearn_tags__() - tags._xfail_checks.update( - { - "check_fit2d_1sample": ( - "Fail during parameter check since min/max resources requires" - " more samples" - ), - "check_estimators_nan_inf": "FIXME", - "check_classifiers_one_label_sample_weights": "FIXME", - "check_fit2d_1feature": "FIXME", - } - ) - return tags - class HalvingGridSearchCV(BaseSuccessiveHalving): """Search over specified parameter values with successive halving. diff --git a/sklearn/naive_bayes.py b/sklearn/naive_bayes.py index fa99448f9d347..a483fd0df0d37 100644 --- a/sklearn/naive_bayes.py +++ b/sklearn/naive_bayes.py @@ -1433,12 +1433,6 @@ def partial_fit(self, X, y, classes=None, sample_weight=None): def __sklearn_tags__(self): tags = super().__sklearn_tags__() tags.input_tags.positive_only = True - # TODO: fix sample_weight handling of this estimator, see meta-issue #16298 - tags._xfail_checks = { - "check_sample_weight_equivalence": ( - "sample_weight is not equivalent to removing/repeating samples." - ), - } return tags def _check_X(self, X): diff --git a/sklearn/neighbors/_classification.py b/sklearn/neighbors/_classification.py index 5f44a0ecca603..cc20af7432914 100644 --- a/sklearn/neighbors/_classification.py +++ b/sklearn/neighbors/_classification.py @@ -449,13 +449,6 @@ def __sklearn_tags__(self): tags = super().__sklearn_tags__() tags.classifier_tags.multi_label = True tags.input_tags.pairwise = self.metric == "precomputed" - if tags.input_tags.pairwise: - tags._xfail_checks.update( - { - "check_n_features_in_after_fitting": "FIXME", - "check_dataframe_column_names_consistency": "FIXME", - } - ) return tags diff --git a/sklearn/neighbors/_graph.py b/sklearn/neighbors/_graph.py index 9a774c1dee514..ad4afc0a81a66 100644 --- a/sklearn/neighbors/_graph.py +++ b/sklearn/neighbors/_graph.py @@ -480,13 +480,6 @@ def fit_transform(self, X, y=None): """ return self.fit(X).transform(X) - def __sklearn_tags__(self): - tags = super().__sklearn_tags__() - tags._xfail_checks = { - "check_methods_sample_order_invariance": "check is not applicable." - } - return tags - class RadiusNeighborsTransformer( ClassNamePrefixFeaturesOutMixin, @@ -709,10 +702,3 @@ def fit_transform(self, X, y=None): The matrix is of CSR format. """ return self.fit(X).transform(X) - - def __sklearn_tags__(self): - tags = super().__sklearn_tags__() - tags._xfail_checks = { - "check_methods_sample_order_invariance": "check is not applicable." - } - return tags diff --git a/sklearn/neighbors/_kde.py b/sklearn/neighbors/_kde.py index b094cdd5d2ee8..7661308db2e01 100644 --- a/sklearn/neighbors/_kde.py +++ b/sklearn/neighbors/_kde.py @@ -357,10 +357,3 @@ def sample(self, n_samples=1, random_state=None): / np.sqrt(s_sq) ) return data[i] + X * correction[:, np.newaxis] - - def __sklearn_tags__(self): - tags = super().__sklearn_tags__() - tags._xfail_checks = { - "check_sample_weight_equivalence": "sample_weight must have positive values" - } - return tags diff --git a/sklearn/neighbors/_regression.py b/sklearn/neighbors/_regression.py index f324d3fb7e2f2..0ee0a340b8153 100644 --- a/sklearn/neighbors/_regression.py +++ b/sklearn/neighbors/_regression.py @@ -195,13 +195,6 @@ def __sklearn_tags__(self): tags = super().__sklearn_tags__() # For cross-validation routines to split data correctly tags.input_tags.pairwise = self.metric == "precomputed" - if tags.input_tags.pairwise: - tags._xfail_checks.update( - { - "check_n_features_in_after_fitting": "FIXME", - "check_dataframe_column_names_consistency": "FIXME", - } - ) return tags @_fit_context( diff --git a/sklearn/neural_network/_rbm.py b/sklearn/neural_network/_rbm.py index 49848e9f982cc..c5f49087b758d 100644 --- a/sklearn/neural_network/_rbm.py +++ b/sklearn/neural_network/_rbm.py @@ -440,13 +440,5 @@ def fit(self, X, y=None): def __sklearn_tags__(self): tags = super().__sklearn_tags__() - tags._xfail_checks = { - "check_methods_subset_invariance": ( - "fails for the decision_function method" - ), - "check_methods_sample_order_invariance": ( - "fails for the score_samples method" - ), - } tags.transformer_tags.preserves_dtype = ["float64", "float32"] return tags diff --git a/sklearn/pipeline.py b/sklearn/pipeline.py index 63438219143ff..9331a15dea9ab 100644 --- a/sklearn/pipeline.py +++ b/sklearn/pipeline.py @@ -1054,16 +1054,6 @@ def classes_(self): def __sklearn_tags__(self): tags = super().__sklearn_tags__() - tags._xfail_checks = { - "check_dont_overwrite_parameters": ( - "Pipeline changes the `steps` parameter, which it shouldn't." - "Therefore this test is x-fail until we fix this." - ), - "check_estimators_overwrite_params": ( - "Pipeline changes the `steps` parameter, which it shouldn't." - "Therefore this test is x-fail until we fix this." - ), - } if not self.steps: return tags @@ -1946,15 +1936,6 @@ def get_metadata_routing(self): return router - def __sklearn_tags__(self): - tags = super().__sklearn_tags__() - tags._xfail_checks = { - "check_estimators_overwrite_params": "FIXME", - "check_estimators_nan_inf": "FIXME", - "check_dont_overwrite_parameters": "FIXME", - } - return tags - def make_union(*transformers, n_jobs=None, verbose=False): """Construct a :class:`FeatureUnion` from the given transformers. diff --git a/sklearn/preprocessing/_discretization.py b/sklearn/preprocessing/_discretization.py index 8b5dea5c4f6c3..6a6a739c469fa 100644 --- a/sklearn/preprocessing/_discretization.py +++ b/sklearn/preprocessing/_discretization.py @@ -462,13 +462,3 @@ def get_feature_names_out(self, input_features=None): # ordinal encoding return input_features - - def __sklearn_tags__(self): - tags = super().__sklearn_tags__() - # TODO: fix sample_weight handling of this estimator, see meta-issue #16298 - tags._xfail_checks = { - "check_sample_weight_equivalence": ( - "sample_weight is not equivalent to removing/repeating samples." - ), - } - return tags diff --git a/sklearn/preprocessing/_polynomial.py b/sklearn/preprocessing/_polynomial.py index 5a3239f113024..a6c69d73666a6 100644 --- a/sklearn/preprocessing/_polynomial.py +++ b/sklearn/preprocessing/_polynomial.py @@ -1171,13 +1171,3 @@ def transform(self, X): # We chose the last one. indices = [j for j in range(XBS.shape[1]) if (j + 1) % n_splines != 0] return XBS[:, indices] - - def __sklearn_tags__(self): - tags = super().__sklearn_tags__() - tags._xfail_checks = { - "check_estimators_pickle": ( - "Current Scipy implementation of _bsplines does not" - "support const memory views." - ), - } - return tags diff --git a/sklearn/semi_supervised/_self_training.py b/sklearn/semi_supervised/_self_training.py index d56ebf887828c..6b5c343ad661d 100644 --- a/sklearn/semi_supervised/_self_training.py +++ b/sklearn/semi_supervised/_self_training.py @@ -613,10 +613,3 @@ def get_metadata_routing(self): ), ) return router - - def __sklearn_tags__(self): - tags = super().__sklearn_tags__() - tags._xfail_checks.update( - {"check_non_transformer_estimators_n_iter": "n_iter_ can be 0."} - ) - return tags diff --git a/sklearn/svm/_classes.py b/sklearn/svm/_classes.py index f4e4aa118c069..97789ae36df48 100644 --- a/sklearn/svm/_classes.py +++ b/sklearn/svm/_classes.py @@ -349,19 +349,6 @@ def fit(self, X, y, sample_weight=None): return self - def __sklearn_tags__(self): - tags = super().__sklearn_tags__() - # TODO: replace by a statistical test when _dual=True, see meta-issue #16298 - tags._xfail_checks = { - "check_sample_weight_equivalence": ( - "sample_weight is not equivalent to removing/repeating samples." - ), - "check_non_transformer_estimators_n_iter": ( - "n_iter_ cannot be easily accessed." - ), - } - return tags - class LinearSVR(RegressorMixin, LinearModel): """Linear Support Vector Regression. @@ -613,16 +600,6 @@ def fit(self, X, y, sample_weight=None): return self - def __sklearn_tags__(self): - tags = super().__sklearn_tags__() - # TODO: replace by a statistical test, see meta-issue #16298 - tags._xfail_checks = { - "check_sample_weight_equivalence": ( - "sample_weight is not equivalent to removing/repeating samples." - ), - } - return tags - class SVC(BaseSVC): """C-Support Vector Classification. @@ -900,18 +877,6 @@ def __init__( random_state=random_state, ) - def __sklearn_tags__(self): - tags = super().__sklearn_tags__() - tags._xfail_checks = { - # TODO: fix sample_weight handling of this estimator when probability=False - # TODO: replace by a statistical test when probability=True - # see meta-issue #16298 - "check_sample_weight_equivalence": ( - "sample_weight is not equivalent to removing/repeating samples." - ), - } - return tags - class NuSVC(BaseSVC): """Nu-Support Vector Classification. @@ -1175,25 +1140,6 @@ def __init__( random_state=random_state, ) - def __sklearn_tags__(self): - tags = super().__sklearn_tags__() - tags._xfail_checks = { - "check_methods_subset_invariance": ( - "fails for the decision_function method" - ), - "check_class_weight_classifiers": "class_weight is ignored.", - # TODO: fix sample_weight handling of this estimator when probability=False - # TODO: replace by a statistical test when probability=True - # see meta-issue #16298 - "check_sample_weight_equivalence": ( - "sample_weight is not equivalent to removing/repeating samples." - ), - "check_classifiers_one_label_sample_weights": ( - "specified nu is infeasible for the fit." - ), - } - return tags - class SVR(RegressorMixin, BaseLibSVM): """Epsilon-Support Vector Regression. @@ -1386,16 +1332,6 @@ def __init__( random_state=None, ) - def __sklearn_tags__(self): - tags = super().__sklearn_tags__() - # TODO: fix sample_weight handling of this estimator, see meta-issue #16298 - tags._xfail_checks = { - "check_sample_weight_equivalence": ( - "sample_weight is not equivalent to removing/repeating samples." - ), - } - return tags - class NuSVR(RegressorMixin, BaseLibSVM): """Nu Support Vector Regression. @@ -1581,16 +1517,6 @@ def __init__( random_state=None, ) - def __sklearn_tags__(self): - tags = super().__sklearn_tags__() - # TODO: fix sample_weight handling of this estimator, see meta-issue #16298 - tags._xfail_checks = { - "check_sample_weight_equivalence": ( - "sample_weight is not equivalent to removing/repeating samples." - ), - } - return tags - class OneClassSVM(OutlierMixin, BaseLibSVM): """Unsupervised Outlier Detection. @@ -1847,13 +1773,3 @@ def predict(self, X): """ y = super().predict(X) return np.asarray(y, dtype=np.intp) - - def __sklearn_tags__(self): - tags = super().__sklearn_tags__() - # TODO: fix sample_weight handling of this estimator, see meta-issue #16298 - tags._xfail_checks = { - "check_sample_weight_equivalence": ( - "sample_weight is not equivalent to removing/repeating samples." - ), - } - return tags diff --git a/sklearn/tests/test_common.py b/sklearn/tests/test_common.py index 455234adfad5b..1191b9ed8bd42 100644 --- a/sklearn/tests/test_common.py +++ b/sklearn/tests/test_common.py @@ -45,6 +45,7 @@ ) from sklearn.utils._test_common.instance_generator import ( _get_check_estimator_ids, + _get_expected_failed_checks, _tested_estimators, ) from sklearn.utils._testing import ( @@ -118,7 +119,9 @@ def test_get_check_estimator_ids(val, expected): assert _get_check_estimator_ids(val) == expected -@parametrize_with_checks(list(_tested_estimators())) +@parametrize_with_checks( + list(_tested_estimators()), expected_failed_checks=_get_expected_failed_checks +) def test_estimators(estimator, check, request): # Common tests for estimator instances with ignore_warnings( @@ -127,8 +130,14 @@ def test_estimators(estimator, check, request): check(estimator) -def test_check_estimator_generate_only(): - all_instance_gen_checks = check_estimator(LogisticRegression(), generate_only=True) +# TODO(1.8): remove test when generate_only is removed +def test_check_estimator_generate_only_deprecation(): + """Check that check_estimator with generate_only=True raises a deprecation + warning.""" + with pytest.warns(FutureWarning, match="`generate_only` is deprecated in 1.6"): + all_instance_gen_checks = check_estimator( + LogisticRegression(), generate_only=True + ) assert isgenerator(all_instance_gen_checks) @@ -236,7 +245,6 @@ def test_valid_tag_types(estimator): assert isinstance(tags.non_deterministic, bool) assert isinstance(tags.requires_fit, bool) assert isinstance(tags._skip_test, bool) - assert isinstance(tags._xfail_checks, dict) assert isinstance(tags.target_tags.required, bool) assert isinstance(tags.target_tags.one_d_labels, bool) @@ -305,8 +313,9 @@ def _estimators_that_predict_in_fit(): def test_pandas_column_name_consistency(estimator): if isinstance(estimator, ColumnTransformer): pytest.skip("ColumnTransformer is not tested here") - tags = get_tags(estimator) - if "check_dataframe_column_names_consistency" in tags._xfail_checks: + if "check_dataframe_column_names_consistency" in _get_expected_failed_checks( + estimator + ): pytest.skip( "Estimator does not support check_dataframe_column_names_consistency" ) diff --git a/sklearn/tests/test_pipeline.py b/sklearn/tests/test_pipeline.py index f0a064ddf9942..a1ba690d0f465 100644 --- a/sklearn/tests/test_pipeline.py +++ b/sklearn/tests/test_pipeline.py @@ -907,16 +907,6 @@ def test_sklearn_tags_with_empty_pipeline(): be = BaseEstimator() expected_tags = be.__sklearn_tags__() - expected_tags._xfail_checks = { - "check_dont_overwrite_parameters": ( - "Pipeline changes the `steps` parameter, which it shouldn't." - "Therefore this test is x-fail until we fix this." - ), - "check_estimators_overwrite_params": ( - "Pipeline changes the `steps` parameter, which it shouldn't." - "Therefore this test is x-fail until we fix this." - ), - } assert empty_pipeline.__sklearn_tags__() == expected_tags diff --git a/sklearn/utils/_tags.py b/sklearn/utils/_tags.py index de756901d98ef..161ceb9e992fd 100644 --- a/sklearn/utils/_tags.py +++ b/sklearn/utils/_tags.py @@ -226,18 +226,6 @@ class Tags: Whether to skip common tests entirely. Don't use this unless you have a *very good* reason. - _xfail_checks : dict[str, str], default={} - Dictionary ``{check_name: reason}`` of common checks that will - be marked as `XFAIL` for pytest, when using - :func:`~sklearn.utils.estimator_checks.parametrize_with_checks`. These - checks will be simply ignored and not run by - :func:`~sklearn.utils.estimator_checks.check_estimator`, but a - `SkipTestWarning` will be raised. Don't use this unless there - is a *very good* reason for your estimator not to pass the - check. Also note that the usage of this tag is highly subject - to change because we are trying to make it more flexible: be - prepared for breaking changes in the future. - input_tags : :class:`InputTags` The input data(X) tags. """ @@ -252,7 +240,6 @@ class Tags: non_deterministic: bool = False requires_fit: bool = True _skip_test: bool = False - _xfail_checks: dict[str, str] = field(default_factory=dict) input_tags: InputTags = field(default_factory=InputTags) diff --git a/sklearn/utils/_test_common/instance_generator.py b/sklearn/utils/_test_common/instance_generator.py index 7fe6724aaff9a..e74afd28a0dc3 100644 --- a/sklearn/utils/_test_common/instance_generator.py +++ b/sklearn/utils/_test_common/instance_generator.py @@ -111,6 +111,7 @@ RANSACRegressor, Ridge, RidgeClassifier, + RidgeCV, SGDClassifier, SGDOneClassSVM, SGDRegressor, @@ -144,14 +145,24 @@ MultiOutputRegressor, RegressorChain, ) +from sklearn.naive_bayes import CategoricalNB from sklearn.neighbors import ( + KernelDensity, KNeighborsClassifier, KNeighborsRegressor, + KNeighborsTransformer, NeighborhoodComponentsAnalysis, + RadiusNeighborsTransformer, ) from sklearn.neural_network import BernoulliRBM, MLPClassifier, MLPRegressor from sklearn.pipeline import FeatureUnion, Pipeline -from sklearn.preprocessing import OneHotEncoder, StandardScaler, TargetEncoder +from sklearn.preprocessing import ( + KBinsDiscretizer, + OneHotEncoder, + SplineTransformer, + StandardScaler, + TargetEncoder, +) from sklearn.random_projection import ( GaussianRandomProjection, SparseRandomProjection, @@ -164,6 +175,7 @@ from sklearn.svm import SVC, SVR, LinearSVC, LinearSVR, NuSVC, NuSVR, OneClassSVM from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor from sklearn.utils import all_estimators +from sklearn.utils._tags import get_tags from sklearn.utils._testing import SkipTest CROSS_DECOMPOSITION = ["PLSCanonical", "PLSRegression", "CCA", "PLSSVD"] @@ -487,7 +499,6 @@ # TODO(devtools): allow third-party developers to pass test specific params to checks PER_ESTIMATOR_CHECK_PARAMS: dict = { # TODO(devtools): check that function names here exist in checks for the estimator - # TODO(devtools): write a test for the same thing with tags._xfail_checks AgglomerativeClustering: {"check_dict_unchanged": dict(n_clusters=1)}, BayesianGaussianMixture: {"check_dict_unchanged": dict(max_iter=5, n_init=2)}, BernoulliRBM: {"check_dict_unchanged": dict(n_components=1, n_iter=5)}, @@ -725,3 +736,376 @@ def _yield_instances_for_check(check, estimator_orig): estimator = clone(estimator_orig) estimator.set_params(**params) yield estimator + + +PER_ESTIMATOR_XFAIL_CHECKS = { + AdaBoostClassifier: { + # TODO: replace by a statistical test, see meta-issue #16298 + "check_sample_weight_equivalence": ( + "sample_weight is not equivalent to removing/repeating samples." + ), + }, + AdaBoostRegressor: { + # TODO: replace by a statistical test, see meta-issue #16298 + "check_sample_weight_equivalence": ( + "sample_weight is not equivalent to removing/repeating samples." + ), + }, + BaggingClassifier: { + # TODO: replace by a statistical test, see meta-issue #16298 + "check_sample_weight_equivalence": ( + "sample_weight is not equivalent to removing/repeating samples." + ), + }, + BaggingRegressor: { + # TODO: replace by a statistical test, see meta-issue #16298 + "check_sample_weight_equivalence": ( + "sample_weight is not equivalent to removing/repeating samples." + ), + }, + BayesianRidge: { + # TODO: fix sample_weight handling of this estimator, see meta-issue #16298 + "check_sample_weight_equivalence": ( + "sample_weight is not equivalent to removing/repeating samples." + ), + }, + BernoulliRBM: { + "check_methods_subset_invariance": ("fails for the decision_function method"), + "check_methods_sample_order_invariance": ("fails for the score_samples method"), + }, + BisectingKMeans: { + # TODO: replace by a statistical test, see meta-issue #16298 + "check_sample_weight_equivalence": ( + "sample_weight is not equivalent to removing/repeating samples." + ), + }, + CategoricalNB: { + # TODO: fix sample_weight handling of this estimator, see meta-issue #16298 + "check_sample_weight_equivalence": ( + "sample_weight is not equivalent to removing/repeating samples." + ), + }, + ColumnTransformer: { + "check_estimators_empty_data_messages": "FIXME", + "check_estimators_nan_inf": "FIXME", + "check_estimator_sparse_array": "FIXME", + "check_estimator_sparse_matrix": "FIXME", + "check_fit1d": "FIXME", + "check_fit2d_predict1d": "FIXME", + "check_complex_data": "FIXME", + "check_fit2d_1feature": "FIXME", + }, + DummyClassifier: { + "check_methods_subset_invariance": "fails for the predict method", + "check_methods_sample_order_invariance": "fails for the predict method", + }, + FeatureUnion: { + "check_estimators_overwrite_params": "FIXME", + "check_estimators_nan_inf": "FIXME", + "check_dont_overwrite_parameters": "FIXME", + }, + FixedThresholdClassifier: { + "check_classifiers_train": "Threshold at probability 0.5 does not hold", + "check_sample_weight_equivalence": ( + "Due to the cross-validation and sample ordering, removing a sample" + " is not strictly equal to putting is weight to zero. Specific unit" + " tests are added for TunedThresholdClassifierCV specifically." + ), + }, + GradientBoostingClassifier: { + # TODO: investigate failure see meta-issue #16298 + "check_sample_weight_equivalence": ( + "sample_weight is not equivalent to removing/repeating samples." + ), + }, + GradientBoostingRegressor: { + # TODO: investigate failure see meta-issue #16298 + "check_sample_weight_equivalence": ( + "sample_weight is not equivalent to removing/repeating samples." + ), + }, + GridSearchCV: { + "check_supervised_y_2d": "DataConversionWarning not caught", + "check_requires_y_none": "Doesn't fail gracefully", + }, + HalvingGridSearchCV: { + "check_fit2d_1sample": ( + "Fail during parameter check since min/max resources requires" + " more samples" + ), + "check_estimators_nan_inf": "FIXME", + "check_classifiers_one_label_sample_weights": "FIXME", + "check_fit2d_1feature": "FIXME", + "check_supervised_y_2d": "DataConversionWarning not caught", + "check_requires_y_none": "Doesn't fail gracefully", + }, + HalvingRandomSearchCV: { + "check_fit2d_1sample": ( + "Fail during parameter check since min/max resources requires" + " more samples" + ), + "check_estimators_nan_inf": "FIXME", + "check_classifiers_one_label_sample_weights": "FIXME", + "check_fit2d_1feature": "FIXME", + "check_supervised_y_2d": "DataConversionWarning not caught", + "check_requires_y_none": "Doesn't fail gracefully", + }, + HistGradientBoostingClassifier: { + # TODO: replace by a statistical test, see meta-issue #16298 + "check_sample_weight_equivalence": ( + "sample_weight is not equivalent to removing/repeating samples." + ), + }, + HistGradientBoostingRegressor: { + # TODO: replace by a statistical test, see meta-issue #16298 + "check_sample_weight_equivalence": ( + "sample_weight is not equivalent to removing/repeating samples." + ), + }, + IsolationForest: { + # TODO: replace by a statistical test, see meta-issue #16298 + "check_sample_weight_equivalence": ( + "sample_weight is not equivalent to removing/repeating samples." + ), + }, + KBinsDiscretizer: { + # TODO: fix sample_weight handling of this estimator, see meta-issue #16298 + "check_sample_weight_equivalence": ( + "sample_weight is not equivalent to removing/repeating samples." + ), + }, + KernelDensity: { + "check_sample_weight_equivalence": "sample_weight must have positive values" + }, + KMeans: { + # TODO: replace by a statistical test, see meta-issue #16298 + "check_sample_weight_equivalence": ( + "sample_weight is not equivalent to removing/repeating samples." + ), + }, + KNeighborsTransformer: { + "check_methods_sample_order_invariance": "check is not applicable." + }, + LinearRegression: { + # TODO: investigate failure see meta-issue #16298 + # + # Note: this model should converge to the minimum norm solution of the + # least squares problem and as result be numerically stable enough when + # running the equivalence check even if n_features > n_samples. Maybe + # this is is not the case and a different choice of solver could fix + # this problem. + "check_sample_weight_equivalence": ( + "sample_weight is not equivalent to removing/repeating samples." + ), + }, + LinearSVC: { + # TODO: replace by a statistical test when _dual=True, see meta-issue #16298 + "check_sample_weight_equivalence": ( + "sample_weight is not equivalent to removing/repeating samples." + ), + "check_non_transformer_estimators_n_iter": ( + "n_iter_ cannot be easily accessed." + ), + }, + LinearSVR: { + # TODO: replace by a statistical test, see meta-issue #16298 + "check_sample_weight_equivalence": ( + "sample_weight is not equivalent to removing/repeating samples." + ), + }, + LogisticRegression: { + # TODO: fix sample_weight handling of this estimator, see meta-issue #16298 + "check_sample_weight_equivalence": ( + "sample_weight is not equivalent to removing/repeating samples." + ), + }, + MiniBatchKMeans: { + # TODO: replace by a statistical test, see meta-issue #16298 + "check_sample_weight_equivalence": ( + "sample_weight is not equivalent to removing/repeating samples." + ), + }, + NuSVC: { + "check_class_weight_classifiers": "class_weight is ignored.", + # TODO: fix sample_weight handling of this estimator when probability=False + # TODO: replace by a statistical test when probability=True + # see meta-issue #16298 + "check_sample_weight_equivalence": ( + "sample_weight is not equivalent to removing/repeating samples." + ), + "check_classifiers_one_label_sample_weights": ( + "specified nu is infeasible for the fit." + ), + }, + NuSVR: { + # TODO: fix sample_weight handling of this estimator, see meta-issue #16298 + "check_sample_weight_equivalence": ( + "sample_weight is not equivalent to removing/repeating samples." + ), + }, + Nystroem: { + "check_transformer_preserves_dtypes": ( + "dtypes are preserved but not at a close enough precision" + ) + }, + OneClassSVM: { + # TODO: fix sample_weight handling of this estimator, see meta-issue #16298 + "check_sample_weight_equivalence": ( + "sample_weight is not equivalent to removing/repeating samples." + ), + }, + Perceptron: { + # TODO: replace by a statistical test, see meta-issue #16298 + "check_sample_weight_equivalence": ( + "sample_weight is not equivalent to removing/repeating samples." + ), + }, + Pipeline: { + "check_dont_overwrite_parameters": ( + "Pipeline changes the `steps` parameter, which it shouldn't." + "Therefore this test is x-fail until we fix this." + ), + "check_estimators_overwrite_params": ( + "Pipeline changes the `steps` parameter, which it shouldn't." + "Therefore this test is x-fail until we fix this." + ), + }, + RadiusNeighborsTransformer: { + "check_methods_sample_order_invariance": "check is not applicable." + }, + RandomForestClassifier: { + # TODO: replace by a statistical test, see meta-issue #16298 + "check_sample_weight_equivalence": ( + "sample_weight is not equivalent to removing/repeating samples." + ), + }, + RandomForestRegressor: { + # TODO: replace by a statistical test, see meta-issue #16298 + "check_sample_weight_equivalence": ( + "sample_weight is not equivalent to removing/repeating samples." + ), + }, + RandomizedSearchCV: { + "check_supervised_y_2d": "DataConversionWarning not caught", + "check_requires_y_none": "Doesn't fail gracefully", + }, + RandomTreesEmbedding: { + # TODO: replace by a statistical test, see meta-issue #16298 + "check_sample_weight_equivalence": ( + "sample_weight is not equivalent to removing/repeating samples." + ), + }, + RANSACRegressor: { + # TODO: replace by a statistical test, see meta-issue #16298 + "check_sample_weight_equivalence": ( + "sample_weight is not equivalent to removing/repeating samples." + ), + }, + Ridge: { + "check_non_transformer_estimators_n_iter": ( + "n_iter_ cannot be easily accessed." + ) + }, + RidgeClassifier: { + "check_non_transformer_estimators_n_iter": ( + "n_iter_ cannot be easily accessed." + ) + }, + RidgeCV: { + "check_sample_weight_equivalence": ( + "GridSearchCV does not forward the weights to the scorer by default." + ), + }, + SelfTrainingClassifier: { + "check_non_transformer_estimators_n_iter": "n_iter_ can be 0." + }, + SGDClassifier: { + # TODO: replace by a statistical test, see meta-issue #16298 + "check_sample_weight_equivalence": ( + "sample_weight is not equivalent to removing/repeating samples." + ), + }, + SGDOneClassSVM: { + # TODO: replace by a statistical test, see meta-issue #16298 + "check_sample_weight_equivalence": ( + "sample_weight is not equivalent to removing/repeating samples." + ), + }, + SGDRegressor: { + # TODO: replace by a statistical test, see meta-issue #16298 + "check_sample_weight_equivalence": ( + "sample_weight is not equivalent to removing/repeating samples." + ), + }, + SpectralCoclustering: { + "check_estimators_dtypes": "raises nan error", + "check_fit2d_1sample": "_scale_normalize fails", + "check_fit2d_1feature": "raises apply_along_axis error", + "check_estimator_sparse_matrix": "does not fail gracefully", + "check_estimator_sparse_array": "does not fail gracefully", + "check_methods_subset_invariance": "empty array passed inside", + "check_dont_overwrite_parameters": "empty array passed inside", + "check_fit2d_predict1d": "empty array passed inside", + # ValueError: Found array with 0 feature(s) (shape=(23, 0)) + # while a minimum of 1 is required. + "check_dict_unchanged": "FIXME", + }, + SpectralBiclustering: { + "check_estimators_dtypes": "raises nan error", + "check_fit2d_1sample": "_scale_normalize fails", + "check_fit2d_1feature": "raises apply_along_axis error", + "check_estimator_sparse_matrix": "does not fail gracefully", + "check_estimator_sparse_array": "does not fail gracefully", + "check_methods_subset_invariance": "empty array passed inside", + "check_dont_overwrite_parameters": "empty array passed inside", + "check_fit2d_predict1d": "empty array passed inside", + }, + SplineTransformer: { + "check_estimators_pickle": ( + "Current Scipy implementation of _bsplines does not" + "support const memory views." + ), + }, + SVC: { + # TODO: fix sample_weight handling of this estimator when probability=False + # TODO: replace by a statistical test when probability=True + # see meta-issue #16298 + "check_sample_weight_equivalence": ( + "sample_weight is not equivalent to removing/repeating samples." + ), + }, + SVR: { + # TODO: fix sample_weight handling of this estimator, see meta-issue #16298 + "check_sample_weight_equivalence": ( + "sample_weight is not equivalent to removing/repeating samples." + ), + }, + TunedThresholdClassifierCV: { + "check_classifiers_train": "Threshold at probability 0.5 does not hold", + "check_sample_weight_equivalence": ( + "Due to the cross-validation and sample ordering, removing a sample" + " is not strictly equal to putting is weight to zero. Specific unit" + " tests are added for TunedThresholdClassifierCV specifically." + ), + }, +} + + +def _get_expected_failed_checks(estimator): + """Get the expected failed checks for all estimators in scikit-learn.""" + failed_checks = PER_ESTIMATOR_XFAIL_CHECKS.get(type(estimator), {}) + + tags = get_tags(estimator) + + # all xfail marks that depend on the instance, come here. As of now, we have only + # these two cases. + if type(estimator) in [KNeighborsClassifier, KNeighborsRegressor]: + if tags.input_tags.pairwise: + failed_checks.update( + { + "check_n_features_in_after_fitting": "FIXME", + "check_dataframe_column_names_consistency": "FIXME", + } + ) + + return failed_checks diff --git a/sklearn/utils/estimator_checks.py b/sklearn/utils/estimator_checks.py index 54e291ee82460..604719896e413 100644 --- a/sklearn/utils/estimator_checks.py +++ b/sklearn/utils/estimator_checks.py @@ -2,6 +2,7 @@ # Authors: The scikit-learn developers # SPDX-License-Identifier: BSD-3-Clause +from __future__ import annotations import pickle import re @@ -12,6 +13,7 @@ from functools import partial, wraps from inspect import signature from numbers import Integral, Real +from typing import Callable, Literal import joblib import numpy as np @@ -47,7 +49,12 @@ make_multilabel_classification, make_regression, ) -from ..exceptions import DataConversionWarning, NotFittedError, SkipTestWarning +from ..exceptions import ( + DataConversionWarning, + EstimatorCheckFailedWarning, + NotFittedError, + SkipTestWarning, +) from ..linear_model._base import LinearClassifierMixin from ..metrics import accuracy_score, adjusted_rand_score, f1_score from ..metrics.pairwise import linear_kernel, pairwise_distances, rbf_kernel @@ -70,7 +77,7 @@ ) from . import shuffle from ._missing import is_scalar_nan -from ._param_validation import Interval +from ._param_validation import Interval, StrOptions, validate_params from ._tags import Tags, get_tags from ._test_common.instance_generator import ( CROSS_DECOMPOSITION, @@ -410,57 +417,148 @@ def _yield_all_checks(estimator, legacy: bool): yield check_fit_non_negative -def _maybe_mark_xfail(estimator, check, pytest): - # Mark (estimator, check) pairs as XFAIL if needed (see conditions in - # _should_be_skipped_or_marked()) - # This is similar to _maybe_skip(), but this one is used by - # @parametrize_with_checks() instead of check_estimator() +def _check_name(check): + if hasattr(check, "__wrapped__"): + return _check_name(check.__wrapped__) + return check.func.__name__ if isinstance(check, partial) else check.__name__ + + +def _maybe_mark( + estimator, + check, + expected_failed_checks: dict[str, str] | None = None, + mark: Literal["xfail", "skip", None] = None, + pytest=None, +): + """Mark the test as xfail or skip if needed. - should_be_marked, reason = _should_be_skipped_or_marked(estimator, check) - if not should_be_marked: + Parameters + ---------- + estimator : estimator object + Estimator instance for which to generate checks. + check : partial or callable + Check to be marked. + expected_failed_checks : dict[str, str], default=None + Dictionary of the form {check_name: reason} for checks that are expected to + fail. + mark : "xfail" or "skip" or None + Whether to mark the check as xfail or skip. + pytest : pytest module, default=None + Pytest module to use to mark the check. This is only needed if ``mark`` is + `"xfail"`. Note that one can run `check_estimator` without having `pytest` + installed. This is used in combination with `parametrize_with_checks` only. + """ + should_be_marked, reason = _should_be_skipped_or_marked( + estimator, check, expected_failed_checks + ) + if not should_be_marked or mark is None: return estimator, check - else: + + estimator_name = estimator.__class__.__name__ + if mark == "xfail": return pytest.param(estimator, check, marks=pytest.mark.xfail(reason=reason)) + else: + + @wraps(check) + def wrapped(*args, **kwargs): + raise SkipTest( + f"Skipping {_check_name(check)} for {estimator_name}: {reason}" + ) + return estimator, wrapped -def _maybe_skip(estimator, check): - # Wrap a check so that it's skipped if needed (see conditions in - # _should_be_skipped_or_marked()) - # This is similar to _maybe_mark_xfail(), but this one is used by - # check_estimator() instead of @parametrize_with_checks which requires - # pytest - should_be_skipped, reason = _should_be_skipped_or_marked(estimator, check) - if not should_be_skipped: - return check - check_name = check.func.__name__ if isinstance(check, partial) else check.__name__ +def _should_be_skipped_or_marked( + estimator, check, expected_failed_checks: dict[str, str] | None = None +) -> tuple[bool, str]: + """Check whether a check should be skipped or marked as xfail. - @wraps(check) - def wrapped(*args, **kwargs): - raise SkipTest( - f"Skipping {check_name} for {estimator.__class__.__name__}: {reason}" - ) + Parameters + ---------- + estimator : estimator object + Estimator instance for which to generate checks. + check : partial or callable + Check to be marked. + expected_failed_checks : dict[str, str], default=None + Dictionary of the form {check_name: reason} for checks that are expected to + fail. + + Returns + ------- + should_be_marked : bool + Whether the check should be marked as xfail or skipped. + reason : str + Reason for skipping the check. + """ + + expected_failed_checks = expected_failed_checks or {} + + check_name = _check_name(check) + if check_name in expected_failed_checks: + return True, expected_failed_checks[check_name] - return wrapped + return False, "Check is not expected to fail" -def _should_be_skipped_or_marked(estimator, check): - # Return whether a check should be skipped (when using check_estimator()) - # or marked as XFAIL (when using @parametrize_with_checks()), along with a - # reason. - # Currently, a check should be skipped or marked if - # the check is in the _xfail_checks tag of the estimator +def estimator_checks_generator( + estimator, + *, + legacy: bool = True, + expected_failed_checks: dict[str, str] | None = None, + mark: Literal["xfail", "skip", None] = None, +): + """Iteratively yield all check callables for an estimator. - check_name = check.func.__name__ if isinstance(check, partial) else check.__name__ + .. versionadded:: 1.6 - xfail_checks = get_tags(estimator)._xfail_checks or {} - if check_name in xfail_checks: - return True, xfail_checks[check_name] + Parameters + ---------- + estimator : estimator object + Estimator instance for which to generate checks. + legacy : bool, default=True + Whether to include legacy checks. Over time we remove checks from this category + and move them into their specific category. + expected_failed_checks : dict[str, str], default=None + Dictionary of the form {check_name: reason} for checks that are expected to + fail. + mark : {"xfail", "skip"} or None, default=None + Whether to mark the checks that are expected to fail as + xfail(`pytest.mark.xfail`) or skip. Marking a test as "skip" is done via + wrapping the check in a function that raises a + :class:`~sklearn.exceptions.SkipTest` exception. + + Returns + ------- + estimator_checks_generator : generator + Generator that yields (estimator, check) tuples. + """ + if mark == "xfail": + import pytest + else: + pytest = None # type: ignore - return False, "placeholder reason that will never be used" + name = type(estimator).__name__ + # First check that the estimator is cloneable which is needed for the rest + # of the checks to run + yield estimator, partial(check_estimator_cloneable, name) + for check in _yield_all_checks(estimator, legacy=legacy): + check_with_name = partial(check, name) + for check_instance in _yield_instances_for_check(check, estimator): + yield _maybe_mark( + check_instance, + check_with_name, + expected_failed_checks=expected_failed_checks, + mark=mark, + pytest=pytest, + ) -def parametrize_with_checks(estimators, *, legacy: bool = True): +def parametrize_with_checks( + estimators, + *, + legacy: bool = True, + expected_failed_checks: Callable | None = None, +): """Pytest specific decorator for parametrizing estimator checks. Checks are categorised into the following groups: @@ -492,6 +590,20 @@ def parametrize_with_checks(estimators, *, legacy: bool = True): Whether to include legacy checks. Over time we remove checks from this category and move them into their specific category. + .. versionadded:: 1.6 + + expected_failed_checks : callable, default=None + A callable that takes an estimator as input and returns a dictionary of the + form:: + + { + "check_name": "my reason", + } + + Where `"check_name"` is the name of the check, and `"my reason"` is why + the check fails. These tests will be marked as xfail if the check fails. + + .. versionadded:: 1.6 Returns @@ -524,23 +636,41 @@ def parametrize_with_checks(estimators, *, legacy: bool = True): ) raise TypeError(msg) - def checks_generator(): + def _checks_generator(estimators, legacy, expected_failed_checks): for estimator in estimators: - # First check that the estimator is cloneable which is needed for the rest - # of the checks to run - name = type(estimator).__name__ - yield estimator, partial(check_estimator_cloneable, name) - for check in _yield_all_checks(estimator, legacy=legacy): - check_with_name = partial(check, name) - for check_instance in _yield_instances_for_check(check, estimator): - yield _maybe_mark_xfail(check_instance, check_with_name, pytest) + args = {"estimator": estimator, "legacy": legacy, "mark": "xfail"} + if callable(expected_failed_checks): + args["expected_failed_checks"] = expected_failed_checks(estimator) + yield from estimator_checks_generator(**args) return pytest.mark.parametrize( - "estimator, check", checks_generator(), ids=_get_check_estimator_ids + "estimator, check", + _checks_generator(estimators, legacy, expected_failed_checks), + ids=_get_check_estimator_ids, ) -def check_estimator(estimator=None, generate_only=False, *, legacy: bool = True): +@validate_params( + { + "generate_only": ["boolean"], + "legacy": ["boolean"], + "expected_failed_checks": [dict, None], + "on_skip": [StrOptions({"warn"}), None], + "on_fail": [StrOptions({"raise", "warn"}), None], + "callback": [callable, None], + }, + prefer_skip_nested_validation=False, +) +def check_estimator( + estimator=None, + generate_only=False, + *, + legacy: bool = True, + expected_failed_checks: dict[str, str] | None = None, + on_skip: Literal["warn"] | None = "warn", + on_fail: Literal["raise", "warn"] | None = "raise", + callback: Callable | None = None, +): """Check if estimator adheres to scikit-learn conventions. This function will run an extensive test-suite for input validation, @@ -550,12 +680,7 @@ def check_estimator(estimator=None, generate_only=False, *, legacy: bool = True) will be run if the Estimator class inherits from the corresponding mixin from sklearn.base. - Setting `generate_only=True` returns a generator that yields (estimator, - check) tuples where the check can be called independently from each - other, i.e. `check(estimator)`. This allows all checks to be run - independently and report the checks that are failing. - - scikit-learn provides a pytest specific decorator, + scikit-learn also provides a pytest specific decorator, :func:`~sklearn.utils.estimator_checks.parametrize_with_checks`, making it easier to test multiple estimators. @@ -571,10 +696,6 @@ def check_estimator(estimator=None, generate_only=False, *, legacy: bool = True) estimator : estimator object Estimator instance to check. - .. versionadded:: 1.1 - Passing a class was deprecated in version 0.23, and support for - classes was removed in 0.24. - generate_only : bool, default=False When `False`, checks are evaluated when `check_estimator` is called. When `True`, `check_estimator` returns a generator that yields @@ -583,29 +704,119 @@ def check_estimator(estimator=None, generate_only=False, *, legacy: bool = True) .. versionadded:: 0.22 + .. deprecated:: 1.6 + `generate_only` will be removed in 1.8. Use + :func:`~sklearn.utils.estimator_checks.estimator_checks_generator` instead. + legacy : bool, default=True Whether to include legacy checks. Over time we remove checks from this category and move them into their specific category. .. versionadded:: 1.6 + expected_failed_checks : dict, default=None + A dictionary of the form:: + + { + "check_name": "this check is expected to fail because ...", + } + + Where `"check_name"` is the name of the check, and `"my reason"` is why + the check fails. + + .. versionadded:: 1.6 + + on_skip : "warn", None, default="warn" + This parameter controls what happens when a check is skipped. + + - "warn": A :class:`~sklearn.exceptions.SkipTestWarning` is logged + and running tests continue. + - None: No warning is logged and running tests continue. + + .. versionadded:: 1.6 + + on_fail : {"raise", "warn"}, None, default="raise" + This parameter controls what happens when a check fails. + + - "raise": The exception raised by the first failing check is raised and + running tests are aborted. This does not included tests that are expected + to fail. + - "warn": A :class:`~sklearn.exceptions.EstimatorCheckFailedWarning` is logged + and running tests continue. + - None: No exception is raised and no warning is logged. + + Note that if ``on_fail != "raise"``, no exception is raised, even if the checks + fail. You'd need to inspect the return result of ``check_estimator`` to check + if any checks failed. + + .. versionadded:: 1.6 + + callback : callable, or None, default=None + This callback will be called with the estimator and the check name, + the exception (if any), the status of the check (xfail, failed, skipped, + passed), and the reason for the expected failure if the check is + expected to fail. The callable's signature needs to be:: + + def callback( + estimator, + check_name: str, + exception: Exception, + status: Literal["xfail", "failed", "skipped", "passed"], + expected_to_fail: bool, + expected_to_fail_reason: str, + ) + + ``callback`` cannot be provided together with ``on_fail="raise"``. + + .. versionadded:: 1.6 + Returns ------- - checks_generator : generator + test_results : list + List of dictionaries with the results of the failing tests, of the form:: + + { + "estimator": estimator, + "check_name": check_name, + "exception": exception, + "status": status (one of "xfail", "failed", "skipped", "passed"), + "expected_to_fail": expected_to_fail, + "expected_to_fail_reason": expected_to_fail_reason, + } + + estimator_checks_generator : generator Generator that yields (estimator, check) tuples. Returned when `generate_only=True`. + .. + TODO(1.8): remove return value + + .. deprecated:: 1.6 + ``generate_only`` will be removed in 1.8. Use + :func:`~sklearn.utils.estimator_checks.estimator_checks_generator` instead. + + Raises + ------ + Exception + If ``on_fail="raise"``, the exception raised by the first failing check is + raised and running tests are aborted. + + Note that if ``on_fail != "raise"``, no exception is raised, even if the checks + fail. You'd need to inspect the return result of ``check_estimator`` to check + if any checks failed. + See Also -------- parametrize_with_checks : Pytest specific decorator for parametrizing estimator checks. + estimator_checks_generator : Generator that yields (estimator, check) tuples. Examples -------- >>> from sklearn.utils.estimator_checks import check_estimator >>> from sklearn.linear_model import LogisticRegression - >>> check_estimator(LogisticRegression(), generate_only=True) - + >>> check_estimator(LogisticRegression()) + [...] """ if isinstance(estimator, type): msg = ( @@ -615,27 +826,93 @@ def check_estimator(estimator=None, generate_only=False, *, legacy: bool = True) ) raise TypeError(msg) - name = type(estimator).__name__ + if on_fail == "raise" and callback is not None: + raise ValueError("callback cannot be provided together with on_fail='raise'") - def checks_generator(): - # we first need to check if the estimator is cloneable for the rest of the tests - # to run - yield estimator, partial(check_estimator_cloneable, name) - for check in _yield_all_checks(estimator, legacy=legacy): - for check_instance in _yield_instances_for_check(check, estimator): - maybe_skipped_check = _maybe_skip(check_instance, check) - yield check_instance, partial(maybe_skipped_check, name) + name = type(estimator).__name__ + # TODO(1.8): remove generate_only if generate_only: - return checks_generator() + warnings.warn( + "`generate_only` is deprecated in 1.6 and will be removed in 1.8. " + "Use :func:`~sklearn.utils.estimator_checks.estimator_checks` instead.", + FutureWarning, + ) + return estimator_checks_generator( + estimator, legacy=legacy, expected_failed_checks=None, mark="skip" + ) - for estimator, check in checks_generator(): + test_results = [] + + for estimator, check in estimator_checks_generator( + estimator, + legacy=legacy, + expected_failed_checks=expected_failed_checks, + # Not marking tests to be skipped here, we run and simulate an xfail behavior + mark=None, + ): + test_can_fail, reason = _should_be_skipped_or_marked( + estimator, check, expected_failed_checks + ) try: check(estimator) - except SkipTest as exception: - # SkipTest is thrown when pandas can't be imported, or by checks - # that are in the xfail_checks tag - warnings.warn(str(exception), SkipTestWarning) + except SkipTest as e: + # We get here if the test raises SkipTest, which is expected in cases where + # the check cannot run for instance if a required dependency is not + # installed. + check_result = { + "estimator": estimator, + "check_name": _check_name(check), + "exception": e, + "status": "skipped", + "expected_to_fail": test_can_fail, + "expected_to_fail_reason": reason, + } + if on_skip == "warn": + warnings.warn( + f"Skipping check {_check_name(check)} for {name} because it raised " + f"{type(e).__name__}: {e}", + SkipTestWarning, + ) + except Exception as e: + if on_fail == "raise" and not test_can_fail: + raise + + check_result = { + "estimator": estimator, + "check_name": _check_name(check), + "exception": e, + "expected_to_fail": test_can_fail, + "expected_to_fail_reason": reason, + } + + if test_can_fail: + # This check failed, but could be expected to fail, therefore we mark it + # as xfail. + check_result["status"] = "xfail" + else: + failed = True + check_result["status"] = "failed" + + if on_fail == "warn": + warning = EstimatorCheckFailedWarning(**check_result) + warnings.warn(warning) + else: + check_result = { + "estimator": estimator, + "check_name": _check_name(check), + "exception": None, + "status": "passed", + "expected_to_fail": test_can_fail, + "expected_to_fail_reason": reason, + } + + test_results.append(check_result) + + if callback: + callback(**check_result) + + return test_results def _regression_dataset(): diff --git a/sklearn/utils/tests/test_estimator_checks.py b/sklearn/utils/tests/test_estimator_checks.py index ff0c1d0e6d07f..003ec488de81a 100644 --- a/sklearn/utils/tests/test_estimator_checks.py +++ b/sklearn/utils/tests/test_estimator_checks.py @@ -7,6 +7,7 @@ import sys import unittest import warnings +from inspect import isgenerator from numbers import Integral, Real import joblib @@ -21,7 +22,11 @@ make_multilabel_classification, ) from sklearn.decomposition import PCA -from sklearn.exceptions import ConvergenceWarning, SkipTestWarning +from sklearn.exceptions import ( + ConvergenceWarning, + EstimatorCheckFailedWarning, + SkipTestWarning, +) from sklearn.linear_model import ( LinearRegression, LogisticRegression, @@ -34,6 +39,10 @@ from sklearn.svm import SVC, NuSVC from sklearn.utils import _array_api, all_estimators, deprecated from sklearn.utils._param_validation import Interval, StrOptions +from sklearn.utils._test_common.instance_generator import ( + _construct_instances, + _get_expected_failed_checks, +) from sklearn.utils._testing import ( MinimalClassifier, MinimalRegressor, @@ -43,6 +52,7 @@ raises, ) from sklearn.utils.estimator_checks import ( + _check_name, _NotAnArray, _yield_all_checks, check_array_api_input, @@ -79,6 +89,7 @@ check_requires_y_none, check_sample_weights_pandas_series, check_set_params, + estimator_checks_generator, set_random_state, ) from sklearn.utils.fixes import CSR_CONTAINERS, SPARRAY_PRESENT @@ -760,6 +771,33 @@ def test_check_classifiers_one_label_sample_weights(): ) +def test_check_estimator_not_fail_fast(): + """Check the contents of the results returned with on_fail!="raise". + + This results should contain details about the observed failures, expected + or not. + """ + check_results = check_estimator(BaseEstimator(), on_fail=None) + assert isinstance(check_results, list) + assert len(check_results) > 0 + assert all( + isinstance(item, dict) + and set(item.keys()) + == { + "estimator", + "check_name", + "exception", + "status", + "expected_to_fail", + "expected_to_fail_reason", + } + for item in check_results + ) + # Some tests are expected to fail, some are expected to pass. + assert any(item["status"] == "failed" for item in check_results) + assert any(item["status"] == "passed" for item in check_results) + + def test_check_estimator(): # tests that the estimator actually fails on "bad" estimators. # not a complete test of all checks, which are very extensive. @@ -829,7 +867,9 @@ def test_check_estimator_clones(): est = Estimator() set_random_state(est) old_hash = joblib.hash(est) - check_estimator(est) + check_estimator( + est, expected_failed_checks=_get_expected_failed_checks(est) + ) assert old_hash == joblib.hash(est) # with fitting @@ -838,7 +878,9 @@ def test_check_estimator_clones(): set_random_state(est) est.fit(iris.data, iris.target) old_hash = joblib.hash(est) - check_estimator(est) + check_estimator( + est, expected_failed_checks=_get_expected_failed_checks(est) + ) assert old_hash == joblib.hash(est) @@ -910,7 +952,7 @@ def test_check_estimator_pairwise(): # test precomputed metric est = KNeighborsRegressor(metric="precomputed") - check_estimator(est) + check_estimator(est, expected_failed_checks=_get_expected_failed_checks(est)) def test_check_classifier_data_not_an_array(): @@ -1217,12 +1259,85 @@ def test_all_estimators_all_public(): run_tests_without_pytest() -def test_xfail_ignored_in_check_estimator(): - # Make sure checks marked as xfail are just ignored and not run by - # check_estimator(), but still raise a warning. +def test_estimator_checks_generator_skipping_tests(): + # Make sure the checks generator skips tests that are expected to fail + est = next(_construct_instances(NuSVC)) + expected_to_fail = _get_expected_failed_checks(est) + checks = estimator_checks_generator( + est, legacy=True, expected_failed_checks=expected_to_fail, mark="skip" + ) + # making sure we use a class that has expected failures + assert len(expected_to_fail) > 0 + skipped_checks = [] + for estimator, check in checks: + try: + check(estimator) + except SkipTest: + skipped_checks.append(_check_name(check)) + # all checks expected to fail are skipped + # some others might also be skipped, if their dependencies are not installed. + assert set(expected_to_fail.keys()) <= set(skipped_checks) + + +def test_xfail_count_with_no_fast_fail(): + """Test that the right number of xfail warnings are raised when on_fail is "warn". + + It also checks the number of raised EstimatorCheckFailedWarning, and checks the + output of check_estimator. + """ + est = NuSVC() + expected_failed_checks = _get_expected_failed_checks(est) + # This is to make sure we test a class that has some expected failures + assert len(expected_failed_checks) > 0 + with warnings.catch_warnings(record=True) as records: + logs = check_estimator( + est, + expected_failed_checks=expected_failed_checks, + on_fail="warn", + ) + xfail_warns = [w for w in records if w.category != SkipTestWarning] + assert all([rec.category == EstimatorCheckFailedWarning for rec in xfail_warns]) + assert len(xfail_warns) == len(expected_failed_checks) + + xfailed = [log for log in logs if log["status"] == "xfail"] + assert len(xfailed) == len(expected_failed_checks) + + +def test_check_estimator_callback(): + """Test that the callback is called with the right arguments.""" + call_count = {"xfail": 0, "skipped": 0, "passed": 0, "failed": 0} + + def callback( + *, + estimator, + check_name, + exception, + status, + expected_to_fail, + expected_to_fail_reason, + ): + assert status in ("xfail", "skipped", "passed", "failed") + nonlocal call_count + call_count[status] += 1 + + est = NuSVC() + expected_failed_checks = _get_expected_failed_checks(est) + # This is to make sure we test a class that has some expected failures + assert len(expected_failed_checks) > 0 with warnings.catch_warnings(record=True) as records: - check_estimator(NuSVC()) - assert SkipTestWarning in [rec.category for rec in records] + logs = check_estimator( + est, + expected_failed_checks=expected_failed_checks, + on_fail=None, + callback=callback, + ) + all_checks_count = len(list(estimator_checks_generator(est, legacy=True))) + assert call_count["xfail"] == len(expected_failed_checks) + assert call_count["passed"] > 0 + assert call_count["failed"] == 0 + assert call_count["skipped"] == ( + all_checks_count - call_count["xfail"] - call_count["passed"] + ) # FIXME: this test should be uncommented when the checks will be granular @@ -1460,6 +1575,20 @@ def test_estimator_with_set_output(): check_estimator(estimator) +def test_estimator_checks_generator(): + """Check that checks_generator returns a generator.""" + all_instance_gen_checks = estimator_checks_generator(LogisticRegression()) + assert isgenerator(all_instance_gen_checks) + + +def test_check_estimator_callback_with_fast_fail_error(): + """Check that check_estimator fails correctly with on_fail='raise' and callback.""" + with raises( + ValueError, match="callback cannot be provided together with on_fail='raise'" + ): + check_estimator(LogisticRegression(), on_fail="raise", callback=lambda: None) + + def test_check_mixin_order(): """Test that the check raises an error when the mixin order is incorrect.""" diff --git a/sklearn/utils/validation.py b/sklearn/utils/validation.py index 649df1de8f223..48f17d515250a 100644 --- a/sklearn/utils/validation.py +++ b/sklearn/utils/validation.py @@ -1533,7 +1533,14 @@ def has_fit_parameter(estimator, parameter): >>> has_fit_parameter(SVC(), "sample_weight") True """ - return parameter in signature(estimator.fit).parameters + return ( + # This is used during test collection in common tests. The + # hasattr(estimator, "fit") makes it so that we don't fail for an estimator + # that does not have a `fit` method during collection of checks. The right + # checks will fail later. + hasattr(estimator, "fit") + and parameter in signature(estimator.fit).parameters + ) def check_symmetric(array, *, tol=1e-10, raise_warning=True, raise_exception=False): From 2364d8d08b427d1f9a8e9e5d530344fa97547ddc Mon Sep 17 00:00:00 2001 From: Adrin Jalali Date: Mon, 11 Nov 2024 11:57:21 +0300 Subject: [PATCH 005/159] DOC revamp how to develop sklearn estimator page (#30253) --- doc/developers/develop.rst | 450 ++++++++++++++++++------------------- sklearn/pipeline.py | 2 +- 2 files changed, 215 insertions(+), 237 deletions(-) diff --git a/doc/developers/develop.rst b/doc/developers/develop.rst index 96061891946c1..ace3fbbcfa9c6 100644 --- a/doc/developers/develop.rst +++ b/doc/developers/develop.rst @@ -8,7 +8,12 @@ Whether you are proposing an estimator for inclusion in scikit-learn, developing a separate package compatible with scikit-learn, or implementing custom components for your own projects, this chapter details how to develop objects that safely interact with scikit-learn -Pipelines and model selection tools. +pipelines and model selection tools. + +This section details the public API you should use and implement for a scikit-learn +compatible estimator. Inside scikit-learn itself, we experiment and use some private +tools and our goal is always to make them public once they are stable enough, so that +you can also use them in your own projects. .. currentmodule:: sklearn @@ -17,10 +22,16 @@ Pipelines and model selection tools. APIs of scikit-learn objects ============================ -To have a uniform API, we try to have a common basic API for all the -objects. In addition, to avoid the proliferation of framework code, we -try to adopt simple conventions and limit to a minimum the number of -methods an object must implement. +There are two major types of estimators. You can think of the first group as simple +estimators, which consists most estimators, such as +:class:`~sklearn.linear_model.LogisticRegression` or +:class:`~sklearn.ensemble.RandomForestClassifier`. And the second group are +meta-estimators, which are estimators that wrap other estimators. +:class:`~sklearn.pipeline.Pipeline` and :class:`~sklearn.model_selection.GridSearchCV` +are two examples of meta-estimators. + +Here we start with a few vocabulary, and then we illustrate how you can implement +your own estimators. Elements of the scikit-learn API are described more definitively in the :ref:`glossary`. @@ -28,8 +39,7 @@ Elements of the scikit-learn API are described more definitively in the Different objects ----------------- -The main objects in scikit-learn are (one class can implement -multiple interfaces): +The main objects in scikit-learn are (one class can implement multiple interfaces): :Estimator: @@ -66,8 +76,9 @@ multiple interfaces): :Model: - A model that can give a `goodness of fit `_ - measure or a likelihood of unseen data, implements (higher is better):: + A model that can give a `goodness of fit + `_ measure or a likelihood of + unseen data, implements (higher is better):: score = model.score(data) @@ -81,33 +92,36 @@ classifier or a regressor. All estimators implement the fit method:: estimator.fit(X, y) -All built-in estimators also have a ``set_params`` method, which sets -data-independent parameters (overriding previous parameter values passed -to ``__init__``). - -All estimators in the main scikit-learn codebase should inherit from -``sklearn.base.BaseEstimator``. +Out of all the methods that an estimator implements, ``fit`` is usually the one you +want to implement yourself. Other methods such as ``set_params``, ``get_params``, etc. +are implemented in :class:`~sklearn.base.BaseEstimator`, which you should inherit from. +You might need to inherit from more mixins, which we will explain later. Instantiation ^^^^^^^^^^^^^ -This concerns the creation of an object. The object's ``__init__`` method -might accept constants as arguments that determine the estimator's behavior -(like the C constant in SVMs). It should not, however, take the actual training -data as an argument, as this is left to the ``fit()`` method:: +This concerns the creation of an object. The object's ``__init__`` method might accept +constants as arguments that determine the estimator's behavior (like the ``alpha`` +constant in :class:`~sklearn.linear_model.SGDClassifier`). It should not, however, take +the actual training data as an argument, as this is left to the ``fit()`` method:: - clf2 = SVC(C=2.3) - clf3 = SVC([[1, 2], [2, 3]], [-1, 1]) # WRONG! + clf2 = SGDClassifier(alpha=2.3) + clf3 = SGDClassifier([[1, 2], [2, 3]], [-1, 1]) # WRONG! -The arguments accepted by ``__init__`` should all be keyword arguments -with a default value. In other words, a user should be able to instantiate -an estimator without passing any arguments to it. The arguments should all -correspond to hyperparameters describing the model or the optimisation -problem the estimator tries to solve. These initial arguments (or parameters) -are always remembered by the estimator. -Also note that they should not be documented under the "Attributes" section, -but rather under the "Parameters" section for that estimator. +Ideally, the arguments accepted by ``__init__`` should all be keyword arguments with a +default value. In other words, a user should be able to instantiate an estimator without +passing any arguments to it. In some cases, where there are no sane defaults for an +argument, they can be left without a default value. In scikit-learn itself, we have +very few places, only in some meta-estimators, where the sub-estimator(s) argument is +a required argument. + +Most arguments correspond to hyperparameters describing the model or the optimisation +problem the estimator tries to solve. Other parameters might define how the estimator +behaves, e.g. defining the location of a cache to store some data. These initial +arguments (or parameters) are always remembered by the estimator. Also note that they +should not be documented under the "Attributes" section, but rather under the +"Parameters" section for that estimator. In addition, **every keyword argument accepted by** ``__init__`` **should correspond to an attribute on the instance**. Scikit-learn relies on this to @@ -119,10 +133,10 @@ To summarize, an ``__init__`` should look like:: self.param1 = param1 self.param2 = param2 -There should be no logic, not even input validation, -and the parameters should not be changed. -The corresponding logic should be put where the parameters are used, -typically in ``fit``. +There should be no logic, not even input validation, and the parameters should not be +changed; which also means ideally they should not be mutable objects such as lists or +dictionaries. If they're mutable, they should be copied before being modified. The +corresponding logic should be put where the parameters are used, typically in ``fit``. The following is wrong:: def __init__(self, param1=1, param2=2, param3=3): @@ -134,19 +148,26 @@ The following is wrong:: # the argument in the constructor self.param3 = param2 -The reason for postponing the validation is that the same validation -would have to be performed in ``set_params``, -which is used in algorithms like ``GridSearchCV``. +The reason for postponing the validation is that if ``__init__`` includes input +validation, then the same validation would have to be performed in ``set_params``, which +is used in algorithms like :class:`~sklearn.model_selection.GridSearchCV`. + +Also it is expected that parameters with trailing ``_`` are **not to be set +inside the** ``__init__`` **method**. More details on attributes that are not init +arguments come shortly. Fitting ^^^^^^^ -The next thing you will probably want to do is to estimate some -parameters in the model. This is implemented in the ``fit()`` method. +The next thing you will probably want to do is to estimate some parameters in the model. +This is implemented in the ``fit()`` method, and it's where the training happens. +For instance, this is where you have the computation to learn or estimate coefficients +for a linear model. The ``fit()`` method takes the training data as arguments, which can be one array in the case of unsupervised learning, or two arrays in the case -of supervised learning. +of supervised learning. Other metadata that come with the training data, such as +``sample_weight``, can also be passed to ``fit`` as keyword arguments. Note that the model is fitted using ``X`` and ``y``, but the object holds no reference to ``X`` and ``y``. There are, however, some exceptions to this, as in @@ -163,8 +184,8 @@ y array-like of shape (n_samples,) kwargs optional data-dependent parameters ============= ====================================================== -``X.shape[0]`` should be the same as ``y.shape[0]``. If this requisite -is not met, an exception of type ``ValueError`` should be raised. +The number of samples, i.e. ``X.shape[0]`` should be the same as ``y.shape[0]``. If this +requirement is not met, an exception of type ``ValueError`` should be raised. ``y`` might be ignored in the case of unsupervised learning. However, to make it possible to use the estimator as part of a pipeline that can @@ -178,17 +199,15 @@ the second place if they are implemented. The method should return the object (``self``). This pattern is useful to be able to implement quick one liners in an IPython session such as:: - y_predicted = SVC(C=100).fit(X_train, y_train).predict(X_test) + y_predicted = SGDClassifier(alpha=10).fit(X_train, y_train).predict(X_test) -Depending on the nature of the algorithm, ``fit`` can sometimes also -accept additional keywords arguments. However, any parameter that can -have a value assigned prior to having access to the data should be an -``__init__`` keyword argument. **fit parameters should be restricted -to directly data dependent variables**. For instance a Gram matrix or -an affinity matrix which are precomputed from the data matrix ``X`` are -data dependent. A tolerance stopping criterion ``tol`` is not directly -data dependent (although the optimal value according to some scoring -function probably is). +Depending on the nature of the algorithm, ``fit`` can sometimes also accept additional +keywords arguments. However, any parameter that can have a value assigned prior to +having access to the data should be an ``__init__`` keyword argument. Ideally, **fit +parameters should be restricted to directly data dependent variables**. For instance a +Gram matrix or an affinity matrix which are precomputed from the data matrix ``X`` are +data dependent. A tolerance stopping criterion ``tol`` is not directly data dependent +(although the optimal value according to some scoring function probably is). When ``fit`` is called, any previous call to ``fit`` should be ignored. In general, calling ``estimator.fit(X1)`` and then ``estimator.fit(X2)`` should @@ -203,37 +222,40 @@ default initialization strategy. Estimated Attributes ^^^^^^^^^^^^^^^^^^^^ -Attributes that have been estimated from the data must always have a name -ending with trailing underscore, for example the coefficients of -some regression estimator would be stored in a ``coef_`` attribute after -``fit`` has been called. +According to scikit-learn conventions, attributes which you'd want to expose to your +users as public attributes and have been estimated or learned from the data must always +have a name ending with trailing underscore, for example the coefficients of some +regression estimator would be stored in a ``coef_`` attribute after ``fit`` has been +called. Similarly, attributes that you learn in the process and you'd like to store yet +not expose to the user, should have a leading underscure, e.g. ``_intermediate_coefs``. +You'd need to document the first group (with a trailing underscore) as "Attributes" and +no need to document the second group (with a leading underscore). -The estimated attributes are expected to be overridden when you call ``fit`` -a second time. - -Optional Arguments -^^^^^^^^^^^^^^^^^^ - -In iterative algorithms, the number of iterations should be specified by -an integer called ``n_iter``. +The estimated attributes are expected to be overridden when you call ``fit`` a second +time. Universal attributes ^^^^^^^^^^^^^^^^^^^^ Estimators that expect tabular input should set a `n_features_in_` attribute at `fit` time to indicate the number of features that the estimator -expects for subsequent calls to `predict` or `transform`. -See -`SLEP010 -`_ +expects for subsequent calls to :term:`predict` or :term:`transform`. +See `SLEP010 +`__ for details. +Similarly, if estimators are given dataframes such as pandas or polars, they should +set a ``feature_names_in_`` attribute to indicate the features names of the input data, +detailed in `SLEP007 +`__. +Using :func:`~sklearn.utils.validation.validate_data` would automatically set these +attributes for you. + .. _rolling_your_own_estimator: Rolling your own estimator ========================== -If you want to implement a new estimator that is scikit-learn-compatible, -whether it is just for you or for contributing it to scikit-learn, there are +If you want to implement a new estimator that is scikit-learn compatible, there are several internals of scikit-learn that you should be aware of in addition to the scikit-learn API outlined above. You can check whether your estimator adheres to the scikit-learn interface and standards by running @@ -243,44 +265,46 @@ decorator can also be used (see its docstring for details and possible interactions with `pytest`):: >>> from sklearn.utils.estimator_checks import check_estimator - >>> from sklearn.svm import LinearSVC - >>> check_estimator(LinearSVC()) # passes + >>> from sklearn.tree import DecisionTreeClassifier + >>> check_estimator(DecisionTreeClassifier()) # passes The main motivation to make a class compatible to the scikit-learn estimator interface might be that you want to use it together with model evaluation and -selection tools such as :class:`model_selection.GridSearchCV` and -:class:`pipeline.Pipeline`. +selection tools such as :class:`~model_selection.GridSearchCV` and +:class:`~pipeline.Pipeline`. Before detailing the required interface below, we describe two ways to achieve the correct interface more easily. .. topic:: Project template: - We provide a `project template `_ - which helps in the creation of Python packages containing scikit-learn compatible estimators. - It provides: + We provide a `project template + `_ which helps in the + creation of Python packages containing scikit-learn compatible estimators. It + provides: * an initial git repository with Python package directory structure * a template of a scikit-learn estimator - * an initial test suite including use of ``check_estimator`` + * an initial test suite including use of :func:`~utils.parametrize_with_checks` * directory structures and scripts to compile documentation and example galleries - * scripts to manage continuous integration (testing on Linux and Windows) - * instructions from getting started to publishing on `PyPi `_ + * scripts to manage continuous integration (testing on Linux, MacOS, and Windows) + * instructions from getting started to publishing on `PyPi `__ -.. topic:: ``BaseEstimator`` and mixins: +.. topic:: :class:`base.BaseEstimator` and mixins: - We tend to use "duck typing", so building an estimator which follows - the API suffices for compatibility, without needing to inherit from or - even import any scikit-learn classes. + We tend to use "duck typing" instead of checking for :func:`isinstance`, which means + it's technically possible to implement estimator without inheriting from + scikit-learn classes. However, if you don't inherit from the right mixins, either + there will be a large amount of boilerplate code for you to implement and keep in + sync with scikit-learn development, or your estimator might not function the same + way as a scikit-learn estimator. Here we only document how to develop an estimator + using our mixins. If you're interested in implementing your estimator without + inheriting from scikit-learn mixins, you'd need to check our implementations. - However, if a dependency on scikit-learn is acceptable in your code, - you can prevent a lot of boilerplate code - by deriving a class from ``BaseEstimator`` - and optionally the mixin classes in ``sklearn.base``. - For example, below is a custom classifier, with more examples included - in the scikit-learn-contrib - `project template `__. + For example, below is a custom classifier, with more examples included in the + scikit-learn-contrib `project template + `__. It is particularly important to notice that mixins should be "on the left" while the ``BaseEstimator`` should be "on the right" in the inheritance list for proper @@ -288,7 +312,7 @@ the correct interface more easily. >>> import numpy as np >>> from sklearn.base import BaseEstimator, ClassifierMixin - >>> from sklearn.utils.validation import check_X_y, check_array, check_is_fitted + >>> from sklearn.utils.validation import validate_data, check_is_fitted >>> from sklearn.utils.multiclass import unique_labels >>> from sklearn.metrics import euclidean_distances >>> class TemplateClassifier(ClassifierMixin, BaseEstimator): @@ -298,8 +322,8 @@ the correct interface more easily. ... ... def fit(self, X, y): ... - ... # Check that X and y have correct shape - ... X, y = check_X_y(X, y) + ... # Check that X and y have correct shape, set n_features_in_, etc. + ... X, y = validate_data(self, X, y) ... # Store the classes seen during fit ... self.classes_ = unique_labels(y) ... @@ -314,23 +338,27 @@ the correct interface more easily. ... check_is_fitted(self) ... ... # Input validation - ... X = check_array(X) + ... X = validate_data(self, X, reset=False) ... ... closest = np.argmin(euclidean_distances(X, self.X_), axis=1) ... return self.y_[closest] +And you can check that the above estimator passes all common checks:: + + >>> from sklearn.utils.estimator_checks import check_estimator + >>> check_estimator(TemplateClassifier()) # passes get_params and set_params ------------------------- All scikit-learn estimators have ``get_params`` and ``set_params`` functions. + The ``get_params`` function takes no arguments and returns a dict of the ``__init__`` parameters of the estimator, together with their values. -It must take one keyword argument, ``deep``, which receives a boolean value -that determines whether the method should return the parameters of -sub-estimators (for most estimators, this can be ignored). The default value -for ``deep`` should be `True`. For instance considering the following -estimator:: +It take one keyword argument, ``deep``, which receives a boolean value that determines +whether the method should return the parameters of sub-estimators (only relevant for +meta-estimators). The default value for ``deep`` is ``True``. For instance considering +the following estimator:: >>> from sklearn.base import BaseEstimator >>> from sklearn.linear_model import LogisticRegression @@ -339,7 +367,7 @@ estimator:: ... self.subestimator = subestimator ... self.my_extra_param = my_extra_param -The parameter `deep` will control whether or not the parameters of the +The parameter `deep` controls control whether or not the parameters of the `subestimator` should be reported. Thus when `deep=True`, the output will be:: >>> my_estimator = MyEstimator(subestimator=LogisticRegression()) @@ -363,174 +391,124 @@ The parameter `deep` will control whether or not the parameters of the subestimator__warm_start -> False subestimator -> LogisticRegression() -Often, the `subestimator` has a name (as e.g. named steps in a -:class:`~sklearn.pipeline.Pipeline` object), in which case the key should -become `__C`, `__class_weight`, etc. +If the meta-estimator takes multiple sub-estimators, often, those sub-estimators have +names (as e.g. named steps in a :class:`~pipeline.Pipeline` object), in which case the +key should become `__C`, `__class_weight`, etc. -While when `deep=False`, the output will be:: +When ``deep=False``, the output will be:: >>> for param, value in my_estimator.get_params(deep=False).items(): ... print(f"{param} -> {value}") my_extra_param -> random subestimator -> LogisticRegression() -On the other hand, ``set_params`` takes the parameters of ``__init__`` -as keyword arguments, unpacks them into a dict of the form -``'parameter': value`` and sets the parameters of the estimator using this dict. -Return value must be the estimator itself. - -While the ``get_params`` mechanism is not essential (see :ref:`cloning` below), -the ``set_params`` function is necessary as it is used to set parameters during -grid searches. - -The easiest way to implement these functions, and to get a sensible -``__repr__`` method, is to inherit from ``sklearn.base.BaseEstimator``. If you -do not want to make your code dependent on scikit-learn, the easiest way to -implement the interface is:: - - def get_params(self, deep=True): - # suppose this estimator has parameters "alpha" and "recursive" - return {"alpha": self.alpha, "recursive": self.recursive} - - def set_params(self, **parameters): - for parameter, value in parameters.items(): - setattr(self, parameter, value) - return self - - -Parameters and init -------------------- -As :class:`model_selection.GridSearchCV` uses ``set_params`` -to apply parameter setting to estimators, -it is essential that calling ``set_params`` has the same effect -as setting parameters using the ``__init__`` method. -The easiest and recommended way to accomplish this is to -**not do any parameter validation in** ``__init__``. -All logic behind estimator parameters, -like translating string arguments into functions, should be done in ``fit``. +On the other hand, ``set_params`` takes the parameters of ``__init__`` as keyword +arguments, unpacks them into a dict of the form ``'parameter': value`` and sets the +parameters of the estimator using this dict. It returns the estimator itself. -Also it is expected that parameters with trailing ``_`` are **not to be set -inside the** ``__init__`` **method**. All and only the public attributes set by -fit have a trailing ``_``. As a result the existence of parameters with -trailing ``_`` is used to check if the estimator has been fitted. +The :func:`~base.BaseEstimator.set_params` function is used to set parameters during +grid search for instance. .. _cloning: Cloning ------- -For use with the :mod:`~sklearn.model_selection` module, -an estimator must support the ``base.clone`` function to replicate an estimator. -This can be done by providing a ``get_params`` method. -If ``get_params`` is present, then ``clone(estimator)`` will be an instance of -``type(estimator)`` on which ``set_params`` has been called with clones of -the result of ``estimator.get_params()``. - -Objects that do not provide this method will be deep-copied -(using the Python standard function ``copy.deepcopy``) -if ``safe=False`` is passed to ``clone``. - -Estimators can customize the behavior of :func:`base.clone` by defining a -`__sklearn_clone__` method. `__sklearn_clone__` must return an instance of the -estimator. `__sklearn_clone__` is useful when an estimator needs to hold on to -some state when :func:`base.clone` is called on the estimator. For example, -:class:`~sklearn.frozen.FrozenEstimator` makes use of this. +As already mentioned that when constructor arguments are mutable, they should be +copied before modifying them. This also applies to constructor arguments which are +estimators. That's why meta-estimators such as :class:`~model_selection.GridSearchCV` +create a copy of the given estimator before modifying it. + +However, in scikit-learn, when we copy an estimator, we get an unfitted estimator +where only the constructor arguments are copied (with some exceptions, e.g. attributes +related to certain internal machinery such as metadata routing). -Pipeline compatibility ----------------------- -For an estimator to be usable together with ``pipeline.Pipeline`` in any but the -last step, it needs to provide a ``fit`` or ``fit_transform`` function. -To be able to evaluate the pipeline on any data but the training set, -it also needs to provide a ``transform`` function. -There are no special requirements for the last step in a pipeline, except that -it has a ``fit`` function. All ``fit`` and ``fit_transform`` functions must -take arguments ``X, y``, even if y is not used. Similarly, for ``score`` to be -usable, the last step of the pipeline needs to have a ``score`` function that -accepts an optional ``y``. +The function responsible for this behavior is :func:`~base.clone`. + +Estimators can customize the behavior of :func:`base.clone` by overriding the +:func:`base.BaseEstimator.__sklearn_clone__` method. `__sklearn_clone__` must return an +instance of the estimator. `__sklearn_clone__` is useful when an estimator needs to hold +on to some state when :func:`base.clone` is called on the estimator. For example, +:class:`~sklearn.frozen.FrozenEstimator` makes use of this. Estimator types --------------- -Some common functionality depends on the kind of estimator passed. For example, -cross-validation in :class:`model_selection.GridSearchCV` and -:func:`model_selection.cross_val_score` defaults to being stratified when used on a -classifier, but not otherwise. Similarly, scorers for average precision that take a -continuous prediction need to call ``decision_function`` for classifiers, but -``predict`` for regressors. This distinction between classifiers and regressors is -implemented by inheriting from :class:`~base.ClassifierMixin`, -:class:`~base.RegressorMixin`, :class:`~base.ClusterMixin`, :class:`~base.OutlierMixin` -or :class:`~base.DensityMixin`, which will set the corresponding :term:`estimator tags` -correctly. - -When a meta-estimator needs to distinguish among estimator types, instead of checking -the value of the tags directly, helpers like :func:`base.is_classifier` should be used. - -Specific models ---------------- - -Classifiers should accept ``y`` (target) arguments to ``fit`` that are -sequences (lists, arrays) of either strings or integers. They should not -assume that the class labels are a contiguous range of integers; instead, they -should store a list of classes in a ``classes_`` attribute or property. The -order of class labels in this attribute should match the order in which -``predict_proba``, ``predict_log_proba`` and ``decision_function`` return their -values. The easiest way to achieve this is to put:: +Among simple estimators (as opposed to meta-estimators), the most common types are +transformers, classifiers, regressors, and clustering algorithms. + +**Transformers** inherit from :class:`~base.TransformerMixin`, and implement a `transform` +method. These are estimators which take the input, and transform it in some way. Note +that they should never change the number of input samples, and the output of `transform` +should correspond to its input samples in the same given order. + +**Regressors** inherit from :class:`~base.RegressorMixin`, and implement a `predict` method. +They should accept numerical ``y`` in their `fit` method. Regressors use +:func:`~metrics.r2_score` by default in their :func:`~base.RegressorMixin.score` method. + +**Classifiers** inherit from :class:`~base.ClassifierMixin`. If it applies, classifiers can +implement ``decision_function`` to return raw decision values, based on which +``predict`` can make its decision. If calculating probabilities is supported, +classifiers can also implement ``predict_proba`` and ``predict_log_proba``. + +Classifiers should accept ``y`` (target) arguments to ``fit`` that are sequences (lists, +arrays) of either strings or integers. They should not assume that the class labels are +a contiguous range of integers; instead, they should store a list of classes in a +``classes_`` attribute or property. The order of class labels in this attribute should +match the order in which ``predict_proba``, ``predict_log_proba`` and +``decision_function`` return their values. The easiest way to achieve this is to put:: self.classes_, y = np.unique(y, return_inverse=True) -in ``fit``. This returns a new ``y`` that contains class indexes, rather than -labels, in the range [0, ``n_classes``). +in ``fit``. This returns a new ``y`` that contains class indexes, rather than labels, +in the range [0, ``n_classes``). -A classifier's ``predict`` method should return -arrays containing class labels from ``classes_``. -In a classifier that implements ``decision_function``, -this can be achieved with:: +A classifier's ``predict`` method should return arrays containing class labels from +``classes_``. In a classifier that implements ``decision_function``, this can be +achieved with:: def predict(self, X): D = self.decision_function(X) return self.classes_[np.argmax(D, axis=1)] -In linear models, coefficients are stored in an array called ``coef_``, and the -independent term is stored in ``intercept_``. ``sklearn.linear_model._base`` -contains a few base classes and mixins that implement common linear model -patterns. +The :mod:`~sklearn.utils.multiclass` module contains useful functions for working with +multiclass and multilabel problems. + +**Clustering algorithms** inherit from :class:`~base.ClusterMixin`. Ideally, they should +accept a ``y`` parameter in their ``fit`` method, but it should be ignored. Clustering +algorithms should set a ``labels_`` attribute, storing the labels assigned to each +sample. If applicale, they can also implement a ``predict`` method, returning the +labels assigned to newly given samples. -The :mod:`~sklearn.utils.multiclass` module contains useful functions -for working with multiclass and multilabel problems. +If one needs to check the type of a given estimator, e.g. in a meta-estimator, one can +check if the given object implements a ``transform`` method for transformers, and +otherwise use helper functions such as :func:`~base.is_classifier` or +:func:`~base.is_regressor`. .. _estimator_tags: Estimator Tags -------------- -.. warning:: - - The estimator tags are experimental and the API is subject to change. - .. note:: - Scikit-learn introduced estimator tags in version 0.21 as a - private API and mostly used in tests. However, these tags expanded - over time and many third party developers also need to use - them. Therefore in version 1.6 the API for the tags were revamped - and exposed as public API. - -The estimator tags are annotations of estimators that allow -programmatic inspection of their capabilities, such as sparse matrix -support, supported output types and supported methods. The estimator -tags are an instance of :class:`~sklearn.utils.Tags` returned by the -method :meth:`~sklearn.base.BaseEstimator.__sklearn_tags__()`. These -tags are used in the common checks run by the -:func:`~sklearn.utils.estimator_checks.check_estimator` function and -the :func:`~sklearn.utils.estimator_checks.parametrize_with_checks` -decorator. Tags determine which checks to run and what input data is -appropriate. Tags can depend on estimator parameters or even system -architecture and can in general only be determined at runtime and -are therefore instance attributes rather than class attributes. See -:class:`~sklearn.utils.Tags` for more information about individual -tags. - -It is unlikely that the default values for each tag will suit the -needs of your specific estimator. You can change the default values by -defining a `__sklearn_tags__()` method which returns the new values -for your estimator's tags. For example:: + Scikit-learn introduced estimator tags in version 0.21 as a private API and mostly + used in tests. However, these tags expanded over time and many third party + developers also need to use them. Therefore in version 1.6 the API for the tags were + revamped and exposed as public API. + +The estimator tags are annotations of estimators that allow programmatic inspection of +their capabilities, such as sparse matrix support, supported output types and supported +methods. The estimator tags are an instance of :class:`~sklearn.utils.Tags` returned by +the method :meth:`~sklearn.base.BaseEstimator.__sklearn_tags__()`. These tags are used +in different places, such as :func:`~base.is_regressor` or the common checks run by +:func:`~sklearn.utils.estimator_checks.check_estimator` and +:func:`~sklearn.utils.estimator_checks.parametrize_with_checks`, where tags determine +which checks to run and what input data is appropriate. Tags can depend on estimator +parameters or even system architecture and can in general only be determined at runtime +and are therefore instance attributes rather than class attributes. See +:class:`~sklearn.utils.Tags` for more information about individual tags. + +It is unlikely that the default values for each tag will suit the needs of your specific +estimator. You can change the default values by defining a `__sklearn_tags__()` method +which returns the new values for your estimator's tags. For example:: class MyMultiOutputEstimator(BaseEstimator): @@ -540,8 +518,8 @@ for your estimator's tags. For example:: tags.non_deterministic = True return tags -You can create a new subclass of :class:`~sklearn.utils.Tags` if you wish -to add new tags to the existing set. +You can create a new subclass of :class:`~sklearn.utils.Tags` if you wish to add new +tags to the existing set. .. _developer_api_set_output: diff --git a/sklearn/pipeline.py b/sklearn/pipeline.py index 9331a15dea9ab..4a8431ddedf26 100644 --- a/sklearn/pipeline.py +++ b/sklearn/pipeline.py @@ -88,7 +88,7 @@ class Pipeline(_BaseComposition): preprocess the data and, if desired, conclude the sequence with a final :term:`predictor` for predictive modeling. - Intermediate steps of the pipeline must be 'transforms', that is, they + Intermediate steps of the pipeline must be transformers, that is, they must implement `fit` and `transform` methods. The final :term:`estimator` only needs to implement `fit`. The transformers in the pipeline can be cached using ``memory`` argument. From de2b0418539b9ec3a5adc39966845396cdee57b3 Mon Sep 17 00:00:00 2001 From: scikit-learn-bot Date: Tue, 12 Nov 2024 11:37:34 +0100 Subject: [PATCH 006/159] :lock: :robot: CI Update lock files for main CI build(s) :lock: :robot: (#30262) Co-authored-by: Lock file bot --- build_tools/azure/debian_32bit_lock.txt | 2 +- ...latest_conda_forge_mkl_linux-64_conda.lock | 94 +++++++++---------- ...pylatest_conda_forge_mkl_osx-64_conda.lock | 6 +- ...test_conda_mkl_no_openmp_osx-64_conda.lock | 6 +- ...st_pip_openblas_pandas_linux-64_conda.lock | 4 +- .../pymin_conda_forge_mkl_win-64_conda.lock | 10 +- ...nblas_min_dependencies_linux-64_conda.lock | 6 +- ...e_openblas_ubuntu_2204_linux-64_conda.lock | 42 ++++----- build_tools/azure/ubuntu_atlas_lock.txt | 2 +- build_tools/circle/doc_linux-64_conda.lock | 16 ++-- .../doc_min_dependencies_linux-64_conda.lock | 8 +- 11 files changed, 98 insertions(+), 98 deletions(-) diff --git a/build_tools/azure/debian_32bit_lock.txt b/build_tools/azure/debian_32bit_lock.txt index 3a0185eead5d3..6b34081810939 100644 --- a/build_tools/azure/debian_32bit_lock.txt +++ b/build_tools/azure/debian_32bit_lock.txt @@ -18,7 +18,7 @@ meson-python==0.17.1 # via -r build_tools/azure/debian_32bit_requirements.txt ninja==1.11.1.1 # via -r build_tools/azure/debian_32bit_requirements.txt -packaging==24.1 +packaging==24.2 # via # meson-python # pyproject-metadata diff --git a/build_tools/azure/pylatest_conda_forge_mkl_linux-64_conda.lock b/build_tools/azure/pylatest_conda_forge_mkl_linux-64_conda.lock index fdd6ef65da174..71ee4fa6a7be1 100644 --- a/build_tools/azure/pylatest_conda_forge_mkl_linux-64_conda.lock +++ b/build_tools/azure/pylatest_conda_forge_mkl_linux-64_conda.lock @@ -8,7 +8,7 @@ https://conda.anaconda.org/conda-forge/noarch/font-ttf-dejavu-sans-mono-2.37-hab https://conda.anaconda.org/conda-forge/noarch/font-ttf-inconsolata-3.000-h77eed37_0.tar.bz2#34893075a5c9e55cdafac56607368fc6 https://conda.anaconda.org/conda-forge/noarch/font-ttf-source-code-pro-2.038-h77eed37_0.tar.bz2#4d59c254e01d9cde7957100457e2d5fb https://conda.anaconda.org/conda-forge/noarch/font-ttf-ubuntu-0.83-h77eed37_3.conda#49023d73832ef61042f6a237cb2687e7 -https://conda.anaconda.org/conda-forge/linux-64/mkl-include-2023.2.0-h84fe81f_50496.conda#7af9fd0b2d7219f4a4200a34561340f6 +https://conda.anaconda.org/conda-forge/linux-64/mkl-include-2024.2.2-ha957f24_16.conda#42b0d14354b5910a9f41e29289914f6b https://conda.anaconda.org/conda-forge/linux-64/python_abi-3.12-5_cp312.conda#0424ae29b104430108f5218a66db7260 https://conda.anaconda.org/conda-forge/noarch/tzdata-2024b-hc8b5060_0.conda#8ac3367aafb1cc0a068483c580af8015 https://conda.anaconda.org/conda-forge/noarch/fonts-conda-forge-1-0.tar.bz2#f766549260d6815b0c52253f1fb1bb29 @@ -20,11 +20,11 @@ https://conda.anaconda.org/conda-forge/noarch/fonts-conda-ecosystem-1-0.tar.bz2# https://conda.anaconda.org/conda-forge/linux-64/libegl-1.7.0-ha4b6fd6_1.conda#38a5cd3be5fb620b48069e27285f1a44 https://conda.anaconda.org/conda-forge/linux-64/libopengl-1.7.0-ha4b6fd6_1.conda#e12057a66af8f2a38a839754ca4481e9 https://conda.anaconda.org/conda-forge/linux-64/libgcc-14.2.0-h77fa898_1.conda#3cb76c3f10d3bc7f1105b2fc9db984df -https://conda.anaconda.org/conda-forge/linux-64/aws-c-common-0.9.31-hb9d3cd8_0.conda#75f7776e1c9af78287f055ca34797517 -https://conda.anaconda.org/conda-forge/linux-64/c-ares-1.34.2-heb4867d_0.conda#2b780c0338fc0ffa678ac82c54af51fd +https://conda.anaconda.org/conda-forge/linux-64/aws-c-common-0.10.0-hb9d3cd8_0.conda#f6495bc3a19a4400d3407052d22bef13 +https://conda.anaconda.org/conda-forge/linux-64/c-ares-1.34.3-heb4867d_0.conda#09a6c610d002e54e18353c06ef61a253 https://conda.anaconda.org/conda-forge/linux-64/libbrotlicommon-1.1.0-hb9d3cd8_2.conda#41b599ed2b02abcfdd84302bff174b23 https://conda.anaconda.org/conda-forge/linux-64/libdeflate-1.22-hb9d3cd8_0.conda#b422943d5d772b7cc858b36ad2a92db5 -https://conda.anaconda.org/conda-forge/linux-64/libexpat-2.6.3-h5888daf_0.conda#59f4c43bb1b5ef1c71946ff2cbf59524 +https://conda.anaconda.org/conda-forge/linux-64/libexpat-2.6.4-h5888daf_0.conda#db833e03127376d461e1e13e76f09b6c https://conda.anaconda.org/conda-forge/linux-64/libgcc-ng-14.2.0-h69a702a_1.conda#e39480b9ca41323497b05492a63bc35b https://conda.anaconda.org/conda-forge/linux-64/libgfortran5-14.2.0-hd5240d6_1.conda#9822b874ea29af082e5d36098d25427d https://conda.anaconda.org/conda-forge/linux-64/libstdcxx-14.2.0-hc0a3c3a_1.conda#234a5554c53625688d51062645337328 @@ -37,12 +37,12 @@ https://conda.anaconda.org/conda-forge/linux-64/xorg-libxau-1.0.11-hb9d3cd8_1.co https://conda.anaconda.org/conda-forge/linux-64/xorg-libxdmcp-1.1.5-hb9d3cd8_0.conda#8035c64cb77ed555e3f150b7b3972480 https://conda.anaconda.org/conda-forge/linux-64/xorg-xorgproto-2024.1-hb9d3cd8_1.conda#7c21106b851ec72c037b162c216d8f05 https://conda.anaconda.org/conda-forge/linux-64/alsa-lib-1.2.12-h4ab18f5_0.conda#7ed427f0871fd41cb1d9c17727c17589 -https://conda.anaconda.org/conda-forge/linux-64/aws-c-cal-0.8.0-hd3f4568_0.conda#0902512e7a2de9722697fb011db07a54 -https://conda.anaconda.org/conda-forge/linux-64/aws-c-compression-0.3.0-hf20e7d7_0.conda#84412135f9c1dd8985741e9c351f499a -https://conda.anaconda.org/conda-forge/linux-64/aws-c-sdkutils-0.2.0-hf20e7d7_0.conda#ff265c3736cdac819c8adb844e0557d8 -https://conda.anaconda.org/conda-forge/linux-64/aws-checksums-0.2.0-hf20e7d7_0.conda#e54103489d34bd5a106b9298dc28c848 +https://conda.anaconda.org/conda-forge/linux-64/aws-c-cal-0.8.0-he70792b_1.conda#9b81a9d9395fb2abd60984fcfe7eb01a +https://conda.anaconda.org/conda-forge/linux-64/aws-c-compression-0.3.0-hba2fe39_1.conda#c6133966058e553727f0afe21ab38cd2 +https://conda.anaconda.org/conda-forge/linux-64/aws-c-sdkutils-0.2.1-hba2fe39_0.conda#f0b3524e47ed870bb8304a8d6fa67c7f +https://conda.anaconda.org/conda-forge/linux-64/aws-checksums-0.2.0-hba2fe39_1.conda#ac8d58d81bdcefa5bce4e883c6b88c42 https://conda.anaconda.org/conda-forge/linux-64/bzip2-1.0.8-h4bc722e_7.conda#62ee74e96c5ebb0af99386de58cf9553 -https://conda.anaconda.org/conda-forge/linux-64/expat-2.6.3-h5888daf_0.conda#6595440079bed734b113de44ffd3cd0a +https://conda.anaconda.org/conda-forge/linux-64/expat-2.6.4-h5888daf_0.conda#1d6afef758879ef5ee78127eb4cd2c4a https://conda.anaconda.org/conda-forge/linux-64/gflags-2.2.2-h5888daf_1005.conda#d411fc29e338efb48c5fd4576d71d881 https://conda.anaconda.org/conda-forge/linux-64/keyutils-1.6.1-h166bdaf_0.tar.bz2#30186d27e2c9fa62b45fb1476b7200e3 https://conda.anaconda.org/conda-forge/linux-64/libabseil-20240722.0-cxx17_h5888daf_1.conda#e1f604644fe8d78e22660e2fec6756bc @@ -68,12 +68,12 @@ https://conda.anaconda.org/conda-forge/linux-64/libxcb-1.17.0-h8a09558_0.conda#9 https://conda.anaconda.org/conda-forge/linux-64/libxcrypt-4.4.36-hd590300_1.conda#5aa797f8787fe7a17d1b0821485b5adc https://conda.anaconda.org/conda-forge/linux-64/mysql-common-9.0.1-h266115a_2.conda#85c0dc0bcd110c998b01856975486ee7 https://conda.anaconda.org/conda-forge/linux-64/ncurses-6.5-he02047a_1.conda#70caf8bb6cf39a0b6b7efc885f51c0fe -https://conda.anaconda.org/conda-forge/linux-64/s2n-1.5.6-h0e56266_0.conda#54752411d7559a8bbd4c0204a8f1cf35 -https://conda.anaconda.org/conda-forge/linux-64/sleef-3.7-h1b44611_0.conda#f8b9a3928def0a7f4e37c67045542584 +https://conda.anaconda.org/conda-forge/linux-64/s2n-1.5.7-hd3e8b83_0.conda#b0de6ca344b9255f4adb98e419e130ad +https://conda.anaconda.org/conda-forge/linux-64/sleef-3.7-h1b44611_2.conda#4792f3259c6fdc0b730563a85b211dc0 https://conda.anaconda.org/conda-forge/linux-64/tk-8.6.13-noxft_h4845f30_101.conda#d453b98d9c83e71da0741bb0ff4d76bc https://conda.anaconda.org/conda-forge/linux-64/xz-5.2.6-h166bdaf_0.tar.bz2#2161070d867d1b1204ea749c8eec4ef0 https://conda.anaconda.org/conda-forge/linux-64/zlib-1.3.1-hb9d3cd8_2.conda#c9f075ab2f33b3bbee9e62d4ad0a6cd8 -https://conda.anaconda.org/conda-forge/linux-64/aws-c-io-0.15.0-h17eb868_2.conda#bb03f4ce96deea2175fc3ec17b2c1c04 +https://conda.anaconda.org/conda-forge/linux-64/aws-c-io-0.15.1-h2a50c78_1.conda#67dfecff4c4253cfe33c3c8e428f1767 https://conda.anaconda.org/conda-forge/linux-64/brotli-bin-1.1.0-hb9d3cd8_2.conda#c63b5e52939e795ba8d26e35d767a843 https://conda.anaconda.org/conda-forge/linux-64/double-conversion-3.3.0-h59595ed_0.conda#c2f83a5ddadadcdb08fe05863295ee97 https://conda.anaconda.org/conda-forge/linux-64/freetype-2.12.1-h267a509_2.conda#9ae35c3d96db2c94ce0cef86efdfa2cb @@ -87,7 +87,7 @@ https://conda.anaconda.org/conda-forge/linux-64/libdrm-2.4.123-hb9d3cd8_0.conda# https://conda.anaconda.org/conda-forge/linux-64/libedit-3.1.20191231-he28a2e2_2.tar.bz2#4d331e44109e3f0e19b4cb8f9b82f3e1 https://conda.anaconda.org/conda-forge/linux-64/libgfortran-ng-14.2.0-h69a702a_1.conda#0a7f4cd238267c88e5d69f7826a407eb https://conda.anaconda.org/conda-forge/linux-64/libnghttp2-1.64.0-h161d5f1_0.conda#19e57602824042dfd0446292ef90488b -https://conda.anaconda.org/conda-forge/linux-64/libprotobuf-5.27.5-h5b01275_2.conda#66ed3107adbdfc25ba70454ba11e6d1e +https://conda.anaconda.org/conda-forge/linux-64/libprotobuf-5.28.2-h5b01275_0.conda#ab0bff36363bec94720275a681af8b83 https://conda.anaconda.org/conda-forge/linux-64/libre2-11-2024.07.02-hbbce691_1.conda#2124de47357b7a516c0a3efd8f88c143 https://conda.anaconda.org/conda-forge/linux-64/libthrift-0.21.0-h0e7cc3e_0.conda#dcb95c0a98ba9ff737f7ae482aef7833 https://conda.anaconda.org/conda-forge/linux-64/lz4-c-1.9.4-hcb278e6_0.conda#318b08df404f9c9be5712aaa5a6f0bb0 @@ -105,8 +105,8 @@ https://conda.anaconda.org/conda-forge/linux-64/xcb-util-wm-0.4.2-hb711507_0.con https://conda.anaconda.org/conda-forge/linux-64/xorg-libsm-1.2.4-he73a12e_1.conda#05a8ea5f446de33006171a7afe6ae857 https://conda.anaconda.org/conda-forge/linux-64/xorg-libx11-1.8.10-h4f16b4b_0.conda#0b666058a179b744a622d0a4a0c56353 https://conda.anaconda.org/conda-forge/linux-64/zstd-1.5.6-ha6fb4c9_0.conda#4d056880988120e29d75bfff282e0f45 -https://conda.anaconda.org/conda-forge/linux-64/aws-c-event-stream-0.5.0-h68c3b0c_2.conda#a08831d82df7546a599095b33f3cae2a -https://conda.anaconda.org/conda-forge/linux-64/aws-c-http-0.9.0-hfad4ed3_3.conda#01bc29be557b8c7c1963f7ad7185529a +https://conda.anaconda.org/conda-forge/linux-64/aws-c-event-stream-0.5.0-h127f702_4.conda#81d250bca40c7907ece5f5dd00de51d0 +https://conda.anaconda.org/conda-forge/linux-64/aws-c-http-0.9.0-h8a7d7e2_5.conda#c40bb8a9f3936ebeea804e97c5adf179 https://conda.anaconda.org/conda-forge/linux-64/brotli-1.1.0-hb9d3cd8_2.conda#98514fe74548d768907ce7a13f680e8f https://conda.anaconda.org/conda-forge/linux-64/fontconfig-2.15.0-h7e30c49_1.conda#8f5b0b297b59e1ac160ad4beec99dbee https://conda.anaconda.org/conda-forge/linux-64/krb5-1.21.3-h659f571_0.conda#3f43953b7d3fb3aaa1d0d0723d91e368 @@ -117,7 +117,7 @@ https://conda.anaconda.org/conda-forge/linux-64/libtiff-4.7.0-he137b08_1.conda#6 https://conda.anaconda.org/conda-forge/linux-64/libxml2-2.13.4-hb346dea_2.conda#69b90b70c434b916abf5a1d5ee5d55fb https://conda.anaconda.org/conda-forge/linux-64/mpfr-4.2.1-h90cbb55_3.conda#2eeb50cab6652538eee8fc0bc3340c81 https://conda.anaconda.org/conda-forge/linux-64/mysql-libs-9.0.1-he0572af_2.conda#57a9e7ee3c0840d3c8c9012473978629 -https://conda.anaconda.org/conda-forge/linux-64/orc-2.0.2-h690cf93_1.conda#0044701dd48af57d3d5467a704ef9ebd +https://conda.anaconda.org/conda-forge/linux-64/orc-2.0.2-he039a57_2.conda#5e7bb9779cc5c200e63475eb2538d382 https://conda.anaconda.org/conda-forge/linux-64/python-3.12.7-hc5c86c4_0_cpython.conda#0515111a9cdf69f83278f7c197db9807 https://conda.anaconda.org/conda-forge/linux-64/re2-2024.07.02-h77b4e00_1.conda#01093ff37c1b5e6bf9f17c0116747d11 https://conda.anaconda.org/conda-forge/linux-64/xcb-util-image-0.4.0-hb711507_2.conda#a0901183f08b6c7107aab109733a3c91 @@ -126,8 +126,8 @@ https://conda.anaconda.org/conda-forge/linux-64/xorg-libxext-1.3.6-hb9d3cd8_0.co https://conda.anaconda.org/conda-forge/linux-64/xorg-libxfixes-6.0.1-hb9d3cd8_0.conda#4bdb303603e9821baf5fe5fdff1dc8f8 https://conda.anaconda.org/conda-forge/linux-64/xorg-libxrender-0.9.11-hb9d3cd8_1.conda#a7a49a8b85122b49214798321e2e96b4 https://conda.anaconda.org/conda-forge/noarch/array-api-compat-1.9.1-pyhd8ed1ab_0.conda#f2328337441baa8f669d2a830cfd0097 -https://conda.anaconda.org/conda-forge/linux-64/aws-c-auth-0.8.0-h56a2c13_4.conda#44a599a9c2c7e5d75e062457ddc6666a -https://conda.anaconda.org/conda-forge/linux-64/aws-c-mqtt-0.11.0-h407ecb8_2.conda#f9fcf88ac9d34b2bfe70429064d7744c +https://conda.anaconda.org/conda-forge/linux-64/aws-c-auth-0.8.0-hcd8ed7f_7.conda#b8725d87357c876b0458dee554c39b28 +https://conda.anaconda.org/conda-forge/linux-64/aws-c-mqtt-0.11.0-hd25e75f_5.conda#277dae7174fd2bc81c01411039ac2173 https://conda.anaconda.org/conda-forge/linux-64/cairo-1.18.0-hebfffa5_3.conda#fceaedf1cdbcb02df9699a0d9b005292 https://conda.anaconda.org/conda-forge/linux-64/ccache-4.10.1-h065aff2_0.conda#d6b48c138e0c8170a6fe9c136e063540 https://conda.anaconda.org/conda-forge/noarch/certifi-2024.8.30-pyhd8ed1ab_0.conda#12f7d00853807b0531775e9be891cb11 @@ -147,7 +147,7 @@ https://conda.anaconda.org/conda-forge/linux-64/lcms2-2.16-hb7c19ff_0.conda#51bb https://conda.anaconda.org/conda-forge/linux-64/libcups-2.3.3-h4637d8d_4.conda#d4529f4dff3057982a7617c7ac58fde3 https://conda.anaconda.org/conda-forge/linux-64/libcurl-8.10.1-hbbe4b11_0.conda#6e801c50a40301f6978c53976917b277 https://conda.anaconda.org/conda-forge/linux-64/libgl-1.7.0-ha4b6fd6_1.conda#204892bce2e44252b5cf272712f10bdd -https://conda.anaconda.org/conda-forge/linux-64/libgrpc-1.65.5-hf5c653b_0.conda#3b0048cabc6815a4d8874a0240519d32 +https://conda.anaconda.org/conda-forge/linux-64/libgrpc-1.67.1-hc2c308b_0.conda#4606a4647bfe857e3cfe21ca12ac3afb https://conda.anaconda.org/conda-forge/linux-64/libhwloc-2.11.1-default_hecaa2ac_1000.conda#f54aeebefb5c5ff84eca4fb05ca8aa3a https://conda.anaconda.org/conda-forge/linux-64/libllvm19-19.1.3-ha7bfdaf_0.conda#8bd654307c455162668cd66e36494000 https://conda.anaconda.org/conda-forge/linux-64/libxkbcommon-1.7.0-h2c5496b_1.conda#e2eaefa4de2b7237af7c907b8bbc760a @@ -171,15 +171,15 @@ https://conda.anaconda.org/conda-forge/noarch/tomli-2.0.2-pyhd8ed1ab_0.conda#e97 https://conda.anaconda.org/conda-forge/linux-64/tornado-6.4.1-py312h66e93f0_1.conda#af648b62462794649066366af4ecd5b0 https://conda.anaconda.org/conda-forge/noarch/typing_extensions-4.12.2-pyha770c72_0.conda#ebe6952715e1d5eb567eeebf25250fa7 https://conda.anaconda.org/conda-forge/linux-64/unicodedata2-15.1.0-py312h66e93f0_1.conda#588486a61153f94c7c13816f7069e440 -https://conda.anaconda.org/conda-forge/noarch/wheel-0.44.0-pyhd8ed1ab_0.conda#d44e3b085abcaef02983c6305b84b584 +https://conda.anaconda.org/conda-forge/noarch/wheel-0.45.0-pyhd8ed1ab_0.conda#f9751d7c71df27b2d29f5cab3378982e https://conda.anaconda.org/conda-forge/linux-64/xcb-util-cursor-0.1.5-hb9d3cd8_0.conda#eb44b3b6deb1cab08d72cb61686fe64c https://conda.anaconda.org/conda-forge/linux-64/xorg-libxcomposite-0.4.6-hb9d3cd8_2.conda#d3c295b50f092ab525ffe3c2aa4b7413 -https://conda.anaconda.org/conda-forge/linux-64/xorg-libxcursor-1.2.2-hb9d3cd8_0.conda#bb2638cd7fbdd980b1cff9a99a6c1fa8 +https://conda.anaconda.org/conda-forge/linux-64/xorg-libxcursor-1.2.3-hb9d3cd8_0.conda#2ccd714aa2242315acaf0a67faea780b https://conda.anaconda.org/conda-forge/linux-64/xorg-libxdamage-1.1.6-hb9d3cd8_0.conda#b5fcc7172d22516e1f965490e65e33a4 https://conda.anaconda.org/conda-forge/linux-64/xorg-libxi-1.8.2-hb9d3cd8_0.conda#17dcc85db3c7886650b8908b183d6876 https://conda.anaconda.org/conda-forge/linux-64/xorg-libxrandr-1.5.4-hb9d3cd8_0.conda#2de7f99d6581a4a7adbff607b5c278ca https://conda.anaconda.org/conda-forge/linux-64/xorg-libxxf86vm-1.1.5-hb9d3cd8_4.conda#7da9007c0582712c4bad4131f89c8372 -https://conda.anaconda.org/conda-forge/linux-64/aws-c-s3-0.7.0-hadeddc1_5.conda#429e7497e7f08bc470d2872147d8ef6d +https://conda.anaconda.org/conda-forge/linux-64/aws-c-s3-0.7.0-h858c4ad_7.conda#1698a4867ecd97931d1bb743428686ec https://conda.anaconda.org/conda-forge/linux-64/azure-core-cpp-1.14.0-h5cfcd09_0.conda#0a8838771cc2e985cd295e01ae83baf1 https://conda.anaconda.org/conda-forge/linux-64/coverage-7.6.4-py312h178313f_0.conda#a32fbd2322865ac80c7db74c553f5306 https://conda.anaconda.org/conda-forge/linux-64/fonttools-4.54.1-py312h178313f_1.conda#bbbf5fa5cab622c33907bc8d7eeea9f7 @@ -189,7 +189,7 @@ https://conda.anaconda.org/conda-forge/noarch/jinja2-3.1.4-pyhd8ed1ab_0.conda#7b https://conda.anaconda.org/conda-forge/noarch/joblib-1.4.2-pyhd8ed1ab_0.conda#25df261d4523d9f9783bcdb7208d872f https://conda.anaconda.org/conda-forge/linux-64/libclang-cpp19.1-19.1.3-default_hb5137d0_0.conda#311e6a1d041db3d6a8a8437750d4234f https://conda.anaconda.org/conda-forge/linux-64/libclang13-19.1.3-default_h9c6a7e4_0.conda#b8a8cd77810b20754f358f2327812552 -https://conda.anaconda.org/conda-forge/linux-64/libgoogle-cloud-2.30.0-h438788a_0.conda#ab8466a39822527f7786b0d0b2aac223 +https://conda.anaconda.org/conda-forge/linux-64/libgoogle-cloud-2.31.0-h804f50b_0.conda#35ab838423b60f233391eb86d324a830 https://conda.anaconda.org/conda-forge/noarch/meson-1.6.0-pyhd8ed1ab_0.conda#380ba6a3eddd8e7649bfe8e6812611aa https://conda.anaconda.org/conda-forge/linux-64/openldap-2.6.8-hedd0468_0.conda#dcd0ed5147d8876b0848a552b416ce76 https://conda.anaconda.org/conda-forge/linux-64/pillow-11.0.0-py312h7b63e92_0.conda#385f46a4df6f97892503a841121a9acf @@ -199,44 +199,44 @@ https://conda.anaconda.org/conda-forge/noarch/pytest-8.3.3-pyhd8ed1ab_0.conda#c0 https://conda.anaconda.org/conda-forge/noarch/python-dateutil-2.9.0-pyhd8ed1ab_0.conda#2cf4264fffb9e6eff6031c5b6884d61c https://conda.anaconda.org/conda-forge/linux-64/tbb-2021.13.0-h84d6215_0.conda#ee6f7fd1e76061ef1fa307d41fa86a96 https://conda.anaconda.org/conda-forge/linux-64/xorg-libxtst-1.2.5-hb9d3cd8_3.conda#7bbe9a0cc0df0ac5f5a8ad6d6a11af2f -https://conda.anaconda.org/conda-forge/linux-64/aws-crt-cpp-0.29.0-h73f0fd4_6.conda#19f6d559f3be939046d2ac5c7b2ded7a +https://conda.anaconda.org/conda-forge/linux-64/aws-crt-cpp-0.29.3-hbc793f2_2.conda#3ac9933695a731e6507eef6c3704c10f https://conda.anaconda.org/conda-forge/linux-64/azure-identity-cpp-1.10.0-h113e628_0.conda#73f73f60854f325a55f1d31459f2ab73 https://conda.anaconda.org/conda-forge/linux-64/azure-storage-common-cpp-12.8.0-h736e048_1.conda#13de36be8de3ae3f05ba127631599213 -https://conda.anaconda.org/conda-forge/linux-64/libgoogle-cloud-storage-2.30.0-h0121fbd_0.conda#ad86b6c98964772688298a727cb20ef8 +https://conda.anaconda.org/conda-forge/linux-64/libgoogle-cloud-storage-2.31.0-h0121fbd_0.conda#568d6a09a6ed76337a7b97c84ae7c0f8 https://conda.anaconda.org/conda-forge/linux-64/libpq-17.0-h04577a9_4.conda#392cae2a58fbcb9db8c2147c6d6d1620 https://conda.anaconda.org/conda-forge/noarch/meson-python-0.17.1-pyh70fd9c4_0.conda#722b649da38842068d83b6e6770f11a1 -https://conda.anaconda.org/conda-forge/linux-64/mkl-2023.2.0-h84fe81f_50496.conda#81d4a1a57d618adf0152db973d93b2ad +https://conda.anaconda.org/conda-forge/linux-64/mkl-2024.2.2-ha957f24_16.conda#1459379c79dda834673426504d52b319 https://conda.anaconda.org/conda-forge/noarch/pytest-cov-6.0.0-pyhd8ed1ab_0.conda#cb8a11b6d209e3d85e5094bdbd9ebd9c https://conda.anaconda.org/conda-forge/noarch/pytest-xdist-3.6.1-pyhd8ed1ab_0.conda#b39568655c127a9c4a44d178ac99b6d0 https://conda.anaconda.org/conda-forge/noarch/sympy-1.13.3-pyh2585a3b_104.conda#68085d736d2b2f54498832b65059875d -https://conda.anaconda.org/conda-forge/linux-64/aws-sdk-cpp-1.11.407-h6a6dca0_6.conda#3c25988c0b0a2085b4df578b7160d963 +https://conda.anaconda.org/conda-forge/linux-64/aws-sdk-cpp-1.11.407-h5cd358a_9.conda#1bba87c0e95867ad8ef2932d603ce7ee https://conda.anaconda.org/conda-forge/linux-64/azure-storage-blobs-cpp-12.13.0-h3cf044e_1.conda#7eb66060455c7a47d9dcdbfa9f46579b -https://conda.anaconda.org/conda-forge/linux-64/libblas-3.9.0-20_linux64_mkl.conda#8bf521f6007b0b0eb91515a1165b5d85 -https://conda.anaconda.org/conda-forge/linux-64/mkl-devel-2023.2.0-ha770c72_50496.conda#3b4c50e31ff098b18a450e4f5f860adf +https://conda.anaconda.org/conda-forge/linux-64/libblas-3.9.0-25_linux64_mkl.conda#b77ebfb548eae4d91639e2ca003662c8 +https://conda.anaconda.org/conda-forge/linux-64/mkl-devel-2024.2.2-ha770c72_16.conda#140891ea14285fc634353b31e9e40a95 https://conda.anaconda.org/conda-forge/linux-64/qt6-main-6.8.0-h6e8976b_0.conda#6d1c5d2d904d24c17cbb538a95855a4e https://conda.anaconda.org/conda-forge/linux-64/azure-storage-files-datalake-cpp-12.12.0-ha633028_1.conda#7c1980f89dd41b097549782121a73490 -https://conda.anaconda.org/conda-forge/linux-64/libcblas-3.9.0-20_linux64_mkl.conda#7a2972758a03adc92d856072c71c9170 -https://conda.anaconda.org/conda-forge/linux-64/liblapack-3.9.0-20_linux64_mkl.conda#4db0cd03efcdab535f6f066aca4cddbb +https://conda.anaconda.org/conda-forge/linux-64/libcblas-3.9.0-25_linux64_mkl.conda#e48aeb4ab1a293f621fe995959f1d32f +https://conda.anaconda.org/conda-forge/linux-64/liblapack-3.9.0-25_linux64_mkl.conda#d5afbe3777c594434e4de6481254e99c https://conda.anaconda.org/conda-forge/linux-64/pyside6-6.8.0.2-py312h91f0f75_0.conda#ec3da81d5f9d3612b227e09a650f7bf2 -https://conda.anaconda.org/conda-forge/linux-64/libarrow-18.0.0-ha5db6c2_0_cpu.conda#55f4011e75175bfbbc10f8e5998345d4 -https://conda.anaconda.org/conda-forge/linux-64/liblapacke-3.9.0-20_linux64_mkl.conda#3dea5e9be386b963d7f4368966e238b3 -https://conda.anaconda.org/conda-forge/linux-64/libtorch-2.4.1-cpu_mkl_hc74595f_102.conda#1845dcc1389ff54a038027b96fbce318 +https://conda.anaconda.org/conda-forge/linux-64/libarrow-18.0.0-h3e543c6_4_cpu.conda#98ca983152358b918afebf2abe9e5ca9 +https://conda.anaconda.org/conda-forge/linux-64/liblapacke-3.9.0-25_linux64_mkl.conda#cbddb4169d3d24b13b308403b45f401e +https://conda.anaconda.org/conda-forge/linux-64/libtorch-2.5.1-cpu_mkl_hb9d73ce_103.conda#5b17e90804ffc01546025c643d14fd6e https://conda.anaconda.org/conda-forge/linux-64/numpy-2.1.3-py312h58c1407_0.conda#dfdbc12e6d81889ba4c494a23f23eba8 -https://conda.anaconda.org/conda-forge/noarch/array-api-strict-2.1-pyhd8ed1ab_0.conda#15cc819ed82470249cbf1337791bc5ff -https://conda.anaconda.org/conda-forge/linux-64/blas-devel-3.9.0-20_linux64_mkl.conda#079d50df2338a3d47522d7e84c3dfbf6 +https://conda.anaconda.org/conda-forge/noarch/array-api-strict-2.1.3-pyhd8ed1ab_0.conda#559ef5d7adafd925588bcd9d0dcb3ed4 +https://conda.anaconda.org/conda-forge/linux-64/blas-devel-3.9.0-25_linux64_mkl.conda#cb60caae3cb30988431d7107691bd587 https://conda.anaconda.org/conda-forge/linux-64/contourpy-1.3.0-py312h68727a3_2.conda#ff28f374b31937c048107521c814791e -https://conda.anaconda.org/conda-forge/linux-64/libarrow-acero-18.0.0-h5888daf_0_cpu.conda#8771a1fcc6d8bf2fd18cc57d778f90a3 -https://conda.anaconda.org/conda-forge/linux-64/libparquet-18.0.0-h6bd9018_0_cpu.conda#f9efb8ef19962dc9d87b29e667a13287 +https://conda.anaconda.org/conda-forge/linux-64/libarrow-acero-18.0.0-h5888daf_4_cpu.conda#86298c079658bed57c5590690a0fb418 +https://conda.anaconda.org/conda-forge/linux-64/libparquet-18.0.0-h6bd9018_4_cpu.conda#19973fe63c087ef5e119a2826011efb4 https://conda.anaconda.org/conda-forge/linux-64/pandas-2.2.3-py312hf9745cd_1.conda#8bce4f6caaf8c5448c7ac86d87e26b4b https://conda.anaconda.org/conda-forge/linux-64/polars-1.12.0-py312hfe7c9be_0.conda#47b6df7e8b629d1257a6f971b88c15de -https://conda.anaconda.org/conda-forge/linux-64/pyarrow-core-18.0.0-py312h01725c0_0_cpu.conda#9100ae6cdd482666b38fa20e7819b385 -https://conda.anaconda.org/conda-forge/linux-64/pytorch-2.4.1-cpu_mkl_py312ha1f5ba4_102.conda#186d21edb5f86bcd6516e3d10edc38c0 +https://conda.anaconda.org/conda-forge/linux-64/pyarrow-core-18.0.0-py312h01725c0_1_cpu.conda#c8ae967c39337603035d59c8994c23f9 +https://conda.anaconda.org/conda-forge/linux-64/pytorch-2.5.1-cpu_mkl_py312h01fbe9c_103.conda#fea446aa105ad2989f5ad2e97d94720d https://conda.anaconda.org/conda-forge/linux-64/scipy-1.14.1-py312h62794b6_1.conda#b43233a9e2f62fb94affe5607ea79473 -https://conda.anaconda.org/conda-forge/linux-64/blas-2.120-mkl.conda#9444330235a4828878cbe9c897ba0aa3 -https://conda.anaconda.org/conda-forge/linux-64/libarrow-dataset-18.0.0-h5888daf_0_cpu.conda#5c121a2d50b068076ff4f2b6d68dbca5 -https://conda.anaconda.org/conda-forge/linux-64/matplotlib-base-3.9.2-py312hd3ec401_1.conda#2f4f3854f23be30de29e9e4d39758349 +https://conda.anaconda.org/conda-forge/linux-64/blas-2.125-mkl.conda#8a0ffaaae2bccf691cffdde83cb0f1a5 +https://conda.anaconda.org/conda-forge/linux-64/libarrow-dataset-18.0.0-h5888daf_4_cpu.conda#6ac53d3f10c9d88ade8f9fe0f515a0db +https://conda.anaconda.org/conda-forge/linux-64/matplotlib-base-3.9.2-py312hd3ec401_2.conda#2380c9ba933ffaac9ad16d8eac8e3318 https://conda.anaconda.org/conda-forge/linux-64/pyamg-5.2.1-py312hc39e661_1.conda#372efc32220f0dfb603e5b31ffaefa23 -https://conda.anaconda.org/conda-forge/linux-64/pytorch-cpu-2.4.1-cpu_mkl_py312h09a6fac_102.conda#3579b30b19e9aa1ed58bd971203c8590 -https://conda.anaconda.org/conda-forge/linux-64/libarrow-substrait-18.0.0-he882d9a_0_cpu.conda#1d73c2c8cabb70f9bf1dd36222ef7b25 -https://conda.anaconda.org/conda-forge/linux-64/matplotlib-3.9.2-py312h7900ff3_1.conda#07d5646ea9f22f4b1c46c2947d1b2f58 -https://conda.anaconda.org/conda-forge/linux-64/pyarrow-18.0.0-py312h9cebb41_0.conda#e110b1f861e749bc1dd48ad5467adab8 +https://conda.anaconda.org/conda-forge/linux-64/pytorch-cpu-2.5.1-cpu_mkl_h74a56ca_103.conda#8c195d4079bb69030cb6c883e8981ff0 +https://conda.anaconda.org/conda-forge/linux-64/libarrow-substrait-18.0.0-h5c8f2c3_4_cpu.conda#24f60812bdd87979ea1c6477f2f38d3b +https://conda.anaconda.org/conda-forge/linux-64/matplotlib-3.9.2-py312h7900ff3_2.conda#266d9ad348e2151d07ad9e4dc716eea5 +https://conda.anaconda.org/conda-forge/linux-64/pyarrow-18.0.0-py312h7900ff3_1.conda#ea33ac754057779cd2df785661486310 diff --git a/build_tools/azure/pylatest_conda_forge_mkl_osx-64_conda.lock b/build_tools/azure/pylatest_conda_forge_mkl_osx-64_conda.lock index 9dbaa15306088..48ce6f3d55452 100644 --- a/build_tools/azure/pylatest_conda_forge_mkl_osx-64_conda.lock +++ b/build_tools/azure/pylatest_conda_forge_mkl_osx-64_conda.lock @@ -17,7 +17,7 @@ https://conda.anaconda.org/conda-forge/osx-64/icu-75.1-h120a0e1_0.conda#d68d48a3 https://conda.anaconda.org/conda-forge/osx-64/libbrotlicommon-1.1.0-h00291cd_2.conda#58f2c4bdd56c46cc7451596e4ae68e0b https://conda.anaconda.org/conda-forge/osx-64/libcxx-19.1.3-hf95d169_0.conda#86801fc56d4641e3ef7a63f5d996b960 https://conda.anaconda.org/conda-forge/osx-64/libdeflate-1.22-h00291cd_0.conda#a15785ccc62ae2a8febd299424081efb -https://conda.anaconda.org/conda-forge/osx-64/libexpat-2.6.3-hac325c4_0.conda#c1db99b0a94a2f23bd6ce39e2d314e07 +https://conda.anaconda.org/conda-forge/osx-64/libexpat-2.6.4-h240833e_0.conda#20307f4049a735a78a29073be1be2626 https://conda.anaconda.org/conda-forge/osx-64/libmpdec-4.0.0-hfdf4475_0.conda#ed625b2e59dff82859c23dd24774156b https://conda.anaconda.org/conda-forge/osx-64/libzlib-1.3.1-hd23fc13_2.conda#003a54a4e32b02f7355b50a837e699da https://conda.anaconda.org/conda-forge/osx-64/llvm-openmp-19.1.3-hf78d878_0.conda#18a8498d57d871da066beaa09263a638 @@ -117,10 +117,10 @@ https://conda.anaconda.org/conda-forge/osx-64/pandas-2.2.3-py313h38cdd20_1.conda https://conda.anaconda.org/conda-forge/osx-64/scipy-1.14.1-py313hbd2dc07_1.conda#63098e1999a8f08b82ae921440e6ed0a https://conda.anaconda.org/conda-forge/osx-64/blas-2.120-mkl.conda#b041a7677a412f3d925d8208936cb1e2 https://conda.anaconda.org/conda-forge/osx-64/clang_impl_osx-64-17.0.6-h1af8efd_21.conda#6ef491cbc462aae64eaa0213e7ae6222 -https://conda.anaconda.org/conda-forge/osx-64/matplotlib-base-3.9.2-py313h04f2f9a_1.conda#e0355aa34089010cce072986cfb9c989 +https://conda.anaconda.org/conda-forge/osx-64/matplotlib-base-3.9.2-py313h04f2f9a_2.conda#73c8a15c5101126f8adc9ab9a6818959 https://conda.anaconda.org/conda-forge/osx-64/pyamg-5.2.1-py313h0322a6a_1.conda#4bda5182eeaef3d2017a2ec625802e1a https://conda.anaconda.org/conda-forge/osx-64/clang_osx-64-17.0.6-hb91bd55_21.conda#d94a0f2c03e7a50203d2b78d7dd9fa25 -https://conda.anaconda.org/conda-forge/osx-64/matplotlib-3.9.2-py313habf4b1d_1.conda#5323d57b4ec77c8cdd7475cbdd85072b +https://conda.anaconda.org/conda-forge/osx-64/matplotlib-3.9.2-py313habf4b1d_2.conda#4b81b94ada5a3bc121a91fc60d61fdd1 https://conda.anaconda.org/conda-forge/osx-64/c-compiler-1.8.0-hfc4bf79_1.conda#d6e3cf55128335736c8d4bb86e73c191 https://conda.anaconda.org/conda-forge/osx-64/clangxx_impl_osx-64-17.0.6-hc3430b7_21.conda#9dbdec57445cac0f0c39aefe3d3900bc https://conda.anaconda.org/conda-forge/osx-64/gfortran_osx-64-13.2.0-h18f7dce_1.conda#71d59c1ae3fea7a97154ff0e20b38df3 diff --git a/build_tools/azure/pylatest_conda_mkl_no_openmp_osx-64_conda.lock b/build_tools/azure/pylatest_conda_mkl_no_openmp_osx-64_conda.lock index e4ac139fba46c..33eb4409c6d86 100644 --- a/build_tools/azure/pylatest_conda_mkl_no_openmp_osx-64_conda.lock +++ b/build_tools/azure/pylatest_conda_mkl_no_openmp_osx-64_conda.lock @@ -25,7 +25,7 @@ https://repo.anaconda.com/pkgs/main/osx-64/libbrotlienc-1.0.9-h6c40b1e_8.conda#2 https://repo.anaconda.com/pkgs/main/osx-64/libgfortran5-11.3.0-h9dfd629_28.conda#1fa1a27ee100b1918c3021dbfa3895a3 https://repo.anaconda.com/pkgs/main/osx-64/libpng-1.6.39-h6c40b1e_0.conda#a3c824835f53ad27aeb86d2b55e47804 https://repo.anaconda.com/pkgs/main/osx-64/lz4-c-1.9.4-hcec6c5f_1.conda#aee0efbb45220e1985533dbff48551f8 -https://repo.anaconda.com/pkgs/main/osx-64/ninja-base-1.10.2-haf03e11_5.conda#c857c13129710a61395270656905c4a2 +https://repo.anaconda.com/pkgs/main/osx-64/ninja-base-1.12.1-h1962661_0.conda#9c0a94a811e88f182519d9309cf5f634 https://repo.anaconda.com/pkgs/main/osx-64/openssl-3.0.15-h46256e1_0.conda#3286ae31653124afad386b813a5d17da https://repo.anaconda.com/pkgs/main/osx-64/readline-8.2-hca72f7f_0.conda#971667436260e523f6f7355fdfa238bf https://repo.anaconda.com/pkgs/main/osx-64/tbb-2021.8.0-ha357a0b_0.conda#fb48530a3eea681c11dafb95b3387c0f @@ -47,7 +47,7 @@ https://repo.anaconda.com/pkgs/main/osx-64/joblib-1.4.2-py312hecd8cb5_0.conda#8a https://repo.anaconda.com/pkgs/main/osx-64/kiwisolver-1.4.4-py312hcec6c5f_0.conda#2ba6561ddd1d05936fe74f5d118ce7dd https://repo.anaconda.com/pkgs/main/osx-64/lcms2-2.12-hf1fd2bf_0.conda#697aba7a3308226df7a93ccfeae16ffa https://repo.anaconda.com/pkgs/main/osx-64/mkl-service-2.4.0-py312h6c40b1e_1.conda#b1ef860be9043b35c5e8d9388b858514 -https://repo.anaconda.com/pkgs/main/osx-64/ninja-1.10.2-hecd8cb5_5.conda#a0043b325fb08db82477ae433668e684 +https://repo.anaconda.com/pkgs/main/osx-64/ninja-1.12.1-hecd8cb5_0.conda#ee3b660616ef0fbcbd0096a67c11c94b https://repo.anaconda.com/pkgs/main/osx-64/openjpeg-2.5.2-hbf2204d_0.conda#8463f11309271a93d615450382761470 https://repo.anaconda.com/pkgs/main/osx-64/packaging-24.1-py312hecd8cb5_0.conda#6130dafc4d26d55e93ceab460d2a72b5 https://repo.anaconda.com/pkgs/main/osx-64/pluggy-1.0.0-py312hecd8cb5_1.conda#647fada22f1697691fdee90b52c99bcb @@ -68,7 +68,7 @@ https://repo.anaconda.com/pkgs/main/osx-64/pytest-7.4.4-py312hecd8cb5_0.conda#d4 https://repo.anaconda.com/pkgs/main/osx-64/python-dateutil-2.9.0post0-py312hecd8cb5_2.conda#1047dde28f78127dd9f6121e882926dd https://repo.anaconda.com/pkgs/main/osx-64/pytest-cov-4.1.0-py312hecd8cb5_1.conda#a33a24eb20359f464938e75b2f57e23a https://repo.anaconda.com/pkgs/main/osx-64/pytest-xdist-3.5.0-py312hecd8cb5_0.conda#d1ecfb3691cceecb1f16bcfdf0b67bb5 -https://repo.anaconda.com/pkgs/main/osx-64/bottleneck-1.3.7-py312h32608ca_0.conda#f96a01eba5ea542cf9c7cc8d77447627 +https://repo.anaconda.com/pkgs/main/osx-64/bottleneck-1.4.2-py312ha2b695f_0.conda#7efb63b6a5b33829a3b2c7a3efcf53ce https://repo.anaconda.com/pkgs/main/osx-64/contourpy-1.2.0-py312ha357a0b_0.conda#57d384ad07152375b40a6293f79e3f0c https://repo.anaconda.com/pkgs/main/osx-64/matplotlib-3.9.2-py312hecd8cb5_0.conda#4a0c6fbe79aefa058fddc09690772afa https://repo.anaconda.com/pkgs/main/osx-64/matplotlib-base-3.9.2-py312ha7ebc0d_0.conda#a5396c401f535238325577ab702ac32a diff --git a/build_tools/azure/pylatest_pip_openblas_pandas_linux-64_conda.lock b/build_tools/azure/pylatest_pip_openblas_pandas_linux-64_conda.lock index d3a9418c90019..0d7093237533c 100644 --- a/build_tools/azure/pylatest_pip_openblas_pandas_linux-64_conda.lock +++ b/build_tools/azure/pylatest_pip_openblas_pandas_linux-64_conda.lock @@ -46,7 +46,7 @@ https://repo.anaconda.com/pkgs/main/linux-64/pip-24.2-py311h06a4308_0.conda#eff3 # pip networkx @ https://files.pythonhosted.org/packages/b9/54/dd730b32ea14ea797530a4479b2ed46a6fb250f682a9cfb997e968bf0261/networkx-3.4.2-py3-none-any.whl#sha256=df5d4365b724cf81b8c6a7312509d0c22386097011ad1abe274afd5e9d3bbc5f # pip ninja @ https://files.pythonhosted.org/packages/6d/92/8d7aebd4430ab5ff65df2bfee6d5745f95c004284db2d8ca76dcbfd9de47/ninja-1.11.1.1-py2.py3-none-manylinux1_x86_64.manylinux_2_5_x86_64.whl#sha256=84502ec98f02a037a169c4b0d5d86075eaf6afc55e1879003d6cab51ced2ea4b # pip numpy @ https://files.pythonhosted.org/packages/7a/f0/80811e836484262b236c684a75dfc4ba0424bc670e765afaa911468d9f39/numpy-2.1.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl#sha256=bc6f24b3d1ecc1eebfbf5d6051faa49af40b03be1aaa781ebdadcbc090b4539b -# pip packaging @ https://files.pythonhosted.org/packages/08/aa/cc0199a5f0ad350994d660967a8efb233fe0416e4639146c089643407ce6/packaging-24.1-py3-none-any.whl#sha256=5b8f2217dbdbd2f7f384c41c628544e6d52f2d0f53c6d0c3ea61aa5d1d7ff124 +# pip packaging @ https://files.pythonhosted.org/packages/88/ef/eb23f262cca3c0c4eb7ab1933c3b1f03d021f2c48f54763065b6f0e321be/packaging-24.2-py3-none-any.whl#sha256=09abb1bccd265c01f4a3aa3f7a7db064b36514d2cba19a2f694fe6150451a759 # pip pillow @ https://files.pythonhosted.org/packages/39/63/b3fc299528d7df1f678b0666002b37affe6b8751225c3d9c12cf530e73ed/pillow-11.0.0-cp311-cp311-manylinux_2_28_x86_64.whl#sha256=45c566eb10b8967d71bf1ab8e4a525e5a93519e29ea071459ce517f6b903d7fa # pip pluggy @ https://files.pythonhosted.org/packages/88/5f/e351af9a41f866ac3f1fac4ca0613908d9a41741cfcf2228f4ad853b697d/pluggy-1.5.0-py3-none-any.whl#sha256=44e1ad92c8ca002de6377e165f3e0f1be63266ab4d554740532335b9d75ea669 # pip pygments @ https://files.pythonhosted.org/packages/f7/3f/01c8b82017c199075f8f788d0d906b9ffbbc5a47dc9918a945e13d5a2bda/pygments-2.18.0-py3-none-any.whl#sha256=b8e6aca0523f3ab76fee51799c488e38782ac06eafcf95e7ba832985c8e7b13a @@ -64,7 +64,7 @@ https://repo.anaconda.com/pkgs/main/linux-64/pip-24.2-py311h06a4308_0.conda#eff3 # pip threadpoolctl @ https://files.pythonhosted.org/packages/4b/2c/ffbf7a134b9ab11a67b0cf0726453cedd9c5043a4fe7a35d1cefa9a1bcfb/threadpoolctl-3.5.0-py3-none-any.whl#sha256=56c1e26c150397e58c4926da8eeee87533b1e32bef131bd4bf6a2f45f3185467 # pip tzdata @ https://files.pythonhosted.org/packages/a6/ab/7e5f53c3b9d14972843a647d8d7a853969a58aecc7559cb3267302c94774/tzdata-2024.2-py2.py3-none-any.whl#sha256=a48093786cdcde33cad18c2555e8532f34422074448fbc874186f0abd79565cd # pip urllib3 @ https://files.pythonhosted.org/packages/ce/d9/5f4c13cecde62396b0d3fe530a50ccea91e7dfc1ccf0e09c228841bb5ba8/urllib3-2.2.3-py3-none-any.whl#sha256=ca899ca043dcb1bafa3e262d73aa25c465bfb49e0bd9dd5d59f1d0acba2f8fac -# pip array-api-strict @ https://files.pythonhosted.org/packages/2d/bc/e7f5e40d85744e59cb7692f8098f828e63610d3b850957bba5bbf569a90a/array_api_strict-2.1-py3-none-any.whl#sha256=322740ba4422e7ca758290d00edfe75491f1783ad1ab44325007c44162aa938a +# pip array-api-strict @ https://files.pythonhosted.org/packages/06/68/88cd07c9cfe954f5bf970108e118e6be642aba566547a22a5389824d0072/array_api_strict-2.1.3-py3-none-any.whl#sha256=7ba42a4d4023fe9e9e3805ac964885ae70adead5bff184fe995c62c8d457dc0a # pip contourpy @ https://files.pythonhosted.org/packages/03/33/003065374f38894cdf1040cef474ad0546368eea7e3a51d48b8a423961f8/contourpy-1.3.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl#sha256=637f674226be46f6ba372fd29d9523dd977a291f66ab2a74fbeb5530bb3f445d # pip imageio @ https://files.pythonhosted.org/packages/4e/e7/26045404a30c8a200e960fb54fbaf4b73d12e58cd28e03b306b084253f4f/imageio-2.36.0-py3-none-any.whl#sha256=471f1eda55618ee44a3c9960911c35e647d9284c68f077e868df633398f137f0 # pip jinja2 @ https://files.pythonhosted.org/packages/31/80/3a54838c3fb461f6fec263ebf3a3a41771bd05190238de3486aae8540c36/jinja2-3.1.4-py3-none-any.whl#sha256=bc5dd2abb727a5319567b7a813e6a2e7318c39f4f487cfe6c89c6f9c7d25197d diff --git a/build_tools/azure/pymin_conda_forge_mkl_win-64_conda.lock b/build_tools/azure/pymin_conda_forge_mkl_win-64_conda.lock index 147126a809ec6..2e676d2312299 100644 --- a/build_tools/azure/pymin_conda_forge_mkl_win-64_conda.lock +++ b/build_tools/azure/pymin_conda_forge_mkl_win-64_conda.lock @@ -27,7 +27,7 @@ https://conda.anaconda.org/conda-forge/win-64/icu-75.1-he0c23c2_0.conda#8579b6bb https://conda.anaconda.org/conda-forge/win-64/lerc-4.0.0-h63175ca_0.tar.bz2#1900cb3cab5055833cfddb0ba233b074 https://conda.anaconda.org/conda-forge/win-64/libbrotlicommon-1.1.0-h2466b09_2.conda#f7dc9a8f21d74eab46456df301da2972 https://conda.anaconda.org/conda-forge/win-64/libdeflate-1.22-h2466b09_0.conda#a3439ce12d4e3cd887270d9436f9a4c8 -https://conda.anaconda.org/conda-forge/win-64/libexpat-2.6.3-he0c23c2_0.conda#21415fbf4d0de6767a621160b43e5dea +https://conda.anaconda.org/conda-forge/win-64/libexpat-2.6.4-he0c23c2_0.conda#eb383771c680aa792feb529eaf9df82f https://conda.anaconda.org/conda-forge/win-64/libffi-3.4.2-h8ffe710_5.tar.bz2#2c96d1b6915b408893f9472569dee135 https://conda.anaconda.org/conda-forge/win-64/libiconv-1.17-hcfcfb64_2.conda#e1eb10b1cca179f2baa3601e4efc8712 https://conda.anaconda.org/conda-forge/win-64/libjpeg-turbo-3.0.0-hcfcfb64_1.conda#3f1b948619c45b1ca714d60c7389092c @@ -82,10 +82,10 @@ https://conda.anaconda.org/conda-forge/noarch/toml-0.10.2-pyhd8ed1ab_0.tar.bz2#f https://conda.anaconda.org/conda-forge/noarch/tomli-2.0.2-pyhd8ed1ab_0.conda#e977934e00b355ff55ed154904044727 https://conda.anaconda.org/conda-forge/win-64/tornado-6.4.1-py39ha55e580_1.conda#4a93d22ed5b2cede80fbee7f7f775a9d https://conda.anaconda.org/conda-forge/win-64/unicodedata2-15.1.0-py39ha55e580_1.conda#7b7e5732092b9a635440ec939e45651d -https://conda.anaconda.org/conda-forge/noarch/wheel-0.44.0-pyhd8ed1ab_0.conda#d44e3b085abcaef02983c6305b84b584 +https://conda.anaconda.org/conda-forge/noarch/wheel-0.45.0-pyhd8ed1ab_0.conda#f9751d7c71df27b2d29f5cab3378982e https://conda.anaconda.org/conda-forge/win-64/xorg-libxau-1.0.11-h0e40799_1.conda#ca66d6f8fe86dd53664e8de5087ef6b1 https://conda.anaconda.org/conda-forge/win-64/xorg-libxdmcp-1.1.5-h0e40799_0.conda#8393c0f7e7870b4eb45553326f81f0ff -https://conda.anaconda.org/conda-forge/noarch/zipp-3.20.2-pyhd8ed1ab_0.conda#4daaed111c05672ae669f7036ee5bba3 +https://conda.anaconda.org/conda-forge/noarch/zipp-3.21.0-pyhd8ed1ab_0.conda#fee389bf8a4843bd7a2248ce11b7f188 https://conda.anaconda.org/conda-forge/win-64/brotli-1.1.0-h2466b09_2.conda#378f1c9421775dfe644731cb121c8979 https://conda.anaconda.org/conda-forge/win-64/coverage-7.6.4-py39hf73967f_0.conda#7f2ad67ee529ce63fbb4e69949ee56a0 https://conda.anaconda.org/conda-forge/win-64/fontconfig-2.15.0-h765892d_1.conda#9bb0026a2131b09404c59c4290c697cd @@ -116,7 +116,7 @@ https://conda.anaconda.org/conda-forge/win-64/contourpy-1.3.0-py39h2b77a98_2.con https://conda.anaconda.org/conda-forge/win-64/harfbuzz-9.0.0-h2bedf89_1.conda#254f119aaed2c0be271c1114ae18d09b https://conda.anaconda.org/conda-forge/win-64/scipy-1.13.1-py39h1a10956_0.conda#9f8e571406af04d2f5fdcbecec704505 https://conda.anaconda.org/conda-forge/win-64/blas-2.125-mkl.conda#186eeb4e8ba0a5944775e04f241fc02a -https://conda.anaconda.org/conda-forge/win-64/matplotlib-base-3.9.2-py39h5376392_1.conda#6538e11505db6f3e1ee15a8207839f34 +https://conda.anaconda.org/conda-forge/win-64/matplotlib-base-3.9.2-py39h5376392_2.conda#2b323077fcb629f959cc42ad95b08030 https://conda.anaconda.org/conda-forge/win-64/qt6-main-6.8.0-hfb098fa_0.conda#053046ca73b71bbcc81c6dc114264d24 https://conda.anaconda.org/conda-forge/win-64/pyside6-6.8.0.2-py39h0285922_0.conda#07b75557409b6bdbaf723b1bc020afb5 -https://conda.anaconda.org/conda-forge/win-64/matplotlib-3.9.2-py39hcbf5309_1.conda#d14badfe4135e9bb2bec118bd3cff611 +https://conda.anaconda.org/conda-forge/win-64/matplotlib-3.9.2-py39hcbf5309_2.conda#669eb0180a4fa05503738dc02f9e3228 diff --git a/build_tools/azure/pymin_conda_forge_openblas_min_dependencies_linux-64_conda.lock b/build_tools/azure/pymin_conda_forge_openblas_min_dependencies_linux-64_conda.lock index 16de8b3604fe8..cc761ed52dfc0 100644 --- a/build_tools/azure/pymin_conda_forge_openblas_min_dependencies_linux-64_conda.lock +++ b/build_tools/azure/pymin_conda_forge_openblas_min_dependencies_linux-64_conda.lock @@ -19,7 +19,7 @@ https://conda.anaconda.org/conda-forge/noarch/fonts-conda-ecosystem-1-0.tar.bz2# https://conda.anaconda.org/conda-forge/linux-64/libegl-1.7.0-ha4b6fd6_1.conda#38a5cd3be5fb620b48069e27285f1a44 https://conda.anaconda.org/conda-forge/linux-64/libgcc-14.2.0-h77fa898_1.conda#3cb76c3f10d3bc7f1105b2fc9db984df https://conda.anaconda.org/conda-forge/linux-64/libdeflate-1.22-hb9d3cd8_0.conda#b422943d5d772b7cc858b36ad2a92db5 -https://conda.anaconda.org/conda-forge/linux-64/libexpat-2.6.3-h5888daf_0.conda#59f4c43bb1b5ef1c71946ff2cbf59524 +https://conda.anaconda.org/conda-forge/linux-64/libexpat-2.6.4-h5888daf_0.conda#db833e03127376d461e1e13e76f09b6c https://conda.anaconda.org/conda-forge/linux-64/libgcc-ng-14.2.0-h69a702a_1.conda#e39480b9ca41323497b05492a63bc35b https://conda.anaconda.org/conda-forge/linux-64/libgfortran5-14.2.0-hd5240d6_1.conda#9822b874ea29af082e5d36098d25427d https://conda.anaconda.org/conda-forge/linux-64/libstdcxx-14.2.0-hc0a3c3a_1.conda#234a5554c53625688d51062645337328 @@ -34,7 +34,7 @@ https://conda.anaconda.org/conda-forge/linux-64/xorg-xorgproto-2024.1-hb9d3cd8_1 https://conda.anaconda.org/conda-forge/linux-64/alsa-lib-1.2.12-h4ab18f5_0.conda#7ed427f0871fd41cb1d9c17727c17589 https://conda.anaconda.org/conda-forge/linux-64/attr-2.5.1-h166bdaf_1.tar.bz2#d9c69a24ad678ffce24c6543a0176b00 https://conda.anaconda.org/conda-forge/linux-64/bzip2-1.0.8-h4bc722e_7.conda#62ee74e96c5ebb0af99386de58cf9553 -https://conda.anaconda.org/conda-forge/linux-64/expat-2.6.3-h5888daf_0.conda#6595440079bed734b113de44ffd3cd0a +https://conda.anaconda.org/conda-forge/linux-64/expat-2.6.4-h5888daf_0.conda#1d6afef758879ef5ee78127eb4cd2c4a https://conda.anaconda.org/conda-forge/linux-64/gettext-tools-0.22.5-he02047a_3.conda#fcd2016d1d299f654f81021e27496818 https://conda.anaconda.org/conda-forge/linux-64/keyutils-1.6.1-h166bdaf_0.tar.bz2#30186d27e2c9fa62b45fb1476b7200e3 https://conda.anaconda.org/conda-forge/linux-64/lame-3.100-h166bdaf_1003.tar.bz2#a8832b479f93521a9e7b5b743803be51 @@ -136,7 +136,7 @@ https://conda.anaconda.org/conda-forge/noarch/toml-0.10.2-pyhd8ed1ab_0.tar.bz2#f https://conda.anaconda.org/conda-forge/noarch/tomli-2.0.2-pyhd8ed1ab_0.conda#e977934e00b355ff55ed154904044727 https://conda.anaconda.org/conda-forge/linux-64/tornado-6.4.1-py39h8cd3c5a_1.conda#48d269953fcddbbcde078429d4b27afe https://conda.anaconda.org/conda-forge/noarch/typing_extensions-4.12.2-pyha770c72_0.conda#ebe6952715e1d5eb567eeebf25250fa7 -https://conda.anaconda.org/conda-forge/noarch/wheel-0.44.0-pyhd8ed1ab_0.conda#d44e3b085abcaef02983c6305b84b584 +https://conda.anaconda.org/conda-forge/noarch/wheel-0.45.0-pyhd8ed1ab_0.conda#f9751d7c71df27b2d29f5cab3378982e https://conda.anaconda.org/conda-forge/linux-64/xorg-libxdamage-1.1.6-hb9d3cd8_0.conda#b5fcc7172d22516e1f965490e65e33a4 https://conda.anaconda.org/conda-forge/linux-64/xorg-libxxf86vm-1.1.5-hb9d3cd8_4.conda#7da9007c0582712c4bad4131f89c8372 https://conda.anaconda.org/conda-forge/linux-64/coverage-7.6.4-py39h9399b63_0.conda#997fc2d288ec458e692dfd784c173704 diff --git a/build_tools/azure/pymin_conda_forge_openblas_ubuntu_2204_linux-64_conda.lock b/build_tools/azure/pymin_conda_forge_openblas_ubuntu_2204_linux-64_conda.lock index 2924533aadbde..d8986e4f71f34 100644 --- a/build_tools/azure/pymin_conda_forge_openblas_ubuntu_2204_linux-64_conda.lock +++ b/build_tools/azure/pymin_conda_forge_openblas_ubuntu_2204_linux-64_conda.lock @@ -21,7 +21,7 @@ https://conda.anaconda.org/conda-forge/linux-64/libopengl-1.7.0-ha4b6fd6_1.conda https://conda.anaconda.org/conda-forge/linux-64/libgcc-14.2.0-h77fa898_1.conda#3cb76c3f10d3bc7f1105b2fc9db984df https://conda.anaconda.org/conda-forge/linux-64/libbrotlicommon-1.1.0-hb9d3cd8_2.conda#41b599ed2b02abcfdd84302bff174b23 https://conda.anaconda.org/conda-forge/linux-64/libdeflate-1.22-hb9d3cd8_0.conda#b422943d5d772b7cc858b36ad2a92db5 -https://conda.anaconda.org/conda-forge/linux-64/libexpat-2.6.3-h5888daf_0.conda#59f4c43bb1b5ef1c71946ff2cbf59524 +https://conda.anaconda.org/conda-forge/linux-64/libexpat-2.6.4-h5888daf_0.conda#db833e03127376d461e1e13e76f09b6c https://conda.anaconda.org/conda-forge/linux-64/libgcc-ng-14.2.0-h69a702a_1.conda#e39480b9ca41323497b05492a63bc35b https://conda.anaconda.org/conda-forge/linux-64/libgfortran5-14.2.0-hd5240d6_1.conda#9822b874ea29af082e5d36098d25427d https://conda.anaconda.org/conda-forge/linux-64/libstdcxx-14.2.0-hc0a3c3a_1.conda#234a5554c53625688d51062645337328 @@ -34,7 +34,7 @@ https://conda.anaconda.org/conda-forge/linux-64/xorg-libxdmcp-1.1.5-hb9d3cd8_0.c https://conda.anaconda.org/conda-forge/linux-64/xorg-xorgproto-2024.1-hb9d3cd8_1.conda#7c21106b851ec72c037b162c216d8f05 https://conda.anaconda.org/conda-forge/linux-64/alsa-lib-1.2.12-h4ab18f5_0.conda#7ed427f0871fd41cb1d9c17727c17589 https://conda.anaconda.org/conda-forge/linux-64/bzip2-1.0.8-h4bc722e_7.conda#62ee74e96c5ebb0af99386de58cf9553 -https://conda.anaconda.org/conda-forge/linux-64/expat-2.6.3-h5888daf_0.conda#6595440079bed734b113de44ffd3cd0a +https://conda.anaconda.org/conda-forge/linux-64/expat-2.6.4-h5888daf_0.conda#1d6afef758879ef5ee78127eb4cd2c4a https://conda.anaconda.org/conda-forge/linux-64/keyutils-1.6.1-h166bdaf_0.tar.bz2#30186d27e2c9fa62b45fb1476b7200e3 https://conda.anaconda.org/conda-forge/linux-64/libbrotlidec-1.1.0-hb9d3cd8_2.conda#9566f0bd264fbd463002e759b8a82401 https://conda.anaconda.org/conda-forge/linux-64/libbrotlienc-1.1.0-hb9d3cd8_2.conda#06f70867945ea6a84d35836af780f1de @@ -66,6 +66,7 @@ https://conda.anaconda.org/conda-forge/linux-64/lerc-4.0.0-h27087fc_0.tar.bz2#76 https://conda.anaconda.org/conda-forge/linux-64/libdrm-2.4.123-hb9d3cd8_0.conda#ee605e794bdc14e2b7f84c4faa0d8c2c https://conda.anaconda.org/conda-forge/linux-64/libedit-3.1.20191231-he28a2e2_2.tar.bz2#4d331e44109e3f0e19b4cb8f9b82f3e1 https://conda.anaconda.org/conda-forge/linux-64/libgfortran-ng-14.2.0-h69a702a_1.conda#0a7f4cd238267c88e5d69f7826a407eb +https://conda.anaconda.org/conda-forge/linux-64/libopenblas-0.3.28-pthreads_h94d23a6_1.conda#62857b389e42b36b686331bec0922050 https://conda.anaconda.org/conda-forge/linux-64/ninja-1.12.1-h297d8ca_0.conda#3aa1c7e292afeff25a0091ddd7c69b72 https://conda.anaconda.org/conda-forge/linux-64/pcre2-10.44-hba22ea6_2.conda#df359c09c41cd186fffb93a2d87aa6f5 https://conda.anaconda.org/conda-forge/linux-64/pixman-0.43.2-h59595ed_0.conda#71004cbf7924e19c02746ccde9fd7123 @@ -82,13 +83,14 @@ https://conda.anaconda.org/conda-forge/linux-64/zstd-1.5.6-ha6fb4c9_0.conda#4d05 https://conda.anaconda.org/conda-forge/linux-64/brotli-1.1.0-hb9d3cd8_2.conda#98514fe74548d768907ce7a13f680e8f https://conda.anaconda.org/conda-forge/linux-64/fontconfig-2.15.0-h7e30c49_1.conda#8f5b0b297b59e1ac160ad4beec99dbee https://conda.anaconda.org/conda-forge/linux-64/krb5-1.21.3-h659f571_0.conda#3f43953b7d3fb3aaa1d0d0723d91e368 +https://conda.anaconda.org/conda-forge/linux-64/libblas-3.9.0-25_linux64_openblas.conda#8ea26d42ca88ec5258802715fe1ee10b https://conda.anaconda.org/conda-forge/linux-64/libglib-2.82.2-h2ff4ddf_0.conda#13e8e54035ddd2b91875ba399f0f7c04 https://conda.anaconda.org/conda-forge/linux-64/libglx-1.7.0-ha4b6fd6_1.conda#80a57756c545ad11f9847835aa21e6b2 https://conda.anaconda.org/conda-forge/linux-64/libhiredis-1.0.2-h2cc385e_0.tar.bz2#b34907d3a81a3cd8095ee83d174c074a -https://conda.anaconda.org/conda-forge/linux-64/libopenblas-0.3.28-pthreads_h94d23a6_0.conda#9ebc9aedafaa2515ab247ff6bb509458 https://conda.anaconda.org/conda-forge/linux-64/libtiff-4.7.0-he137b08_1.conda#63872517c98aa305da58a757c443698e https://conda.anaconda.org/conda-forge/linux-64/libxml2-2.13.4-hb346dea_2.conda#69b90b70c434b916abf5a1d5ee5d55fb https://conda.anaconda.org/conda-forge/linux-64/mysql-libs-9.0.1-he0572af_2.conda#57a9e7ee3c0840d3c8c9012473978629 +https://conda.anaconda.org/conda-forge/linux-64/openblas-0.3.28-pthreads_h6ec200e_1.conda#8fe5d50db07e92519cc639cb0aef9b1b https://conda.anaconda.org/conda-forge/linux-64/python-3.9.20-h13acc7a_1_cpython.conda#951cff166a5f170e27908811917165f8 https://conda.anaconda.org/conda-forge/linux-64/xcb-util-image-0.4.0-hb711507_2.conda#a0901183f08b6c7107aab109733a3c91 https://conda.anaconda.org/conda-forge/linux-64/xkeyboard-config-2.43-hb9d3cd8_0.conda#f725c7425d6d7c15e31f3b99a88ea02f @@ -116,15 +118,15 @@ https://conda.anaconda.org/conda-forge/noarch/imagesize-1.4.1-pyhd8ed1ab_0.tar.b https://conda.anaconda.org/conda-forge/noarch/iniconfig-2.0.0-pyhd8ed1ab_0.conda#f800d2da156d08e289b14e87e43c1ae5 https://conda.anaconda.org/conda-forge/linux-64/kiwisolver-1.4.7-py39h74842e3_0.conda#1bf77976372ff6de02af7b75cf034ce5 https://conda.anaconda.org/conda-forge/linux-64/lcms2-2.16-hb7c19ff_0.conda#51bb7010fc86f70eee639b4bb7a894f5 -https://conda.anaconda.org/conda-forge/linux-64/libblas-3.9.0-25_linux64_openblas.conda#8ea26d42ca88ec5258802715fe1ee10b +https://conda.anaconda.org/conda-forge/linux-64/libcblas-3.9.0-25_linux64_openblas.conda#5dbd1b0fc0d01ec5e0e1fbe667281a11 https://conda.anaconda.org/conda-forge/linux-64/libcups-2.3.3-h4637d8d_4.conda#d4529f4dff3057982a7617c7ac58fde3 https://conda.anaconda.org/conda-forge/linux-64/libgl-1.7.0-ha4b6fd6_1.conda#204892bce2e44252b5cf272712f10bdd +https://conda.anaconda.org/conda-forge/linux-64/liblapack-3.9.0-25_linux64_openblas.conda#4dc03a53fc69371a6158d0ed37214cd3 https://conda.anaconda.org/conda-forge/linux-64/libllvm19-19.1.3-ha7bfdaf_0.conda#8bd654307c455162668cd66e36494000 https://conda.anaconda.org/conda-forge/linux-64/libxkbcommon-1.7.0-h2c5496b_1.conda#e2eaefa4de2b7237af7c907b8bbc760a https://conda.anaconda.org/conda-forge/linux-64/libxslt-1.1.39-h76b75d6_0.conda#e71f31f8cfb0a91439f2086fc8aa0461 https://conda.anaconda.org/conda-forge/linux-64/markupsafe-3.0.2-py39h9399b63_0.conda#d38773fed557834d3211e019b7cf7c2f https://conda.anaconda.org/conda-forge/noarch/munkres-1.1.4-pyh9f0ad1d_0.tar.bz2#2ba8498c1018c1e9c61eb99b973dfe19 -https://conda.anaconda.org/conda-forge/linux-64/openblas-0.3.28-pthreads_hbcdf1e8_0.conda#edb742fa7cd3fc5fbcbfc24135dcadd8 https://conda.anaconda.org/conda-forge/linux-64/openjpeg-2.5.2-h488ebb8_0.conda#7f2e286780f072ed750df46dc2631138 https://conda.anaconda.org/conda-forge/noarch/packaging-24.1-pyhd8ed1ab_0.conda#cbe1bb1f21567018ce595d9c2be0f0db https://conda.anaconda.org/conda-forge/noarch/pluggy-1.5.0-pyhd8ed1ab_0.conda#d3483c8fc2dc2cc3f5cf43e26d60cabf @@ -143,16 +145,16 @@ https://conda.anaconda.org/conda-forge/noarch/threadpoolctl-3.5.0-pyhc1e730c_0.c https://conda.anaconda.org/conda-forge/noarch/tomli-2.0.2-pyhd8ed1ab_0.conda#e977934e00b355ff55ed154904044727 https://conda.anaconda.org/conda-forge/linux-64/tornado-6.4.1-py39h8cd3c5a_1.conda#48d269953fcddbbcde078429d4b27afe https://conda.anaconda.org/conda-forge/linux-64/unicodedata2-15.1.0-py39h8cd3c5a_1.conda#6346898044e4387631c614290789a434 -https://conda.anaconda.org/conda-forge/noarch/wheel-0.44.0-pyhd8ed1ab_0.conda#d44e3b085abcaef02983c6305b84b584 +https://conda.anaconda.org/conda-forge/noarch/wheel-0.45.0-pyhd8ed1ab_0.conda#f9751d7c71df27b2d29f5cab3378982e https://conda.anaconda.org/conda-forge/linux-64/xcb-util-cursor-0.1.5-hb9d3cd8_0.conda#eb44b3b6deb1cab08d72cb61686fe64c https://conda.anaconda.org/conda-forge/linux-64/xorg-libxcomposite-0.4.6-hb9d3cd8_2.conda#d3c295b50f092ab525ffe3c2aa4b7413 -https://conda.anaconda.org/conda-forge/linux-64/xorg-libxcursor-1.2.2-hb9d3cd8_0.conda#bb2638cd7fbdd980b1cff9a99a6c1fa8 +https://conda.anaconda.org/conda-forge/linux-64/xorg-libxcursor-1.2.3-hb9d3cd8_0.conda#2ccd714aa2242315acaf0a67faea780b https://conda.anaconda.org/conda-forge/linux-64/xorg-libxdamage-1.1.6-hb9d3cd8_0.conda#b5fcc7172d22516e1f965490e65e33a4 https://conda.anaconda.org/conda-forge/linux-64/xorg-libxi-1.8.2-hb9d3cd8_0.conda#17dcc85db3c7886650b8908b183d6876 https://conda.anaconda.org/conda-forge/linux-64/xorg-libxrandr-1.5.4-hb9d3cd8_0.conda#2de7f99d6581a4a7adbff607b5c278ca https://conda.anaconda.org/conda-forge/linux-64/xorg-libxxf86vm-1.1.5-hb9d3cd8_4.conda#7da9007c0582712c4bad4131f89c8372 -https://conda.anaconda.org/conda-forge/noarch/zipp-3.20.2-pyhd8ed1ab_0.conda#4daaed111c05672ae669f7036ee5bba3 -https://conda.anaconda.org/conda-forge/noarch/babel-2.14.0-pyhd8ed1ab_0.conda#9669586875baeced8fc30c0826c3270e +https://conda.anaconda.org/conda-forge/noarch/zipp-3.21.0-pyhd8ed1ab_0.conda#fee389bf8a4843bd7a2248ce11b7f188 +https://conda.anaconda.org/conda-forge/noarch/babel-2.16.0-pyhd8ed1ab_0.conda#6d4e9ecca8d88977147e109fc7053184 https://conda.anaconda.org/conda-forge/linux-64/cffi-1.17.1-py39h15c3d72_0.conda#7e61b8777f42e00b08ff059f9e8ebc44 https://conda.anaconda.org/conda-forge/linux-64/fonttools-4.54.1-py39h9399b63_1.conda#1a4772f78ffa4675c84a4219db3934fd https://conda.anaconda.org/conda-forge/noarch/h2-4.1.0-pyhd8ed1ab_0.tar.bz2#b748fbf7060927a6e82df7cb5ee8f097 @@ -161,11 +163,11 @@ https://conda.anaconda.org/conda-forge/noarch/importlib-metadata-8.5.0-pyha770c7 https://conda.anaconda.org/conda-forge/noarch/importlib_resources-6.4.5-pyhd8ed1ab_0.conda#c808991d29b9838fb4d96ce8267ec9ec https://conda.anaconda.org/conda-forge/noarch/jinja2-3.1.4-pyhd8ed1ab_0.conda#7b86ecb7d3557821c649b3c31e3eb9f2 https://conda.anaconda.org/conda-forge/noarch/joblib-1.4.2-pyhd8ed1ab_0.conda#25df261d4523d9f9783bcdb7208d872f -https://conda.anaconda.org/conda-forge/linux-64/libcblas-3.9.0-25_linux64_openblas.conda#5dbd1b0fc0d01ec5e0e1fbe667281a11 https://conda.anaconda.org/conda-forge/linux-64/libclang-cpp19.1-19.1.3-default_hb5137d0_0.conda#311e6a1d041db3d6a8a8437750d4234f https://conda.anaconda.org/conda-forge/linux-64/libclang13-19.1.3-default_h9c6a7e4_0.conda#b8a8cd77810b20754f358f2327812552 -https://conda.anaconda.org/conda-forge/linux-64/liblapack-3.9.0-25_linux64_openblas.conda#4dc03a53fc69371a6158d0ed37214cd3 +https://conda.anaconda.org/conda-forge/linux-64/liblapacke-3.9.0-25_linux64_openblas.conda#8f5ead31b3a168aedd488b8a87736c41 https://conda.anaconda.org/conda-forge/noarch/meson-1.6.0-pyhd8ed1ab_0.conda#380ba6a3eddd8e7649bfe8e6812611aa +https://conda.anaconda.org/conda-forge/linux-64/numpy-2.0.2-py39h9cb892a_0.conda#ed28982e8b085c5d47361fc4af0902ac https://conda.anaconda.org/conda-forge/linux-64/openldap-2.6.8-hedd0468_0.conda#dcd0ed5147d8876b0848a552b416ce76 https://conda.anaconda.org/conda-forge/linux-64/pillow-11.0.0-py39h538c539_0.conda#a2bafdf8ae51c9eb6e5be684cfcedd60 https://conda.anaconda.org/conda-forge/noarch/pip-24.3.1-pyh8b19718_0.conda#5dd546fe99b44fda83963d15f84263b7 @@ -173,25 +175,23 @@ https://conda.anaconda.org/conda-forge/noarch/pyproject-metadata-0.9.0-pyh2cfa8a https://conda.anaconda.org/conda-forge/noarch/pytest-8.3.3-pyhd8ed1ab_0.conda#c03d61f31f38fdb9facf70c29958bf7a https://conda.anaconda.org/conda-forge/noarch/python-dateutil-2.9.0-pyhd8ed1ab_0.conda#2cf4264fffb9e6eff6031c5b6884d61c https://conda.anaconda.org/conda-forge/linux-64/xorg-libxtst-1.2.5-hb9d3cd8_3.conda#7bbe9a0cc0df0ac5f5a8ad6d6a11af2f +https://conda.anaconda.org/conda-forge/linux-64/blas-devel-3.9.0-25_linux64_openblas.conda#02c516384c77f5a7b4d03ed6c0412c57 +https://conda.anaconda.org/conda-forge/linux-64/contourpy-1.3.0-py39h74842e3_2.conda#5645190ef7f6d3aebee71e298dc9677b https://conda.anaconda.org/conda-forge/noarch/importlib-resources-6.4.5-pyhd8ed1ab_0.conda#67f4772681cf86652f3e2261794cf045 -https://conda.anaconda.org/conda-forge/linux-64/liblapacke-3.9.0-25_linux64_openblas.conda#8f5ead31b3a168aedd488b8a87736c41 https://conda.anaconda.org/conda-forge/linux-64/libpq-17.0-h04577a9_4.conda#392cae2a58fbcb9db8c2147c6d6d1620 https://conda.anaconda.org/conda-forge/noarch/meson-python-0.17.1-pyh70fd9c4_0.conda#722b649da38842068d83b6e6770f11a1 -https://conda.anaconda.org/conda-forge/linux-64/numpy-2.0.2-py39h9cb892a_0.conda#ed28982e8b085c5d47361fc4af0902ac -https://conda.anaconda.org/conda-forge/noarch/pytest-xdist-3.6.1-pyhd8ed1ab_0.conda#b39568655c127a9c4a44d178ac99b6d0 -https://conda.anaconda.org/conda-forge/linux-64/zstandard-0.23.0-py39h08a7858_1.conda#cd9fa334e11886738f17254f52210bc3 -https://conda.anaconda.org/conda-forge/linux-64/blas-devel-3.9.0-25_linux64_openblas.conda#02c516384c77f5a7b4d03ed6c0412c57 -https://conda.anaconda.org/conda-forge/linux-64/contourpy-1.3.0-py39h74842e3_2.conda#5645190ef7f6d3aebee71e298dc9677b https://conda.anaconda.org/conda-forge/linux-64/pandas-2.2.3-py39h3b40f6f_1.conda#d07f482720066758dad87cf90b3de111 -https://conda.anaconda.org/conda-forge/linux-64/qt6-main-6.8.0-h6e8976b_0.conda#6d1c5d2d904d24c17cbb538a95855a4e +https://conda.anaconda.org/conda-forge/noarch/pytest-xdist-3.6.1-pyhd8ed1ab_0.conda#b39568655c127a9c4a44d178ac99b6d0 https://conda.anaconda.org/conda-forge/linux-64/scipy-1.13.1-py39haf93ffa_0.conda#492a2cd65862d16a4aaf535ae9ccb761 -https://conda.anaconda.org/conda-forge/noarch/urllib3-2.2.3-pyhd8ed1ab_0.conda#6b55867f385dd762ed99ea687af32a69 +https://conda.anaconda.org/conda-forge/linux-64/zstandard-0.23.0-py39h08a7858_1.conda#cd9fa334e11886738f17254f52210bc3 https://conda.anaconda.org/conda-forge/linux-64/blas-2.125-openblas.conda#0c46b8a31a587738befc587dd8e52558 -https://conda.anaconda.org/conda-forge/linux-64/matplotlib-base-3.9.2-py39h16632d1_1.conda#83d48ae12dfd01615013e2e8ace6ff86 +https://conda.anaconda.org/conda-forge/linux-64/matplotlib-base-3.9.2-py39h16632d1_2.conda#2f00d5e3236a78a1ce8d84e2334f0ec8 https://conda.anaconda.org/conda-forge/linux-64/pyamg-5.2.1-py39hf59e57a_1.conda#720dbce3188cecd95fc26525394d1e65 +https://conda.anaconda.org/conda-forge/linux-64/qt6-main-6.8.0-h6e8976b_0.conda#6d1c5d2d904d24c17cbb538a95855a4e +https://conda.anaconda.org/conda-forge/noarch/urllib3-2.2.3-pyhd8ed1ab_0.conda#6b55867f385dd762ed99ea687af32a69 https://conda.anaconda.org/conda-forge/linux-64/pyside6-6.8.0.2-py39h0383914_0.conda#b93573a620eb5396f0196e6267490738 https://conda.anaconda.org/conda-forge/noarch/requests-2.32.3-pyhd8ed1ab_0.conda#5ede4753180c7a550a443c430dc8ab52 -https://conda.anaconda.org/conda-forge/linux-64/matplotlib-3.9.2-py39hf3d152e_1.conda#18df8fd10aeee04b1721c2efbf95c8cd +https://conda.anaconda.org/conda-forge/linux-64/matplotlib-3.9.2-py39hf3d152e_2.conda#01ba5041c1109e21fdac78c5d108bf2e https://conda.anaconda.org/conda-forge/noarch/numpydoc-1.8.0-pyhd8ed1ab_0.conda#0a5522bdd3983c52102e75d1307ad8c4 https://conda.anaconda.org/conda-forge/noarch/sphinxcontrib-applehelp-2.0.0-pyhd8ed1ab_0.conda#9075bd8c033f0257122300db914e49c9 https://conda.anaconda.org/conda-forge/noarch/sphinxcontrib-devhelp-2.0.0-pyhd8ed1ab_0.conda#b3bcc38c471ebb738854f52a36059b48 diff --git a/build_tools/azure/ubuntu_atlas_lock.txt b/build_tools/azure/ubuntu_atlas_lock.txt index 6a79490ba6c66..0d0d0ea9fe451 100644 --- a/build_tools/azure/ubuntu_atlas_lock.txt +++ b/build_tools/azure/ubuntu_atlas_lock.txt @@ -20,7 +20,7 @@ meson-python==0.17.1 # via -r build_tools/azure/ubuntu_atlas_requirements.txt ninja==1.11.1.1 # via -r build_tools/azure/ubuntu_atlas_requirements.txt -packaging==24.1 +packaging==24.2 # via # meson-python # pyproject-metadata diff --git a/build_tools/circle/doc_linux-64_conda.lock b/build_tools/circle/doc_linux-64_conda.lock index c6bda359eacdb..977129629017d 100644 --- a/build_tools/circle/doc_linux-64_conda.lock +++ b/build_tools/circle/doc_linux-64_conda.lock @@ -29,7 +29,7 @@ https://conda.anaconda.org/conda-forge/linux-64/binutils_linux-64-2.43-h4852527_ https://conda.anaconda.org/conda-forge/linux-64/libgcc-14.2.0-h77fa898_1.conda#3cb76c3f10d3bc7f1105b2fc9db984df https://conda.anaconda.org/conda-forge/linux-64/libbrotlicommon-1.1.0-hb9d3cd8_2.conda#41b599ed2b02abcfdd84302bff174b23 https://conda.anaconda.org/conda-forge/linux-64/libdeflate-1.22-hb9d3cd8_0.conda#b422943d5d772b7cc858b36ad2a92db5 -https://conda.anaconda.org/conda-forge/linux-64/libexpat-2.6.3-h5888daf_0.conda#59f4c43bb1b5ef1c71946ff2cbf59524 +https://conda.anaconda.org/conda-forge/linux-64/libexpat-2.6.4-h5888daf_0.conda#db833e03127376d461e1e13e76f09b6c https://conda.anaconda.org/conda-forge/linux-64/libgcc-ng-14.2.0-h69a702a_1.conda#e39480b9ca41323497b05492a63bc35b https://conda.anaconda.org/conda-forge/linux-64/libgfortran5-14.2.0-hd5240d6_1.conda#9822b874ea29af082e5d36098d25427d https://conda.anaconda.org/conda-forge/linux-64/libstdcxx-14.2.0-hc0a3c3a_1.conda#234a5554c53625688d51062645337328 @@ -43,7 +43,7 @@ https://conda.anaconda.org/conda-forge/linux-64/xorg-xorgproto-2024.1-hb9d3cd8_1 https://conda.anaconda.org/conda-forge/linux-64/alsa-lib-1.2.12-h4ab18f5_0.conda#7ed427f0871fd41cb1d9c17727c17589 https://conda.anaconda.org/conda-forge/linux-64/bzip2-1.0.8-h4bc722e_7.conda#62ee74e96c5ebb0af99386de58cf9553 https://conda.anaconda.org/conda-forge/linux-64/dav1d-1.2.1-hd590300_0.conda#418c6ca5929a611cbd69204907a83995 -https://conda.anaconda.org/conda-forge/linux-64/expat-2.6.3-h5888daf_0.conda#6595440079bed734b113de44ffd3cd0a +https://conda.anaconda.org/conda-forge/linux-64/expat-2.6.4-h5888daf_0.conda#1d6afef758879ef5ee78127eb4cd2c4a https://conda.anaconda.org/conda-forge/linux-64/giflib-5.2.2-hd590300_0.conda#3bf7b9fd5a7136126e0234db4b87c8b6 https://conda.anaconda.org/conda-forge/linux-64/jxrlib-1.1-hd590300_3.conda#5aeabe88534ea4169d4c49998f293d6c https://conda.anaconda.org/conda-forge/linux-64/keyutils-1.6.1-h166bdaf_0.tar.bz2#30186d27e2c9fa62b45fb1476b7200e3 @@ -188,7 +188,7 @@ https://conda.anaconda.org/conda-forge/noarch/tomli-2.0.2-pyhd8ed1ab_0.conda#e97 https://conda.anaconda.org/conda-forge/linux-64/tornado-6.4.1-py39h8cd3c5a_1.conda#48d269953fcddbbcde078429d4b27afe https://conda.anaconda.org/conda-forge/noarch/typing_extensions-4.12.2-pyha770c72_0.conda#ebe6952715e1d5eb567eeebf25250fa7 https://conda.anaconda.org/conda-forge/linux-64/unicodedata2-15.1.0-py39h8cd3c5a_1.conda#6346898044e4387631c614290789a434 -https://conda.anaconda.org/conda-forge/noarch/wheel-0.44.0-pyhd8ed1ab_0.conda#d44e3b085abcaef02983c6305b84b584 +https://conda.anaconda.org/conda-forge/noarch/wheel-0.45.0-pyhd8ed1ab_0.conda#f9751d7c71df27b2d29f5cab3378982e https://conda.anaconda.org/conda-forge/linux-64/xcb-util-cursor-0.1.5-hb9d3cd8_0.conda#eb44b3b6deb1cab08d72cb61686fe64c https://conda.anaconda.org/conda-forge/linux-64/xorg-libxcomposite-0.4.6-hb9d3cd8_2.conda#d3c295b50f092ab525ffe3c2aa4b7413 https://conda.anaconda.org/conda-forge/linux-64/xorg-libxcursor-1.2.3-hb9d3cd8_0.conda#2ccd714aa2242315acaf0a67faea780b @@ -196,7 +196,7 @@ https://conda.anaconda.org/conda-forge/linux-64/xorg-libxdamage-1.1.6-hb9d3cd8_0 https://conda.anaconda.org/conda-forge/linux-64/xorg-libxi-1.8.2-hb9d3cd8_0.conda#17dcc85db3c7886650b8908b183d6876 https://conda.anaconda.org/conda-forge/linux-64/xorg-libxrandr-1.5.4-hb9d3cd8_0.conda#2de7f99d6581a4a7adbff607b5c278ca https://conda.anaconda.org/conda-forge/linux-64/xorg-libxxf86vm-1.1.5-hb9d3cd8_4.conda#7da9007c0582712c4bad4131f89c8372 -https://conda.anaconda.org/conda-forge/noarch/zipp-3.20.2-pyhd8ed1ab_0.conda#4daaed111c05672ae669f7036ee5bba3 +https://conda.anaconda.org/conda-forge/noarch/zipp-3.21.0-pyhd8ed1ab_0.conda#fee389bf8a4843bd7a2248ce11b7f188 https://conda.anaconda.org/conda-forge/noarch/accessible-pygments-0.0.5-pyhd8ed1ab_0.conda#1bb1ef9806a9a20872434f58b3e7fc1a https://conda.anaconda.org/conda-forge/noarch/babel-2.16.0-pyhd8ed1ab_0.conda#6d4e9ecca8d88977147e109fc7053184 https://conda.anaconda.org/conda-forge/noarch/beautifulsoup4-4.12.3-pyha770c72_0.conda#332493000404d8411859539a5a630865 @@ -242,7 +242,7 @@ https://conda.anaconda.org/conda-forge/linux-64/scipy-1.13.1-py39haf93ffa_0.cond https://conda.anaconda.org/conda-forge/linux-64/zstandard-0.23.0-py39h08a7858_1.conda#cd9fa334e11886738f17254f52210bc3 https://conda.anaconda.org/conda-forge/linux-64/blas-2.125-openblas.conda#0c46b8a31a587738befc587dd8e52558 https://conda.anaconda.org/conda-forge/noarch/lazy_loader-0.4-pyhd8ed1ab_1.conda#ec6f70b8a5242936567d4f886726a372 -https://conda.anaconda.org/conda-forge/linux-64/matplotlib-base-3.9.2-py39h16632d1_1.conda#83d48ae12dfd01615013e2e8ace6ff86 +https://conda.anaconda.org/conda-forge/linux-64/matplotlib-base-3.9.2-py39h16632d1_2.conda#2f00d5e3236a78a1ce8d84e2334f0ec8 https://conda.anaconda.org/conda-forge/linux-64/pyamg-5.2.1-py39hf59e57a_1.conda#720dbce3188cecd95fc26525394d1e65 https://conda.anaconda.org/conda-forge/linux-64/qt6-main-6.8.0-h6e8976b_0.conda#6d1c5d2d904d24c17cbb538a95855a4e https://conda.anaconda.org/conda-forge/linux-64/statsmodels-0.14.4-py39hf3d9206_0.conda#f633ed7c19e120b9e6c0efb79f20a53f @@ -253,7 +253,7 @@ https://conda.anaconda.org/conda-forge/linux-64/pyside6-6.8.0.2-py39h0383914_0.c https://conda.anaconda.org/conda-forge/noarch/requests-2.32.3-pyhd8ed1ab_0.conda#5ede4753180c7a550a443c430dc8ab52 https://conda.anaconda.org/conda-forge/linux-64/scikit-image-0.24.0-py39h3b40f6f_3.conda#63666cfacc4dc32c8b2ff49705988f92 https://conda.anaconda.org/conda-forge/noarch/seaborn-base-0.13.2-pyhd8ed1ab_2.conda#b713b116feaf98acdba93ad4d7f90ca1 -https://conda.anaconda.org/conda-forge/linux-64/matplotlib-3.9.2-py39hf3d152e_1.conda#18df8fd10aeee04b1721c2efbf95c8cd +https://conda.anaconda.org/conda-forge/linux-64/matplotlib-3.9.2-py39hf3d152e_2.conda#01ba5041c1109e21fdac78c5d108bf2e https://conda.anaconda.org/conda-forge/noarch/pooch-1.8.2-pyhd8ed1ab_0.conda#8dab97d8a9616e07d779782995710aed https://conda.anaconda.org/conda-forge/noarch/seaborn-0.13.2-hd8ed1ab_2.conda#a79d8797f62715255308d92d3a91ef2e https://conda.anaconda.org/conda-forge/noarch/numpydoc-1.8.0-pyhd8ed1ab_0.conda#0a5522bdd3983c52102e75d1307ad8c4 @@ -275,7 +275,7 @@ https://conda.anaconda.org/conda-forge/noarch/sphinxext-opengraph-0.9.1-pyhd8ed1 # pip defusedxml @ https://files.pythonhosted.org/packages/07/6c/aa3f2f849e01cb6a001cd8554a88d4c77c5c1a31c95bdf1cf9301e6d9ef4/defusedxml-0.7.1-py2.py3-none-any.whl#sha256=a352e7e428770286cc899e2542b6cdaedb2b4953ff269a210103ec58f6198a61 # pip fastjsonschema @ https://files.pythonhosted.org/packages/6d/ca/086311cdfc017ec964b2436fe0c98c1f4efcb7e4c328956a22456e497655/fastjsonschema-2.20.0-py3-none-any.whl#sha256=5875f0b0fa7a0043a91e93a9b8f793bcbbba9691e7fd83dca95c28ba26d21f0a # pip fqdn @ https://files.pythonhosted.org/packages/cf/58/8acf1b3e91c58313ce5cb67df61001fc9dcd21be4fadb76c1a2d540e09ed/fqdn-1.5.1-py3-none-any.whl#sha256=3a179af3761e4df6eb2e026ff9e1a3033d3587bf980a0b1b2e1e5d08d7358014 -# pip json5 @ https://files.pythonhosted.org/packages/8a/3c/4f8791ee53ab9eeb0b022205aa79387119a74cc9429582ce04098e6fc540/json5-0.9.25-py3-none-any.whl#sha256=34ed7d834b1341a86987ed52f3f76cd8ee184394906b6e22a1e0deb9ab294e8f +# pip json5 @ https://files.pythonhosted.org/packages/a1/55/4bd7bcf5be870b5806cab717d68fbf26a8d1bf54583337950c70f0dc729b/json5-0.9.27-py3-none-any.whl#sha256=17b43d78d3a6daeca4d7030e9bf22092dba29b1282cc2d0cfa56f6febee8dc93 # pip jsonpointer @ https://files.pythonhosted.org/packages/71/92/5e77f98553e9e75130c78900d000368476aed74276eb8ae8796f65f00918/jsonpointer-3.0.0-py2.py3-none-any.whl#sha256=13e088adc14fca8b6aa8177c044e12701e6ad4b28ff10e65f2267a90109c9942 # pip jupyterlab-pygments @ https://files.pythonhosted.org/packages/b1/dd/ead9d8ea85bf202d90cc513b533f9c363121c7792674f78e0d8a854b63b4/jupyterlab_pygments-0.3.0-py3-none-any.whl#sha256=841a89020971da1d8693f1a99997aefc5dc424bb1b251fd6322462a1b8842780 # pip libsass @ https://files.pythonhosted.org/packages/fd/5a/eb5b62641df0459a3291fc206cf5bd669c0feed7814dded8edef4ade8512/libsass-0.23.0-cp38-abi3-manylinux_2_5_x86_64.manylinux1_x86_64.whl#sha256=4a218406d605f325d234e4678bd57126a66a88841cb95bee2caeafdc6f138306 @@ -314,7 +314,7 @@ https://conda.anaconda.org/conda-forge/noarch/sphinxext-opengraph-0.9.1-pyhd8ed1 # pip jsonschema-specifications @ https://files.pythonhosted.org/packages/d1/0f/8910b19ac0670a0f80ce1008e5e751c4a57e14d2c4c13a482aa6079fa9d6/jsonschema_specifications-2024.10.1-py3-none-any.whl#sha256=a09a0680616357d9a0ecf05c12ad234479f549239d0f5b55f3deea67475da9bf # pip jupyter-client @ https://files.pythonhosted.org/packages/11/85/b0394e0b6fcccd2c1eeefc230978a6f8cb0c5df1e4cd3e7625735a0d7d1e/jupyter_client-8.6.3-py3-none-any.whl#sha256=e8a19cc986cc45905ac3362915f410f3af85424b4c0905e94fa5f2cb08e8f23f # pip jupyter-server-terminals @ https://files.pythonhosted.org/packages/07/2d/2b32cdbe8d2a602f697a649798554e4f072115438e92249624e532e8aca6/jupyter_server_terminals-0.5.3-py3-none-any.whl#sha256=41ee0d7dc0ebf2809c668e0fc726dfaf258fcd3e769568996ca731b6194ae9aa -# pip jupyterlite-core @ https://files.pythonhosted.org/packages/3a/d9/ca90f3136565863ae3ddc445a38c965124655010b0102c409cbd31151161/jupyterlite_core-0.4.3-py3-none-any.whl#sha256=1922530b04196c985b69cfdf94654c64ca55598cd69b4214442579fef51c9877 +# pip jupyterlite-core @ https://files.pythonhosted.org/packages/35/ae/32b4040a66b8a2980d3581516478d0e258ec0627db34fcbfdf9373bce317/jupyterlite_core-0.4.4-py3-none-any.whl#sha256=cb64b5649c8171027cfaceed7d1615098a5c6db270cb8be281ca3f4b6caa4094 # pip jsonschema @ https://files.pythonhosted.org/packages/69/4a/4f9dbeb84e8850557c02365a0eee0649abe5eb1d84af92a25731c6c0f922/jsonschema-4.23.0-py3-none-any.whl#sha256=fbadb6f8b144a8f8cf9f0b89ba94501d143e50411a1278633f56a7acf7fd5566 # pip jupyterlite-pyodide-kernel @ https://files.pythonhosted.org/packages/ea/f1/bd65f1fe3b9535f5aa00d89ed2b2bf3cf4cff39273a3e7dac97e890141cd/jupyterlite_pyodide_kernel-0.4.3-py3-none-any.whl#sha256=88ddfddb2c17d71db0180c1a5b335213bd2fd1d8a964b84c3b69dda1f949dfad # pip jupyter-events @ https://files.pythonhosted.org/packages/a5/94/059180ea70a9a326e1815176b2370da56376da347a796f8c4f0b830208ef/jupyter_events-0.10.0-py3-none-any.whl#sha256=4b72130875e59d57716d327ea70d3ebc3af1944d3717e5a498b8a06c6c159960 diff --git a/build_tools/circle/doc_min_dependencies_linux-64_conda.lock b/build_tools/circle/doc_min_dependencies_linux-64_conda.lock index ec206ad2138b2..42af5bd1a5a72 100644 --- a/build_tools/circle/doc_min_dependencies_linux-64_conda.lock +++ b/build_tools/circle/doc_min_dependencies_linux-64_conda.lock @@ -29,7 +29,7 @@ https://conda.anaconda.org/conda-forge/linux-64/binutils_linux-64-2.43-h4852527_ https://conda.anaconda.org/conda-forge/linux-64/libgcc-14.2.0-h77fa898_1.conda#3cb76c3f10d3bc7f1105b2fc9db984df https://conda.anaconda.org/conda-forge/linux-64/libbrotlicommon-1.1.0-hb9d3cd8_2.conda#41b599ed2b02abcfdd84302bff174b23 https://conda.anaconda.org/conda-forge/linux-64/libdeflate-1.22-hb9d3cd8_0.conda#b422943d5d772b7cc858b36ad2a92db5 -https://conda.anaconda.org/conda-forge/linux-64/libexpat-2.6.3-h5888daf_0.conda#59f4c43bb1b5ef1c71946ff2cbf59524 +https://conda.anaconda.org/conda-forge/linux-64/libexpat-2.6.4-h5888daf_0.conda#db833e03127376d461e1e13e76f09b6c https://conda.anaconda.org/conda-forge/linux-64/libgcc-ng-14.2.0-h69a702a_1.conda#e39480b9ca41323497b05492a63bc35b https://conda.anaconda.org/conda-forge/linux-64/libgfortran5-14.2.0-hd5240d6_1.conda#9822b874ea29af082e5d36098d25427d https://conda.anaconda.org/conda-forge/linux-64/libstdcxx-14.2.0-hc0a3c3a_1.conda#234a5554c53625688d51062645337328 @@ -45,7 +45,7 @@ https://conda.anaconda.org/conda-forge/linux-64/alsa-lib-1.2.12-h4ab18f5_0.conda https://conda.anaconda.org/conda-forge/linux-64/attr-2.5.1-h166bdaf_1.tar.bz2#d9c69a24ad678ffce24c6543a0176b00 https://conda.anaconda.org/conda-forge/linux-64/bzip2-1.0.8-h4bc722e_7.conda#62ee74e96c5ebb0af99386de58cf9553 https://conda.anaconda.org/conda-forge/linux-64/dav1d-1.2.1-hd590300_0.conda#418c6ca5929a611cbd69204907a83995 -https://conda.anaconda.org/conda-forge/linux-64/expat-2.6.3-h5888daf_0.conda#6595440079bed734b113de44ffd3cd0a +https://conda.anaconda.org/conda-forge/linux-64/expat-2.6.4-h5888daf_0.conda#1d6afef758879ef5ee78127eb4cd2c4a https://conda.anaconda.org/conda-forge/linux-64/gettext-tools-0.22.5-he02047a_3.conda#fcd2016d1d299f654f81021e27496818 https://conda.anaconda.org/conda-forge/linux-64/giflib-5.2.2-hd590300_0.conda#3bf7b9fd5a7136126e0234db4b87c8b6 https://conda.anaconda.org/conda-forge/linux-64/jxrlib-1.1-hd590300_3.conda#5aeabe88534ea4169d4c49998f293d6c @@ -201,10 +201,10 @@ https://conda.anaconda.org/conda-forge/noarch/tomli-2.0.2-pyhd8ed1ab_0.conda#e97 https://conda.anaconda.org/conda-forge/noarch/toolz-1.0.0-pyhd8ed1ab_0.conda#34feccdd4177f2d3d53c73fc44fd9a37 https://conda.anaconda.org/conda-forge/linux-64/tornado-6.4.1-py39h8cd3c5a_1.conda#48d269953fcddbbcde078429d4b27afe https://conda.anaconda.org/conda-forge/noarch/typing_extensions-4.12.2-pyha770c72_0.conda#ebe6952715e1d5eb567eeebf25250fa7 -https://conda.anaconda.org/conda-forge/noarch/wheel-0.44.0-pyhd8ed1ab_0.conda#d44e3b085abcaef02983c6305b84b584 +https://conda.anaconda.org/conda-forge/noarch/wheel-0.45.0-pyhd8ed1ab_0.conda#f9751d7c71df27b2d29f5cab3378982e https://conda.anaconda.org/conda-forge/linux-64/xorg-libxdamage-1.1.6-hb9d3cd8_0.conda#b5fcc7172d22516e1f965490e65e33a4 https://conda.anaconda.org/conda-forge/linux-64/xorg-libxxf86vm-1.1.5-hb9d3cd8_4.conda#7da9007c0582712c4bad4131f89c8372 -https://conda.anaconda.org/conda-forge/noarch/zipp-3.20.2-pyhd8ed1ab_0.conda#4daaed111c05672ae669f7036ee5bba3 +https://conda.anaconda.org/conda-forge/noarch/zipp-3.21.0-pyhd8ed1ab_0.conda#fee389bf8a4843bd7a2248ce11b7f188 https://conda.anaconda.org/conda-forge/noarch/accessible-pygments-0.0.5-pyhd8ed1ab_0.conda#1bb1ef9806a9a20872434f58b3e7fc1a https://conda.anaconda.org/conda-forge/noarch/babel-2.16.0-pyhd8ed1ab_0.conda#6d4e9ecca8d88977147e109fc7053184 https://conda.anaconda.org/conda-forge/noarch/beautifulsoup4-4.12.3-pyha770c72_0.conda#332493000404d8411859539a5a630865 From 5192cba97ac8a5c6505e75ac338e3be7f89b48d7 Mon Sep 17 00:00:00 2001 From: scikit-learn-bot Date: Tue, 12 Nov 2024 11:38:06 +0100 Subject: [PATCH 007/159] :lock: :robot: CI Update lock files for scipy-dev CI build(s) :lock: :robot: (#30260) Co-authored-by: Lock file bot --- build_tools/azure/pylatest_pip_scipy_dev_linux-64_conda.lock | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/build_tools/azure/pylatest_pip_scipy_dev_linux-64_conda.lock b/build_tools/azure/pylatest_pip_scipy_dev_linux-64_conda.lock index 2f704dfeadddd..8d834dcf0cc5e 100644 --- a/build_tools/azure/pylatest_pip_scipy_dev_linux-64_conda.lock +++ b/build_tools/azure/pylatest_pip_scipy_dev_linux-64_conda.lock @@ -41,7 +41,7 @@ https://repo.anaconda.com/pkgs/main/linux-64/pip-24.2-py313h06a4308_0.conda#59f8 # pip markupsafe @ https://files.pythonhosted.org/packages/0c/91/96cf928db8236f1bfab6ce15ad070dfdd02ed88261c2afafd4b43575e9e9/MarkupSafe-3.0.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl#sha256=15ab75ef81add55874e7ab7055e9c397312385bd9ced94920f2802310c930396 # pip meson @ https://files.pythonhosted.org/packages/76/73/3dc4edc855c9988ff05ea5590f5c7bda72b6e0d138b2ddc1fab92a1f242f/meson-1.6.0-py3-none-any.whl#sha256=234a45f9206c6ee33b473ec1baaef359d20c0b89a71871d58c65a6db6d98fe74 # pip ninja @ https://files.pythonhosted.org/packages/6d/92/8d7aebd4430ab5ff65df2bfee6d5745f95c004284db2d8ca76dcbfd9de47/ninja-1.11.1.1-py2.py3-none-manylinux1_x86_64.manylinux_2_5_x86_64.whl#sha256=84502ec98f02a037a169c4b0d5d86075eaf6afc55e1879003d6cab51ced2ea4b -# pip packaging @ https://files.pythonhosted.org/packages/08/aa/cc0199a5f0ad350994d660967a8efb233fe0416e4639146c089643407ce6/packaging-24.1-py3-none-any.whl#sha256=5b8f2217dbdbd2f7f384c41c628544e6d52f2d0f53c6d0c3ea61aa5d1d7ff124 +# pip packaging @ https://files.pythonhosted.org/packages/88/ef/eb23f262cca3c0c4eb7ab1933c3b1f03d021f2c48f54763065b6f0e321be/packaging-24.2-py3-none-any.whl#sha256=09abb1bccd265c01f4a3aa3f7a7db064b36514d2cba19a2f694fe6150451a759 # pip platformdirs @ https://files.pythonhosted.org/packages/3c/a6/bc1012356d8ece4d66dd75c4b9fc6c1f6650ddd5991e421177d9f8f671be/platformdirs-4.3.6-py3-none-any.whl#sha256=73e575e1408ab8103900836b97580d5307456908a03e92031bab39e4554cc3fb # pip pluggy @ https://files.pythonhosted.org/packages/88/5f/e351af9a41f866ac3f1fac4ca0613908d9a41741cfcf2228f4ad853b697d/pluggy-1.5.0-py3-none-any.whl#sha256=44e1ad92c8ca002de6377e165f3e0f1be63266ab4d554740532335b9d75ea669 # pip pygments @ https://files.pythonhosted.org/packages/f7/3f/01c8b82017c199075f8f788d0d906b9ffbbc5a47dc9918a945e13d5a2bda/pygments-2.18.0-py3-none-any.whl#sha256=b8e6aca0523f3ab76fee51799c488e38782ac06eafcf95e7ba832985c8e7b13a From e403017818df0563b0ba87b1b1e538e284d0a788 Mon Sep 17 00:00:00 2001 From: scikit-learn-bot Date: Tue, 12 Nov 2024 11:40:34 +0100 Subject: [PATCH 008/159] :lock: :robot: CI Update lock files for cirrus-arm CI build(s) :lock: :robot: (#30259) Co-authored-by: Lock file bot --- ...pymin_conda_forge_linux-aarch64_conda.lock | 34 +++++++++---------- 1 file changed, 17 insertions(+), 17 deletions(-) diff --git a/build_tools/cirrus/pymin_conda_forge_linux-aarch64_conda.lock b/build_tools/cirrus/pymin_conda_forge_linux-aarch64_conda.lock index 9b2b12078f0a5..6d73489dc34a6 100644 --- a/build_tools/cirrus/pymin_conda_forge_linux-aarch64_conda.lock +++ b/build_tools/cirrus/pymin_conda_forge_linux-aarch64_conda.lock @@ -20,7 +20,7 @@ https://conda.anaconda.org/conda-forge/noarch/fonts-conda-ecosystem-1-0.tar.bz2# https://conda.anaconda.org/conda-forge/linux-aarch64/libgcc-14.2.0-he277a41_1.conda#511b511c5445e324066c3377481bcab8 https://conda.anaconda.org/conda-forge/linux-aarch64/libbrotlicommon-1.1.0-h86ecc28_2.conda#3ee026955c688f551a9999840cff4c67 https://conda.anaconda.org/conda-forge/linux-aarch64/libdeflate-1.22-h86ecc28_0.conda#ff6a44e8b1707d02be2fe9a36ea88d4a -https://conda.anaconda.org/conda-forge/linux-aarch64/libexpat-2.6.3-h5ad3122_0.conda#1d2b842bb76e268625e8ee8d0a9fe8c3 +https://conda.anaconda.org/conda-forge/linux-aarch64/libexpat-2.6.4-h5ad3122_0.conda#f1b3fab36861b3ce945a13f0dfdfc688 https://conda.anaconda.org/conda-forge/linux-aarch64/libgcc-ng-14.2.0-he9431aa_1.conda#0694c249c61469f2c0f7e2990782af21 https://conda.anaconda.org/conda-forge/linux-aarch64/libgfortran5-14.2.0-hb6113d0_1.conda#fc068e11b10e18f184e027782baa12b6 https://conda.anaconda.org/conda-forge/linux-aarch64/libstdcxx-14.2.0-h3f4de04_1.conda#37f489acd39e22b623d2d1e5ac6d195c @@ -33,7 +33,7 @@ https://conda.anaconda.org/conda-forge/linux-aarch64/xorg-libxdmcp-1.1.5-h57736b https://conda.anaconda.org/conda-forge/linux-aarch64/xorg-xorgproto-2024.1-h86ecc28_1.conda#91cef7867bf2b47f614597b59705ff56 https://conda.anaconda.org/conda-forge/linux-aarch64/alsa-lib-1.2.12-h68df207_0.conda#65448d015f05afb3c68ea92d0483a466 https://conda.anaconda.org/conda-forge/linux-aarch64/bzip2-1.0.8-h68df207_7.conda#56398c28220513b9ea13d7b450acfb20 -https://conda.anaconda.org/conda-forge/linux-aarch64/expat-2.6.3-h5ad3122_0.conda#901a44b341632b0c233756ed5abcd78b +https://conda.anaconda.org/conda-forge/linux-aarch64/expat-2.6.4-h5ad3122_0.conda#e8f1d587055376ea2419cc78696abd0b https://conda.anaconda.org/conda-forge/linux-aarch64/keyutils-1.6.1-h4e544f5_0.tar.bz2#1f24853e59c68892452ef94ddd8afd4b https://conda.anaconda.org/conda-forge/linux-aarch64/libbrotlidec-1.1.0-h86ecc28_2.conda#e64d0f3b59c7c4047446b97a8624a72d https://conda.anaconda.org/conda-forge/linux-aarch64/libbrotlienc-1.1.0-h86ecc28_2.conda#0e9bd365480c72b25c71a448257b537d @@ -65,6 +65,7 @@ https://conda.anaconda.org/conda-forge/linux-aarch64/lerc-4.0.0-h4de3ea5_0.tar.b https://conda.anaconda.org/conda-forge/linux-aarch64/libdrm-2.4.123-h86ecc28_0.conda#4e3c67f6999ea7ccac41611f930d19d4 https://conda.anaconda.org/conda-forge/linux-aarch64/libedit-3.1.20191231-he28a2e2_2.tar.bz2#29371161d77933a54fccf1bb66b96529 https://conda.anaconda.org/conda-forge/linux-aarch64/libgfortran-ng-14.2.0-he9431aa_1.conda#5e90005d310d69708ba0aa7f4fed1de6 +https://conda.anaconda.org/conda-forge/linux-aarch64/libopenblas-0.3.28-pthreads_h9d3fd7e_1.conda#e8dde93dd199da3c1f2c1fcfd0042cd4 https://conda.anaconda.org/conda-forge/linux-aarch64/ninja-1.12.1-h70be974_0.conda#216635cea46498d8045c7cf0f03eaf72 https://conda.anaconda.org/conda-forge/linux-aarch64/pcre2-10.44-h070dd5b_2.conda#94022de9682cb1a0bb18a99cbc3541b3 https://conda.anaconda.org/conda-forge/linux-aarch64/pixman-0.43.4-h2f0025b_0.conda#81b2ddea4b0eca188da9c5a7aa4b0cff @@ -81,13 +82,14 @@ https://conda.anaconda.org/conda-forge/linux-aarch64/zstd-1.5.6-h02f22dd_0.conda https://conda.anaconda.org/conda-forge/linux-aarch64/brotli-1.1.0-h86ecc28_2.conda#5094acc34eb173f74205c0b55f0dd4a4 https://conda.anaconda.org/conda-forge/linux-aarch64/fontconfig-2.15.0-h8dda3cd_1.conda#112b71b6af28b47c624bcbeefeea685b https://conda.anaconda.org/conda-forge/linux-aarch64/krb5-1.21.3-h50a48e9_0.conda#29c10432a2ca1472b53f299ffb2ffa37 +https://conda.anaconda.org/conda-forge/linux-aarch64/libblas-3.9.0-25_linuxaarch64_openblas.conda#f9b8a4a955ed2d0b68b1f453abcc1c9e https://conda.anaconda.org/conda-forge/linux-aarch64/libglib-2.82.2-hc486b8e_0.conda#47f6d85fe47b865e56c539f2ba5f4dad https://conda.anaconda.org/conda-forge/linux-aarch64/libglx-1.7.0-hd24410f_1.conda#b4e4c7703e944564b512dabbcc1130d0 https://conda.anaconda.org/conda-forge/linux-aarch64/libhiredis-1.0.2-h05efe27_0.tar.bz2#a87f068744fd20334cd41489eb163bee -https://conda.anaconda.org/conda-forge/linux-aarch64/libopenblas-0.3.28-pthreads_h9d3fd7e_0.conda#554edd2031035f21b042fdbc74429774 https://conda.anaconda.org/conda-forge/linux-aarch64/libtiff-4.7.0-hec21d91_1.conda#1f80061f5ba6956fcdc381f34618cd8d https://conda.anaconda.org/conda-forge/linux-aarch64/libxml2-2.13.4-hf4efe5d_2.conda#0e28ab30d29c5a566d05bf73dfc5c184 https://conda.anaconda.org/conda-forge/linux-aarch64/mysql-libs-9.0.1-h11569fd_2.conda#94c70f21e0a1f8558941d901027215a4 +https://conda.anaconda.org/conda-forge/linux-aarch64/openblas-0.3.28-pthreads_h3a8cbd8_1.conda#d36b4f01d28df4f90c7e37adb8e9adb5 https://conda.anaconda.org/conda-forge/linux-aarch64/python-3.9.20-h4a649e4_1_cpython.conda#c2833e3d5a6d210ffb433cbd4a1cf174 https://conda.anaconda.org/conda-forge/linux-aarch64/xcb-util-image-0.4.0-h5c728e9_2.conda#b82e5c78dbbfa931980e8bfe83bce913 https://conda.anaconda.org/conda-forge/linux-aarch64/xkeyboard-config-2.43-h86ecc28_0.conda#a809b8e3776fbc05696c82f8cf6f5a92 @@ -107,14 +109,14 @@ https://conda.anaconda.org/conda-forge/noarch/execnet-2.1.1-pyhd8ed1ab_0.conda#1 https://conda.anaconda.org/conda-forge/noarch/iniconfig-2.0.0-pyhd8ed1ab_0.conda#f800d2da156d08e289b14e87e43c1ae5 https://conda.anaconda.org/conda-forge/linux-aarch64/kiwisolver-1.4.7-py39h78c8b8d_0.conda#8dc5516dd121089f14c1a557ecec3224 https://conda.anaconda.org/conda-forge/linux-aarch64/lcms2-2.16-h922389a_0.conda#ffdd8267a04c515e7ce69c727b051414 -https://conda.anaconda.org/conda-forge/linux-aarch64/libblas-3.9.0-25_linuxaarch64_openblas.conda#f9b8a4a955ed2d0b68b1f453abcc1c9e +https://conda.anaconda.org/conda-forge/linux-aarch64/libcblas-3.9.0-25_linuxaarch64_openblas.conda#db6af51123c67814572a8c25542cb368 https://conda.anaconda.org/conda-forge/linux-aarch64/libcups-2.3.3-h405e4a8_4.conda#d42c670b0c96c1795fd859d5e0275a55 https://conda.anaconda.org/conda-forge/linux-aarch64/libgl-1.7.0-hd24410f_1.conda#06cf88e73c69957c56318c6a1ccc5306 +https://conda.anaconda.org/conda-forge/linux-aarch64/liblapack-3.9.0-25_linuxaarch64_openblas.conda#0eb74e81de46454960bde9e44e7ee378 https://conda.anaconda.org/conda-forge/linux-aarch64/libllvm19-19.1.3-h2edbd07_0.conda#4f335bb2183b2a9a062518cbc079dc8b https://conda.anaconda.org/conda-forge/linux-aarch64/libxkbcommon-1.7.0-h46f2afe_1.conda#78a24e611ab9c09c518f519be49c2e46 https://conda.anaconda.org/conda-forge/linux-aarch64/libxslt-1.1.39-h1cc9640_0.conda#13e1d3f9188e85c6d59a98651aced002 https://conda.anaconda.org/conda-forge/noarch/munkres-1.1.4-pyh9f0ad1d_0.tar.bz2#2ba8498c1018c1e9c61eb99b973dfe19 -https://conda.anaconda.org/conda-forge/linux-aarch64/openblas-0.3.28-pthreads_h395f137_0.conda#ee90d0aeb560772351c2bb5628dea2fd https://conda.anaconda.org/conda-forge/linux-aarch64/openjpeg-2.5.2-h0d9d63b_0.conda#fd2898519e839d5ceb778343f39a3176 https://conda.anaconda.org/conda-forge/noarch/packaging-24.1-pyhd8ed1ab_0.conda#cbe1bb1f21567018ce595d9c2be0f0db https://conda.anaconda.org/conda-forge/noarch/pluggy-1.5.0-pyhd8ed1ab_0.conda#d3483c8fc2dc2cc3f5cf43e26d60cabf @@ -125,24 +127,24 @@ https://conda.anaconda.org/conda-forge/noarch/threadpoolctl-3.5.0-pyhc1e730c_0.c https://conda.anaconda.org/conda-forge/noarch/tomli-2.0.2-pyhd8ed1ab_0.conda#e977934e00b355ff55ed154904044727 https://conda.anaconda.org/conda-forge/linux-aarch64/tornado-6.4.1-py39h3e3acee_1.conda#a4d4b0a58bf2fadfa1285f4710b72f99 https://conda.anaconda.org/conda-forge/linux-aarch64/unicodedata2-15.1.0-py39h060674a_1.conda#22a119d3f80e6d91b28fbc49a3cc08b2 -https://conda.anaconda.org/conda-forge/noarch/wheel-0.44.0-pyhd8ed1ab_0.conda#d44e3b085abcaef02983c6305b84b584 +https://conda.anaconda.org/conda-forge/noarch/wheel-0.45.0-pyhd8ed1ab_0.conda#f9751d7c71df27b2d29f5cab3378982e https://conda.anaconda.org/conda-forge/linux-aarch64/xcb-util-cursor-0.1.5-h86ecc28_0.conda#d6bb2038d26fa118d5cbc2761116f3e5 https://conda.anaconda.org/conda-forge/linux-aarch64/xorg-libxcomposite-0.4.6-h86ecc28_2.conda#86051eee0766c3542be24844a9c3cf36 -https://conda.anaconda.org/conda-forge/linux-aarch64/xorg-libxcursor-1.2.2-h86ecc28_0.conda#d4e9a277c7bdba9464a52712d788226a +https://conda.anaconda.org/conda-forge/linux-aarch64/xorg-libxcursor-1.2.3-h86ecc28_0.conda#f2054759c2203d12d0007005e1f1296d https://conda.anaconda.org/conda-forge/linux-aarch64/xorg-libxdamage-1.1.6-h86ecc28_0.conda#d5773c4e4d64428d7ddaa01f6f845dc7 https://conda.anaconda.org/conda-forge/linux-aarch64/xorg-libxi-1.8.2-h57736b2_0.conda#eeee3bdb31c6acde2b81ad1b8c287087 https://conda.anaconda.org/conda-forge/linux-aarch64/xorg-libxrandr-1.5.4-h86ecc28_0.conda#dd3e74283a082381aa3860312e3c721e https://conda.anaconda.org/conda-forge/linux-aarch64/xorg-libxxf86vm-1.1.5-h57736b2_4.conda#82fa1f5642ef7ac7172e295327ce20e2 -https://conda.anaconda.org/conda-forge/noarch/zipp-3.20.2-pyhd8ed1ab_0.conda#4daaed111c05672ae669f7036ee5bba3 +https://conda.anaconda.org/conda-forge/noarch/zipp-3.21.0-pyhd8ed1ab_0.conda#fee389bf8a4843bd7a2248ce11b7f188 https://conda.anaconda.org/conda-forge/linux-aarch64/fonttools-4.54.1-py39hbebea31_1.conda#48e4d4179d70359d8d1fa6716467ef62 https://conda.anaconda.org/conda-forge/linux-aarch64/harfbuzz-9.0.0-hbf49d6b_1.conda#ceb458f664cab8550fcd74fff26451db https://conda.anaconda.org/conda-forge/noarch/importlib_resources-6.4.5-pyhd8ed1ab_0.conda#c808991d29b9838fb4d96ce8267ec9ec https://conda.anaconda.org/conda-forge/noarch/joblib-1.4.2-pyhd8ed1ab_0.conda#25df261d4523d9f9783bcdb7208d872f -https://conda.anaconda.org/conda-forge/linux-aarch64/libcblas-3.9.0-25_linuxaarch64_openblas.conda#db6af51123c67814572a8c25542cb368 https://conda.anaconda.org/conda-forge/linux-aarch64/libclang-cpp19.1-19.1.3-default_he324ac1_0.conda#9ac4956d6676bdb251279d8c27406954 https://conda.anaconda.org/conda-forge/linux-aarch64/libclang13-19.1.3-default_h4390ef5_0.conda#d23cae404c2763d07fee33a9299f2d63 -https://conda.anaconda.org/conda-forge/linux-aarch64/liblapack-3.9.0-25_linuxaarch64_openblas.conda#0eb74e81de46454960bde9e44e7ee378 +https://conda.anaconda.org/conda-forge/linux-aarch64/liblapacke-3.9.0-25_linuxaarch64_openblas.conda#1e68063075954830f707b41dab6c7fd8 https://conda.anaconda.org/conda-forge/noarch/meson-1.6.0-pyhd8ed1ab_0.conda#380ba6a3eddd8e7649bfe8e6812611aa +https://conda.anaconda.org/conda-forge/linux-aarch64/numpy-2.0.2-py39h4a34e27_0.conda#4d6edcc002364ced01e4fc947832eee6 https://conda.anaconda.org/conda-forge/linux-aarch64/openldap-2.6.8-h50f9a67_0.conda#6f6627099ae614fe176e162e6eeae240 https://conda.anaconda.org/conda-forge/linux-aarch64/pillow-11.0.0-py39hb20fde8_0.conda#78cdfe29a452feee8c5bd689c2c871bd https://conda.anaconda.org/conda-forge/noarch/pip-24.3.1-pyh8b19718_0.conda#5dd546fe99b44fda83963d15f84263b7 @@ -150,17 +152,15 @@ https://conda.anaconda.org/conda-forge/noarch/pyproject-metadata-0.9.0-pyh2cfa8a https://conda.anaconda.org/conda-forge/noarch/pytest-8.3.3-pyhd8ed1ab_0.conda#c03d61f31f38fdb9facf70c29958bf7a https://conda.anaconda.org/conda-forge/noarch/python-dateutil-2.9.0-pyhd8ed1ab_0.conda#2cf4264fffb9e6eff6031c5b6884d61c https://conda.anaconda.org/conda-forge/linux-aarch64/xorg-libxtst-1.2.5-h57736b2_3.conda#c05698071b5c8e0da82a282085845860 +https://conda.anaconda.org/conda-forge/linux-aarch64/blas-devel-3.9.0-25_linuxaarch64_openblas.conda#32539a9b9e09140a83e987edf3c09926 +https://conda.anaconda.org/conda-forge/linux-aarch64/contourpy-1.3.0-py39hbd2ca3f_2.conda#57fa6811a7a80c5641e373408389bc5a https://conda.anaconda.org/conda-forge/noarch/importlib-resources-6.4.5-pyhd8ed1ab_0.conda#67f4772681cf86652f3e2261794cf045 -https://conda.anaconda.org/conda-forge/linux-aarch64/liblapacke-3.9.0-25_linuxaarch64_openblas.conda#1e68063075954830f707b41dab6c7fd8 https://conda.anaconda.org/conda-forge/linux-aarch64/libpq-17.0-h081282e_4.conda#4627c6a062463cf4191aafca4d6c748c https://conda.anaconda.org/conda-forge/noarch/meson-python-0.17.1-pyh70fd9c4_0.conda#722b649da38842068d83b6e6770f11a1 -https://conda.anaconda.org/conda-forge/linux-aarch64/numpy-2.0.2-py39h4a34e27_0.conda#4d6edcc002364ced01e4fc947832eee6 https://conda.anaconda.org/conda-forge/noarch/pytest-xdist-3.6.1-pyhd8ed1ab_0.conda#b39568655c127a9c4a44d178ac99b6d0 -https://conda.anaconda.org/conda-forge/linux-aarch64/blas-devel-3.9.0-25_linuxaarch64_openblas.conda#32539a9b9e09140a83e987edf3c09926 -https://conda.anaconda.org/conda-forge/linux-aarch64/contourpy-1.3.0-py39hbd2ca3f_2.conda#57fa6811a7a80c5641e373408389bc5a -https://conda.anaconda.org/conda-forge/linux-aarch64/qt6-main-6.8.0-h666f7c6_0.conda#1c50a44d681075eff85d0332624c927e https://conda.anaconda.org/conda-forge/linux-aarch64/scipy-1.13.1-py39hb921187_0.conda#1aac9080de661e03d286f18fb71e5240 https://conda.anaconda.org/conda-forge/linux-aarch64/blas-2.125-openblas.conda#dfbaf914827bc38dda840c90231c91df -https://conda.anaconda.org/conda-forge/linux-aarch64/matplotlib-base-3.9.2-py39hd333c8e_1.conda#b1a6b946d3b38515ecaf10f1ee5aa6c6 +https://conda.anaconda.org/conda-forge/linux-aarch64/matplotlib-base-3.9.2-py39hd333c8e_2.conda#c63ed45703d387b32cc53d504970dd5a +https://conda.anaconda.org/conda-forge/linux-aarch64/qt6-main-6.8.0-h666f7c6_0.conda#1c50a44d681075eff85d0332624c927e https://conda.anaconda.org/conda-forge/linux-aarch64/pyside6-6.8.0.2-py39h51c6ee1_0.conda#c130c84c26696485a720d85bd530e992 -https://conda.anaconda.org/conda-forge/linux-aarch64/matplotlib-3.9.2-py39ha65689a_1.conda#10358b436f2d5adcaa436a018ffc7d97 +https://conda.anaconda.org/conda-forge/linux-aarch64/matplotlib-3.9.2-py39ha65689a_2.conda#8f4bc118a4497ed97ccbb9547b223233 From c4c5550f4c7bd54e578c403e894fd7b29a48f8e0 Mon Sep 17 00:00:00 2001 From: scikit-learn-bot Date: Tue, 12 Nov 2024 11:44:53 +0100 Subject: [PATCH 009/159] :lock: :robot: CI Update lock files for array-api CI build(s) :lock: :robot: (#30261) Co-authored-by: Lock file bot --- ...a_forge_cuda_array-api_linux-64_conda.lock | 62 +++++++++---------- 1 file changed, 31 insertions(+), 31 deletions(-) diff --git a/build_tools/github/pylatest_conda_forge_cuda_array-api_linux-64_conda.lock b/build_tools/github/pylatest_conda_forge_cuda_array-api_linux-64_conda.lock index 260cf1a598ee0..fb8d9a76e3faf 100644 --- a/build_tools/github/pylatest_conda_forge_cuda_array-api_linux-64_conda.lock +++ b/build_tools/github/pylatest_conda_forge_cuda_array-api_linux-64_conda.lock @@ -25,11 +25,11 @@ https://conda.anaconda.org/conda-forge/linux-64/libegl-1.7.0-ha4b6fd6_1.conda#38 https://conda.anaconda.org/conda-forge/linux-64/libopengl-1.7.0-ha4b6fd6_1.conda#e12057a66af8f2a38a839754ca4481e9 https://conda.anaconda.org/conda-forge/linux-64/_openmp_mutex-4.5-2_kmp_llvm.tar.bz2#562b26ba2e19059551a811e72ab7f793 https://conda.anaconda.org/conda-forge/linux-64/libgcc-14.2.0-h77fa898_1.conda#3cb76c3f10d3bc7f1105b2fc9db984df -https://conda.anaconda.org/conda-forge/linux-64/aws-c-common-0.9.31-hb9d3cd8_0.conda#75f7776e1c9af78287f055ca34797517 -https://conda.anaconda.org/conda-forge/linux-64/c-ares-1.34.2-heb4867d_0.conda#2b780c0338fc0ffa678ac82c54af51fd +https://conda.anaconda.org/conda-forge/linux-64/aws-c-common-0.10.0-hb9d3cd8_0.conda#f6495bc3a19a4400d3407052d22bef13 +https://conda.anaconda.org/conda-forge/linux-64/c-ares-1.34.3-heb4867d_0.conda#09a6c610d002e54e18353c06ef61a253 https://conda.anaconda.org/conda-forge/linux-64/libbrotlicommon-1.1.0-hb9d3cd8_2.conda#41b599ed2b02abcfdd84302bff174b23 https://conda.anaconda.org/conda-forge/linux-64/libdeflate-1.22-hb9d3cd8_0.conda#b422943d5d772b7cc858b36ad2a92db5 -https://conda.anaconda.org/conda-forge/linux-64/libexpat-2.6.3-h5888daf_0.conda#59f4c43bb1b5ef1c71946ff2cbf59524 +https://conda.anaconda.org/conda-forge/linux-64/libexpat-2.6.4-h5888daf_0.conda#db833e03127376d461e1e13e76f09b6c https://conda.anaconda.org/conda-forge/linux-64/libgcc-ng-14.2.0-h69a702a_1.conda#e39480b9ca41323497b05492a63bc35b https://conda.anaconda.org/conda-forge/linux-64/libgfortran5-14.2.0-hd5240d6_1.conda#9822b874ea29af082e5d36098d25427d https://conda.anaconda.org/conda-forge/linux-64/libstdcxx-14.2.0-hc0a3c3a_1.conda#234a5554c53625688d51062645337328 @@ -41,12 +41,12 @@ https://conda.anaconda.org/conda-forge/linux-64/xorg-libxau-1.0.11-hb9d3cd8_1.co https://conda.anaconda.org/conda-forge/linux-64/xorg-libxdmcp-1.1.5-hb9d3cd8_0.conda#8035c64cb77ed555e3f150b7b3972480 https://conda.anaconda.org/conda-forge/linux-64/xorg-xorgproto-2024.1-hb9d3cd8_1.conda#7c21106b851ec72c037b162c216d8f05 https://conda.anaconda.org/conda-forge/linux-64/alsa-lib-1.2.12-h4ab18f5_0.conda#7ed427f0871fd41cb1d9c17727c17589 -https://conda.anaconda.org/conda-forge/linux-64/aws-c-cal-0.8.0-hd3f4568_0.conda#0902512e7a2de9722697fb011db07a54 -https://conda.anaconda.org/conda-forge/linux-64/aws-c-compression-0.3.0-hf20e7d7_0.conda#84412135f9c1dd8985741e9c351f499a -https://conda.anaconda.org/conda-forge/linux-64/aws-c-sdkutils-0.2.0-hf20e7d7_0.conda#ff265c3736cdac819c8adb844e0557d8 -https://conda.anaconda.org/conda-forge/linux-64/aws-checksums-0.2.0-hf20e7d7_0.conda#e54103489d34bd5a106b9298dc28c848 +https://conda.anaconda.org/conda-forge/linux-64/aws-c-cal-0.8.0-he70792b_1.conda#9b81a9d9395fb2abd60984fcfe7eb01a +https://conda.anaconda.org/conda-forge/linux-64/aws-c-compression-0.3.0-hba2fe39_1.conda#c6133966058e553727f0afe21ab38cd2 +https://conda.anaconda.org/conda-forge/linux-64/aws-c-sdkutils-0.2.1-hba2fe39_0.conda#f0b3524e47ed870bb8304a8d6fa67c7f +https://conda.anaconda.org/conda-forge/linux-64/aws-checksums-0.2.0-hba2fe39_1.conda#ac8d58d81bdcefa5bce4e883c6b88c42 https://conda.anaconda.org/conda-forge/linux-64/bzip2-1.0.8-h4bc722e_7.conda#62ee74e96c5ebb0af99386de58cf9553 -https://conda.anaconda.org/conda-forge/linux-64/expat-2.6.3-h5888daf_0.conda#6595440079bed734b113de44ffd3cd0a +https://conda.anaconda.org/conda-forge/linux-64/expat-2.6.4-h5888daf_0.conda#1d6afef758879ef5ee78127eb4cd2c4a https://conda.anaconda.org/conda-forge/linux-64/gflags-2.2.2-h5888daf_1005.conda#d411fc29e338efb48c5fd4576d71d881 https://conda.anaconda.org/conda-forge/linux-64/keyutils-1.6.1-h166bdaf_0.tar.bz2#30186d27e2c9fa62b45fb1476b7200e3 https://conda.anaconda.org/conda-forge/linux-64/libabseil-20240722.0-cxx17_h5888daf_1.conda#e1f604644fe8d78e22660e2fec6756bc @@ -74,12 +74,12 @@ https://conda.anaconda.org/conda-forge/linux-64/llvm-openmp-15.0.7-h0cdce71_0.co https://conda.anaconda.org/conda-forge/linux-64/mysql-common-9.0.1-h266115a_2.conda#85c0dc0bcd110c998b01856975486ee7 https://conda.anaconda.org/conda-forge/linux-64/ncurses-6.5-he02047a_1.conda#70caf8bb6cf39a0b6b7efc885f51c0fe https://conda.anaconda.org/conda-forge/linux-64/ocl-icd-2.3.2-hd590300_1.conda#c66f837ac65e4d1cdeb80e2a1d5fcc3d -https://conda.anaconda.org/conda-forge/linux-64/s2n-1.5.6-h0e56266_0.conda#54752411d7559a8bbd4c0204a8f1cf35 +https://conda.anaconda.org/conda-forge/linux-64/s2n-1.5.7-hd3e8b83_0.conda#b0de6ca344b9255f4adb98e419e130ad https://conda.anaconda.org/conda-forge/linux-64/tk-8.6.13-noxft_h4845f30_101.conda#d453b98d9c83e71da0741bb0ff4d76bc https://conda.anaconda.org/conda-forge/linux-64/xz-5.2.6-h166bdaf_0.tar.bz2#2161070d867d1b1204ea749c8eec4ef0 https://conda.anaconda.org/conda-forge/linux-64/yaml-0.2.5-h7f98852_2.tar.bz2#4cb3ad778ec2d5a7acbdf254eb1c42ae https://conda.anaconda.org/conda-forge/linux-64/zlib-1.3.1-hb9d3cd8_2.conda#c9f075ab2f33b3bbee9e62d4ad0a6cd8 -https://conda.anaconda.org/conda-forge/linux-64/aws-c-io-0.15.0-h17eb868_2.conda#bb03f4ce96deea2175fc3ec17b2c1c04 +https://conda.anaconda.org/conda-forge/linux-64/aws-c-io-0.15.1-h2a50c78_1.conda#67dfecff4c4253cfe33c3c8e428f1767 https://conda.anaconda.org/conda-forge/linux-64/brotli-bin-1.1.0-hb9d3cd8_2.conda#c63b5e52939e795ba8d26e35d767a843 https://conda.anaconda.org/conda-forge/linux-64/cuda-cudart-12.4.127-he02047a_2.conda#a748faa52331983fc3adcc3b116fe0e4 https://conda.anaconda.org/conda-forge/linux-64/cuda-cupti-12.4.127-he02047a_2.conda#46422ef1b1161fb180027e50c598ecd0 @@ -123,8 +123,8 @@ https://conda.anaconda.org/conda-forge/linux-64/xcb-util-wm-0.4.2-hb711507_0.con https://conda.anaconda.org/conda-forge/linux-64/xorg-libsm-1.2.4-he73a12e_1.conda#05a8ea5f446de33006171a7afe6ae857 https://conda.anaconda.org/conda-forge/linux-64/xorg-libx11-1.8.10-h4f16b4b_0.conda#0b666058a179b744a622d0a4a0c56353 https://conda.anaconda.org/conda-forge/linux-64/zstd-1.5.6-ha6fb4c9_0.conda#4d056880988120e29d75bfff282e0f45 -https://conda.anaconda.org/conda-forge/linux-64/aws-c-event-stream-0.5.0-h68c3b0c_2.conda#a08831d82df7546a599095b33f3cae2a -https://conda.anaconda.org/conda-forge/linux-64/aws-c-http-0.9.0-hfad4ed3_3.conda#01bc29be557b8c7c1963f7ad7185529a +https://conda.anaconda.org/conda-forge/linux-64/aws-c-event-stream-0.5.0-h127f702_4.conda#81d250bca40c7907ece5f5dd00de51d0 +https://conda.anaconda.org/conda-forge/linux-64/aws-c-http-0.9.0-h8a7d7e2_5.conda#c40bb8a9f3936ebeea804e97c5adf179 https://conda.anaconda.org/conda-forge/linux-64/brotli-1.1.0-hb9d3cd8_2.conda#98514fe74548d768907ce7a13f680e8f https://conda.anaconda.org/conda-forge/linux-64/fontconfig-2.15.0-h7e30c49_1.conda#8f5b0b297b59e1ac160ad4beec99dbee https://conda.anaconda.org/conda-forge/linux-64/krb5-1.21.3-h659f571_0.conda#3f43953b7d3fb3aaa1d0d0723d91e368 @@ -146,8 +146,8 @@ https://conda.anaconda.org/conda-forge/linux-64/xorg-libxext-1.3.6-hb9d3cd8_0.co https://conda.anaconda.org/conda-forge/linux-64/xorg-libxfixes-6.0.1-hb9d3cd8_0.conda#4bdb303603e9821baf5fe5fdff1dc8f8 https://conda.anaconda.org/conda-forge/linux-64/xorg-libxrender-0.9.11-hb9d3cd8_1.conda#a7a49a8b85122b49214798321e2e96b4 https://conda.anaconda.org/conda-forge/noarch/array-api-compat-1.9.1-pyhd8ed1ab_0.conda#f2328337441baa8f669d2a830cfd0097 -https://conda.anaconda.org/conda-forge/linux-64/aws-c-auth-0.8.0-h56a2c13_4.conda#44a599a9c2c7e5d75e062457ddc6666a -https://conda.anaconda.org/conda-forge/linux-64/aws-c-mqtt-0.11.0-h407ecb8_2.conda#f9fcf88ac9d34b2bfe70429064d7744c +https://conda.anaconda.org/conda-forge/linux-64/aws-c-auth-0.8.0-hcd8ed7f_7.conda#b8725d87357c876b0458dee554c39b28 +https://conda.anaconda.org/conda-forge/linux-64/aws-c-mqtt-0.11.0-hd25e75f_5.conda#277dae7174fd2bc81c01411039ac2173 https://conda.anaconda.org/conda-forge/linux-64/cairo-1.18.0-hebfffa5_3.conda#fceaedf1cdbcb02df9699a0d9b005292 https://conda.anaconda.org/conda-forge/linux-64/ccache-4.10.1-h065aff2_0.conda#d6b48c138e0c8170a6fe9c136e063540 https://conda.anaconda.org/conda-forge/noarch/certifi-2024.8.30-pyhd8ed1ab_0.conda#12f7d00853807b0531775e9be891cb11 @@ -193,15 +193,15 @@ https://conda.anaconda.org/conda-forge/noarch/tomli-2.0.2-pyhd8ed1ab_0.conda#e97 https://conda.anaconda.org/conda-forge/linux-64/tornado-6.4.1-py312h66e93f0_1.conda#af648b62462794649066366af4ecd5b0 https://conda.anaconda.org/conda-forge/noarch/typing_extensions-4.12.2-pyha770c72_0.conda#ebe6952715e1d5eb567eeebf25250fa7 https://conda.anaconda.org/conda-forge/linux-64/unicodedata2-15.1.0-py312h66e93f0_1.conda#588486a61153f94c7c13816f7069e440 -https://conda.anaconda.org/conda-forge/noarch/wheel-0.44.0-pyhd8ed1ab_0.conda#d44e3b085abcaef02983c6305b84b584 +https://conda.anaconda.org/conda-forge/noarch/wheel-0.45.0-pyhd8ed1ab_0.conda#f9751d7c71df27b2d29f5cab3378982e https://conda.anaconda.org/conda-forge/linux-64/xcb-util-cursor-0.1.5-hb9d3cd8_0.conda#eb44b3b6deb1cab08d72cb61686fe64c https://conda.anaconda.org/conda-forge/linux-64/xorg-libxcomposite-0.4.6-hb9d3cd8_2.conda#d3c295b50f092ab525ffe3c2aa4b7413 -https://conda.anaconda.org/conda-forge/linux-64/xorg-libxcursor-1.2.2-hb9d3cd8_0.conda#bb2638cd7fbdd980b1cff9a99a6c1fa8 +https://conda.anaconda.org/conda-forge/linux-64/xorg-libxcursor-1.2.3-hb9d3cd8_0.conda#2ccd714aa2242315acaf0a67faea780b https://conda.anaconda.org/conda-forge/linux-64/xorg-libxdamage-1.1.6-hb9d3cd8_0.conda#b5fcc7172d22516e1f965490e65e33a4 https://conda.anaconda.org/conda-forge/linux-64/xorg-libxi-1.8.2-hb9d3cd8_0.conda#17dcc85db3c7886650b8908b183d6876 https://conda.anaconda.org/conda-forge/linux-64/xorg-libxrandr-1.5.4-hb9d3cd8_0.conda#2de7f99d6581a4a7adbff607b5c278ca https://conda.anaconda.org/conda-forge/linux-64/xorg-libxxf86vm-1.1.5-hb9d3cd8_4.conda#7da9007c0582712c4bad4131f89c8372 -https://conda.anaconda.org/conda-forge/linux-64/aws-c-s3-0.7.0-hadeddc1_5.conda#429e7497e7f08bc470d2872147d8ef6d +https://conda.anaconda.org/conda-forge/linux-64/aws-c-s3-0.7.0-h858c4ad_7.conda#1698a4867ecd97931d1bb743428686ec https://conda.anaconda.org/conda-forge/linux-64/azure-core-cpp-1.14.0-h5cfcd09_0.conda#0a8838771cc2e985cd295e01ae83baf1 https://conda.anaconda.org/conda-forge/linux-64/coverage-7.6.4-py312h178313f_0.conda#a32fbd2322865ac80c7db74c553f5306 https://conda.anaconda.org/conda-forge/linux-64/cuda-libraries-12.4.1-ha770c72_1.conda#6bb3f998485d4344a7539e0b218b3fc1 @@ -212,7 +212,7 @@ https://conda.anaconda.org/conda-forge/noarch/jinja2-3.1.4-pyhd8ed1ab_0.conda#7b https://conda.anaconda.org/conda-forge/noarch/joblib-1.4.2-pyhd8ed1ab_0.conda#25df261d4523d9f9783bcdb7208d872f https://conda.anaconda.org/conda-forge/linux-64/libclang-cpp19.1-19.1.3-default_hb5137d0_0.conda#311e6a1d041db3d6a8a8437750d4234f https://conda.anaconda.org/conda-forge/linux-64/libclang13-19.1.3-default_h9c6a7e4_0.conda#b8a8cd77810b20754f358f2327812552 -https://conda.anaconda.org/conda-forge/linux-64/libgoogle-cloud-2.30.0-h804f50b_1.conda#0a1c61bdbf27a966bbb0c8bf9df37b02 +https://conda.anaconda.org/conda-forge/linux-64/libgoogle-cloud-2.31.0-h804f50b_0.conda#35ab838423b60f233391eb86d324a830 https://conda.anaconda.org/conda-forge/noarch/meson-1.6.0-pyhd8ed1ab_0.conda#380ba6a3eddd8e7649bfe8e6812611aa https://conda.anaconda.org/conda-forge/linux-64/openldap-2.6.8-hedd0468_0.conda#dcd0ed5147d8876b0848a552b416ce76 https://conda.anaconda.org/conda-forge/linux-64/pillow-11.0.0-py312h7b63e92_0.conda#385f46a4df6f97892503a841121a9acf @@ -222,18 +222,18 @@ https://conda.anaconda.org/conda-forge/noarch/pytest-8.3.3-pyhd8ed1ab_0.conda#c0 https://conda.anaconda.org/conda-forge/noarch/python-dateutil-2.9.0-pyhd8ed1ab_0.conda#2cf4264fffb9e6eff6031c5b6884d61c https://conda.anaconda.org/conda-forge/linux-64/tbb-2021.13.0-h84d6215_0.conda#ee6f7fd1e76061ef1fa307d41fa86a96 https://conda.anaconda.org/conda-forge/linux-64/xorg-libxtst-1.2.5-hb9d3cd8_3.conda#7bbe9a0cc0df0ac5f5a8ad6d6a11af2f -https://conda.anaconda.org/conda-forge/linux-64/aws-crt-cpp-0.29.0-h73f0fd4_6.conda#19f6d559f3be939046d2ac5c7b2ded7a +https://conda.anaconda.org/conda-forge/linux-64/aws-crt-cpp-0.29.3-hbc793f2_2.conda#3ac9933695a731e6507eef6c3704c10f https://conda.anaconda.org/conda-forge/linux-64/azure-identity-cpp-1.10.0-h113e628_0.conda#73f73f60854f325a55f1d31459f2ab73 https://conda.anaconda.org/conda-forge/linux-64/azure-storage-common-cpp-12.8.0-h736e048_1.conda#13de36be8de3ae3f05ba127631599213 https://conda.anaconda.org/conda-forge/noarch/cuda-runtime-12.4.1-ha804496_0.conda#48829f4ef6005ae8d4867b99168ff2b8 -https://conda.anaconda.org/conda-forge/linux-64/libgoogle-cloud-storage-2.30.0-h0121fbd_1.conda#afbbf507f8c96faa95a2efa376ad484c +https://conda.anaconda.org/conda-forge/linux-64/libgoogle-cloud-storage-2.31.0-h0121fbd_0.conda#568d6a09a6ed76337a7b97c84ae7c0f8 https://conda.anaconda.org/conda-forge/linux-64/libpq-17.0-h04577a9_4.conda#392cae2a58fbcb9db8c2147c6d6d1620 https://conda.anaconda.org/conda-forge/noarch/meson-python-0.17.1-pyh70fd9c4_0.conda#722b649da38842068d83b6e6770f11a1 https://conda.anaconda.org/conda-forge/linux-64/mkl-2022.1.0-h84fe81f_915.tar.bz2#b9c8f925797a93dbff45e1626b025a6b https://conda.anaconda.org/conda-forge/noarch/pytest-cov-6.0.0-pyhd8ed1ab_0.conda#cb8a11b6d209e3d85e5094bdbd9ebd9c https://conda.anaconda.org/conda-forge/noarch/pytest-xdist-3.6.1-pyhd8ed1ab_0.conda#b39568655c127a9c4a44d178ac99b6d0 https://conda.anaconda.org/conda-forge/noarch/sympy-1.13.3-pyh2585a3b_104.conda#68085d736d2b2f54498832b65059875d -https://conda.anaconda.org/conda-forge/linux-64/aws-sdk-cpp-1.11.407-h6a6dca0_6.conda#3c25988c0b0a2085b4df578b7160d963 +https://conda.anaconda.org/conda-forge/linux-64/aws-sdk-cpp-1.11.407-h5cd358a_9.conda#1bba87c0e95867ad8ef2932d603ce7ee https://conda.anaconda.org/conda-forge/linux-64/azure-storage-blobs-cpp-12.13.0-h3cf044e_1.conda#7eb66060455c7a47d9dcdbfa9f46579b https://conda.anaconda.org/conda-forge/linux-64/libblas-3.9.0-16_linux64_mkl.tar.bz2#85f61af03fd291dae33150ffe89dc09a https://conda.anaconda.org/conda-forge/linux-64/mkl-devel-2022.1.0-ha770c72_916.tar.bz2#69ba49e445f87aea2cba343a71a35ca2 @@ -243,26 +243,26 @@ https://conda.anaconda.org/conda-forge/linux-64/azure-storage-files-datalake-cpp https://conda.anaconda.org/conda-forge/linux-64/libcblas-3.9.0-16_linux64_mkl.tar.bz2#361bf757b95488de76c4f123805742d3 https://conda.anaconda.org/conda-forge/linux-64/liblapack-3.9.0-16_linux64_mkl.tar.bz2#a2f166748917d6d6e4707841ca1f519e https://conda.anaconda.org/conda-forge/linux-64/pyside6-6.8.0.2-py312h91f0f75_0.conda#ec3da81d5f9d3612b227e09a650f7bf2 -https://conda.anaconda.org/conda-forge/linux-64/libarrow-18.0.0-ha5db6c2_1_cpu.conda#412e50a89595c2ed2d0d49e1c3665be6 +https://conda.anaconda.org/conda-forge/linux-64/libarrow-18.0.0-h3e543c6_4_cpu.conda#98ca983152358b918afebf2abe9e5ca9 https://conda.anaconda.org/conda-forge/linux-64/liblapacke-3.9.0-16_linux64_mkl.tar.bz2#44ccc4d4dca6a8d57fa17442bc64b5a1 https://conda.anaconda.org/conda-forge/linux-64/numpy-2.1.3-py312h58c1407_0.conda#dfdbc12e6d81889ba4c494a23f23eba8 -https://conda.anaconda.org/conda-forge/noarch/array-api-strict-2.1-pyhd8ed1ab_0.conda#15cc819ed82470249cbf1337791bc5ff +https://conda.anaconda.org/conda-forge/noarch/array-api-strict-2.1.3-pyhd8ed1ab_0.conda#559ef5d7adafd925588bcd9d0dcb3ed4 https://conda.anaconda.org/conda-forge/linux-64/blas-devel-3.9.0-16_linux64_mkl.tar.bz2#3f92c1c9e1c0e183462c5071aa02cae1 https://conda.anaconda.org/conda-forge/linux-64/contourpy-1.3.0-py312h68727a3_2.conda#ff28f374b31937c048107521c814791e https://conda.anaconda.org/conda-forge/linux-64/cupy-core-13.3.0-py312h1acd1a8_2.conda#15e9530e87664584a6b409ecdf5c9264 -https://conda.anaconda.org/conda-forge/linux-64/libarrow-acero-18.0.0-h5888daf_1_cpu.conda#5eea7d1aad1772bb0b7629ba0bf9ba38 -https://conda.anaconda.org/conda-forge/linux-64/libparquet-18.0.0-h6bd9018_1_cpu.conda#13ac6045ae32e0fd87e51003570ba372 +https://conda.anaconda.org/conda-forge/linux-64/libarrow-acero-18.0.0-h5888daf_4_cpu.conda#86298c079658bed57c5590690a0fb418 +https://conda.anaconda.org/conda-forge/linux-64/libparquet-18.0.0-h6bd9018_4_cpu.conda#19973fe63c087ef5e119a2826011efb4 https://conda.anaconda.org/conda-forge/linux-64/pandas-2.2.3-py312hf9745cd_1.conda#8bce4f6caaf8c5448c7ac86d87e26b4b https://conda.anaconda.org/conda-forge/linux-64/polars-1.12.0-py312hfe7c9be_0.conda#47b6df7e8b629d1257a6f971b88c15de -https://conda.anaconda.org/conda-forge/linux-64/pyarrow-core-18.0.0-py312h01725c0_0_cpu.conda#9100ae6cdd482666b38fa20e7819b385 +https://conda.anaconda.org/conda-forge/linux-64/pyarrow-core-18.0.0-py312h01725c0_1_cpu.conda#c8ae967c39337603035d59c8994c23f9 https://conda.anaconda.org/conda-forge/linux-64/scipy-1.14.1-py312h62794b6_1.conda#b43233a9e2f62fb94affe5607ea79473 https://conda.anaconda.org/conda-forge/linux-64/blas-2.116-mkl.tar.bz2#c196a26abf6b4f132c88828ab7c2231c https://conda.anaconda.org/conda-forge/linux-64/cupy-13.3.0-py312h7d319b9_2.conda#009ef049020fef7d1541183d52fab5a9 -https://conda.anaconda.org/conda-forge/linux-64/libarrow-dataset-18.0.0-h5888daf_1_cpu.conda#ba0a7a916ce6145f484e46c32e89ba97 -https://conda.anaconda.org/conda-forge/linux-64/matplotlib-base-3.9.2-py312hd3ec401_1.conda#2f4f3854f23be30de29e9e4d39758349 +https://conda.anaconda.org/conda-forge/linux-64/libarrow-dataset-18.0.0-h5888daf_4_cpu.conda#6ac53d3f10c9d88ade8f9fe0f515a0db +https://conda.anaconda.org/conda-forge/linux-64/matplotlib-base-3.9.2-py312hd3ec401_2.conda#2380c9ba933ffaac9ad16d8eac8e3318 https://conda.anaconda.org/conda-forge/linux-64/pyamg-5.2.1-py312hc39e661_1.conda#372efc32220f0dfb603e5b31ffaefa23 -https://conda.anaconda.org/conda-forge/linux-64/libarrow-substrait-18.0.0-h5c8f2c3_1_cpu.conda#295696a3696d039787fbf4f733a4f296 -https://conda.anaconda.org/conda-forge/linux-64/matplotlib-3.9.2-py312h7900ff3_1.conda#07d5646ea9f22f4b1c46c2947d1b2f58 -https://conda.anaconda.org/conda-forge/linux-64/pyarrow-18.0.0-py312h9cebb41_0.conda#e110b1f861e749bc1dd48ad5467adab8 +https://conda.anaconda.org/conda-forge/linux-64/libarrow-substrait-18.0.0-h5c8f2c3_4_cpu.conda#24f60812bdd87979ea1c6477f2f38d3b +https://conda.anaconda.org/conda-forge/linux-64/matplotlib-3.9.2-py312h7900ff3_2.conda#266d9ad348e2151d07ad9e4dc716eea5 +https://conda.anaconda.org/conda-forge/linux-64/pyarrow-18.0.0-py312h7900ff3_1.conda#ea33ac754057779cd2df785661486310 https://conda.anaconda.org/pytorch/linux-64/pytorch-2.5.1-py3.12_cuda12.4_cudnn9.1.0_0.tar.bz2#42164c6ce8e563c20a542686a8b9b964 https://conda.anaconda.org/pytorch/linux-64/torchtriton-3.1.0-py312.tar.bz2#bb4b2d07cb6b9b476e78740c08ba69fe From 6f424d0e43306ad0f0d7565d2a0829ca4d6b5914 Mon Sep 17 00:00:00 2001 From: Adrin Jalali Date: Tue, 12 Nov 2024 19:21:16 +0300 Subject: [PATCH 010/159] TST raise explicit error when tags are missing (#30248) --- sklearn/utils/estimator_checks.py | 93 ++++++++++++-------- sklearn/utils/tests/test_estimator_checks.py | 3 +- 2 files changed, 60 insertions(+), 36 deletions(-) diff --git a/sklearn/utils/estimator_checks.py b/sklearn/utils/estimator_checks.py index 604719896e413..3432755c6b6db 100644 --- a/sklearn/utils/estimator_checks.py +++ b/sklearn/utils/estimator_checks.py @@ -104,7 +104,27 @@ REGRESSION_DATASET = None +def _raise_for_missing_tags(estimator, tag_name, Mixin): + tags = get_tags(estimator) + estimator_type = Mixin.__name__.replace("Mixin", "") + if getattr(tags, tag_name) is None: + raise RuntimeError( + f"Estimator {estimator.__class__.__name__} seems to be a {estimator_type}," + f" but the `{tag_name}` tag is not set. Either set the tag manually" + f" or inherit from the {Mixin.__name__}. Note that the order of inheritance" + f" matters, the {Mixin.__name__} should come before BaseEstimator." + ) + + def _yield_api_checks(estimator): + if not isinstance(estimator, BaseEstimator): + warnings.warn( + f"Estimator {estimator.__class__.__name__} does not inherit from" + " `sklearn.base.BaseEstimator`. This might lead to unexpected behavior, or" + " even errors when collecting tests.", + category=UserWarning, + ) + tags = get_tags(estimator) yield check_estimator_cloneable yield check_estimator_repr @@ -177,6 +197,7 @@ def _yield_checks(estimator): def _yield_classifier_checks(classifier): + _raise_for_missing_tags(classifier, "classifier_tags", ClassifierMixin) tags = get_tags(classifier) # test classifiers can handle non-array data and pandas objects @@ -222,42 +243,8 @@ def _yield_classifier_checks(classifier): yield check_classifier_not_supporting_multiclass -@ignore_warnings(category=FutureWarning) -def check_supervised_y_no_nan(name, estimator_orig): - # Checks that the Estimator targets are not NaN. - estimator = clone(estimator_orig) - rng = np.random.RandomState(888) - X = rng.standard_normal(size=(10, 5)) - - for value in [np.nan, np.inf]: - y = np.full(10, value) - y = _enforce_estimator_tags_y(estimator, y) - - module_name = estimator.__module__ - if module_name.startswith("sklearn.") and not ( - "test_" in module_name or module_name.endswith("_testing") - ): - # In scikit-learn we want the error message to mention the input - # name and be specific about the kind of unexpected value. - if np.isinf(value): - match = ( - r"Input (y|Y) contains infinity or a value too large for" - r" dtype\('float64'\)." - ) - else: - match = r"Input (y|Y) contains NaN." - else: - # Do not impose a particular error message to third-party libraries. - match = None - err_msg = ( - f"Estimator {name} should have raised error on fitting array y with inf" - " value." - ) - with raises(ValueError, match=match, err_msg=err_msg): - estimator.fit(X, y) - - def _yield_regressor_checks(regressor): + _raise_for_missing_tags(regressor, "regressor_tags", RegressorMixin) tags = get_tags(regressor) # TODO: test with intercept # TODO: test with multiple responses @@ -281,6 +268,7 @@ def _yield_regressor_checks(regressor): def _yield_transformer_checks(transformer): + _raise_for_missing_tags(transformer, "transformer_tags", TransformerMixin) tags = get_tags(transformer) # All transformers should either deal with sparse data or raise an # exception with type TypeError and an intelligible error message @@ -1003,6 +991,41 @@ def _generate_sparse_data(X_csr): yield sparse_format + "_64", X +@ignore_warnings(category=FutureWarning) +def check_supervised_y_no_nan(name, estimator_orig): + # Checks that the Estimator targets are not NaN. + estimator = clone(estimator_orig) + rng = np.random.RandomState(888) + X = rng.standard_normal(size=(10, 5)) + + for value in [np.nan, np.inf]: + y = np.full(10, value) + y = _enforce_estimator_tags_y(estimator, y) + + module_name = estimator.__module__ + if module_name.startswith("sklearn.") and not ( + "test_" in module_name or module_name.endswith("_testing") + ): + # In scikit-learn we want the error message to mention the input + # name and be specific about the kind of unexpected value. + if np.isinf(value): + match = ( + r"Input (y|Y) contains infinity or a value too large for" + r" dtype\('float64'\)." + ) + else: + match = r"Input (y|Y) contains NaN." + else: + # Do not impose a particular error message to third-party libraries. + match = None + err_msg = ( + f"Estimator {name} should have raised error on fitting array y with inf" + " value." + ) + with raises(ValueError, match=match, err_msg=err_msg): + estimator.fit(X, y) + + def check_array_api_input( name, estimator_orig, diff --git a/sklearn/utils/tests/test_estimator_checks.py b/sklearn/utils/tests/test_estimator_checks.py index 003ec488de81a..0d376686055d6 100644 --- a/sklearn/utils/tests/test_estimator_checks.py +++ b/sklearn/utils/tests/test_estimator_checks.py @@ -846,7 +846,8 @@ def test_check_outlier_corruption(): def test_check_estimator_transformer_no_mixin(): # check that TransformerMixin is not required for transformer tests to run - with raises(AttributeError, ".*fit_transform.*"): + # but it fails since the tag is not set + with raises(RuntimeError, "the `transformer_tags` tag is not set"): check_estimator(BadTransformerWithoutMixin()) From e2c22f82705b51e02508c04bf0aad51cafd76e7a Mon Sep 17 00:00:00 2001 From: Eric Larson Date: Tue, 12 Nov 2024 12:19:29 -0500 Subject: [PATCH 011/159] DOC: Document version added (#30264) --- sklearn/utils/_tags.py | 2 ++ 1 file changed, 2 insertions(+) diff --git a/sklearn/utils/_tags.py b/sklearn/utils/_tags.py index 161ceb9e992fd..2297799e4829f 100644 --- a/sklearn/utils/_tags.py +++ b/sklearn/utils/_tags.py @@ -303,6 +303,8 @@ def get_tags(estimator) -> Tags: `get_tags(self.estimator)` where `self` is a meta-estimator, or in the common checks. + .. versionadded:: 1.6 + Parameters ---------- estimator : estimator object From 9ed6207a8c39af88a295f58b6a29d7fa12efc816 Mon Sep 17 00:00:00 2001 From: Guillaume Lemaitre Date: Tue, 12 Nov 2024 18:25:54 +0100 Subject: [PATCH 012/159] MAINT revert `zero_division` introduced in 1.6 (#30230) --- .../sklearn.metrics/28509.feature.rst | 3 - .../sklearn.metrics/29210.enhancement.rst | 4 - .../sklearn.metrics/29213.enhancement.rst | 4 - sklearn/metrics/_classification.py | 122 ++---------------- sklearn/metrics/tests/test_classification.py | 57 ++------ 5 files changed, 18 insertions(+), 172 deletions(-) delete mode 100644 doc/whats_new/upcoming_changes/sklearn.metrics/28509.feature.rst delete mode 100644 doc/whats_new/upcoming_changes/sklearn.metrics/29210.enhancement.rst delete mode 100644 doc/whats_new/upcoming_changes/sklearn.metrics/29213.enhancement.rst diff --git a/doc/whats_new/upcoming_changes/sklearn.metrics/28509.feature.rst b/doc/whats_new/upcoming_changes/sklearn.metrics/28509.feature.rst deleted file mode 100644 index 755d586dbce2b..0000000000000 --- a/doc/whats_new/upcoming_changes/sklearn.metrics/28509.feature.rst +++ /dev/null @@ -1,3 +0,0 @@ -- Adds `zero_division` to :func:`metrics.matthews_corrcoef`. - When there is a zero division, the metric is undefined and this value is returned. - By :user:`Marc Torrellas Socastro ` and :user:`Noam Keidar ` \ No newline at end of file diff --git a/doc/whats_new/upcoming_changes/sklearn.metrics/29210.enhancement.rst b/doc/whats_new/upcoming_changes/sklearn.metrics/29210.enhancement.rst deleted file mode 100644 index 82059b4ba50f7..0000000000000 --- a/doc/whats_new/upcoming_changes/sklearn.metrics/29210.enhancement.rst +++ /dev/null @@ -1,4 +0,0 @@ -- Adds `zero_division` to :func:`cohen_kappa_score`. When there is a - division by zero, the metric is undefined and this value is returned. - By :user:`Marc Torrellas Socastro ` and - :user:`Stefanie Senger ` diff --git a/doc/whats_new/upcoming_changes/sklearn.metrics/29213.enhancement.rst b/doc/whats_new/upcoming_changes/sklearn.metrics/29213.enhancement.rst deleted file mode 100644 index a0e6734102b87..0000000000000 --- a/doc/whats_new/upcoming_changes/sklearn.metrics/29213.enhancement.rst +++ /dev/null @@ -1,4 +0,0 @@ -- :func:`sklearn.metrics.accuracy_score` now includes a `zero_division` - parameter to raise a warning when `y_true` and `y_pred` are empty. - By :user:`Jaimin Chauhan ` - diff --git a/sklearn/metrics/_classification.py b/sklearn/metrics/_classification.py index c320183380a07..e93241a1ec137 100644 --- a/sklearn/metrics/_classification.py +++ b/sklearn/metrics/_classification.py @@ -152,16 +152,10 @@ def _check_targets(y_true, y_pred): "y_pred": ["array-like", "sparse matrix"], "normalize": ["boolean"], "sample_weight": ["array-like", None], - "zero_division": [ - Options(Real, {0.0, 1.0, np.nan}), - StrOptions({"warn"}), - ], }, prefer_skip_nested_validation=True, ) -def accuracy_score( - y_true, y_pred, *, normalize=True, sample_weight=None, zero_division="warn" -): +def accuracy_score(y_true, y_pred, *, normalize=True, sample_weight=None): """Accuracy classification score. In multilabel classification, this function computes subset accuracy: @@ -185,13 +179,6 @@ def accuracy_score( sample_weight : array-like of shape (n_samples,), default=None Sample weights. - zero_division : {"warn", 0.0, 1.0, np.nan}, default="warn" - Sets the value to return when there is a zero division, - e.g. when `y_true` and `y_pred` are empty. - If set to "warn", returns 0.0 input, but a warning is also raised. - - versionadded:: 1.6 - Returns ------- score : float or int @@ -234,15 +221,6 @@ def accuracy_score( y_type, y_true, y_pred = _check_targets(y_true, y_pred) check_consistent_length(y_true, y_pred, sample_weight) - if _num_samples(y_true) == 0: - if zero_division == "warn": - msg = ( - "accuracy() is ill-defined and set to 0.0. Use the `zero_division` " - "param to control this behavior." - ) - warnings.warn(msg, UndefinedMetricWarning) - return _check_zero_division(zero_division) - if y_type.startswith("multilabel"): if _is_numpy_namespace(xp): differing_labels = count_nonzero(y_true - y_pred, axis=1) @@ -651,37 +629,6 @@ def multilabel_confusion_matrix( return np.array([tn, fp, fn, tp]).T.reshape(-1, 2, 2) -def _metric_handle_division(*, numerator, denominator, metric, zero_division): - """Helper to handle zero-division. - - Parameters - ---------- - numerator : numbers.Real - The numerator of the division. - denominator : numbers.Real - The denominator of the division. - metric : str - Name of the caller metric function. - zero_division : {0.0, 1.0, "warn"} - The strategy to use when encountering 0-denominator. - - Returns - ------- - result : numbers.Real - The resulting of the division - is_zero_division : bool - Whether or not we encountered a zero division. This value could be - required to early return `result` in the "caller" function. - """ - if np.isclose(denominator, 0): - if zero_division == "warn": - msg = f"{metric} is ill-defined and set to 0.0. Use the `zero_division` " - "param to control this behavior." - warnings.warn(msg, UndefinedMetricWarning, stacklevel=2) - return _check_zero_division(zero_division), True - return numerator / denominator, False - - @validate_params( { "y1": ["array-like"], @@ -689,16 +636,10 @@ def _metric_handle_division(*, numerator, denominator, metric, zero_division): "labels": ["array-like", None], "weights": [StrOptions({"linear", "quadratic"}), None], "sample_weight": ["array-like", None], - "zero_division": [ - StrOptions({"warn"}), - Options(Real, {0.0, 1.0, np.nan}), - ], }, prefer_skip_nested_validation=True, ) -def cohen_kappa_score( - y1, y2, *, labels=None, weights=None, sample_weight=None, zero_division="warn" -): +def cohen_kappa_score(y1, y2, *, labels=None, weights=None, sample_weight=None): r"""Compute Cohen's kappa: a statistic that measures inter-annotator agreement. This function computes Cohen's kappa [1]_, a score that expresses the level @@ -737,14 +678,6 @@ class labels [2]_. sample_weight : array-like of shape (n_samples,), default=None Sample weights. - zero_division : {"warn", 0.0, 1.0, np.nan}, default="warn" - Sets the return value when there is a zero division. This is the case when both - labelings `y1` and `y2` both exclusively contain the 0 class (e. g. - `[0, 0, 0, 0]`) (or if both are empty). If set to "warn", returns `0.0`, but a - warning is also raised. - - .. versionadded:: 1.6 - Returns ------- kappa : float @@ -774,18 +707,7 @@ class labels [2]_. n_classes = confusion.shape[0] sum0 = np.sum(confusion, axis=0) sum1 = np.sum(confusion, axis=1) - - numerator = np.outer(sum0, sum1) - denominator = np.sum(sum0) - expected, is_zero_division = _metric_handle_division( - numerator=numerator, - denominator=denominator, - metric="cohen_kappa_score()", - zero_division=zero_division, - ) - - if is_zero_division: - return expected + expected = np.outer(sum0, sum1) / np.sum(sum0) if weights is None: w_mat = np.ones([n_classes, n_classes], dtype=int) @@ -798,18 +720,8 @@ class labels [2]_. else: w_mat = (w_mat - w_mat.T) ** 2 - numerator = np.sum(w_mat * confusion) - denominator = np.sum(w_mat * expected) - score, is_zero_division = _metric_handle_division( - numerator=numerator, - denominator=denominator, - metric="cohen_kappa_score()", - zero_division=zero_division, - ) - - if is_zero_division: - return score - return 1 - score + k = np.sum(w_mat * confusion) / np.sum(w_mat * expected) + return 1 - k @validate_params( @@ -911,6 +823,8 @@ def jaccard_score( there are no negative values in predictions and labels. If set to "warn", this acts like 0, but a warning is also raised. + .. versionadded:: 0.24 + Returns ------- score : float or ndarray of shape (n_unique_labels,), dtype=np.float64 @@ -1015,15 +929,10 @@ def jaccard_score( "y_true": ["array-like"], "y_pred": ["array-like"], "sample_weight": ["array-like", None], - "zero_division": [ - Options(Real, {0.0, 1.0}), - "nan", - StrOptions({"warn"}), - ], }, prefer_skip_nested_validation=True, ) -def matthews_corrcoef(y_true, y_pred, *, sample_weight=None, zero_division="warn"): +def matthews_corrcoef(y_true, y_pred, *, sample_weight=None): """Compute the Matthews correlation coefficient (MCC). The Matthews correlation coefficient is used in machine learning as a @@ -1054,13 +963,6 @@ def matthews_corrcoef(y_true, y_pred, *, sample_weight=None, zero_division="warn .. versionadded:: 0.18 - zero_division : {"warn", 0.0, 1.0, np.nan}, default="warn" - Sets the value to return when there is a zero division, i.e. when all - predictions and labels are negative. If set to "warn", this acts like 0, - but a warning is also raised. - - .. versionadded:: 1.6 - Returns ------- mcc : float @@ -1114,13 +1016,7 @@ def matthews_corrcoef(y_true, y_pred, *, sample_weight=None, zero_division="warn cov_ytyt = n_samples**2 - np.dot(t_sum, t_sum) if cov_ypyp * cov_ytyt == 0: - if zero_division == "warn": - msg = ( - "Matthews correlation coefficient is ill-defined and being set to 0.0. " - "Use `zero_division` to control this behaviour." - ) - warnings.warn(msg, UndefinedMetricWarning, stacklevel=2) - return _check_zero_division(zero_division) + return 0.0 else: return cov_ytyp / np.sqrt(cov_ytyt * cov_ypyp) diff --git a/sklearn/metrics/tests/test_classification.py b/sklearn/metrics/tests/test_classification.py index d0e9f3d9a08b0..0e69719da1445 100644 --- a/sklearn/metrics/tests/test_classification.py +++ b/sklearn/metrics/tests/test_classification.py @@ -795,26 +795,8 @@ def test_cohen_kappa(): ) -@pytest.mark.parametrize("zero_division", ["warn", 0, 1, np.nan]) -@pytest.mark.parametrize("y_true, y_pred", [([0], [1]), ([0, 0], [0, 1])]) -def test_matthews_corrcoef_zero_division(zero_division, y_true, y_pred): - """Check the behaviour of `zero_division` in `matthews_corrcoef`.""" - expected_result = 0.0 if zero_division == "warn" else zero_division - - if zero_division == "warn": - with pytest.warns(UndefinedMetricWarning): - result = matthews_corrcoef(y_true, y_pred, zero_division=zero_division) - else: - result = matthews_corrcoef(y_true, y_pred, zero_division=zero_division) - - if np.isnan(expected_result): - assert np.isnan(result) - else: - assert result == expected_result - - @pytest.mark.parametrize("zero_division", [0, 1, np.nan]) -@pytest.mark.parametrize("y_true, y_pred", [([0], [0]), ([], [])]) +@pytest.mark.parametrize("y_true, y_pred", [([0], [0])]) @pytest.mark.parametrize( "metric", [ @@ -822,19 +804,12 @@ def test_matthews_corrcoef_zero_division(zero_division, y_true, y_pred): partial(fbeta_score, beta=1), precision_score, recall_score, - accuracy_score, - partial(cohen_kappa_score, labels=[0, 1]), ], ) def test_zero_division_nan_no_warning(metric, y_true, y_pred, zero_division): """Check the behaviour of `zero_division` when setting to 0, 1 or np.nan. No warnings should be raised. """ - if metric is accuracy_score and len(y_true): - pytest.skip( - reason="zero_division is only used with empty y_true/y_pred for accuracy" - ) - with warnings.catch_warnings(): warnings.simplefilter("error") result = metric(y_true, y_pred, zero_division=zero_division) @@ -845,7 +820,7 @@ def test_zero_division_nan_no_warning(metric, y_true, y_pred, zero_division): assert result == zero_division -@pytest.mark.parametrize("y_true, y_pred", [([0], [0]), ([], [])]) +@pytest.mark.parametrize("y_true, y_pred", [([0], [0])]) @pytest.mark.parametrize( "metric", [ @@ -853,19 +828,12 @@ def test_zero_division_nan_no_warning(metric, y_true, y_pred, zero_division): partial(fbeta_score, beta=1), precision_score, recall_score, - accuracy_score, - cohen_kappa_score, ], ) def test_zero_division_nan_warning(metric, y_true, y_pred): """Check the behaviour of `zero_division` when setting to "warn". A `UndefinedMetricWarning` should be raised. """ - if metric is accuracy_score and len(y_true): - pytest.skip( - reason="zero_division is only used with empty y_true/y_pred for accuracy" - ) - with pytest.warns(UndefinedMetricWarning): result = metric(y_true, y_pred, zero_division="warn") assert result == 0.0 @@ -937,19 +905,15 @@ def test_matthews_corrcoef(): # For the zero vector case, the corrcoef cannot be calculated and should # output 0 - assert_almost_equal( - matthews_corrcoef([0, 0, 0, 0], [0, 0, 0, 0], zero_division=0), 0.0 - ) + assert_almost_equal(matthews_corrcoef([0, 0, 0, 0], [0, 0, 0, 0]), 0.0) # And also for any other vector with 0 variance - assert_almost_equal( - matthews_corrcoef(y_true, ["a"] * len(y_true), zero_division=0), 0.0 - ) + assert_almost_equal(matthews_corrcoef(y_true, ["a"] * len(y_true)), 0.0) # These two vectors have 0 correlation and hence mcc should be 0 y_1 = [1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1] y_2 = [1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1] - assert_almost_equal(matthews_corrcoef(y_1, y_2, zero_division=0), 0.0) + assert_almost_equal(matthews_corrcoef(y_1, y_2), 0.0) # Check that sample weight is able to selectively exclude mask = [1] * 10 + [0] * 10 @@ -982,17 +946,17 @@ def test_matthews_corrcoef_multiclass(): # Zero variance will result in an mcc of zero y_true = [0, 1, 2] y_pred = [3, 3, 3] - assert_almost_equal(matthews_corrcoef(y_true, y_pred, zero_division=0), 0.0) + assert_almost_equal(matthews_corrcoef(y_true, y_pred), 0.0) # Also for ground truth with zero variance y_true = [3, 3, 3] y_pred = [0, 1, 2] - assert_almost_equal(matthews_corrcoef(y_true, y_pred, zero_division=0), 0.0) + assert_almost_equal(matthews_corrcoef(y_true, y_pred), 0.0) # These two vectors have 0 correlation and hence mcc should be 0 y_1 = [0, 1, 2, 0, 1, 2, 0, 1, 2] y_2 = [1, 1, 1, 2, 2, 2, 0, 0, 0] - assert_almost_equal(matthews_corrcoef(y_1, y_2, zero_division=0), 0.0) + assert_almost_equal(matthews_corrcoef(y_1, y_2), 0.0) # We can test that binary assumptions hold using the multiclass computation # by masking the weight of samples not in the first two classes @@ -1011,10 +975,7 @@ def test_matthews_corrcoef_multiclass(): y_pred = [0, 0, 1, 2] sample_weight = [1, 1, 0, 0] assert_almost_equal( - matthews_corrcoef( - y_true, y_pred, sample_weight=sample_weight, zero_division=0.0 - ), - 0.0, + matthews_corrcoef(y_true, y_pred, sample_weight=sample_weight), 0.0 ) From 0a0d2ff1623c8e19395be86c3aafa30b93cb01aa Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Lo=C3=AFc=20Est=C3=A8ve?= Date: Tue, 12 Nov 2024 18:54:55 +0100 Subject: [PATCH 013/159] CI Use released versions of dependencies in Python 3.13 wheels as much as possible (#30269) --- build_tools/github/build_minimal_windows_image.sh | 9 --------- build_tools/wheels/cibw_before_test.sh | 12 +++--------- 2 files changed, 3 insertions(+), 18 deletions(-) diff --git a/build_tools/github/build_minimal_windows_image.sh b/build_tools/github/build_minimal_windows_image.sh index adac06f02bb9a..2b57124a73777 100755 --- a/build_tools/github/build_minimal_windows_image.sh +++ b/build_tools/github/build_minimal_windows_image.sh @@ -30,15 +30,6 @@ function exec_inside_container() { } exec_inside_container "python -m pip install $MNT_FOLDER/$WHEEL_NAME" - -if [[ "$PYTHON_VERSION" == "313" ]]; then - # TODO: remove when pandas has a release with python 3.13 wheels - # First install numpy release - exec_inside_container "python -m pip install numpy" - # Then install pandas-dev - exec_inside_container "python -m pip install --pre --extra-index https://pypi.anaconda.org/scientific-python-nightly-wheels/simple pandas --only-binary :all:" -fi - exec_inside_container "python -m pip install $CIBW_TEST_REQUIRES" # Save container state to scikit-learn/minimal-windows image. On Windows the diff --git a/build_tools/wheels/cibw_before_test.sh b/build_tools/wheels/cibw_before_test.sh index 193a3890530b4..29bfcd41a8bb3 100755 --- a/build_tools/wheels/cibw_before_test.sh +++ b/build_tools/wheels/cibw_before_test.sh @@ -6,14 +6,8 @@ set -x FREE_THREADED_BUILD="$(python -c"import sysconfig; print(bool(sysconfig.get_config_var('Py_GIL_DISABLED')))")" PY_VERSION=$(python -c 'import sys; print(f"{sys.version_info.major}{sys.version_info.minor}")') +# TODO: remove when scipy has a release with free-threaded wheels if [[ $FREE_THREADED_BUILD == "True" ]]; then - # TODO: remove when numpy, scipy and pandas have releases with free-threaded wheels - python -m pip install --pre --extra-index https://pypi.anaconda.org/scientific-python-nightly-wheels/simple numpy scipy pandas --only-binary :all: - -elif [[ "$PY_VERSION" == "313" ]]; then - # TODO: remove when pandas has a release with python 3.13 wheels - # First install numpy release - python -m pip install numpy --only-binary :all: - # Then install pandas-dev - python -m pip install --pre --extra-index https://pypi.anaconda.org/scientific-python-nightly-wheels/simple pandas --only-binary :all: + python -m pip install numpy pandas + python -m pip install --pre --extra-index https://pypi.anaconda.org/scientific-python-nightly-wheels/simple scipy --only-binary :all: fi From 0324947cb5e300d20f8aaf2498cb646e45f5f895 Mon Sep 17 00:00:00 2001 From: Gael Varoquaux Date: Tue, 12 Nov 2024 20:49:31 +0100 Subject: [PATCH 014/159] DOC: some maintainers become emeritus (#30263) --- build_tools/generate_authors_table.py | 7 ++++-- doc/maintainers.rst | 36 --------------------------- doc/maintainers_emeritus.rst | 9 +++++++ 3 files changed, 14 insertions(+), 38 deletions(-) diff --git a/build_tools/generate_authors_table.py b/build_tools/generate_authors_table.py index 483dc3739506e..6dcddda40af4d 100644 --- a/build_tools/generate_authors_table.py +++ b/build_tools/generate_authors_table.py @@ -15,9 +15,9 @@ import requests -print("user:", file=sys.stderr) +print("Input user:", file=sys.stderr) user = input() -token = getpass.getpass("access token:\n") +token = getpass.getpass("Input access token:\n") auth = (user, token) LOGO_URL = "https://avatars2.githubusercontent.com/u/365630?v=4" @@ -63,11 +63,13 @@ def get_contributors(): ), (core_devs, contributor_experience_team, comm_team, documentation_team), ): + print(f"Retrieving {team_slug}\n") for page in [1, 2]: # 30 per page reply = get(f"{entry_point}teams/{team_slug}/members?page={page}") lst.extend(reply.json()) # get members of scikit-learn on GitHub + print("Retrieving members\n") members = [] for page in [1, 2, 3]: # 30 per page reply = get(f"{entry_point}members?page={page}") @@ -214,6 +216,7 @@ def generate_list(contributors): documentation_team, ) = get_contributors() + print("Generating rst files") with open( REPO_FOLDER / "doc" / "maintainers.rst", "w+", encoding="utf-8" ) as rst_file: diff --git a/doc/maintainers.rst b/doc/maintainers.rst index 17d9f9edb48af..6b4f3a25c0ddc 100644 --- a/doc/maintainers.rst +++ b/doc/maintainers.rst @@ -10,10 +10,6 @@

Jérémie du Boisberranger

-
-

Joris Van den Bossche

-
-

Loïc Estève

@@ -30,10 +26,6 @@

Olivier Grisel

-
-

Yaroslav Halchenko

-
-

Tim Head

@@ -66,54 +58,26 @@

Christian Lorentzen

-
-

Jan Hendrik Metzen

-
-

Andreas Mueller

-
-

Vlad Niculae

-
-

Joel Nothman

-
-

Hanmin Qin

-
-

Omar Salman

-
-

Bertrand Thirion

-
-
-
-

Tom Dupré la Tour

-
-

Gael Varoquaux

-
-

Nelle Varoquaux

-
-

Yao Xiao

-
-

Roman Yurchak

-
-

Meekail Zain

diff --git a/doc/maintainers_emeritus.rst b/doc/maintainers_emeritus.rst index b979b77bba974..f5640ab2caf31 100644 --- a/doc/maintainers_emeritus.rst +++ b/doc/maintainers_emeritus.rst @@ -1,4 +1,5 @@ - Mathieu Blondel +- Joris Van den Bossche - Matthieu Brucher - Lars Buitinck - David Cournapeau @@ -11,6 +12,7 @@ - Angel Soler Gollonet - Chris Gorgolewski - Jaques Grobler +- Yaroslav Halchenko - Brian Holt - Arnaud Joly - Thouis (Ray) Jones @@ -20,14 +22,21 @@ - Wei Li - Paolo Losi - Gilles Louppe +- Jan Hendrik Metzen - Vincent Michel - Jarrod Millman +- Vlad Niculae - Alexandre Passos - Fabian Pedregosa - Peter Prettenhofer +- Hanmin Qin - (Venkat) Raghav, Rajagopalan - Jacob Schreiber - 杜世橋 Du Shiqiao +- Bertrand Thirion +- Tom Dupré la Tour - Jake Vanderplas +- Nelle Varoquaux - David Warde-Farley - Ron Weiss +- Roman Yurchak From 8e9407be68a1c4812882e0070486fe83e773c9b4 Mon Sep 17 00:00:00 2001 From: Adrin Jalali Date: Wed, 13 Nov 2024 20:03:15 +0300 Subject: [PATCH 015/159] MNT Tags: quality of life improvements (#30268) Co-authored-by: Guillaume Lemaitre --- doc/developers/develop.rst | 21 ++++- sklearn/tests/test_common.py | 57 ------------ sklearn/utils/_tags.py | 7 +- sklearn/utils/estimator_checks.py | 96 ++++++++++++++++---- sklearn/utils/tests/test_estimator_checks.py | 6 +- sklearn/utils/tests/test_tags.py | 42 ++++++++- 6 files changed, 144 insertions(+), 85 deletions(-) diff --git a/doc/developers/develop.rst b/doc/developers/develop.rst index ace3fbbcfa9c6..3b8a455c75228 100644 --- a/doc/developers/develop.rst +++ b/doc/developers/develop.rst @@ -519,7 +519,26 @@ which returns the new values for your estimator's tags. For example:: return tags You can create a new subclass of :class:`~sklearn.utils.Tags` if you wish to add new -tags to the existing set. +tags to the existing set. Note that all attributes that you add in a child class need +to have a default value. It can be of the form:: + + from dataclasses import dataclass, asdict + + @dataclass + class MyTags(Tags): + my_tag: bool = True + + class MyEstimator(BaseEstimator): + def __sklearn_tags__(self): + tags_orig = super().__sklearn_tags__() + as_dict = { + field.name: getattr(tags_orig, field.name) + for field in fields(tags_orig) + } + tags = MyTags(**as_dict) + tags.my_tag = True + return tags + .. _developer_api_set_output: diff --git a/sklearn/tests/test_common.py b/sklearn/tests/test_common.py index 1191b9ed8bd42..d54916059c163 100644 --- a/sklearn/tests/test_common.py +++ b/sklearn/tests/test_common.py @@ -35,14 +35,6 @@ StandardScaler, ) from sklearn.utils import all_estimators -from sklearn.utils._tags import ( - ClassifierTags, - InputTags, - RegressorTags, - TargetTags, - TransformerTags, - get_tags, -) from sklearn.utils._test_common.instance_generator import ( _get_check_estimator_ids, _get_expected_failed_checks, @@ -228,55 +220,6 @@ def test_class_support_removed(): parametrize_with_checks([LogisticRegression]) -@pytest.mark.parametrize( - "estimator", _tested_estimators(), ids=_get_check_estimator_ids -) -def test_valid_tag_types(estimator): - """Check that estimator tags are valid.""" - tags = get_tags(estimator) - assert isinstance(tags.estimator_type, (str, type(None))) - assert isinstance(tags.target_tags, TargetTags) - assert isinstance(tags.classifier_tags, (ClassifierTags, type(None))) - assert isinstance(tags.regressor_tags, (RegressorTags, type(None))) - assert isinstance(tags.transformer_tags, (TransformerTags, type(None))) - assert isinstance(tags.input_tags, InputTags) - assert isinstance(tags.array_api_support, bool) - assert isinstance(tags.no_validation, bool) - assert isinstance(tags.non_deterministic, bool) - assert isinstance(tags.requires_fit, bool) - assert isinstance(tags._skip_test, bool) - - assert isinstance(tags.target_tags.required, bool) - assert isinstance(tags.target_tags.one_d_labels, bool) - assert isinstance(tags.target_tags.two_d_labels, bool) - assert isinstance(tags.target_tags.positive_only, bool) - assert isinstance(tags.target_tags.multi_output, bool) - assert isinstance(tags.target_tags.single_output, bool) - - assert isinstance(tags.input_tags.pairwise, bool) - assert isinstance(tags.input_tags.allow_nan, bool) - assert isinstance(tags.input_tags.sparse, bool) - assert isinstance(tags.input_tags.categorical, bool) - assert isinstance(tags.input_tags.string, bool) - assert isinstance(tags.input_tags.dict, bool) - assert isinstance(tags.input_tags.one_d_array, bool) - assert isinstance(tags.input_tags.two_d_array, bool) - assert isinstance(tags.input_tags.three_d_array, bool) - assert isinstance(tags.input_tags.positive_only, bool) - - if tags.classifier_tags is not None: - assert isinstance(tags.classifier_tags.poor_score, bool) - assert isinstance(tags.classifier_tags.multi_class, bool) - assert isinstance(tags.classifier_tags.multi_label, bool) - - if tags.regressor_tags is not None: - assert isinstance(tags.regressor_tags.poor_score, bool) - assert isinstance(tags.regressor_tags.multi_label, bool) - - if tags.transformer_tags is not None: - assert isinstance(tags.transformer_tags.preserves_dtype, list) - - def _estimators_that_predict_in_fit(): for estimator in _tested_estimators(): est_params = set(estimator.get_params()) diff --git a/sklearn/utils/_tags.py b/sklearn/utils/_tags.py index 2297799e4829f..ccbc9d2438268 100644 --- a/sklearn/utils/_tags.py +++ b/sklearn/utils/_tags.py @@ -232,9 +232,9 @@ class Tags: estimator_type: str | None target_tags: TargetTags - transformer_tags: TransformerTags | None - classifier_tags: ClassifierTags | None - regressor_tags: RegressorTags | None + transformer_tags: TransformerTags | None = None + classifier_tags: ClassifierTags | None = None + regressor_tags: RegressorTags | None = None array_api_support: bool = False no_validation: bool = False non_deterministic: bool = False @@ -315,6 +315,7 @@ def get_tags(estimator) -> Tags: tags : :class:`~.sklearn.utils.Tags` The estimator tags. """ + if hasattr(estimator, "__sklearn_tags__"): tags = estimator.__sklearn_tags__() else: diff --git a/sklearn/utils/estimator_checks.py b/sklearn/utils/estimator_checks.py index 3432755c6b6db..9f5dd9e3fb1e8 100644 --- a/sklearn/utils/estimator_checks.py +++ b/sklearn/utils/estimator_checks.py @@ -78,7 +78,14 @@ from . import shuffle from ._missing import is_scalar_nan from ._param_validation import Interval, StrOptions, validate_params -from ._tags import Tags, get_tags +from ._tags import ( + ClassifierTags, + InputTags, + RegressorTags, + TargetTags, + TransformerTags, + get_tags, +) from ._test_common.instance_generator import ( CROSS_DECOMPOSITION, _get_check_estimator_ids, @@ -127,6 +134,8 @@ def _yield_api_checks(estimator): tags = get_tags(estimator) yield check_estimator_cloneable + yield check_estimator_tags_renamed + yield check_valid_tag_types yield check_estimator_repr yield check_no_attributes_set_in_init yield check_fit_score_takes_y @@ -186,9 +195,6 @@ def _yield_checks(estimator): yield check_estimators_pickle yield partial(check_estimators_pickle, readonly_memmap=True) - yield check_estimator_get_tags_default_keys - yield check_estimator_tags_renamed - if tags.array_api_support: for check in _yield_array_api_checks(estimator): yield check @@ -4359,15 +4365,58 @@ def {method}(self, X): estimator.partial_fit(X_bad, y) -def check_estimator_get_tags_default_keys(name, estimator_orig): - # check that if __sklearn_tags__ is implemented, it's an instance of Tags - estimator = clone(estimator_orig) - if not hasattr(estimator, "__sklearn_tags__"): - return - - assert isinstance( - estimator.__sklearn_tags__(), Tags - ), f"{name}.__sklearn_tags__() must be an instance of Tags" +def check_valid_tag_types(name, estimator): + """Check that estimator tags are valid.""" + assert hasattr(estimator, "__sklearn_tags__"), ( + f"Estimator {name} does not have `__sklearn_tags__` method. This method is" + " implemented in BaseEstimator and returns a sklearn.utils.Tags instance." + ) + err_msg = ( + "Tag values need to be of a certain type. " + "Please refer to the documentation of `sklearn.utils.Tags` for more details." + ) + tags = get_tags(estimator) + assert isinstance(tags.estimator_type, (str, type(None))), err_msg + assert isinstance(tags.target_tags, TargetTags), err_msg + assert isinstance(tags.classifier_tags, (ClassifierTags, type(None))), err_msg + assert isinstance(tags.regressor_tags, (RegressorTags, type(None))), err_msg + assert isinstance(tags.transformer_tags, (TransformerTags, type(None))), err_msg + assert isinstance(tags.input_tags, InputTags), err_msg + assert isinstance(tags.array_api_support, bool), err_msg + assert isinstance(tags.no_validation, bool), err_msg + assert isinstance(tags.non_deterministic, bool), err_msg + assert isinstance(tags.requires_fit, bool), err_msg + assert isinstance(tags._skip_test, bool), err_msg + + assert isinstance(tags.target_tags.required, bool), err_msg + assert isinstance(tags.target_tags.one_d_labels, bool), err_msg + assert isinstance(tags.target_tags.two_d_labels, bool), err_msg + assert isinstance(tags.target_tags.positive_only, bool), err_msg + assert isinstance(tags.target_tags.multi_output, bool), err_msg + assert isinstance(tags.target_tags.single_output, bool), err_msg + + assert isinstance(tags.input_tags.pairwise, bool), err_msg + assert isinstance(tags.input_tags.allow_nan, bool), err_msg + assert isinstance(tags.input_tags.sparse, bool), err_msg + assert isinstance(tags.input_tags.categorical, bool), err_msg + assert isinstance(tags.input_tags.string, bool), err_msg + assert isinstance(tags.input_tags.dict, bool), err_msg + assert isinstance(tags.input_tags.one_d_array, bool), err_msg + assert isinstance(tags.input_tags.two_d_array, bool), err_msg + assert isinstance(tags.input_tags.three_d_array, bool), err_msg + assert isinstance(tags.input_tags.positive_only, bool), err_msg + + if tags.classifier_tags is not None: + assert isinstance(tags.classifier_tags.poor_score, bool), err_msg + assert isinstance(tags.classifier_tags.multi_class, bool), err_msg + assert isinstance(tags.classifier_tags.multi_label, bool), err_msg + + if tags.regressor_tags is not None: + assert isinstance(tags.regressor_tags.poor_score, bool), err_msg + assert isinstance(tags.regressor_tags.multi_label, bool), err_msg + + if tags.transformer_tags is not None: + assert isinstance(tags.transformer_tags.preserves_dtype, list), err_msg def check_estimator_tags_renamed(name, estimator_orig): @@ -4376,13 +4425,20 @@ def check_estimator_tags_renamed(name, estimator_orig): scikit-learn versions. """ - if not hasattr(estimator_orig, "__sklearn_tags__"): - assert not hasattr(estimator_orig, "_more_tags"), help.format( - tags_func="_more_tags" - ) - assert not hasattr(estimator_orig, "_get_tags"), help.format( - tags_func="_get_tags" - ) + for klass in type(estimator_orig).mro(): + if ( + # Here we check vars(...) because we want to check if the method is + # explicitly defined in the class instead of inherited from a parent class. + ("_more_tags" in vars(klass) or "_get_tags" in vars(klass)) + and "__sklearn_tags__" not in vars(klass) + ): + raise TypeError( + f"Estimator {name} has defined either `_more_tags` or `_get_tags`," + " but not `__sklearn_tags__`. If you're customizing tags, and need to" + " support multiple scikit-learn versions, you can implement both" + " `__sklearn_tags__` and `_more_tags` or `_get_tags`. This change was" + " introduced in scikit-learn=1.6" + ) def check_dataframe_column_names_consistency(name, estimator_orig): diff --git a/sklearn/utils/tests/test_estimator_checks.py b/sklearn/utils/tests/test_estimator_checks.py index 0d376686055d6..d09b3e7f366ec 100644 --- a/sklearn/utils/tests/test_estimator_checks.py +++ b/sklearn/utils/tests/test_estimator_checks.py @@ -1536,10 +1536,10 @@ def __sklearn_tags__(self): def _more_tags(self): return None # pragma: no cover - msg = "was removed in 1.6. Please use __sklearn_tags__ instead." - with raises(AssertionError, match=msg): + msg = "has defined either `_more_tags` or `_get_tags`" + with raises(TypeError, match=msg): check_estimator_tags_renamed("BadEstimator1", BadEstimator1()) - with raises(AssertionError, match=msg): + with raises(TypeError, match=msg): check_estimator_tags_renamed("BadEstimator2", BadEstimator2()) # This shouldn't fail since we allow both __sklearn_tags__ and _more_tags diff --git a/sklearn/utils/tests/test_tags.py b/sklearn/utils/tests/test_tags.py index 5768a0d2b6b27..413fbc6bbd3de 100644 --- a/sklearn/utils/tests/test_tags.py +++ b/sklearn/utils/tests/test_tags.py @@ -1,3 +1,5 @@ +from dataclasses import dataclass, fields + import pytest from sklearn.base import ( @@ -5,7 +7,11 @@ RegressorMixin, TransformerMixin, ) -from sklearn.utils._tags import get_tags +from sklearn.utils import Tags, get_tags +from sklearn.utils.estimator_checks import ( + check_estimator_tags_renamed, + check_valid_tag_types, +) class NoTagsEstimator: @@ -38,3 +44,37 @@ class EmptyRegressor(RegressorMixin, BaseEstimator): ) def test_requires_y(estimator, value): assert get_tags(estimator).target_tags.required == value + + +def test_no___sklearn_tags__with_more_tags(): + """Test that calling `get_tags` on a class that defines `_more_tags` but not + `__sklearn_tags__` raises an error. + """ + + class MoreTagsEstimator(BaseEstimator): + def _more_tags(self): + return {"requires_y": True} # pragma: no cover + + with pytest.raises( + TypeError, match="has defined either `_more_tags` or `_get_tags`" + ): + check_estimator_tags_renamed("MoreTagsEstimator", MoreTagsEstimator()) + + +def test_tag_test_passes_with_inheritance(): + @dataclass + class MyTags(Tags): + my_tag: bool = True + + class MyEstimator(BaseEstimator): + def __sklearn_tags__(self): + tags_orig = super().__sklearn_tags__() + as_dict = { + field.name: getattr(tags_orig, field.name) + for field in fields(tags_orig) + } + tags = MyTags(**as_dict) + tags.my_tag = True + return tags + + check_valid_tag_types("MyEstimator", MyEstimator()) From 668488f58a4105dcd3df19c1f3ebb2303c2f08c8 Mon Sep 17 00:00:00 2001 From: Stefanie Senger <91849487+StefanieSenger@users.noreply.github.com> Date: Thu, 14 Nov 2024 09:53:18 +0100 Subject: [PATCH 016/159] TST add formatting strings to check_regressor_multioutput assertion (#30241) --- sklearn/utils/estimator_checks.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/sklearn/utils/estimator_checks.py b/sklearn/utils/estimator_checks.py index 9f5dd9e3fb1e8..abf272e955bc2 100644 --- a/sklearn/utils/estimator_checks.py +++ b/sklearn/utils/estimator_checks.py @@ -2438,11 +2438,11 @@ def check_regressor_multioutput(name, estimator): assert y_pred.dtype == np.dtype("float64"), ( "Multioutput predictions by a regressor are expected to be" - " floating-point precision. Got {} instead".format(y_pred.dtype) + f" floating-point precision. Got {y_pred.dtype} instead" ) assert y_pred.shape == y.shape, ( "The shape of the prediction for multioutput data is incorrect." - " Expected {}, got {}." + f" Expected {y_pred.shape}, got {y.shape}." ) From 6bb703fd6ef4130f711ed9ddb1fab0ee30501d16 Mon Sep 17 00:00:00 2001 From: Guillaume Lemaitre Date: Thu, 14 Nov 2024 18:56:35 +0100 Subject: [PATCH 017/159] Release 1.6.0rc1 [cd build] (#30244) MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit Co-authored-by: Jérémie du Boisberranger --- doc/whats_new/v1.6.rst | 643 +++++++++++++++++++++++++++++++++++++++++ sklearn/__init__.py | 2 +- 2 files changed, 644 insertions(+), 1 deletion(-) diff --git a/doc/whats_new/v1.6.rst b/doc/whats_new/v1.6.rst index 92d3cc519e1e6..c3392006bba09 100644 --- a/doc/whats_new/v1.6.rst +++ b/doc/whats_new/v1.6.rst @@ -26,6 +26,649 @@ Version 1.6 .. towncrier release notes start +.. _changes_1_6_0: + +Version 1.6.0 +============= + +**November 2024** + +Changes impacting many modules +------------------------------ + +- |Enhancement| `__sklearn_tags__` was introduced for setting tags in estimators. + More details in :ref:`estimator_tags`. + By :user:`Thomas Fan ` and :user:`Adrin Jalali ` :pr:`29677` + +- |Enhancement| Scikit-learn classes and functions can be used while only having a + `import sklearn` import line. For example, `import sklearn; sklearn.svm.SVC()` now works. + By :user:`Thomas Fan ` :pr:`29793` + +- |Fix| Classes :class:`metrics.ConfusionMatrixDisplay`, + :class:`metrics.RocCurveDisplay`, :class:`calibration.CalibrationDisplay`, + :class:`metrics.PrecisionRecallDisplay`, :class:`metrics.PredictionErrorDisplay` and + :class:`inspection.PartialDependenceDisplay` now properly handle Matplotlib aliases + for style parameters (e.g., `c` and `color`, `ls` and `linestyle`, etc). + By :user:`Joseph Barbier ` :pr:`30023` + +- |API| :func:`utils.validation.validate_data` is introduced and replaces previously + private `base.BaseEstimator._validate_data` method. This is intended for third party + estimator developers, who should use this function in most cases instead of + :func:`utils.check_array` and :func:`utils.check_X_y`. + By :user:`Adrin Jalali ` :pr:`29696` + +Support for Array API +--------------------- + +Additional estimators and functions have been updated to include support for all +`Array API `_ compliant inputs. + +See :ref:`array_api` for more details. + +- |Feature| :class:`model_selection.GridSearchCV`, + :class:`model_selection.RandomizedSearchCV`, + :class:`model_selection.HalvingGridSearchCV` and + :class:`model_selection.HalvingRandomSearchCV` now support Array API + compatible inputs when their base estimators do. + By :user:`Tim Head ` and :user:`Olivier Grisel ` :pr:`27096` + +- |Feature| :class:`preprocessing.LabelEncoder` now supports Array API compatible inputs. + By :user:`Omar Salman ` :pr:`27381` + +- |Feature| :func:`sklearn.metrics.mean_absolute_error` now supports Array API compatible + inputs. + By :user:`Edoardo Abati ` :pr:`27736` + +- |Feature| :func:`sklearn.metrics.mean_tweedie_deviance` now supports Array API + compatible inputs. + By :user:`Thomas Li ` :pr:`28106` + +- |Feature| :func:`sklearn.metrics.pairwise.cosine_similarity` now supports Array API + compatible inputs. + By :user:`Edoardo Abati ` :pr:`29014` + +- |Feature| :func:`sklearn.metrics.pairwise.paired_cosine_distances` now supports Array + API compatible inputs. + By :user:`Edoardo Abati ` :pr:`29112` + +- |Feature| :func:`sklearn.metrics.cluster.entropy` now supports Array API compatible + inputs. + By :user:`Yaroslav Korobko ` :pr:`29141` + +- |Feature| :func:`sklearn.metrics.mean_squared_error` now supports Array API compatible + inputs. + By :user:`Yaroslav Korobko ` :pr:`29142` + +- |Feature| :func:`sklearn.metrics.pairwise.additive_chi2_kernel` now supports Array API + compatible inputs. + By :user:`Yaroslav Korobko ` :pr:`29144` + +- |Feature| :func:`sklearn.metrics.d2_tweedie_score` now supports Array API compatible + inputs. + By :user:`Emily Chen ` :pr:`29207` + +- |Feature| :func:`sklearn.metrics.max_error` now supports Array API compatible inputs. + By :user:`Edoardo Abati ` :pr:`29212` + +- |Feature| :func:`sklearn.metrics.mean_poisson_deviance` now supports Array API + compatible inputs. + By :user:`Emily Chen ` :pr:`29227` + +- |Feature| :func:`sklearn.metrics.mean_gamma_deviance` now supports Array API compatible + inputs. + By :user:`Emily Chen ` :pr:`29239` + +- |Feature| :func:`sklearn.metrics.pairwise.cosine_distances` now supports Array API + compatible inputs. + By :user:`Emily Chen ` :pr:`29265` + +- |Feature| :func:`sklearn.metrics.pairwise.chi2_kernel` now supports Array API + compatible inputs. + By :user:`Yaroslav Korobko ` :pr:`29267` + +- |Feature| :func:`sklearn.metrics.mean_absolute_percentage_error` now supports Array API + compatible inputs. + By :user:`Emily Chen ` :pr:`29300` + +- |Feature| :func:`sklearn.metrics.pairwise.paired_euclidean_distances` now supports + Array API compatible inputs. + By :user:`Emily Chen ` :pr:`29389` + +- |Feature| :func:`sklearn.metrics.pairwise.euclidean_distances` and + :func:`sklearn.metrics.pairwise.rbf_kernel` now supports Array API compatible + inputs. + By :user:`Omar Salman ` :pr:`29433` + +- |Feature| :func:`sklearn.metrics.pairwise.linear_kernel`, + :func:`sklearn.metrics.pairwise.sigmoid_kernel`, and + :func:`sklearn.metrics.pairwise.polynomial_kernel` now supports Array API + compatible inputs. + By :user:`Omar Salman ` :pr:`29475` + +- |Feature| :func:`sklearn.metrics.mean_squared_log_error` and + :func:`sklearn.metrics.root_mean_squared_log_error` + now supports Array API compatible inputs. + By :user:`Virgil Chan ` :pr:`29709` + +- |Feature| :class:`preprocessing.MinMaxScaler` with `clip=True` now supports Array API + compatible inputs. + By :user:`Shreekant Nandiyawar ` :pr:`29751` + +- Support for the soon to be deprecated `cupy.array_api` module has been + removed in favor of directly supporting the top level `cupy` module, possibly + via the `array_api_compat.cupy` compatibility wrapper. + By :user:`Olivier Grisel ` :pr:`29639` + +Metadata routing +---------------- + +Refer to the :ref:`Metadata Routing User Guide ` for +more details. + +- |Feature| :class:`semi_supervised.SelfTrainingClassifier` + now supports metadata routing. The fit method now accepts ``**fit_params`` + which are passed to the underlying estimators via their `fit` methods. + In addition, the + :meth:`~semi_supervised.SelfTrainingClassifier.predict`, + :meth:`~semi_supervised.SelfTrainingClassifier.predict_proba`, + :meth:`~semi_supervised.SelfTrainingClassifier.predict_log_proba`, + :meth:`~semi_supervised.SelfTrainingClassifier.score` + and :meth:`~semi_supervised.SelfTrainingClassifier.decision_function` + methods also accept ``**params`` which are + passed to the underlying estimators via their respective methods. + By :user:`Adam Li ` :pr:`28494` + +- |Feature| :class:`ensemble.StackingClassifier` and + :class:`ensemble.StackingRegressor` now support metadata routing and pass + ``**fit_params`` to the underlying estimators via their `fit` methods. + By :user:`Stefanie Senger ` :pr:`28701` + +- |Feature| :func:`model_selection.learning_curve` now supports metadata routing for the + `fit` method of its estimator and for its underlying CV splitter and scorer. + By :user:`Stefanie Senger ` :pr:`28975` + +- |Feature| :class:`compose.TransformedTargetRegressor` now supports metadata + routing in its :meth:`~compose.TransformedTargetRegressor.fit` and + :meth:`~compose.TransformedTargetRegressor.predict` methods and routes the + corresponding params to the underlying regressor. + By :user:`Omar Salman ` :pr:`29136` + +- |Feature| :class:`feature_selection.SequentialFeatureSelector` now supports + metadata routing in its `fit` method and passes the corresponding params to + the :func:`model_selection.cross_val_score` function. + By :user:`Omar Salman ` :pr:`29260` + +- |Feature| :func:`model_selection.permutation_test_score` now supports metadata routing + for the `fit` method of its estimator and for its underlying CV splitter and scorer. + By :user:`Adam Li ` :pr:`29266` + +- |Feature| :class:`feature_selection.RFE` and :class:`feature_selection.RFECV` + now support metadata routing. + By :user:`Omar Salman ` :pr:`29312` + +- |Feature| :func:`model_selection.validation_curve` now supports metadata routing for + the `fit` method of its estimator and for its underlying CV splitter and scorer. + By :user:`Stefanie Senger ` :pr:`29329` + +- |Fix| Metadata is routed correctly to grouped CV splitters via + :class:`linear_model.RidgeCV` and :class:`linear_model.RidgeClassifierCV` and + `UnsetMetadataPassedError` is fixed for :class:`linear_model.RidgeClassifierCV` with + default scoring. + By :user:`Stefanie Senger ` :pr:`29634` + +- |Fix| Many method arguments which shouldn't be included in the routing mechanism are + now excluded and the `set_{method}_request` methods are not generated for them. + By `Adrin Jalali`_ :pr:`29920` + +Dropping official support for PyPy +---------------------------------- + +Due to limited maintainer resources and small number of users, official PyPy +support has been dropped. Some parts of scikit-learn may still work but PyPy is +not tested anymore in the scikit-learn Continuous Integration. +By :user:`Loïc Estève ` :pr:`29128` + +Dropping support for building with setuptools +--------------------------------------------- + +From scikit-learn 1.6 onwards, support for building with setuptools has been +removed. Meson is the only supported way to build scikit-learn, see +:ref:`Building from source ` for more details. +By :user:`Loïc Estève ` :pr:`29400` + +:mod:`sklearn.base` +------------------- + +- |Enhancement| Added a function :func:`base.is_clusterer` which determines whether a given + estimator is of category clusterer. + By :user:`Christian Veenhuis ` :pr:`28936` + +- |API| Passing a class object to :func:`~sklearn.base.is_classifier`, + :func:`~sklearn.base.is_regressor`, :func:`~sklearn.base.is_transformer`, and + :func:`~sklearn.base.is_outlier_detector` is now deprecated. Pass an instance + instead. + By `Adrin Jalali`_ :pr:`30122` + +:mod:`sklearn.calibration` +-------------------------- + +- |API| `cv="prefit"` is deprecated for :class:`~sklearn.calibration.CalibratedClassifierCV`. + Use :class:`~sklearn.frozen.FrozenEstimator` instead, as + `CalibratedClassifierCV(FrozenEstimator(estimator))`. + By `Adrin Jalali`_ :pr:`30171` + +:mod:`sklearn.cluster` +---------------------- + +- |API| The `copy` parameter of :class:`cluster.Birch` was deprecated in 1.6 and will be + removed in 1.8. It has no effect as the estimator does not perform in-place operations + on the input data. + By :user:`Yao Xiao ` :pr:`29124` + +:mod:`sklearn.compose` +---------------------- + +- |Enhancement| :func:`sklearn.compose.ColumnTransformer` `verbose_feature_names_out` + now accepts string format or callable to generate feature names. + By :user:`Marc Bresson ` :pr:`28934` + +:mod:`sklearn.covariance` +------------------------- + +- |Efficiency| :class:`covariance.MinCovDet` fitting is now slightly faster. + By :user:`Antony Lee ` :pr:`29835` + +:mod:`sklearn.cross_decomposition` +---------------------------------- + +- |Fix| :class:`cross_decomposition.PLSRegression` properly raises an error when + `n_components` is larger than `n_samples`. + By :user:`Thomas Fan ` :pr:`29710` + +:mod:`sklearn.datasets` +----------------------- + +- |Feature| :func:`datasets.fetch_file` allows downloading arbitrary data-file + from the web. It handles local caching, integrity checks with SHA256 digests + and automatic retries in case of HTTP errors. + By :user:`Olivier Grisel ` :pr:`29354` + +:mod:`sklearn.decomposition` +---------------------------- + +- |Enhancement| :class:`~sklearn.decomposition.LatentDirichletAllocation` now has a + ``normalize`` parameter in + :meth:`~sklearn.decomposition.LatentDirichletAllocation.transform` and + :meth:`~sklearn.decomposition.LatentDirichletAllocation.fit_transform` + methods to control whether the document topic distribution is normalized. + By `Adrin Jalali`_ :pr:`30097` + +- |Fix| :class:`~sklearn.decomposition.IncrementalPCA` + will now only raise a ``ValueError`` when the number of samples in the + input data to ``partial_fit`` is less than the number of components + on the first call to ``partial_fit``. Subsequent calls to ``partial_fit`` + no longer face this restriction. + By :user:`Thomas Gessey-Jones ` :pr:`30224` + +:mod:`sklearn.discriminant_analysis` +------------------------------------ + +- |Fix| :class:`discriminant_analysis.QuadraticDiscriminantAnalysis` + will now cause `LinAlgWarning` in case of collinear variables. These errors + can be silenced using the `reg_param` attribute. + By :user:`Alihan Zihna ` :pr:`19731` + +:mod:`sklearn.ensemble` +----------------------- + +- |Feature| :class:`ensemble.ExtraTreesClassifier` and + :class:`ensemble.ExtraTreesRegressor` now support missing-values in the data matrix + `X`. Missing-values are handled by randomly moving all of the samples to the left, or + right child node as the tree is traversed. + By :user:`Adam Li ` :pr:`28268` + +- |Efficiency| Small runtime improvement of fitting + :class:`ensemble.HistGradientBoostingClassifier` and + :class:`ensemble.HistGradientBoostingRegressor` by parallelizing the initial search + for bin thresholds. + By :user:`Christian Lorentzen ` :pr:`28064` + +- |Efficiency| :class:`ensemble.IsolationForest` now runs parallel jobs + during :term:`predict` offering a speedup of up to 2-4x on sample sizes + larger than 2000 using `joblib`. + By :user:`Adam Li ` and :user:`Sérgio Pereira ` :pr:`28622` + +- |Enhancement| The verbosity of :class:`ensemble.HistGradientBoostingClassifier` + and :class:`ensemble.HistGradientBoostingRegressor` got a more granular control. Now, + `verbose = 1` prints only summary messages, `verbose >= 2` prints the full + information as before. + By :user:`Christian Lorentzen ` :pr:`28179` + +- |API| The parameter `algorithm` of :class:`ensemble.AdaBoostClassifier` is deprecated + and will be removed in 1.8. + By :user:`Jérémie du Boisberranger ` :pr:`29997` + +:mod:`sklearn.feature_extraction` +--------------------------------- + +- |Fix| :class:`feature_extraction.text.TfidfVectorizer` now correctly preserves the + `dtype` of `idf_` based on the input data. + By :user:`Guillaume Lemaitre ` :pr:`30022` + +:mod:`sklearn.frozen` +--------------------- + +- |MajorFeature| :class:`~sklearn.frozen.FrozenEstimator` is now introduced which allows + freezing an estimator. This means calling `.fit` on it has no effect, and doing a + `clone(frozenestimator)` returns the same estimator instead of an unfitted clone. + :pr:`29705` By `Adrin Jalali`_ :pr:`29705` + +:mod:`sklearn.impute` +--------------------- + +- |Fix| :class:`impute.KNNImputer` excludes samples with nan distances when + computing the mean value for uniform weights. + By :user:`Xuefeng Xu ` :pr:`29135` + +- |Fix| When `min_value` and `max_value` are array-like and some features are dropped due to + `keep_empty_features=False`, :class:`impute.IterativeImputer` no longer raises an + error and now indexes correctly. + By :user:`Guntitat Sawadwuthikul ` :pr:`29451` + +- |Fix| Fixed :class:`impute.IterativeImputer` to make sure that it does not skip + the iterative process when `keep_empty_features` is set to `True`. + By :user:`Arif Qodari ` :pr:`29779` + +- |API| Add a warning in :class:`impute.SimpleImputer` when `keep_empty_feature=False` and + `strategy="constant"`. In this case empty features are not dropped and this behaviour + will change in 1.8. + By :user:`Arthur Courselle ` and :user:`Simon Riou ` :pr:`29950` + +:mod:`sklearn.linear_model` +--------------------------- + +- |Enhancement| The `solver="newton-cholesky"` in + :class:`linear_model.LogisticRegression` and + :class:`linear_model.LogisticRegressionCV` is extended to support the full + multinomial loss in a multiclass setting. + By :user:`Christian Lorentzen ` :pr:`28840` + +- |Fix| In :class:`linear_model.Ridge` and :class:`linear_model.RidgeCV`, after `fit`, + the `coef_` attribute is now of shape `(n_samples,)` like other linear models. + By :user:`Maxwell Liu`, `Guillaume Lemaitre`_, and `Adrin Jalali`_ :pr:`19746` + +- |Fix| :class:`linear_model.LogisticRegressionCV` corrects sample weight handling + for the calculation of test scores. + By :user:`Shruti Nath ` :pr:`29419` + +- |Fix| :class:`linear_model.LassoCV` and :class:`linear_model.ElasticNetCV` now + take sample weights into accounts to define the search grid for the internally tuned + `alpha` hyper-parameter. + By :user:`John Hopfensperger ` and :user:`Shruti Nath ` :pr:`29442` + +- |Fix| :class:`linear_model.LogisticRegression`, :class:`linear_model.PoissonRegressor`, + :class:`linear_model.GammaRegressor`, :class:`linear_model.TweedieRegressor` + now take sample weights into account to decide when to fall back to `solver='lbfgs'` + whenever `solver='newton-cholesky'` becomes numerically unstable. + By :user:`Antoine Baker ` :pr:`29818` + +- |Fix| :class:`linear_model.RidgeCV` now properly uses predictions on the same scale as + the target seen during `fit`. These predictions are stored in `cv_results_` when + `scoring != None`. Previously, the predictions were rescaled by the square root of the + sample weights and offset by the mean of the target, leading to an incorrect estimate + of the score. + By :user:`Guillaume Lemaitre `, + :user:`Jérôme Dockes ` and + :user:`Hanmin Qin ` :pr:`29842` + +- |Fix| :class:`linear_model.RidgeCV` now properly supports custom multioutput scorers + by letting the scorer manage the multioutput averaging. Previously, the predictions + and true targets were both squeezed to a 1D array before computing the error. + By :user:`Guillaume Lemaitre ` :pr:`29884` + +- |Fix| :class:`linear_model.LinearRegression` now sets the `cond` parameter when + calling the `scipy.linalg.lstsq` solver on dense input data. This ensures + more numerically robust results on rank-deficient data. In particular, it + empirically fixes the expected equivalence property between fitting with + reweighted or with repeated data points. + By :user:`Antoine Baker ` :pr:`30040` + +- |Fix| :class:`linear_model.LogisticRegression` and and other linear models that + accept `solver="newton-cholesky"` now report the correct number of iterations + when they fall back to the `"lbfgs"` solver because of a rank deficient + Hessian matrix. + By :user:`Olivier Grisel ` :pr:`30100` + +- |Fix| :class:`~sklearn.linear_model.SGDOneClassSVM` now correctly inherits from + :class:`~sklearn.base.OutlierMixin` and the tags are correctly set. + By :user:`Guillaume Lemaitre ` :pr:`30227` + +- |API| Deprecates `copy_X` in :class:`linear_model.TheilSenRegressor` as the parameter + has no effect. `copy_X` will be removed in 1.8. + By :user:`Adam Li ` :pr:`29105` + +:mod:`sklearn.manifold` +----------------------- + +- |Efficiency| :func:`manifold.locally_linear_embedding` and + :class:`manifold.LocallyLinearEmbedding` now allocate more efficiently the memory of + sparse matrices in the Hessian, Modified and LTSA methods. + By :user:`Giorgio Angelotti ` :pr:`28096` + +:mod:`sklearn.metrics` +---------------------- + +- |Efficiency| :func:`sklearn.metrics.classification_report` is now faster by caching + classification labels. + By :user:`Adrin Jalali ` :pr:`29738` + +- |Enhancement| :meth:`metrics.RocCurveDisplay.from_estimator`, + :meth:`metrics.RocCurveDisplay.from_predictions`, + :meth:`metrics.PrecisionRecallDisplay.from_estimator`, and + :meth:`metrics.PrecisionRecallDisplay.from_predictions` now accept a new keyword + `despine` to remove the top and right spines of the plot in order to make it clearer. + By :user:`Yao Xiao ` :pr:`26367` + +- |Enhancement| :func:`sklearn.metrics.check_scoring` now accepts `raise_exc` to specify + whether to raise an exception if a subset of the scorers in multimetric scoring fails + or to return an error code. + By :user:`Stefanie Senger ` :pr:`28992` + +- |Fix| :func:`metrics.roc_auc_score` will now correctly return np.nan and + warn user if only one class is present in the labels. + By :user:`Gleb Levitski ` and :user:`Janez Demšar ` :pr:`27412`, :pr:`30013` + +- |Fix| The functions :func:`metrics.mean_squared_log_error` and + :func:`metrics.root_mean_squared_log_error` now check whether the inputs are within + the correct domain for the function :math:`y=\log(1+x)`, rather than + :math:`y=\log(x)`. The functions :func:`metrics.mean_absolute_error`, + :func:`metrics.mean_absolute_percentage_error`, :func:`metrics.mean_squared_error` + and :func:`metrics.root_mean_squared_error` now explicitly check whether a scalar + will be returned when `multioutput=uniform_average`. + By :user:`Virgil Chan ` :pr:`29709` + +- |API| The `assert_all_finite` parameter of functions + :func:`metrics.pairwise.check_pairwise_arrays` and :func:`metrics.pairwise_distances` + is renamed into `ensure_all_finite`. `force_all_finite` will be removed in 1.8. + By :user:`Jérémie du Boisberranger ` :pr:`29404` + +- |API| `scoring="neg_max_error"` should be used instead of `scoring="max_error"` + which is now deprecated. + By :user:`Farid "Freddie" Taba ` :pr:`29462` + +- |API| The default value of the `response_method` parameter of + :func:`metrics.make_scorer` will change from `None` to `"predict"` and `None` will be + removed in 1.8. In the mean time, `None` is equivalent to `"predict"`. + By :user:`Jérémie du Boisberranger ` :pr:`30001` + +:mod:`sklearn.model_selection` +------------------------------ + +- |Enhancement| :class:`~model_selection.GroupKFold` now has the ability to shuffle groups into + different folds when `shuffle=True`. + By :user:`Zachary Vealey ` :pr:`28519` + +- |Enhancement| There is no need to call `fit` on a + :class:`~sklearn.model_selection.FixedThresholdClassifier` if the underlying + estimator is already fitted. + By :user:`Adrin Jalali ` :pr:`30172` + +- |Fix| Improve error message when :func:`model_selection.RepeatedStratifiedKFold.split` + is called without a `y` argument + By :user:`Anurag Varma ` :pr:`29402` + +:mod:`sklearn.neighbors` +------------------------ + +- |Enhancement| :class:`neighbors.NearestNeighbors`, + :class:`neighbors.KNeighborsClassifier`, + :class:`neighbors.KNeighborsRegressor`, + :class:`neighbors.RadiusNeighborsClassifier`, + :class:`neighbors.RadiusNeighborsRegressor`, + :class:`neighbors.KNeighborsTransformer`, + :class:`neighbors.RadiusNeighborsTransformer`, and + :class:`neighbors.LocalOutlierFactor` + now work with `metric="nan_euclidean"`, supporting `nan` inputs. + By :user:`Carlo Lemos `, `Guillaume Lemaitre`_, and `Adrin Jalali`_ :pr:`25330` + +- |Enhancement| Add :meth:`neighbors.NearestCentroid.decision_function`, + :meth:`neighbors.NearestCentroid.predict_proba` and + :meth:`neighbors.NearestCentroid.predict_log_proba` + to the :class:`neighbors.NearestCentroid` estimator class. + Support the case when `X` is sparse and `shrinking_threshold` + is not `None` in :class:`neighbors.NearestCentroid`. + By :user:`Matthew Ning ` :pr:`26689` + +- |Enhancement| Make `predict`, `predict_proba`, and `score` of + :class:`neighbors.KNeighborsClassifier` and + :class:`neighbors.RadiusNeighborsClassifier` accept `X=None` as input. In this case + predictions for all training set points are returned, and points are not included + into their own neighbors. + By :user:`Dmitry Kobak ` :pr:`30047` + +- |Fix| :class:`neighbors.LocalOutlierFactor` raises a warning in the `fit` method + when duplicate values in the training data lead to inaccurate outlier detection. + By :user:`Henrique Caroço ` :pr:`28773` + +:mod:`sklearn.neural_network` +----------------------------- + +- |Fix| :class:`neural_network.MLPRegressor` does no longer crash when the model + diverges and that `early_stopping` is enabled. + By :user:`Marc Bresson ` :pr:`29773` + +:mod:`sklearn.pipeline` +----------------------- + +- |Enhancement| :class:`pipeline.Pipeline` now warns about not being fitted before calling methods + that require the pipeline to be fitted. This warning will become an error in 1.8. + By `Adrin Jalali`_ :pr:`29868` + +- |Fix| Fixed an issue with tags and estimator type of :class:`~sklearn.pipeline.Pipeline` + when pipeline is empty. This allows the HTML representation of an empty + pipeline to be rendered correctly. + By :user:`Gennaro Daniele Acciaro ` :pr:`30203` + +:mod:`sklearn.preprocessing` +---------------------------- + +- |Enhancement| Added `warn` option to `handle_unknown` parameter in + :class:`preprocessing.OneHotEncoder`. + By :user:`Gleb Levitski ` :pr:`28637` + +- |Enhancement| The HTML representation of :class:`preprocessing.FunctionTransformer` + will show the function name in the label. + By :user:`Yao Xiao ` :pr:`29158` + +- |Fix| :class:`preprocessing.PowerTransformer` now uses `scipy.special.inv_boxcox` + to output `nan` if the input of BoxCox's inverse is invalid. + By :user:`Xuefeng Xu ` :pr:`27875` + +:mod:`sklearn.semi_supervised` +------------------------------ + +- |API| :class:`semi_supervised.SelfTrainingClassifier` + deprecated the `base_estimator` parameter in favor of `estimator`. + By :user:`Adam Li ` :pr:`28494` + +:mod:`sklearn.tree` +------------------- + +- |Feature| :class:`tree.ExtraTreeClassifier` and :class:`tree.ExtraTreeRegressor` now + support missing-values in the data matrix ``X``. Missing-values are handled by + randomly moving all of the samples to the left, or right child node as the tree is + traversed. + By :user:`Adam Li ` :pr:`27966` + +- |Fix| Escape double quotes for labels and feature names when exporting trees to Graphviz + format. + By :user:`Santiago M. Mola `. :pr:`17575` + +:mod:`sklearn.utils` +-------------------- + +- |Enhancement| :func:`utils.check_array` now accepts `ensure_non_negative` + to check for negative values in the passed array, until now only available through + calling :func:`utils.check_non_negative`. + By :user:`Tamara Atanasoska ` :pr:`29540` + +- |Enhancement| :func:`~sklearn.utils.estimator_checks.check_estimator` and + :func:`~sklearn.utils.estimator_checks.parametrize_with_checks` now check and fail if + the classifier has the `tags.classifier_tags.multi_class = False` tag but does not + fail on multi-class data. + By `Adrin Jalali`_ :pr:`29874` + +- |Enhancement| :func:`utils.validation.check_is_fitted` now passes on stateless + estimators. An estimator can indicate it's stateless by setting the `requires_fit` + tag. See :ref:`estimator_tags` for more information. + By :user:`Adrin Jalali ` :pr:`29880` + +- |Enhancement| Changes to :func:`~utils.estimator_checks.check_estimator` and + :func:`~utils.estimator_checks.parametrize_with_checks`. + + - :func:`~utils.estimator_checks.check_estimator` introduces new arguments: + ``on_skip``, ``on_fail``, and ``callback`` to control the behavior of the check + runner. Refer to the API documentation for more details. + + - ``generate_only=True`` is deprecated in + :func:`~utils.estimator_checks.check_estimator`. Use + :func:`~utils.estimator_checks.estimator_checks_generator` instead. + + - The ``_xfail_checks`` estimator tag is now removed, and now in order to indicate + which tests are expected to fail, you can pass a dictionary to the + :func:`~utils.estimator_checks.check_estimator` as the ``expected_failed_checks`` + parameter. Similarly, the ``expected_failed_checks`` parameter in + :func:`~utils.estimator_checks.parametrize_with_checks` can be used, which is a + callable returning a dictionary of the form:: + + { + "check_name": "reason to mark this check as xfail", + } + + By `Adrin Jalali`_ :pr:`30149` + +- |Fix| :func:`utils.estimator_checks.parametrize_with_checks` and + :func:`utils.estimator_checks.check_estimator` now support estimators that + have `set_output` called on them. + By :user:`Adrin Jalali ` :pr:`29869` + +- |API| The `assert_all_finite` parameter of functions :func:`utils.check_array`, + :func:`utils.check_X_y`, :func:`utils.as_float_array` is renamed into + `ensure_all_finite`. `force_all_finite` will be removed in 1.8. + By :user:`Jérémie du Boisberranger ` :pr:`29404` + +- |API| :func:`check_estimators.check_sample_weights_invariance` replaced by + :func:`check_estimators.check_sample_weight_equivalence` which uses + integer (including zero) weights. + By :user:`Antoine Baker ` :pr:`29818` + +- |API| Using `_estimator_type` to set the estimator type is deprecated. Inherit from + :class:`~sklearn.base.ClassifierMixin`, :class:`~sklearn.base.RegressorMixin`, + :class:`~sklearn.base.TransformerMixin`, or :class:`~sklearn.base.OutlierMixin` + instead. Alternatively, you can set `estimator_type` in :class:`~sklearn.utils.Tags` + in the `__sklearn_tags__` method. + By `Adrin Jalali`_ :pr:`30122` + .. rubric:: Code and documentation contributors Thanks to everyone who has contributed to the maintenance and improvement of diff --git a/sklearn/__init__.py b/sklearn/__init__.py index 0f6ad7a71c645..d3c62ac5fad24 100644 --- a/sklearn/__init__.py +++ b/sklearn/__init__.py @@ -42,7 +42,7 @@ # Dev branch marker is: 'X.Y.dev' or 'X.Y.devN' where N is an integer. # 'X.Y.dev0' is the canonical version of 'X.Y.dev' # -__version__ = "1.6.dev0" +__version__ = "1.6.0rc1" # On OSX, we can get a runtime error due to multiple OpenMP libraries loaded From 67597ced55c8740f52a9012b6c712998064089a2 Mon Sep 17 00:00:00 2001 From: lunovian <75156243+lunovian@users.noreply.github.com> Date: Fri, 15 Nov 2024 13:54:13 +0700 Subject: [PATCH 018/159] DOC: Link Examples for SVR, NuSVR, and SVM User Guide (#30201) --- sklearn/svm/_classes.py | 4 ++++ 1 file changed, 4 insertions(+) diff --git a/sklearn/svm/_classes.py b/sklearn/svm/_classes.py index 97789ae36df48..664c7443045d2 100644 --- a/sklearn/svm/_classes.py +++ b/sklearn/svm/_classes.py @@ -1163,6 +1163,8 @@ class SVR(RegressorMixin, BaseLibSVM): Specifies the kernel type to be used in the algorithm. If none is given, 'rbf' will be used. If a callable is given it is used to precompute the kernel matrix. + For an intuitive visualization of different kernel types + see :ref:`sphx_glr_auto_examples_svm_plot_svm_regression.py` degree : int, default=3 Degree of the polynomial kernel function ('poly'). @@ -1361,6 +1363,8 @@ class NuSVR(RegressorMixin, BaseLibSVM): Specifies the kernel type to be used in the algorithm. If none is given, 'rbf' will be used. If a callable is given it is used to precompute the kernel matrix. + For an intuitive visualization of different kernel types see + See :ref:`sphx_glr_auto_examples_svm_plot_svm_regression.py` degree : int, default=3 Degree of the polynomial kernel function ('poly'). From fb4ed7dd2b7f0fcf29279bf3f073ce591698d507 Mon Sep 17 00:00:00 2001 From: Akanksha Mhadolkar <35341758+Akankshaaaa@users.noreply.github.com> Date: Fri, 15 Nov 2024 12:25:34 +0530 Subject: [PATCH 019/159] DOC Add link to Quantile example in Gradient Boosting (#30266) --- sklearn/ensemble/_gb.py | 4 ++++ 1 file changed, 4 insertions(+) diff --git a/sklearn/ensemble/_gb.py b/sklearn/ensemble/_gb.py index 0e2781af22c29..5d67847d3544d 100644 --- a/sklearn/ensemble/_gb.py +++ b/sklearn/ensemble/_gb.py @@ -1749,6 +1749,10 @@ class GradientBoostingRegressor(RegressorMixin, BaseGradientBoosting): regression and is a robust loss function. 'huber' is a combination of the two. 'quantile' allows quantile regression (use `alpha` to specify the quantile). + See + :ref:`sphx_glr_auto_examples_ensemble_plot_gradient_boosting_quantile.py` + for an example that demonstrates quantile regression for creating + prediction intervals with `loss='quantile'`. learning_rate : float, default=0.1 Learning rate shrinks the contribution of each tree by `learning_rate`. From 8332017a539fcd0f3a1d45f56bb83a0b0e81d79a Mon Sep 17 00:00:00 2001 From: Adrin Jalali Date: Fri, 15 Nov 2024 10:43:53 +0300 Subject: [PATCH 020/159] FEAT allow metadata to be transformed in a Pipeline (#28901) Co-authored-by: Jiaming Yuan Co-authored-by: Guillaume Lemaitre --- .../sklearn.pipeline/28901.major-feature.rst | 3 + sklearn/pipeline.py | 195 +++++++++++++++++- sklearn/tests/metadata_routing_common.py | 1 + sklearn/tests/test_pipeline.py | 174 +++++++++++++++- sklearn/utils/tests/test_pprint.py | 2 +- 5 files changed, 364 insertions(+), 11 deletions(-) create mode 100644 doc/whats_new/upcoming_changes/sklearn.pipeline/28901.major-feature.rst diff --git a/doc/whats_new/upcoming_changes/sklearn.pipeline/28901.major-feature.rst b/doc/whats_new/upcoming_changes/sklearn.pipeline/28901.major-feature.rst new file mode 100644 index 0000000000000..60703872d3980 --- /dev/null +++ b/doc/whats_new/upcoming_changes/sklearn.pipeline/28901.major-feature.rst @@ -0,0 +1,3 @@ +- :class:`pipeline.Pipeline` can now transform metadata up to the step requiring the + metadata, which can be set using the `transform_input` parameter. + By `Adrin Jalali`_ diff --git a/sklearn/pipeline.py b/sklearn/pipeline.py index 4a8431ddedf26..9ff8a3549ef28 100644 --- a/sklearn/pipeline.py +++ b/sklearn/pipeline.py @@ -31,6 +31,7 @@ MethodMapping, _raise_for_params, _routing_enabled, + get_routing_for_object, process_routing, ) from .utils.metaestimators import _BaseComposition, available_if @@ -80,6 +81,46 @@ def check(self): return check +def _cached_transform( + sub_pipeline, *, cache, param_name, param_value, transform_params +): + """Transform a parameter value using a sub-pipeline and cache the result. + + Parameters + ---------- + sub_pipeline : Pipeline + The sub-pipeline to be used for transformation. + cache : dict + The cache dictionary to store the transformed values. + param_name : str + The name of the parameter to be transformed. + param_value : object + The value of the parameter to be transformed. + transform_params : dict + The metadata to be used for transformation. This passed to the + `transform` method of the sub-pipeline. + + Returns + ------- + transformed_value : object + The transformed value of the parameter. + """ + if param_name not in cache: + # If the parameter is a tuple, transform each element of the + # tuple. This is needed to support the pattern present in + # `lightgbm` and `xgboost` where users can pass multiple + # validation sets. + if isinstance(param_value, tuple): + cache[param_name] = tuple( + sub_pipeline.transform(element, **transform_params) + for element in param_value + ) + else: + cache[param_name] = sub_pipeline.transform(param_value, **transform_params) + + return cache[param_name] + + class Pipeline(_BaseComposition): """ A sequence of data transformers with an optional final predictor. @@ -119,6 +160,20 @@ class Pipeline(_BaseComposition): must define `fit`. All non-last steps must also define `transform`. See :ref:`Combining Estimators ` for more details. + transform_input : list of str, default=None + The names of the :term:`metadata` parameters that should be transformed by the + pipeline before passing it to the step consuming it. + + This enables transforming some input arguments to ``fit`` (other than ``X``) + to be transformed by the steps of the pipeline up to the step which requires + them. Requirement is defined via :ref:`metadata routing `. + For instance, this can be used to pass a validation set through the pipeline. + + You can only set this if metadata routing is enabled, which you + can enable using ``sklearn.set_config(enable_metadata_routing=True)``. + + .. versionadded:: 1.6 + memory : str or object with the joblib.Memory interface, default=None Used to cache the fitted transformers of the pipeline. The last step will never be cached, even if it is a transformer. By default, no @@ -184,12 +239,14 @@ class Pipeline(_BaseComposition): # BaseEstimator interface _parameter_constraints: dict = { "steps": [list, Hidden(tuple)], + "transform_input": [list, None], "memory": [None, str, HasMethods(["cache"])], "verbose": ["boolean"], } - def __init__(self, steps, *, memory=None, verbose=False): + def __init__(self, steps, *, transform_input=None, memory=None, verbose=False): self.steps = steps + self.transform_input = transform_input self.memory = memory self.verbose = verbose @@ -412,9 +469,92 @@ def _check_method_params(self, method, props, **kwargs): fit_params_steps[step]["fit_predict"][param] = pval return fit_params_steps + def _get_metadata_for_step(self, *, step_idx, step_params, all_params): + """Get params (metadata) for step `name`. + + This transforms the metadata up to this step if required, which is + indicated by the `transform_input` parameter. + + If a param in `step_params` is included in the `transform_input` list, + it will be transformed. + + Parameters + ---------- + step_idx : int + Index of the step in the pipeline. + + step_params : dict + Parameters specific to the step. These are routed parameters, e.g. + `routed_params[name]`. If a parameter name here is included in the + `pipeline.transform_input`, then it will be transformed. Note that + these parameters are *after* routing, so the aliases are already + resolved. + + all_params : dict + All parameters passed by the user. Here this is used to call + `transform` on the slice of the pipeline itself. + + Returns + ------- + dict + Parameters to be passed to the step. The ones which should be + transformed are transformed. + """ + if ( + self.transform_input is None + or not all_params + or not step_params + or step_idx == 0 + ): + # we only need to process step_params if transform_input is set + # and metadata is given by the user. + return step_params + + sub_pipeline = self[:step_idx] + sub_metadata_routing = get_routing_for_object(sub_pipeline) + # here we get the metadata required by sub_pipeline.transform + transform_params = { + key: value + for key, value in all_params.items() + if key + in sub_metadata_routing.consumes( + method="transform", params=all_params.keys() + ) + } + transformed_params = dict() # this is to be returned + transformed_cache = dict() # used to transform each param once + # `step_params` is the output of `process_routing`, so it has a dict for each + # method (e.g. fit, transform, predict), which are the args to be passed to + # those methods. We need to transform the parameters which are in the + # `transform_input`, before returning these dicts. + for method, method_params in step_params.items(): + transformed_params[method] = Bunch() + for param_name, param_value in method_params.items(): + # An example of `(param_name, param_value)` is + # `('sample_weight', array([0.5, 0.5, ...]))` + if param_name in self.transform_input: + # This parameter now needs to be transformed by the sub_pipeline, to + # this step. We cache these computations to avoid repeating them. + transformed_params[method][param_name] = _cached_transform( + sub_pipeline, + cache=transformed_cache, + param_name=param_name, + param_value=param_value, + transform_params=transform_params, + ) + else: + transformed_params[method][param_name] = param_value + return transformed_params + # Estimator interface - def _fit(self, X, y=None, routed_params=None): + def _fit(self, X, y=None, routed_params=None, raw_params=None): + """Fit the pipeline except the last step. + + routed_params is the output of `process_routing` + raw_params is the parameters passed by the user, used when `transform_input` + is set by the user, to transform metadata using a sub-pipeline. + """ # shallow copy of steps - this should really be steps_ self.steps = list(self.steps) self._validate_steps() @@ -437,14 +577,20 @@ def _fit(self, X, y=None, routed_params=None): else: cloned_transformer = clone(transformer) # Fit or load from cache the current transformer + step_params = self._get_metadata_for_step( + step_idx=step_idx, + step_params=routed_params[name], + all_params=raw_params, + ) + X, fitted_transformer = fit_transform_one_cached( cloned_transformer, X, y, - None, + weight=None, message_clsname="Pipeline", message=self._log_message(step_idx), - params=routed_params[name], + params=step_params, ) # Replace the transformer of the step with the fitted # transformer. This is necessary when loading the transformer @@ -495,11 +641,22 @@ def fit(self, X, y=None, **params): self : object Pipeline with fitted steps. """ + if not _routing_enabled() and self.transform_input is not None: + raise ValueError( + "The `transform_input` parameter can only be set if metadata " + "routing is enabled. You can enable metadata routing using " + "`sklearn.set_config(enable_metadata_routing=True)`." + ) + routed_params = self._check_method_params(method="fit", props=params) - Xt = self._fit(X, y, routed_params) + Xt = self._fit(X, y, routed_params, raw_params=params) with _print_elapsed_time("Pipeline", self._log_message(len(self.steps) - 1)): if self._final_estimator != "passthrough": - last_step_params = routed_params[self.steps[-1][0]] + last_step_params = self._get_metadata_for_step( + step_idx=len(self) - 1, + step_params=routed_params[self.steps[-1][0]], + all_params=params, + ) self._final_estimator.fit(Xt, y, **last_step_params["fit"]) return self @@ -562,7 +719,11 @@ def fit_transform(self, X, y=None, **params): with _print_elapsed_time("Pipeline", self._log_message(len(self.steps) - 1)): if last_step == "passthrough": return Xt - last_step_params = routed_params[self.steps[-1][0]] + last_step_params = self._get_metadata_for_step( + step_idx=len(self) - 1, + step_params=routed_params[self.steps[-1][0]], + all_params=params, + ) if hasattr(last_step, "fit_transform"): return last_step.fit_transform( Xt, y, **last_step_params["fit_transform"] @@ -1270,7 +1431,7 @@ def _name_estimators(estimators): return list(zip(names, estimators)) -def make_pipeline(*steps, memory=None, verbose=False): +def make_pipeline(*steps, memory=None, transform_input=None, verbose=False): """Construct a :class:`Pipeline` from the given estimators. This is a shorthand for the :class:`Pipeline` constructor; it does not @@ -1292,6 +1453,17 @@ def make_pipeline(*steps, memory=None, verbose=False): or ``steps`` to inspect estimators within the pipeline. Caching the transformers is advantageous when fitting is time consuming. + transform_input : list of str, default=None + This enables transforming some input arguments to ``fit`` (other than ``X``) + to be transformed by the steps of the pipeline up to the step which requires + them. Requirement is defined via :ref:`metadata routing `. + This can be used to pass a validation set through the pipeline for instance. + + You can only set this if metadata routing is enabled, which you + can enable using ``sklearn.set_config(enable_metadata_routing=True)``. + + .. versionadded:: 1.6 + verbose : bool, default=False If True, the time elapsed while fitting each step will be printed as it is completed. @@ -1315,7 +1487,12 @@ def make_pipeline(*steps, memory=None, verbose=False): Pipeline(steps=[('standardscaler', StandardScaler()), ('gaussiannb', GaussianNB())]) """ - return Pipeline(_name_estimators(steps), memory=memory, verbose=verbose) + return Pipeline( + _name_estimators(steps), + transform_input=transform_input, + memory=memory, + verbose=verbose, + ) def _transform_one(transformer, X, y, weight, params=None): diff --git a/sklearn/tests/metadata_routing_common.py b/sklearn/tests/metadata_routing_common.py index 174164daada8c..98503652df6f0 100644 --- a/sklearn/tests/metadata_routing_common.py +++ b/sklearn/tests/metadata_routing_common.py @@ -347,6 +347,7 @@ def fit(self, X, y=None, sample_weight="default", metadata="default"): record_metadata_not_default( self, sample_weight=sample_weight, metadata=metadata ) + self.fitted_ = True return self def transform(self, X, sample_weight="default", metadata="default"): diff --git a/sklearn/tests/test_pipeline.py b/sklearn/tests/test_pipeline.py index a1ba690d0f465..d7a201f3abf6f 100644 --- a/sklearn/tests/test_pipeline.py +++ b/sklearn/tests/test_pipeline.py @@ -16,6 +16,7 @@ from sklearn import config_context from sklearn.base import ( BaseEstimator, + ClassifierMixin, TransformerMixin, clone, is_classifier, @@ -357,7 +358,7 @@ def test_pipeline_raise_set_params_error(): error_msg = re.escape( "Invalid parameter 'fake' for estimator Pipeline(steps=[('cls'," " LinearRegression())]). Valid parameters are: ['memory', 'steps'," - " 'verbose']." + " 'transform_input', 'verbose']." ) with pytest.raises(ValueError, match=error_msg): pipe.set_params(fake="nope") @@ -782,6 +783,7 @@ def make(): "memory": None, "m2__mult": 2, "last__mult": 5, + "transform_input": None, "verbose": False, } @@ -1871,6 +1873,176 @@ def test_pipeline_inverse_transform_Xt_deprecation(): pipe.inverse_transform(Xt=X) +# transform_input tests +# ===================== + + +@config_context(enable_metadata_routing=True) +@pytest.mark.parametrize("method", ["fit", "fit_transform"]) +def test_transform_input_pipeline(method): + """Test that with transform_input, data is correctly transformed for each step.""" + + def get_transformer(registry, sample_weight, metadata): + """Get a transformer with requests set.""" + return ( + ConsumingTransformer(registry=registry) + .set_fit_request(sample_weight=sample_weight, metadata=metadata) + .set_transform_request(sample_weight=sample_weight, metadata=metadata) + ) + + def get_pipeline(): + """Get a pipeline and corresponding registries. + + The pipeline has 4 steps, with different request values set to test different + cases. One is aliased. + """ + registry_1, registry_2, registry_3, registry_4 = ( + _Registry(), + _Registry(), + _Registry(), + _Registry(), + ) + pipe = make_pipeline( + get_transformer(registry_1, sample_weight=True, metadata=True), + get_transformer(registry_2, sample_weight=False, metadata=False), + get_transformer(registry_3, sample_weight=True, metadata=True), + get_transformer(registry_4, sample_weight="other_weights", metadata=True), + transform_input=["sample_weight"], + ) + return pipe, registry_1, registry_2, registry_3, registry_4 + + def check_metadata(registry, methods, **metadata): + """Check that the right metadata was recorded for the given methods.""" + assert registry + for estimator in registry: + for method in methods: + check_recorded_metadata( + estimator, + method=method, + parent=method, + **metadata, + ) + + X = np.array([[1, 2], [3, 4]]) + y = np.array([0, 1]) + sample_weight = np.array([[1, 2]]) + other_weights = np.array([[30, 40]]) + metadata = np.array([[100, 200]]) + + pipe, registry_1, registry_2, registry_3, registry_4 = get_pipeline() + pipe.fit( + X, + y, + sample_weight=sample_weight, + other_weights=other_weights, + metadata=metadata, + ) + + check_metadata( + registry_1, ["fit", "transform"], sample_weight=sample_weight, metadata=metadata + ) + check_metadata(registry_2, ["fit", "transform"]) + check_metadata( + registry_3, + ["fit", "transform"], + sample_weight=sample_weight + 2, + metadata=metadata, + ) + check_metadata( + registry_4, + method.split("_"), # ["fit", "transform"] if "fit_transform", ["fit"] otherwise + sample_weight=other_weights + 3, + metadata=metadata, + ) + + +@config_context(enable_metadata_routing=True) +def test_transform_input_explicit_value_check(): + """Test that the right transformed values are passed to `fit`.""" + + class Transformer(TransformerMixin, BaseEstimator): + def fit(self, X, y): + self.fitted_ = True + return self + + def transform(self, X): + return X + 1 + + class Estimator(ClassifierMixin, BaseEstimator): + def fit(self, X, y, X_val=None, y_val=None): + assert_array_equal(X, np.array([[1, 2]])) + assert_array_equal(y, np.array([0, 1])) + assert_array_equal(X_val, np.array([[2, 3]])) + assert_array_equal(y_val, np.array([0, 1])) + return self + + X = np.array([[0, 1]]) + y = np.array([0, 1]) + X_val = np.array([[1, 2]]) + y_val = np.array([0, 1]) + pipe = Pipeline( + [ + ("transformer", Transformer()), + ("estimator", Estimator().set_fit_request(X_val=True, y_val=True)), + ], + transform_input=["X_val"], + ) + pipe.fit(X, y, X_val=X_val, y_val=y_val) + + +def test_transform_input_no_slep6(): + """Make sure the right error is raised if slep6 is not enabled.""" + X = np.array([[1, 2], [3, 4]]) + y = np.array([0, 1]) + msg = "The `transform_input` parameter can only be set if metadata" + with pytest.raises(ValueError, match=msg): + make_pipeline(DummyTransf(), transform_input=["blah"]).fit(X, y) + + +@config_context(enable_metadata_routing=True) +def test_transform_tuple_input(): + """Test that if metadata is a tuple of arrays, both arrays are transformed.""" + + class Estimator(ClassifierMixin, BaseEstimator): + def fit(self, X, y, X_val=None, y_val=None): + assert isinstance(X_val, tuple) + assert isinstance(y_val, tuple) + # Here we make sure that each X_val is transformed by the transformer + assert_array_equal(X_val[0], np.array([[2, 3]])) + assert_array_equal(y_val[0], np.array([0, 1])) + assert_array_equal(X_val[1], np.array([[11, 12]])) + assert_array_equal(y_val[1], np.array([1, 2])) + self.fitted_ = True + return self + + class Transformer(TransformerMixin, BaseEstimator): + def fit(self, X, y): + self.fitted_ = True + return self + + def transform(self, X): + return X + 1 + + X = np.array([[1, 2]]) + y = np.array([0, 1]) + X_val0 = np.array([[1, 2]]) + y_val0 = np.array([0, 1]) + X_val1 = np.array([[10, 11]]) + y_val1 = np.array([1, 2]) + pipe = Pipeline( + [ + ("transformer", Transformer()), + ("estimator", Estimator().set_fit_request(X_val=True, y_val=True)), + ], + transform_input=["X_val"], + ) + pipe.fit(X, y, X_val=(X_val0, X_val1), y_val=(y_val0, y_val1)) + + +# end of transform_input tests +# ============================= + + # TODO(1.8): change warning to checking for NotFittedError @pytest.mark.parametrize( "method", diff --git a/sklearn/utils/tests/test_pprint.py b/sklearn/utils/tests/test_pprint.py index bef5836910787..b3df08732d798 100644 --- a/sklearn/utils/tests/test_pprint.py +++ b/sklearn/utils/tests/test_pprint.py @@ -304,7 +304,7 @@ def test_pipeline(print_changed_only_false): penalty='l2', random_state=None, solver='warn', tol=0.0001, verbose=0, warm_start=False))], - verbose=False)""" + transform_input=None, verbose=False)""" expected = expected[1:] # remove first \n assert pipeline.__repr__() == expected From 50ac6ecc2c5dc4f1eda61a0447b4c0edb307fa2c Mon Sep 17 00:00:00 2001 From: Guillaume Lemaitre Date: Fri, 15 Nov 2024 14:06:56 +0100 Subject: [PATCH 021/159] MAINT only trigger towncrier when targeting main branch (#30251) MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit Co-authored-by: Loïc Estève --- build_tools/circle/build_doc.sh | 9 ++++++++- 1 file changed, 8 insertions(+), 1 deletion(-) diff --git a/build_tools/circle/build_doc.sh b/build_tools/circle/build_doc.sh index 058061641d2b9..cf7eed08e63df 100755 --- a/build_tools/circle/build_doc.sh +++ b/build_tools/circle/build_doc.sh @@ -30,11 +30,18 @@ then then CIRCLE_BRANCH=$GITHUB_HEAD_REF CI_PULL_REQUEST=true + CI_TARGET_BRANCH=$GITHUB_BASE_REF else CIRCLE_BRANCH=$GITHUB_REF_NAME fi fi +if [[ -n "$CI_PULL_REQUEST" && -z "$CI_TARGET_BRANCH" ]] +then + # Get the target branch name when using CircleCI + CI_TARGET_BRANCH=$(curl -s "https://api.github.com/repos/scikit-learn/scikit-learn/pulls/$CIRCLE_PR_NUMBER" | jq -r .base.ref) +fi + get_build_type() { if [ -z "$CIRCLE_SHA1" ] then @@ -183,7 +190,7 @@ ccache -s export OMP_NUM_THREADS=1 -if [[ "$CIRCLE_BRANCH" =~ ^main$ || -n "$CI_PULL_REQUEST" ]] +if [[ "$CIRCLE_BRANCH" == "main" || "$CI_TARGET_BRANCH" == "main" ]] then towncrier build --yes fi From 862997f6e797d4abad943e03db3665b1dcf05592 Mon Sep 17 00:00:00 2001 From: Christian Veenhuis <124370897+ChVeen@users.noreply.github.com> Date: Fri, 15 Nov 2024 16:41:25 +0100 Subject: [PATCH 022/159] MAINT: remove unused local var in `sklearn.linear_model._ridge._ridge_regression` (#30280) --- sklearn/linear_model/_ridge.py | 2 -- 1 file changed, 2 deletions(-) diff --git a/sklearn/linear_model/_ridge.py b/sklearn/linear_model/_ridge.py index fab71feb2e140..0ca549b7e1523 100644 --- a/sklearn/linear_model/_ridge.py +++ b/sklearn/linear_model/_ridge.py @@ -665,10 +665,8 @@ def _ridge_regression( if y.ndim > 2: raise ValueError("Target y has the wrong shape %s" % str(y.shape)) - ravel = False if y.ndim == 1: y = xp.reshape(y, (-1, 1)) - ravel = True n_samples_, n_targets = y.shape From 19a6abe587ffb38ad5bb74f18b23795acefddff5 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?J=C3=A9r=C3=A9mie=20du=20Boisberranger?= Date: Fri, 15 Nov 2024 17:54:22 +0100 Subject: [PATCH 023/159] DOC Fix link to dev changelog (#30282) --- doc/templates/index.html | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/doc/templates/index.html b/doc/templates/index.html index 2893718365e2e..6225ad514f174 100644 --- a/doc/templates/index.html +++ b/doc/templates/index.html @@ -206,7 +206,7 @@

News

    -
  • On-going development: scikit-learn 1.6 (Changelog).
  • +
  • On-going development: scikit-learn 1.6 (Changelog).
  • September 2024. scikit-learn 1.5.2 is available for download (Changelog).
  • July 2024. scikit-learn 1.5.1 is available for download (Changelog).
  • May 2024. scikit-learn 1.5.0 is available for download (Changelog).
  • From 86c7f14a60ba943a63abf24a1b65fea5c2d2ff5f Mon Sep 17 00:00:00 2001 From: scikit-learn-bot Date: Mon, 18 Nov 2024 09:15:25 +0100 Subject: [PATCH 024/159] :lock: :robot: CI Update lock files for main CI build(s) :lock: :robot: (#30295) Co-authored-by: Lock file bot --- build_tools/azure/debian_32bit_lock.txt | 2 +- ...latest_conda_forge_mkl_linux-64_conda.lock | 74 +++++++++---------- ...pylatest_conda_forge_mkl_osx-64_conda.lock | 16 ++-- ...test_conda_mkl_no_openmp_osx-64_conda.lock | 4 +- ...st_pip_openblas_pandas_linux-64_conda.lock | 8 +- .../pymin_conda_forge_mkl_win-64_conda.lock | 20 ++--- ...nblas_min_dependencies_linux-64_conda.lock | 26 +++---- ...e_openblas_ubuntu_2204_linux-64_conda.lock | 26 +++---- build_tools/azure/ubuntu_atlas_lock.txt | 2 +- build_tools/circle/doc_linux-64_conda.lock | 38 +++++----- .../doc_min_dependencies_linux-64_conda.lock | 32 ++++---- 11 files changed, 124 insertions(+), 124 deletions(-) diff --git a/build_tools/azure/debian_32bit_lock.txt b/build_tools/azure/debian_32bit_lock.txt index 6b34081810939..7e7b3a934c41f 100644 --- a/build_tools/azure/debian_32bit_lock.txt +++ b/build_tools/azure/debian_32bit_lock.txt @@ -4,7 +4,7 @@ # # pip-compile --output-file=build_tools/azure/debian_32bit_lock.txt build_tools/azure/debian_32bit_requirements.txt # -coverage[toml]==7.6.4 +coverage[toml]==7.6.7 # via pytest-cov cython==3.0.11 # via -r build_tools/azure/debian_32bit_requirements.txt diff --git a/build_tools/azure/pylatest_conda_forge_mkl_linux-64_conda.lock b/build_tools/azure/pylatest_conda_forge_mkl_linux-64_conda.lock index 71ee4fa6a7be1..d63e923aa477f 100644 --- a/build_tools/azure/pylatest_conda_forge_mkl_linux-64_conda.lock +++ b/build_tools/azure/pylatest_conda_forge_mkl_linux-64_conda.lock @@ -13,14 +13,15 @@ https://conda.anaconda.org/conda-forge/linux-64/python_abi-3.12-5_cp312.conda#04 https://conda.anaconda.org/conda-forge/noarch/tzdata-2024b-hc8b5060_0.conda#8ac3367aafb1cc0a068483c580af8015 https://conda.anaconda.org/conda-forge/noarch/fonts-conda-forge-1-0.tar.bz2#f766549260d6815b0c52253f1fb1bb29 https://conda.anaconda.org/conda-forge/linux-64/ld_impl_linux-64-2.43-h712a8e2_2.conda#048b02e3962f066da18efe3a21b77672 -https://conda.anaconda.org/conda-forge/linux-64/libglvnd-1.7.0-ha4b6fd6_1.conda#1ece2ccb1dc8c68639712b05e0fae070 +https://conda.anaconda.org/conda-forge/linux-64/libglvnd-1.7.0-ha4b6fd6_2.conda#434ca7e50e40f4918ab701e3facd59a0 https://conda.anaconda.org/conda-forge/linux-64/llvm-openmp-19.1.3-h024ca30_0.conda#d36687dc90337917a84a96a45111ad59 https://conda.anaconda.org/conda-forge/linux-64/_openmp_mutex-4.5-2_kmp_llvm.tar.bz2#562b26ba2e19059551a811e72ab7f793 https://conda.anaconda.org/conda-forge/noarch/fonts-conda-ecosystem-1-0.tar.bz2#fee5683a3f04bd15cbd8318b096a27ab -https://conda.anaconda.org/conda-forge/linux-64/libegl-1.7.0-ha4b6fd6_1.conda#38a5cd3be5fb620b48069e27285f1a44 -https://conda.anaconda.org/conda-forge/linux-64/libopengl-1.7.0-ha4b6fd6_1.conda#e12057a66af8f2a38a839754ca4481e9 +https://conda.anaconda.org/conda-forge/linux-64/libegl-1.7.0-ha4b6fd6_2.conda#c151d5eb730e9b7480e6d48c0fc44048 +https://conda.anaconda.org/conda-forge/linux-64/libopengl-1.7.0-ha4b6fd6_2.conda#7df50d44d4a14d6c31a2c54f2cd92157 https://conda.anaconda.org/conda-forge/linux-64/libgcc-14.2.0-h77fa898_1.conda#3cb76c3f10d3bc7f1105b2fc9db984df -https://conda.anaconda.org/conda-forge/linux-64/aws-c-common-0.10.0-hb9d3cd8_0.conda#f6495bc3a19a4400d3407052d22bef13 +https://conda.anaconda.org/conda-forge/linux-64/alsa-lib-1.2.13-hb9d3cd8_0.conda#ae1370588aa6a5157c34c73e9bbb36a0 +https://conda.anaconda.org/conda-forge/linux-64/aws-c-common-0.10.3-hb9d3cd8_0.conda#ff3653946d34a6a6ba10babb139d96ef https://conda.anaconda.org/conda-forge/linux-64/c-ares-1.34.3-heb4867d_0.conda#09a6c610d002e54e18353c06ef61a253 https://conda.anaconda.org/conda-forge/linux-64/libbrotlicommon-1.1.0-hb9d3cd8_2.conda#41b599ed2b02abcfdd84302bff174b23 https://conda.anaconda.org/conda-forge/linux-64/libdeflate-1.22-hb9d3cd8_0.conda#b422943d5d772b7cc858b36ad2a92db5 @@ -30,17 +31,16 @@ https://conda.anaconda.org/conda-forge/linux-64/libgfortran5-14.2.0-hd5240d6_1.c https://conda.anaconda.org/conda-forge/linux-64/libstdcxx-14.2.0-hc0a3c3a_1.conda#234a5554c53625688d51062645337328 https://conda.anaconda.org/conda-forge/linux-64/libuv-1.49.2-hb9d3cd8_0.conda#070e3c9ddab77e38799d5c30b109c633 https://conda.anaconda.org/conda-forge/linux-64/libzlib-1.3.1-hb9d3cd8_2.conda#edb0dca6bc32e4f4789199455a1dbeb8 -https://conda.anaconda.org/conda-forge/linux-64/openssl-3.3.2-hb9d3cd8_0.conda#4d638782050ab6faa27275bed57e9b4e +https://conda.anaconda.org/conda-forge/linux-64/openssl-3.4.0-hb9d3cd8_0.conda#23cc74f77eb99315c0360ec3533147a9 https://conda.anaconda.org/conda-forge/linux-64/pthread-stubs-0.4-hb9d3cd8_1002.conda#b3c17d95b5a10c6e64a21fa17573e70e https://conda.anaconda.org/conda-forge/linux-64/xorg-libice-1.1.1-hb9d3cd8_1.conda#19608a9656912805b2b9a2f6bd257b04 https://conda.anaconda.org/conda-forge/linux-64/xorg-libxau-1.0.11-hb9d3cd8_1.conda#77cbc488235ebbaab2b6e912d3934bae https://conda.anaconda.org/conda-forge/linux-64/xorg-libxdmcp-1.1.5-hb9d3cd8_0.conda#8035c64cb77ed555e3f150b7b3972480 https://conda.anaconda.org/conda-forge/linux-64/xorg-xorgproto-2024.1-hb9d3cd8_1.conda#7c21106b851ec72c037b162c216d8f05 -https://conda.anaconda.org/conda-forge/linux-64/alsa-lib-1.2.12-h4ab18f5_0.conda#7ed427f0871fd41cb1d9c17727c17589 -https://conda.anaconda.org/conda-forge/linux-64/aws-c-cal-0.8.0-he70792b_1.conda#9b81a9d9395fb2abd60984fcfe7eb01a -https://conda.anaconda.org/conda-forge/linux-64/aws-c-compression-0.3.0-hba2fe39_1.conda#c6133966058e553727f0afe21ab38cd2 -https://conda.anaconda.org/conda-forge/linux-64/aws-c-sdkutils-0.2.1-hba2fe39_0.conda#f0b3524e47ed870bb8304a8d6fa67c7f -https://conda.anaconda.org/conda-forge/linux-64/aws-checksums-0.2.0-hba2fe39_1.conda#ac8d58d81bdcefa5bce4e883c6b88c42 +https://conda.anaconda.org/conda-forge/linux-64/aws-c-cal-0.8.0-hecf86a2_2.conda#c54459d686ad9d0502823cacff7e8423 +https://conda.anaconda.org/conda-forge/linux-64/aws-c-compression-0.3.0-hf42f96a_2.conda#257f4ae92fe11bd8436315c86468c39b +https://conda.anaconda.org/conda-forge/linux-64/aws-c-sdkutils-0.2.1-hf42f96a_1.conda#bbdd20fb1994a9f0ba98078fcb6c12ab +https://conda.anaconda.org/conda-forge/linux-64/aws-checksums-0.2.2-hf42f96a_1.conda#d908d43d87429be24edfb20e96543c20 https://conda.anaconda.org/conda-forge/linux-64/bzip2-1.0.8-h4bc722e_7.conda#62ee74e96c5ebb0af99386de58cf9553 https://conda.anaconda.org/conda-forge/linux-64/expat-2.6.4-h5888daf_0.conda#1d6afef758879ef5ee78127eb4cd2c4a https://conda.anaconda.org/conda-forge/linux-64/gflags-2.2.2-h5888daf_1005.conda#d411fc29e338efb48c5fd4576d71d881 @@ -68,12 +68,12 @@ https://conda.anaconda.org/conda-forge/linux-64/libxcb-1.17.0-h8a09558_0.conda#9 https://conda.anaconda.org/conda-forge/linux-64/libxcrypt-4.4.36-hd590300_1.conda#5aa797f8787fe7a17d1b0821485b5adc https://conda.anaconda.org/conda-forge/linux-64/mysql-common-9.0.1-h266115a_2.conda#85c0dc0bcd110c998b01856975486ee7 https://conda.anaconda.org/conda-forge/linux-64/ncurses-6.5-he02047a_1.conda#70caf8bb6cf39a0b6b7efc885f51c0fe -https://conda.anaconda.org/conda-forge/linux-64/s2n-1.5.7-hd3e8b83_0.conda#b0de6ca344b9255f4adb98e419e130ad +https://conda.anaconda.org/conda-forge/linux-64/s2n-1.5.9-h0fd0ee4_0.conda#f472432f3753c5ca763d2497e2ea30bf https://conda.anaconda.org/conda-forge/linux-64/sleef-3.7-h1b44611_2.conda#4792f3259c6fdc0b730563a85b211dc0 https://conda.anaconda.org/conda-forge/linux-64/tk-8.6.13-noxft_h4845f30_101.conda#d453b98d9c83e71da0741bb0ff4d76bc https://conda.anaconda.org/conda-forge/linux-64/xz-5.2.6-h166bdaf_0.tar.bz2#2161070d867d1b1204ea749c8eec4ef0 https://conda.anaconda.org/conda-forge/linux-64/zlib-1.3.1-hb9d3cd8_2.conda#c9f075ab2f33b3bbee9e62d4ad0a6cd8 -https://conda.anaconda.org/conda-forge/linux-64/aws-c-io-0.15.1-h2a50c78_1.conda#67dfecff4c4253cfe33c3c8e428f1767 +https://conda.anaconda.org/conda-forge/linux-64/aws-c-io-0.15.2-hdeadb07_2.conda#461a1eaa075fd391add91bcffc9de0c1 https://conda.anaconda.org/conda-forge/linux-64/brotli-bin-1.1.0-hb9d3cd8_2.conda#c63b5e52939e795ba8d26e35d767a843 https://conda.anaconda.org/conda-forge/linux-64/double-conversion-3.3.0-h59595ed_0.conda#c2f83a5ddadadcdb08fe05863295ee97 https://conda.anaconda.org/conda-forge/linux-64/freetype-2.12.1-h267a509_2.conda#9ae35c3d96db2c94ce0cef86efdfa2cb @@ -105,19 +105,19 @@ https://conda.anaconda.org/conda-forge/linux-64/xcb-util-wm-0.4.2-hb711507_0.con https://conda.anaconda.org/conda-forge/linux-64/xorg-libsm-1.2.4-he73a12e_1.conda#05a8ea5f446de33006171a7afe6ae857 https://conda.anaconda.org/conda-forge/linux-64/xorg-libx11-1.8.10-h4f16b4b_0.conda#0b666058a179b744a622d0a4a0c56353 https://conda.anaconda.org/conda-forge/linux-64/zstd-1.5.6-ha6fb4c9_0.conda#4d056880988120e29d75bfff282e0f45 -https://conda.anaconda.org/conda-forge/linux-64/aws-c-event-stream-0.5.0-h127f702_4.conda#81d250bca40c7907ece5f5dd00de51d0 -https://conda.anaconda.org/conda-forge/linux-64/aws-c-http-0.9.0-h8a7d7e2_5.conda#c40bb8a9f3936ebeea804e97c5adf179 +https://conda.anaconda.org/conda-forge/linux-64/aws-c-event-stream-0.5.0-h1ffe551_7.conda#7cce4dfab184f4bbdfc160789251b3c5 +https://conda.anaconda.org/conda-forge/linux-64/aws-c-http-0.9.1-hab05fe4_2.conda#fb409f7053fa3dbbdf6eb41045a87795 https://conda.anaconda.org/conda-forge/linux-64/brotli-1.1.0-hb9d3cd8_2.conda#98514fe74548d768907ce7a13f680e8f https://conda.anaconda.org/conda-forge/linux-64/fontconfig-2.15.0-h7e30c49_1.conda#8f5b0b297b59e1ac160ad4beec99dbee https://conda.anaconda.org/conda-forge/linux-64/krb5-1.21.3-h659f571_0.conda#3f43953b7d3fb3aaa1d0d0723d91e368 https://conda.anaconda.org/conda-forge/linux-64/libglib-2.82.2-h2ff4ddf_0.conda#13e8e54035ddd2b91875ba399f0f7c04 -https://conda.anaconda.org/conda-forge/linux-64/libglx-1.7.0-ha4b6fd6_1.conda#80a57756c545ad11f9847835aa21e6b2 +https://conda.anaconda.org/conda-forge/linux-64/libglx-1.7.0-ha4b6fd6_2.conda#c8013e438185f33b13814c5c488acd5c https://conda.anaconda.org/conda-forge/linux-64/libhiredis-1.0.2-h2cc385e_0.tar.bz2#b34907d3a81a3cd8095ee83d174c074a https://conda.anaconda.org/conda-forge/linux-64/libtiff-4.7.0-he137b08_1.conda#63872517c98aa305da58a757c443698e -https://conda.anaconda.org/conda-forge/linux-64/libxml2-2.13.4-hb346dea_2.conda#69b90b70c434b916abf5a1d5ee5d55fb +https://conda.anaconda.org/conda-forge/linux-64/libxml2-2.13.5-hb346dea_0.conda#c81a9f1118541aaa418ccb22190c817e https://conda.anaconda.org/conda-forge/linux-64/mpfr-4.2.1-h90cbb55_3.conda#2eeb50cab6652538eee8fc0bc3340c81 https://conda.anaconda.org/conda-forge/linux-64/mysql-libs-9.0.1-he0572af_2.conda#57a9e7ee3c0840d3c8c9012473978629 -https://conda.anaconda.org/conda-forge/linux-64/orc-2.0.2-he039a57_2.conda#5e7bb9779cc5c200e63475eb2538d382 +https://conda.anaconda.org/conda-forge/linux-64/orc-2.0.3-he039a57_0.conda#052499acd6d6b79952197a13b23e2600 https://conda.anaconda.org/conda-forge/linux-64/python-3.12.7-hc5c86c4_0_cpython.conda#0515111a9cdf69f83278f7c197db9807 https://conda.anaconda.org/conda-forge/linux-64/re2-2024.07.02-h77b4e00_1.conda#01093ff37c1b5e6bf9f17c0116747d11 https://conda.anaconda.org/conda-forge/linux-64/xcb-util-image-0.4.0-hb711507_2.conda#a0901183f08b6c7107aab109733a3c91 @@ -126,8 +126,8 @@ https://conda.anaconda.org/conda-forge/linux-64/xorg-libxext-1.3.6-hb9d3cd8_0.co https://conda.anaconda.org/conda-forge/linux-64/xorg-libxfixes-6.0.1-hb9d3cd8_0.conda#4bdb303603e9821baf5fe5fdff1dc8f8 https://conda.anaconda.org/conda-forge/linux-64/xorg-libxrender-0.9.11-hb9d3cd8_1.conda#a7a49a8b85122b49214798321e2e96b4 https://conda.anaconda.org/conda-forge/noarch/array-api-compat-1.9.1-pyhd8ed1ab_0.conda#f2328337441baa8f669d2a830cfd0097 -https://conda.anaconda.org/conda-forge/linux-64/aws-c-auth-0.8.0-hcd8ed7f_7.conda#b8725d87357c876b0458dee554c39b28 -https://conda.anaconda.org/conda-forge/linux-64/aws-c-mqtt-0.11.0-hd25e75f_5.conda#277dae7174fd2bc81c01411039ac2173 +https://conda.anaconda.org/conda-forge/linux-64/aws-c-auth-0.8.0-hb88c0a9_10.conda#409b7ee6d3473cc62bda7280f6ac20d0 +https://conda.anaconda.org/conda-forge/linux-64/aws-c-mqtt-0.11.0-h7bd072d_8.conda#0e9d67838114c0dbd267a9311268b331 https://conda.anaconda.org/conda-forge/linux-64/cairo-1.18.0-hebfffa5_3.conda#fceaedf1cdbcb02df9699a0d9b005292 https://conda.anaconda.org/conda-forge/linux-64/ccache-4.10.1-h065aff2_0.conda#d6b48c138e0c8170a6fe9c136e063540 https://conda.anaconda.org/conda-forge/noarch/certifi-2024.8.30-pyhd8ed1ab_0.conda#12f7d00853807b0531775e9be891cb11 @@ -146,7 +146,7 @@ https://conda.anaconda.org/conda-forge/linux-64/kiwisolver-1.4.7-py312h68727a3_0 https://conda.anaconda.org/conda-forge/linux-64/lcms2-2.16-hb7c19ff_0.conda#51bb7010fc86f70eee639b4bb7a894f5 https://conda.anaconda.org/conda-forge/linux-64/libcups-2.3.3-h4637d8d_4.conda#d4529f4dff3057982a7617c7ac58fde3 https://conda.anaconda.org/conda-forge/linux-64/libcurl-8.10.1-hbbe4b11_0.conda#6e801c50a40301f6978c53976917b277 -https://conda.anaconda.org/conda-forge/linux-64/libgl-1.7.0-ha4b6fd6_1.conda#204892bce2e44252b5cf272712f10bdd +https://conda.anaconda.org/conda-forge/linux-64/libgl-1.7.0-ha4b6fd6_2.conda#928b8be80851f5d8ffb016f9c81dae7a https://conda.anaconda.org/conda-forge/linux-64/libgrpc-1.67.1-hc2c308b_0.conda#4606a4647bfe857e3cfe21ca12ac3afb https://conda.anaconda.org/conda-forge/linux-64/libhwloc-2.11.1-default_hecaa2ac_1000.conda#f54aeebefb5c5ff84eca4fb05ca8aa3a https://conda.anaconda.org/conda-forge/linux-64/libllvm19-19.1.3-ha7bfdaf_0.conda#8bd654307c455162668cd66e36494000 @@ -156,18 +156,18 @@ https://conda.anaconda.org/conda-forge/linux-64/markupsafe-3.0.2-py312h178313f_0 https://conda.anaconda.org/conda-forge/linux-64/mpc-1.3.1-h24ddda3_1.conda#aa14b9a5196a6d8dd364164b7ce56acf https://conda.anaconda.org/conda-forge/noarch/mpmath-1.3.0-pyhd8ed1ab_0.conda#dbf6e2d89137da32fa6670f3bffc024e https://conda.anaconda.org/conda-forge/noarch/munkres-1.1.4-pyh9f0ad1d_0.tar.bz2#2ba8498c1018c1e9c61eb99b973dfe19 -https://conda.anaconda.org/conda-forge/noarch/networkx-3.4.2-pyhd8ed1ab_1.conda#1d4c088869f206413c59acdd309908b7 +https://conda.anaconda.org/conda-forge/noarch/networkx-3.4.2-pyh267e887_2.conda#fd40bf7f7f4bc4b647dc8512053d9873 https://conda.anaconda.org/conda-forge/linux-64/openjpeg-2.5.2-h488ebb8_0.conda#7f2e286780f072ed750df46dc2631138 -https://conda.anaconda.org/conda-forge/noarch/packaging-24.1-pyhd8ed1ab_0.conda#cbe1bb1f21567018ce595d9c2be0f0db +https://conda.anaconda.org/conda-forge/noarch/packaging-24.2-pyhff2d567_1.conda#8508b703977f4c4ada34d657d051972c https://conda.anaconda.org/conda-forge/noarch/pluggy-1.5.0-pyhd8ed1ab_0.conda#d3483c8fc2dc2cc3f5cf43e26d60cabf https://conda.anaconda.org/conda-forge/noarch/pyparsing-3.2.0-pyhd8ed1ab_1.conda#035c17fbf099f50ff60bf2eb303b0a83 https://conda.anaconda.org/conda-forge/noarch/python-tzdata-2024.2-pyhd8ed1ab_0.conda#986287f89929b2d629bd6ef6497dc307 https://conda.anaconda.org/conda-forge/noarch/pytz-2024.1-pyhd8ed1ab_0.conda#3eeeeb9e4827ace8c0c1419c85d590ad -https://conda.anaconda.org/conda-forge/noarch/setuptools-75.3.0-pyhd8ed1ab_0.conda#2ce9825396daf72baabaade36cee16da +https://conda.anaconda.org/conda-forge/noarch/setuptools-75.5.0-pyhff2d567_0.conda#ade63405adb52eeff89d506cd55908c0 https://conda.anaconda.org/conda-forge/noarch/six-1.16.0-pyh6c4a22f_0.tar.bz2#e5f25f8dbc060e9a8d912e432202afc2 https://conda.anaconda.org/conda-forge/noarch/threadpoolctl-3.5.0-pyhc1e730c_0.conda#df68d78237980a159bd7149f33c0e8fd https://conda.anaconda.org/conda-forge/noarch/toml-0.10.2-pyhd8ed1ab_0.tar.bz2#f832c45a477c78bebd107098db465095 -https://conda.anaconda.org/conda-forge/noarch/tomli-2.0.2-pyhd8ed1ab_0.conda#e977934e00b355ff55ed154904044727 +https://conda.anaconda.org/conda-forge/noarch/tomli-2.1.0-pyhff2d567_0.conda#3fa1089b4722df3a900135925f4519d9 https://conda.anaconda.org/conda-forge/linux-64/tornado-6.4.1-py312h66e93f0_1.conda#af648b62462794649066366af4ecd5b0 https://conda.anaconda.org/conda-forge/noarch/typing_extensions-4.12.2-pyha770c72_0.conda#ebe6952715e1d5eb567eeebf25250fa7 https://conda.anaconda.org/conda-forge/linux-64/unicodedata2-15.1.0-py312h66e93f0_1.conda#588486a61153f94c7c13816f7069e440 @@ -179,10 +179,10 @@ https://conda.anaconda.org/conda-forge/linux-64/xorg-libxdamage-1.1.6-hb9d3cd8_0 https://conda.anaconda.org/conda-forge/linux-64/xorg-libxi-1.8.2-hb9d3cd8_0.conda#17dcc85db3c7886650b8908b183d6876 https://conda.anaconda.org/conda-forge/linux-64/xorg-libxrandr-1.5.4-hb9d3cd8_0.conda#2de7f99d6581a4a7adbff607b5c278ca https://conda.anaconda.org/conda-forge/linux-64/xorg-libxxf86vm-1.1.5-hb9d3cd8_4.conda#7da9007c0582712c4bad4131f89c8372 -https://conda.anaconda.org/conda-forge/linux-64/aws-c-s3-0.7.0-h858c4ad_7.conda#1698a4867ecd97931d1bb743428686ec +https://conda.anaconda.org/conda-forge/linux-64/aws-c-s3-0.7.1-h3a84f74_3.conda#e7a54821aaa774cfd64efcd45114a4d7 https://conda.anaconda.org/conda-forge/linux-64/azure-core-cpp-1.14.0-h5cfcd09_0.conda#0a8838771cc2e985cd295e01ae83baf1 -https://conda.anaconda.org/conda-forge/linux-64/coverage-7.6.4-py312h178313f_0.conda#a32fbd2322865ac80c7db74c553f5306 -https://conda.anaconda.org/conda-forge/linux-64/fonttools-4.54.1-py312h178313f_1.conda#bbbf5fa5cab622c33907bc8d7eeea9f7 +https://conda.anaconda.org/conda-forge/linux-64/coverage-7.6.7-py312h178313f_0.conda#f64f3206bf9e86338b881957fd498870 +https://conda.anaconda.org/conda-forge/linux-64/fonttools-4.55.0-py312h178313f_0.conda#f404f4fb99ccaea68b00c1cc64fc1e68 https://conda.anaconda.org/conda-forge/linux-64/gmpy2-2.1.5-py312h7201bc8_2.conda#af9faf103fb57241246416dc70b466f7 https://conda.anaconda.org/conda-forge/linux-64/harfbuzz-9.0.0-hda332d3_1.conda#76b32dcf243444aea9c6b804bcfa40b8 https://conda.anaconda.org/conda-forge/noarch/jinja2-3.1.4-pyhd8ed1ab_0.conda#7b86ecb7d3557821c649b3c31e3eb9f2 @@ -199,17 +199,17 @@ https://conda.anaconda.org/conda-forge/noarch/pytest-8.3.3-pyhd8ed1ab_0.conda#c0 https://conda.anaconda.org/conda-forge/noarch/python-dateutil-2.9.0-pyhd8ed1ab_0.conda#2cf4264fffb9e6eff6031c5b6884d61c https://conda.anaconda.org/conda-forge/linux-64/tbb-2021.13.0-h84d6215_0.conda#ee6f7fd1e76061ef1fa307d41fa86a96 https://conda.anaconda.org/conda-forge/linux-64/xorg-libxtst-1.2.5-hb9d3cd8_3.conda#7bbe9a0cc0df0ac5f5a8ad6d6a11af2f -https://conda.anaconda.org/conda-forge/linux-64/aws-crt-cpp-0.29.3-hbc793f2_2.conda#3ac9933695a731e6507eef6c3704c10f +https://conda.anaconda.org/conda-forge/linux-64/aws-crt-cpp-0.29.4-h21d7256_1.conda#963a310ba64fd6a113eb4f7fcf89f935 https://conda.anaconda.org/conda-forge/linux-64/azure-identity-cpp-1.10.0-h113e628_0.conda#73f73f60854f325a55f1d31459f2ab73 https://conda.anaconda.org/conda-forge/linux-64/azure-storage-common-cpp-12.8.0-h736e048_1.conda#13de36be8de3ae3f05ba127631599213 https://conda.anaconda.org/conda-forge/linux-64/libgoogle-cloud-storage-2.31.0-h0121fbd_0.conda#568d6a09a6ed76337a7b97c84ae7c0f8 -https://conda.anaconda.org/conda-forge/linux-64/libpq-17.0-h04577a9_4.conda#392cae2a58fbcb9db8c2147c6d6d1620 +https://conda.anaconda.org/conda-forge/linux-64/libpq-17.1-h04577a9_0.conda#c2560bae9f56de89b8c50355f7c84910 https://conda.anaconda.org/conda-forge/noarch/meson-python-0.17.1-pyh70fd9c4_0.conda#722b649da38842068d83b6e6770f11a1 https://conda.anaconda.org/conda-forge/linux-64/mkl-2024.2.2-ha957f24_16.conda#1459379c79dda834673426504d52b319 https://conda.anaconda.org/conda-forge/noarch/pytest-cov-6.0.0-pyhd8ed1ab_0.conda#cb8a11b6d209e3d85e5094bdbd9ebd9c https://conda.anaconda.org/conda-forge/noarch/pytest-xdist-3.6.1-pyhd8ed1ab_0.conda#b39568655c127a9c4a44d178ac99b6d0 https://conda.anaconda.org/conda-forge/noarch/sympy-1.13.3-pyh2585a3b_104.conda#68085d736d2b2f54498832b65059875d -https://conda.anaconda.org/conda-forge/linux-64/aws-sdk-cpp-1.11.407-h5cd358a_9.conda#1bba87c0e95867ad8ef2932d603ce7ee +https://conda.anaconda.org/conda-forge/linux-64/aws-sdk-cpp-1.11.449-h1a02111_1.conda#490f72eee62d9bd7e778f137f65e9650 https://conda.anaconda.org/conda-forge/linux-64/azure-storage-blobs-cpp-12.13.0-h3cf044e_1.conda#7eb66060455c7a47d9dcdbfa9f46579b https://conda.anaconda.org/conda-forge/linux-64/libblas-3.9.0-25_linux64_mkl.conda#b77ebfb548eae4d91639e2ca003662c8 https://conda.anaconda.org/conda-forge/linux-64/mkl-devel-2024.2.2-ha770c72_16.conda#140891ea14285fc634353b31e9e40a95 @@ -218,25 +218,25 @@ https://conda.anaconda.org/conda-forge/linux-64/azure-storage-files-datalake-cpp https://conda.anaconda.org/conda-forge/linux-64/libcblas-3.9.0-25_linux64_mkl.conda#e48aeb4ab1a293f621fe995959f1d32f https://conda.anaconda.org/conda-forge/linux-64/liblapack-3.9.0-25_linux64_mkl.conda#d5afbe3777c594434e4de6481254e99c https://conda.anaconda.org/conda-forge/linux-64/pyside6-6.8.0.2-py312h91f0f75_0.conda#ec3da81d5f9d3612b227e09a650f7bf2 -https://conda.anaconda.org/conda-forge/linux-64/libarrow-18.0.0-h3e543c6_4_cpu.conda#98ca983152358b918afebf2abe9e5ca9 +https://conda.anaconda.org/conda-forge/linux-64/libarrow-18.0.0-h3b997a5_7_cpu.conda#32897a50e7f68187c4a524c439c0943c https://conda.anaconda.org/conda-forge/linux-64/liblapacke-3.9.0-25_linux64_mkl.conda#cbddb4169d3d24b13b308403b45f401e https://conda.anaconda.org/conda-forge/linux-64/libtorch-2.5.1-cpu_mkl_hb9d73ce_103.conda#5b17e90804ffc01546025c643d14fd6e https://conda.anaconda.org/conda-forge/linux-64/numpy-2.1.3-py312h58c1407_0.conda#dfdbc12e6d81889ba4c494a23f23eba8 -https://conda.anaconda.org/conda-forge/noarch/array-api-strict-2.1.3-pyhd8ed1ab_0.conda#559ef5d7adafd925588bcd9d0dcb3ed4 +https://conda.anaconda.org/conda-forge/noarch/array-api-strict-2.2-pyhd8ed1ab_0.conda#5f8d3e0f6b42318772d0f1cdddfe3025 https://conda.anaconda.org/conda-forge/linux-64/blas-devel-3.9.0-25_linux64_mkl.conda#cb60caae3cb30988431d7107691bd587 -https://conda.anaconda.org/conda-forge/linux-64/contourpy-1.3.0-py312h68727a3_2.conda#ff28f374b31937c048107521c814791e -https://conda.anaconda.org/conda-forge/linux-64/libarrow-acero-18.0.0-h5888daf_4_cpu.conda#86298c079658bed57c5590690a0fb418 -https://conda.anaconda.org/conda-forge/linux-64/libparquet-18.0.0-h6bd9018_4_cpu.conda#19973fe63c087ef5e119a2826011efb4 +https://conda.anaconda.org/conda-forge/linux-64/contourpy-1.3.1-py312h68727a3_0.conda#f5fbba0394ee45e9a64a73c2a994126a +https://conda.anaconda.org/conda-forge/linux-64/libarrow-acero-18.0.0-h5888daf_7_cpu.conda#786a275d019708cd1c963b12a8fb0c72 +https://conda.anaconda.org/conda-forge/linux-64/libparquet-18.0.0-h6bd9018_7_cpu.conda#687870f7d9cba5262fdd7e730e9e9ba8 https://conda.anaconda.org/conda-forge/linux-64/pandas-2.2.3-py312hf9745cd_1.conda#8bce4f6caaf8c5448c7ac86d87e26b4b https://conda.anaconda.org/conda-forge/linux-64/polars-1.12.0-py312hfe7c9be_0.conda#47b6df7e8b629d1257a6f971b88c15de https://conda.anaconda.org/conda-forge/linux-64/pyarrow-core-18.0.0-py312h01725c0_1_cpu.conda#c8ae967c39337603035d59c8994c23f9 https://conda.anaconda.org/conda-forge/linux-64/pytorch-2.5.1-cpu_mkl_py312h01fbe9c_103.conda#fea446aa105ad2989f5ad2e97d94720d https://conda.anaconda.org/conda-forge/linux-64/scipy-1.14.1-py312h62794b6_1.conda#b43233a9e2f62fb94affe5607ea79473 https://conda.anaconda.org/conda-forge/linux-64/blas-2.125-mkl.conda#8a0ffaaae2bccf691cffdde83cb0f1a5 -https://conda.anaconda.org/conda-forge/linux-64/libarrow-dataset-18.0.0-h5888daf_4_cpu.conda#6ac53d3f10c9d88ade8f9fe0f515a0db +https://conda.anaconda.org/conda-forge/linux-64/libarrow-dataset-18.0.0-h5888daf_7_cpu.conda#a742b9a0452b55020ccf662721c1ce44 https://conda.anaconda.org/conda-forge/linux-64/matplotlib-base-3.9.2-py312hd3ec401_2.conda#2380c9ba933ffaac9ad16d8eac8e3318 https://conda.anaconda.org/conda-forge/linux-64/pyamg-5.2.1-py312hc39e661_1.conda#372efc32220f0dfb603e5b31ffaefa23 https://conda.anaconda.org/conda-forge/linux-64/pytorch-cpu-2.5.1-cpu_mkl_h74a56ca_103.conda#8c195d4079bb69030cb6c883e8981ff0 -https://conda.anaconda.org/conda-forge/linux-64/libarrow-substrait-18.0.0-h5c8f2c3_4_cpu.conda#24f60812bdd87979ea1c6477f2f38d3b +https://conda.anaconda.org/conda-forge/linux-64/libarrow-substrait-18.0.0-h5c8f2c3_7_cpu.conda#be76013fa3fdaec2c0c504e6fdfd282d https://conda.anaconda.org/conda-forge/linux-64/matplotlib-3.9.2-py312h7900ff3_2.conda#266d9ad348e2151d07ad9e4dc716eea5 https://conda.anaconda.org/conda-forge/linux-64/pyarrow-18.0.0-py312h7900ff3_1.conda#ea33ac754057779cd2df785661486310 diff --git a/build_tools/azure/pylatest_conda_forge_mkl_osx-64_conda.lock b/build_tools/azure/pylatest_conda_forge_mkl_osx-64_conda.lock index 48ce6f3d55452..142ec0f4b5e64 100644 --- a/build_tools/azure/pylatest_conda_forge_mkl_osx-64_conda.lock +++ b/build_tools/azure/pylatest_conda_forge_mkl_osx-64_conda.lock @@ -22,7 +22,7 @@ https://conda.anaconda.org/conda-forge/osx-64/libmpdec-4.0.0-hfdf4475_0.conda#ed https://conda.anaconda.org/conda-forge/osx-64/libzlib-1.3.1-hd23fc13_2.conda#003a54a4e32b02f7355b50a837e699da https://conda.anaconda.org/conda-forge/osx-64/llvm-openmp-19.1.3-hf78d878_0.conda#18a8498d57d871da066beaa09263a638 https://conda.anaconda.org/conda-forge/osx-64/ncurses-6.5-hf036a51_1.conda#e102bbf8a6ceeaf429deab8032fc8977 -https://conda.anaconda.org/conda-forge/osx-64/openssl-3.3.2-hd23fc13_0.conda#2ff47134c8e292868a4609519b1ea3b6 +https://conda.anaconda.org/conda-forge/osx-64/openssl-3.4.0-hd471939_0.conda#ec99d2ce0b3033a75cbad01bbc7c5b71 https://conda.anaconda.org/conda-forge/osx-64/pthread-stubs-0.4-h00291cd_1002.conda#8bcf980d2c6b17094961198284b8e862 https://conda.anaconda.org/conda-forge/osx-64/xorg-libxau-1.0.11-h00291cd_1.conda#c6cc91149a08402bbb313c5dc0142567 https://conda.anaconda.org/conda-forge/osx-64/xorg-libxdmcp-1.1.5-h00291cd_0.conda#9f438e1b6f4e73fd9e6d78bfe7c36743 @@ -36,7 +36,7 @@ https://conda.anaconda.org/conda-forge/osx-64/libgfortran5-13.2.0-h2873a65_3.con https://conda.anaconda.org/conda-forge/osx-64/libpng-1.6.44-h4b8f8c9_0.conda#f32ac2c8dd390dbf169f550887ed09d9 https://conda.anaconda.org/conda-forge/osx-64/libsqlite-3.47.0-h2f8c449_1.conda#af445c495253a871c3d809e1199bb12b https://conda.anaconda.org/conda-forge/osx-64/libxcb-1.17.0-hf1f96e2_0.conda#bbeca862892e2898bdb45792a61c4afc -https://conda.anaconda.org/conda-forge/osx-64/libxml2-2.13.4-h12808cf_2.conda#0649b977d9e3d2fd579148643884535e +https://conda.anaconda.org/conda-forge/osx-64/libxml2-2.13.5-h495214b_0.conda#8711bc6fb054192dc432741dcd233ac3 https://conda.anaconda.org/conda-forge/osx-64/ninja-1.12.1-h3c5361c_0.conda#a0ebabd021c8191aeb82793fe43cfdcb https://conda.anaconda.org/conda-forge/osx-64/qhull-2020.2-h3c5361c_5.conda#dd1ea9ff27c93db7c01a7b7656bd4ad4 https://conda.anaconda.org/conda-forge/osx-64/readline-8.2-h9e318b2_1.conda#f17f77f2acf4d344734bda76829ce14e @@ -70,24 +70,24 @@ https://conda.anaconda.org/conda-forge/osx-64/llvm-tools-17.0.6-hbedff68_1.conda https://conda.anaconda.org/conda-forge/osx-64/mpc-1.3.1-h9d8efa1_1.conda#0520855aaae268ea413d6bc913f1384c https://conda.anaconda.org/conda-forge/noarch/munkres-1.1.4-pyh9f0ad1d_0.tar.bz2#2ba8498c1018c1e9c61eb99b973dfe19 https://conda.anaconda.org/conda-forge/osx-64/openjpeg-2.5.2-h7310d3a_0.conda#05a14cc9d725dd74995927968d6547e3 -https://conda.anaconda.org/conda-forge/noarch/packaging-24.1-pyhd8ed1ab_0.conda#cbe1bb1f21567018ce595d9c2be0f0db +https://conda.anaconda.org/conda-forge/noarch/packaging-24.2-pyhff2d567_1.conda#8508b703977f4c4ada34d657d051972c https://conda.anaconda.org/conda-forge/noarch/pip-24.3.1-pyh145f28c_0.conda#ca3afe2d7b893a8c8cdf489d30a2b1a3 https://conda.anaconda.org/conda-forge/noarch/pluggy-1.5.0-pyhd8ed1ab_0.conda#d3483c8fc2dc2cc3f5cf43e26d60cabf https://conda.anaconda.org/conda-forge/noarch/pyparsing-3.2.0-pyhd8ed1ab_1.conda#035c17fbf099f50ff60bf2eb303b0a83 https://conda.anaconda.org/conda-forge/noarch/python-tzdata-2024.2-pyhd8ed1ab_0.conda#986287f89929b2d629bd6ef6497dc307 https://conda.anaconda.org/conda-forge/noarch/pytz-2024.1-pyhd8ed1ab_0.conda#3eeeeb9e4827ace8c0c1419c85d590ad -https://conda.anaconda.org/conda-forge/noarch/setuptools-75.3.0-pyhd8ed1ab_0.conda#2ce9825396daf72baabaade36cee16da +https://conda.anaconda.org/conda-forge/noarch/setuptools-75.5.0-pyhff2d567_0.conda#ade63405adb52eeff89d506cd55908c0 https://conda.anaconda.org/conda-forge/noarch/six-1.16.0-pyh6c4a22f_0.tar.bz2#e5f25f8dbc060e9a8d912e432202afc2 https://conda.anaconda.org/conda-forge/osx-64/tbb-2021.13.0-h37c8870_0.conda#89742f5ac7aeb5c44ec2b4c3c6692c3c https://conda.anaconda.org/conda-forge/noarch/threadpoolctl-3.5.0-pyhc1e730c_0.conda#df68d78237980a159bd7149f33c0e8fd https://conda.anaconda.org/conda-forge/noarch/toml-0.10.2-pyhd8ed1ab_0.tar.bz2#f832c45a477c78bebd107098db465095 -https://conda.anaconda.org/conda-forge/noarch/tomli-2.0.2-pyhd8ed1ab_0.conda#e977934e00b355ff55ed154904044727 +https://conda.anaconda.org/conda-forge/noarch/tomli-2.1.0-pyhff2d567_0.conda#3fa1089b4722df3a900135925f4519d9 https://conda.anaconda.org/conda-forge/osx-64/tornado-6.4.1-py313ha37c0e0_1.conda#97e88d20d94ad24b7bf0d7b67b14fa90 https://conda.anaconda.org/conda-forge/osx-64/ccache-4.10.1-hee5fd93_0.conda#09898bb80e196695cea9e07402cff215 https://conda.anaconda.org/conda-forge/osx-64/cctools_osx-64-1010.6-h98e843e_1.conda#ed757b98aaa22a9e38c5a76191fb477c https://conda.anaconda.org/conda-forge/osx-64/clang-17-17.0.6-default_hb173f14_7.conda#809e36447b1bfb87ed1b7fb46339561a -https://conda.anaconda.org/conda-forge/osx-64/coverage-7.6.4-py313h25ec13a_0.conda#3b51dc2570f11e20bb75fa3bd7d88c46 -https://conda.anaconda.org/conda-forge/osx-64/fonttools-4.54.1-py313h25ec13a_1.conda#86e0b9a91e6d6f97f8dbe7591ad22c76 +https://conda.anaconda.org/conda-forge/osx-64/coverage-7.6.7-py313h717bdf5_0.conda#af478bad7acf724bfe42e1ccefdc06d7 +https://conda.anaconda.org/conda-forge/osx-64/fonttools-4.55.0-py313h717bdf5_0.conda#8652d2398f4c9e160d022844800f6be3 https://conda.anaconda.org/conda-forge/osx-64/gfortran_impl_osx-64-13.2.0-h2bc304d_3.conda#57aa4cb95277a27aa0a1834ed97be45b https://conda.anaconda.org/conda-forge/noarch/joblib-1.4.2-pyhd8ed1ab_0.conda#25df261d4523d9f9783bcdb7208d872f https://conda.anaconda.org/conda-forge/osx-64/ld64-951.9-h0a3eb4e_1.conda#8b8e1a4bd8384bf4b884c9e41636038f @@ -112,7 +112,7 @@ https://conda.anaconda.org/conda-forge/osx-64/liblapacke-3.9.0-20_osx64_mkl.cond https://conda.anaconda.org/conda-forge/osx-64/numpy-2.1.3-py313h7ca3f3b_0.conda#b827b0af2098c63435b27b7f4e4d50dd https://conda.anaconda.org/conda-forge/osx-64/blas-devel-3.9.0-20_osx64_mkl.conda#cc3260179093918b801e373c6e888e02 https://conda.anaconda.org/conda-forge/osx-64/compiler-rt-17.0.6-h1020d70_2.conda#be4cb4531d4cee9df94bf752455d68de -https://conda.anaconda.org/conda-forge/osx-64/contourpy-1.3.0-py313hc99daa9_2.conda#572ff94936f32a90610cb9943f8f9d4f +https://conda.anaconda.org/conda-forge/osx-64/contourpy-1.3.1-py313ha0b1807_0.conda#5ae850f4b044294bd7d655228fc236f9 https://conda.anaconda.org/conda-forge/osx-64/pandas-2.2.3-py313h38cdd20_1.conda#ab61fb255c951a0514616e92dd2e18b2 https://conda.anaconda.org/conda-forge/osx-64/scipy-1.14.1-py313hbd2dc07_1.conda#63098e1999a8f08b82ae921440e6ed0a https://conda.anaconda.org/conda-forge/osx-64/blas-2.120-mkl.conda#b041a7677a412f3d925d8208936cb1e2 diff --git a/build_tools/azure/pylatest_conda_mkl_no_openmp_osx-64_conda.lock b/build_tools/azure/pylatest_conda_mkl_no_openmp_osx-64_conda.lock index 33eb4409c6d86..d0a181140dd9a 100644 --- a/build_tools/azure/pylatest_conda_mkl_no_openmp_osx-64_conda.lock +++ b/build_tools/azure/pylatest_conda_mkl_no_openmp_osx-64_conda.lock @@ -51,7 +51,7 @@ https://repo.anaconda.com/pkgs/main/osx-64/ninja-1.12.1-hecd8cb5_0.conda#ee3b660 https://repo.anaconda.com/pkgs/main/osx-64/openjpeg-2.5.2-hbf2204d_0.conda#8463f11309271a93d615450382761470 https://repo.anaconda.com/pkgs/main/osx-64/packaging-24.1-py312hecd8cb5_0.conda#6130dafc4d26d55e93ceab460d2a72b5 https://repo.anaconda.com/pkgs/main/osx-64/pluggy-1.0.0-py312hecd8cb5_1.conda#647fada22f1697691fdee90b52c99bcb -https://repo.anaconda.com/pkgs/main/osx-64/pyparsing-3.1.2-py312hecd8cb5_0.conda#645e2108165e45a3a385f0e11d1748a1 +https://repo.anaconda.com/pkgs/main/osx-64/pyparsing-3.2.0-py312hecd8cb5_0.conda#e4086daaaed13f68cc8d5b9da7db73cc https://repo.anaconda.com/pkgs/main/noarch/python-tzdata-2023.3-pyhd3eb1b0_0.conda#479c037de0186d114b9911158427624e https://repo.anaconda.com/pkgs/main/osx-64/pytz-2024.1-py312hecd8cb5_0.conda#2b28ec0e0d07f5c0c701f75200b1e8b6 https://repo.anaconda.com/pkgs/main/osx-64/setuptools-75.1.0-py312hecd8cb5_0.conda#3e59d1f40cba32a613a20b2ebdcf2c07 @@ -62,7 +62,7 @@ https://repo.anaconda.com/pkgs/main/osx-64/unicodedata2-15.1.0-py312h6c40b1e_0.c https://repo.anaconda.com/pkgs/main/osx-64/wheel-0.44.0-py312hecd8cb5_0.conda#bc98874d00f71c3f6f654d0316174d17 https://repo.anaconda.com/pkgs/main/osx-64/fonttools-4.51.0-py312h6c40b1e_0.conda#8f55fa86b73e8a7f4403503f9b7a9959 https://repo.anaconda.com/pkgs/main/osx-64/numpy-base-1.26.4-py312h6f81483_0.conda#87f73efbf26ab2e2ea7c32481a71bd47 -https://repo.anaconda.com/pkgs/main/osx-64/pillow-10.4.0-py312h46256e1_0.conda#486a21e17faf0611e454c0e7faf0bcbc +https://repo.anaconda.com/pkgs/main/osx-64/pillow-11.0.0-py312h9c91434_0.conda#252d2dd1872e877dc8538e02fe20671e https://repo.anaconda.com/pkgs/main/osx-64/pip-24.2-py312hecd8cb5_0.conda#35119ef238299ccf29b25889fd466139 https://repo.anaconda.com/pkgs/main/osx-64/pytest-7.4.4-py312hecd8cb5_0.conda#d4dda983900b045cd27ae836cad670de https://repo.anaconda.com/pkgs/main/osx-64/python-dateutil-2.9.0post0-py312hecd8cb5_2.conda#1047dde28f78127dd9f6121e882926dd diff --git a/build_tools/azure/pylatest_pip_openblas_pandas_linux-64_conda.lock b/build_tools/azure/pylatest_pip_openblas_pandas_linux-64_conda.lock index 0d7093237533c..89b0b4f130b50 100644 --- a/build_tools/azure/pylatest_pip_openblas_pandas_linux-64_conda.lock +++ b/build_tools/azure/pylatest_pip_openblas_pandas_linux-64_conda.lock @@ -30,12 +30,12 @@ https://repo.anaconda.com/pkgs/main/linux-64/pip-24.2-py311h06a4308_0.conda#eff3 # pip babel @ https://files.pythonhosted.org/packages/ed/20/bc79bc575ba2e2a7f70e8a1155618bb1301eaa5132a8271373a6903f73f8/babel-2.16.0-py3-none-any.whl#sha256=368b5b98b37c06b7daf6696391c3240c938b37767d4584413e8438c5c435fa8b # pip certifi @ https://files.pythonhosted.org/packages/12/90/3c9ff0512038035f59d279fddeb79f5f1eccd8859f06d6163c58798b9487/certifi-2024.8.30-py3-none-any.whl#sha256=922820b53db7a7257ffbda3f597266d435245903d80737e34f8a45ff3e3230d8 # pip charset-normalizer @ https://files.pythonhosted.org/packages/eb/5b/6f10bad0f6461fa272bfbbdf5d0023b5fb9bc6217c92bf068fa5a99820f5/charset_normalizer-3.4.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl#sha256=3710a9751938947e6327ea9f3ea6332a09bf0ba0c09cae9cb1f250bd1f1549bc -# pip coverage @ https://files.pythonhosted.org/packages/cc/57/cb08f0eda0389a9a8aaa4fc1f9fec7ac361c3e2d68efd5890d7042c18aa3/coverage-7.6.4-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl#sha256=b369ead6527d025a0fe7bd3864e46dbee3aa8f652d48df6174f8d0bac9e26e0e +# pip coverage @ https://files.pythonhosted.org/packages/1c/dc/e77d98ae433c556c29328712a07fed0e6d159a63b2ec81039ce0a13a24a3/coverage-7.6.7-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl#sha256=e69ad502f1a2243f739f5bd60565d14a278be58be4c137d90799f2c263e7049a # pip cycler @ https://files.pythonhosted.org/packages/e7/05/c19819d5e3d95294a6f5947fb9b9629efb316b96de511b418c53d245aae6/cycler-0.12.1-py3-none-any.whl#sha256=85cef7cff222d8644161529808465972e51340599459b8ac3ccbac5a854e0d30 # pip cython @ https://files.pythonhosted.org/packages/93/03/e330b241ad8aa12bb9d98b58fb76d4eb7dcbe747479aab5c29fce937b9e7/Cython-3.0.11-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl#sha256=3999fb52d3328a6a5e8c63122b0a8bd110dfcdb98dda585a3def1426b991cba7 # pip docutils @ https://files.pythonhosted.org/packages/8f/d7/9322c609343d929e75e7e5e6255e614fcc67572cfd083959cdef3b7aad79/docutils-0.21.2-py3-none-any.whl#sha256=dafca5b9e384f0e419294eb4d2ff9fa826435bf15f15b7bd45723e8ad76811b2 # pip execnet @ https://files.pythonhosted.org/packages/43/09/2aea36ff60d16dd8879bdb2f5b3ee0ba8d08cbbdcdfe870e695ce3784385/execnet-2.1.1-py3-none-any.whl#sha256=26dee51f1b80cebd6d0ca8e74dd8745419761d3bef34163928cbebbdc4749fdc -# pip fonttools @ https://files.pythonhosted.org/packages/96/13/748b7f7239893ff0796de11074b0ad8aa4c3da2d9f4d79a128b0b16147f3/fonttools-4.54.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl#sha256=82834962b3d7c5ca98cb56001c33cf20eb110ecf442725dc5fdf36d16ed1ab07 +# pip fonttools @ https://files.pythonhosted.org/packages/47/2b/9bf7527260d265281dd812951aa22f3d1c331bcc91e86e7038dc6b9737cb/fonttools-4.55.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl#sha256=f307f6b5bf9e86891213b293e538d292cd1677e06d9faaa4bf9c086ad5f132f6 # pip idna @ https://files.pythonhosted.org/packages/76/c6/c88e154df9c4e1a2a66ccf0005a88dfb2650c1dffb6f5ce603dfbd452ce3/idna-3.10-py3-none-any.whl#sha256=946d195a0d259cbba61165e88e65941f16e9b36ea6ddb97f00452bae8b1287d3 # pip imagesize @ https://files.pythonhosted.org/packages/ff/62/85c4c919272577931d407be5ba5d71c20f0b616d31a0befe0ae45bb79abd/imagesize-1.4.1-py2.py3-none-any.whl#sha256=0d8d18d08f840c19d0ee7ca1fd82490fdc3729b7ac93f49870406ddde8ef8d8b # pip iniconfig @ https://files.pythonhosted.org/packages/ef/a6/62565a6e1cf69e10f5727360368e451d4b7f58beeac6173dc9db836a5b46/iniconfig-2.0.0-py3-none-any.whl#sha256=b6a85871a79d2e3b22d2d1b94ac2824226a63c6b741c88f7ae975f18b6778374 @@ -64,8 +64,8 @@ https://repo.anaconda.com/pkgs/main/linux-64/pip-24.2-py311h06a4308_0.conda#eff3 # pip threadpoolctl @ https://files.pythonhosted.org/packages/4b/2c/ffbf7a134b9ab11a67b0cf0726453cedd9c5043a4fe7a35d1cefa9a1bcfb/threadpoolctl-3.5.0-py3-none-any.whl#sha256=56c1e26c150397e58c4926da8eeee87533b1e32bef131bd4bf6a2f45f3185467 # pip tzdata @ https://files.pythonhosted.org/packages/a6/ab/7e5f53c3b9d14972843a647d8d7a853969a58aecc7559cb3267302c94774/tzdata-2024.2-py2.py3-none-any.whl#sha256=a48093786cdcde33cad18c2555e8532f34422074448fbc874186f0abd79565cd # pip urllib3 @ https://files.pythonhosted.org/packages/ce/d9/5f4c13cecde62396b0d3fe530a50ccea91e7dfc1ccf0e09c228841bb5ba8/urllib3-2.2.3-py3-none-any.whl#sha256=ca899ca043dcb1bafa3e262d73aa25c465bfb49e0bd9dd5d59f1d0acba2f8fac -# pip array-api-strict @ https://files.pythonhosted.org/packages/06/68/88cd07c9cfe954f5bf970108e118e6be642aba566547a22a5389824d0072/array_api_strict-2.1.3-py3-none-any.whl#sha256=7ba42a4d4023fe9e9e3805ac964885ae70adead5bff184fe995c62c8d457dc0a -# pip contourpy @ https://files.pythonhosted.org/packages/03/33/003065374f38894cdf1040cef474ad0546368eea7e3a51d48b8a423961f8/contourpy-1.3.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl#sha256=637f674226be46f6ba372fd29d9523dd977a291f66ab2a74fbeb5530bb3f445d +# pip array-api-strict @ https://files.pythonhosted.org/packages/9a/c2/a202399e3aa2e62aa15669fc95fdd7a5d63240cbf8695962c747f915a083/array_api_strict-2.2-py3-none-any.whl#sha256=577cfce66bf69701cefea85bc14b9e49e418df767b6b178bd93d22f1c1962d59 +# pip contourpy @ https://files.pythonhosted.org/packages/85/fc/7fa5d17daf77306840a4e84668a48ddff09e6bc09ba4e37e85ffc8e4faa3/contourpy-1.3.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl#sha256=3a04ecd68acbd77fa2d39723ceca4c3197cb2969633836ced1bea14e219d077c # pip imageio @ https://files.pythonhosted.org/packages/4e/e7/26045404a30c8a200e960fb54fbaf4b73d12e58cd28e03b306b084253f4f/imageio-2.36.0-py3-none-any.whl#sha256=471f1eda55618ee44a3c9960911c35e647d9284c68f077e868df633398f137f0 # pip jinja2 @ https://files.pythonhosted.org/packages/31/80/3a54838c3fb461f6fec263ebf3a3a41771bd05190238de3486aae8540c36/jinja2-3.1.4-py3-none-any.whl#sha256=bc5dd2abb727a5319567b7a813e6a2e7318c39f4f487cfe6c89c6f9c7d25197d # pip lazy-loader @ https://files.pythonhosted.org/packages/83/60/d497a310bde3f01cb805196ac61b7ad6dc5dcf8dce66634dc34364b20b4f/lazy_loader-0.4-py3-none-any.whl#sha256=342aa8e14d543a154047afb4ba8ef17f5563baad3fc610d7b15b213b0f119efc diff --git a/build_tools/azure/pymin_conda_forge_mkl_win-64_conda.lock b/build_tools/azure/pymin_conda_forge_mkl_win-64_conda.lock index 2e676d2312299..b9507ff415b63 100644 --- a/build_tools/azure/pymin_conda_forge_mkl_win-64_conda.lock +++ b/build_tools/azure/pymin_conda_forge_mkl_win-64_conda.lock @@ -14,11 +14,11 @@ https://conda.anaconda.org/conda-forge/noarch/tzdata-2024b-hc8b5060_0.conda#8ac3 https://conda.anaconda.org/conda-forge/win-64/ucrt-10.0.22621.0-h57928b3_1.conda#6797b005cd0f439c4c5c9ac565783700 https://conda.anaconda.org/conda-forge/noarch/fonts-conda-forge-1-0.tar.bz2#f766549260d6815b0c52253f1fb1bb29 https://conda.anaconda.org/conda-forge/win-64/libwinpthread-12.0.0.r4.gg4f2fc60ca-h57928b3_8.conda#03cccbba200ee0523bde1f3dad60b1f3 -https://conda.anaconda.org/conda-forge/win-64/vc14_runtime-14.40.33810-hcc2c482_22.conda#ce23a4b980ee0556a118ed96550ff3f3 +https://conda.anaconda.org/conda-forge/win-64/vc14_runtime-14.42.34433-he29a5d6_23.conda#32b37d0cfa80da34548501cdc913a832 https://conda.anaconda.org/conda-forge/noarch/fonts-conda-ecosystem-1-0.tar.bz2#fee5683a3f04bd15cbd8318b096a27ab https://conda.anaconda.org/conda-forge/win-64/libgomp-14.2.0-h1383e82_1.conda#9e2d4d1214df6f21cba12f6eff4972f9 -https://conda.anaconda.org/conda-forge/win-64/vc-14.3-h8a93ad2_22.conda#a47cd756e88d8a80dfae678842d4acc9 -https://conda.anaconda.org/conda-forge/win-64/vs2015_runtime-14.40.33810-h3bf8584_22.conda#8c6b061d44cafdfc8e8c6eb5f100caf0 +https://conda.anaconda.org/conda-forge/win-64/vc-14.3-ha32ba9b_23.conda#7c10ec3158d1eb4ddff7007c9101adb0 +https://conda.anaconda.org/conda-forge/win-64/vs2015_runtime-14.42.34433-hdffcdeb_23.conda#5c176975ca2b8366abad3c97b3cd1e83 https://conda.anaconda.org/conda-forge/win-64/_openmp_mutex-4.5-2_gnu.conda#37e16618af5c4851a3f3d66dd0e11141 https://conda.anaconda.org/conda-forge/win-64/bzip2-1.0.8-h2466b09_7.conda#276e7ffe9ffe39688abc665ef0f45596 https://conda.anaconda.org/conda-forge/win-64/double-conversion-3.3.0-h63175ca_0.conda#1a8bc18b24014167b2184c5afbe6037e @@ -35,7 +35,7 @@ https://conda.anaconda.org/conda-forge/win-64/libsqlite-3.47.0-h2466b09_1.conda# https://conda.anaconda.org/conda-forge/win-64/libwebp-base-1.4.0-hcfcfb64_0.conda#abd61d0ab127ec5cd68f62c2969e6f34 https://conda.anaconda.org/conda-forge/win-64/libzlib-1.3.1-h2466b09_2.conda#41fbfac52c601159df6c01f875de31b9 https://conda.anaconda.org/conda-forge/win-64/ninja-1.12.1-hc790b64_0.conda#a557dde55343e03c68cd7e29e7f87279 -https://conda.anaconda.org/conda-forge/win-64/openssl-3.3.2-h2466b09_0.conda#1dc86753693df5e3326bb8a85b74c589 +https://conda.anaconda.org/conda-forge/win-64/openssl-3.4.0-h2466b09_0.conda#d0d805d9b5524a14efb51b3bff965e83 https://conda.anaconda.org/conda-forge/win-64/pixman-0.43.4-h63175ca_0.conda#b98135614135d5f458b75ab9ebb9558c https://conda.anaconda.org/conda-forge/win-64/qhull-2020.2-hc790b64_5.conda#854fbdff64b572b5c0b470f334d34c11 https://conda.anaconda.org/conda-forge/win-64/tbb-2021.7.0-h91493d7_0.tar.bz2#f57be598137919e4f7e7d159960d66a1 @@ -47,7 +47,7 @@ https://conda.anaconda.org/conda-forge/win-64/libbrotlienc-1.1.0-h2466b09_2.cond https://conda.anaconda.org/conda-forge/win-64/libgcc-14.2.0-h1383e82_1.conda#75fdd34824997a0f9950a703b15d8ac5 https://conda.anaconda.org/conda-forge/win-64/libintl-0.22.5-h5728263_3.conda#2cf0cf76cc15d360dfa2f17fd6cf9772 https://conda.anaconda.org/conda-forge/win-64/libpng-1.6.44-h3ca93ac_0.conda#639ac6b55a40aa5de7b8c1b4d78f9e81 -https://conda.anaconda.org/conda-forge/win-64/libxml2-2.13.4-h442d1da_2.conda#46c233e5c137a2de2d1d95ca35ad8d6a +https://conda.anaconda.org/conda-forge/win-64/libxml2-2.13.5-h442d1da_0.conda#1fbabbec60a3c7c519a5973b06c3b2f4 https://conda.anaconda.org/conda-forge/win-64/mkl-2024.2.2-h66d3029_14.conda#f011e7cc21918dc9d1efe0209e27fa16 https://conda.anaconda.org/conda-forge/win-64/pcre2-10.44-h3d7b363_2.conda#a3a3baddcfb8c80db84bec3cb7746fb8 https://conda.anaconda.org/conda-forge/win-64/python-3.9.20-hfaddaf0_1_cpython.conda#445389d1d311435a90def248c814ddd6 @@ -71,15 +71,15 @@ https://conda.anaconda.org/conda-forge/win-64/libtiff-4.7.0-hfc51747_1.conda#eac https://conda.anaconda.org/conda-forge/win-64/libxslt-1.1.39-h3df6e99_0.conda#279ee338c9b34871d578cb3c7aa68f70 https://conda.anaconda.org/conda-forge/win-64/mkl-devel-2024.2.2-h57928b3_14.conda#ecc2c244eff5cb6289b6db5e0401c0aa https://conda.anaconda.org/conda-forge/noarch/munkres-1.1.4-pyh9f0ad1d_0.tar.bz2#2ba8498c1018c1e9c61eb99b973dfe19 -https://conda.anaconda.org/conda-forge/noarch/packaging-24.1-pyhd8ed1ab_0.conda#cbe1bb1f21567018ce595d9c2be0f0db +https://conda.anaconda.org/conda-forge/noarch/packaging-24.2-pyhff2d567_1.conda#8508b703977f4c4ada34d657d051972c https://conda.anaconda.org/conda-forge/noarch/pluggy-1.5.0-pyhd8ed1ab_0.conda#d3483c8fc2dc2cc3f5cf43e26d60cabf https://conda.anaconda.org/conda-forge/win-64/pthread-stubs-0.4-h0e40799_1002.conda#3c8f2573569bb816483e5cf57efbbe29 https://conda.anaconda.org/conda-forge/noarch/pyparsing-3.2.0-pyhd8ed1ab_1.conda#035c17fbf099f50ff60bf2eb303b0a83 -https://conda.anaconda.org/conda-forge/noarch/setuptools-75.3.0-pyhd8ed1ab_0.conda#2ce9825396daf72baabaade36cee16da +https://conda.anaconda.org/conda-forge/noarch/setuptools-75.5.0-pyhff2d567_0.conda#ade63405adb52eeff89d506cd55908c0 https://conda.anaconda.org/conda-forge/noarch/six-1.16.0-pyh6c4a22f_0.tar.bz2#e5f25f8dbc060e9a8d912e432202afc2 https://conda.anaconda.org/conda-forge/noarch/threadpoolctl-3.5.0-pyhc1e730c_0.conda#df68d78237980a159bd7149f33c0e8fd https://conda.anaconda.org/conda-forge/noarch/toml-0.10.2-pyhd8ed1ab_0.tar.bz2#f832c45a477c78bebd107098db465095 -https://conda.anaconda.org/conda-forge/noarch/tomli-2.0.2-pyhd8ed1ab_0.conda#e977934e00b355ff55ed154904044727 +https://conda.anaconda.org/conda-forge/noarch/tomli-2.1.0-pyhff2d567_0.conda#3fa1089b4722df3a900135925f4519d9 https://conda.anaconda.org/conda-forge/win-64/tornado-6.4.1-py39ha55e580_1.conda#4a93d22ed5b2cede80fbee7f7f775a9d https://conda.anaconda.org/conda-forge/win-64/unicodedata2-15.1.0-py39ha55e580_1.conda#7b7e5732092b9a635440ec939e45651d https://conda.anaconda.org/conda-forge/noarch/wheel-0.45.0-pyhd8ed1ab_0.conda#f9751d7c71df27b2d29f5cab3378982e @@ -87,7 +87,7 @@ https://conda.anaconda.org/conda-forge/win-64/xorg-libxau-1.0.11-h0e40799_1.cond https://conda.anaconda.org/conda-forge/win-64/xorg-libxdmcp-1.1.5-h0e40799_0.conda#8393c0f7e7870b4eb45553326f81f0ff https://conda.anaconda.org/conda-forge/noarch/zipp-3.21.0-pyhd8ed1ab_0.conda#fee389bf8a4843bd7a2248ce11b7f188 https://conda.anaconda.org/conda-forge/win-64/brotli-1.1.0-h2466b09_2.conda#378f1c9421775dfe644731cb121c8979 -https://conda.anaconda.org/conda-forge/win-64/coverage-7.6.4-py39hf73967f_0.conda#7f2ad67ee529ce63fbb4e69949ee56a0 +https://conda.anaconda.org/conda-forge/win-64/coverage-7.6.7-py39hf73967f_0.conda#11a82c4ebc8dcb145e50e546dbf6d508 https://conda.anaconda.org/conda-forge/win-64/fontconfig-2.15.0-h765892d_1.conda#9bb0026a2131b09404c59c4290c697cd https://conda.anaconda.org/conda-forge/noarch/importlib_resources-6.4.5-pyhd8ed1ab_0.conda#c808991d29b9838fb4d96ce8267ec9ec https://conda.anaconda.org/conda-forge/noarch/joblib-1.4.2-pyhd8ed1ab_0.conda#25df261d4523d9f9783bcdb7208d872f @@ -103,7 +103,7 @@ https://conda.anaconda.org/conda-forge/noarch/pyproject-metadata-0.9.0-pyh2cfa8a https://conda.anaconda.org/conda-forge/noarch/pytest-8.3.3-pyhd8ed1ab_0.conda#c03d61f31f38fdb9facf70c29958bf7a https://conda.anaconda.org/conda-forge/noarch/python-dateutil-2.9.0-pyhd8ed1ab_0.conda#2cf4264fffb9e6eff6031c5b6884d61c https://conda.anaconda.org/conda-forge/win-64/cairo-1.18.0-h32b962e_3.conda#8f43723a4925c51e55c2d81725a97db4 -https://conda.anaconda.org/conda-forge/win-64/fonttools-4.54.1-py39hf73967f_1.conda#c0fcffbde1793dfd8067cf29fb22bc5f +https://conda.anaconda.org/conda-forge/win-64/fonttools-4.55.0-py39hf73967f_0.conda#ec6d6a149d4e18a07f4bb959f68c4961 https://conda.anaconda.org/conda-forge/noarch/importlib-resources-6.4.5-pyhd8ed1ab_0.conda#67f4772681cf86652f3e2261794cf045 https://conda.anaconda.org/conda-forge/win-64/liblapacke-3.9.0-25_win64_mkl.conda#d59fc46f1e1c2f3cf38a08a0a76ffee5 https://conda.anaconda.org/conda-forge/noarch/meson-python-0.17.1-pyh70fd9c4_0.conda#722b649da38842068d83b6e6770f11a1 diff --git a/build_tools/azure/pymin_conda_forge_openblas_min_dependencies_linux-64_conda.lock b/build_tools/azure/pymin_conda_forge_openblas_min_dependencies_linux-64_conda.lock index cc761ed52dfc0..4c79d6b3ce3c2 100644 --- a/build_tools/azure/pymin_conda_forge_openblas_min_dependencies_linux-64_conda.lock +++ b/build_tools/azure/pymin_conda_forge_openblas_min_dependencies_linux-64_conda.lock @@ -12,26 +12,26 @@ https://conda.anaconda.org/conda-forge/linux-64/python_abi-3.9-5_cp39.conda#4036 https://conda.anaconda.org/conda-forge/noarch/tzdata-2024b-hc8b5060_0.conda#8ac3367aafb1cc0a068483c580af8015 https://conda.anaconda.org/conda-forge/noarch/fonts-conda-forge-1-0.tar.bz2#f766549260d6815b0c52253f1fb1bb29 https://conda.anaconda.org/conda-forge/linux-64/ld_impl_linux-64-2.43-h712a8e2_2.conda#048b02e3962f066da18efe3a21b77672 -https://conda.anaconda.org/conda-forge/linux-64/libglvnd-1.7.0-ha4b6fd6_1.conda#1ece2ccb1dc8c68639712b05e0fae070 +https://conda.anaconda.org/conda-forge/linux-64/libglvnd-1.7.0-ha4b6fd6_2.conda#434ca7e50e40f4918ab701e3facd59a0 https://conda.anaconda.org/conda-forge/linux-64/llvm-openmp-19.1.3-h024ca30_0.conda#d36687dc90337917a84a96a45111ad59 https://conda.anaconda.org/conda-forge/linux-64/_openmp_mutex-4.5-2_kmp_llvm.tar.bz2#562b26ba2e19059551a811e72ab7f793 https://conda.anaconda.org/conda-forge/noarch/fonts-conda-ecosystem-1-0.tar.bz2#fee5683a3f04bd15cbd8318b096a27ab -https://conda.anaconda.org/conda-forge/linux-64/libegl-1.7.0-ha4b6fd6_1.conda#38a5cd3be5fb620b48069e27285f1a44 +https://conda.anaconda.org/conda-forge/linux-64/libegl-1.7.0-ha4b6fd6_2.conda#c151d5eb730e9b7480e6d48c0fc44048 https://conda.anaconda.org/conda-forge/linux-64/libgcc-14.2.0-h77fa898_1.conda#3cb76c3f10d3bc7f1105b2fc9db984df +https://conda.anaconda.org/conda-forge/linux-64/alsa-lib-1.2.13-hb9d3cd8_0.conda#ae1370588aa6a5157c34c73e9bbb36a0 https://conda.anaconda.org/conda-forge/linux-64/libdeflate-1.22-hb9d3cd8_0.conda#b422943d5d772b7cc858b36ad2a92db5 https://conda.anaconda.org/conda-forge/linux-64/libexpat-2.6.4-h5888daf_0.conda#db833e03127376d461e1e13e76f09b6c https://conda.anaconda.org/conda-forge/linux-64/libgcc-ng-14.2.0-h69a702a_1.conda#e39480b9ca41323497b05492a63bc35b https://conda.anaconda.org/conda-forge/linux-64/libgfortran5-14.2.0-hd5240d6_1.conda#9822b874ea29af082e5d36098d25427d https://conda.anaconda.org/conda-forge/linux-64/libstdcxx-14.2.0-hc0a3c3a_1.conda#234a5554c53625688d51062645337328 https://conda.anaconda.org/conda-forge/linux-64/libzlib-1.3.1-hb9d3cd8_2.conda#edb0dca6bc32e4f4789199455a1dbeb8 -https://conda.anaconda.org/conda-forge/linux-64/openssl-3.3.2-hb9d3cd8_0.conda#4d638782050ab6faa27275bed57e9b4e +https://conda.anaconda.org/conda-forge/linux-64/openssl-3.4.0-hb9d3cd8_0.conda#23cc74f77eb99315c0360ec3533147a9 https://conda.anaconda.org/conda-forge/linux-64/pthread-stubs-0.4-hb9d3cd8_1002.conda#b3c17d95b5a10c6e64a21fa17573e70e https://conda.anaconda.org/conda-forge/linux-64/xorg-libice-1.1.1-hb9d3cd8_1.conda#19608a9656912805b2b9a2f6bd257b04 https://conda.anaconda.org/conda-forge/linux-64/xorg-libxau-1.0.11-hb9d3cd8_1.conda#77cbc488235ebbaab2b6e912d3934bae https://conda.anaconda.org/conda-forge/linux-64/xorg-libxdmcp-1.1.5-hb9d3cd8_0.conda#8035c64cb77ed555e3f150b7b3972480 -https://conda.anaconda.org/conda-forge/linux-64/xorg-xf86vidmodeproto-2.3.1-hb9d3cd8_1004.conda#24831329718daa6cbe35fcd071b778d4 +https://conda.anaconda.org/conda-forge/linux-64/xorg-xf86vidmodeproto-2.3.1-hb9d3cd8_1005.conda#1c08f67e3406550eef135e17263f8154 https://conda.anaconda.org/conda-forge/linux-64/xorg-xorgproto-2024.1-hb9d3cd8_1.conda#7c21106b851ec72c037b162c216d8f05 -https://conda.anaconda.org/conda-forge/linux-64/alsa-lib-1.2.12-h4ab18f5_0.conda#7ed427f0871fd41cb1d9c17727c17589 https://conda.anaconda.org/conda-forge/linux-64/attr-2.5.1-h166bdaf_1.tar.bz2#d9c69a24ad678ffce24c6543a0176b00 https://conda.anaconda.org/conda-forge/linux-64/bzip2-1.0.8-h4bc722e_7.conda#62ee74e96c5ebb0af99386de58cf9553 https://conda.anaconda.org/conda-forge/linux-64/expat-2.6.4-h5888daf_0.conda#1d6afef758879ef5ee78127eb4cd2c4a @@ -90,11 +90,11 @@ https://conda.anaconda.org/conda-forge/linux-64/fontconfig-2.15.0-h7e30c49_1.con https://conda.anaconda.org/conda-forge/linux-64/krb5-1.21.3-h659f571_0.conda#3f43953b7d3fb3aaa1d0d0723d91e368 https://conda.anaconda.org/conda-forge/linux-64/libasprintf-devel-0.22.5-he8f35ee_3.conda#1091193789bb830127ed067a9e01ac57 https://conda.anaconda.org/conda-forge/linux-64/libglib-2.82.2-h2ff4ddf_0.conda#13e8e54035ddd2b91875ba399f0f7c04 -https://conda.anaconda.org/conda-forge/linux-64/libglx-1.7.0-ha4b6fd6_1.conda#80a57756c545ad11f9847835aa21e6b2 +https://conda.anaconda.org/conda-forge/linux-64/libglx-1.7.0-ha4b6fd6_2.conda#c8013e438185f33b13814c5c488acd5c https://conda.anaconda.org/conda-forge/linux-64/libhiredis-1.0.2-h2cc385e_0.tar.bz2#b34907d3a81a3cd8095ee83d174c074a https://conda.anaconda.org/conda-forge/linux-64/libopenblas-0.3.25-pthreads_h413a1c8_0.conda#d172b34a443b95f86089e8229ddc9a17 https://conda.anaconda.org/conda-forge/linux-64/libtiff-4.7.0-he137b08_1.conda#63872517c98aa305da58a757c443698e -https://conda.anaconda.org/conda-forge/linux-64/libxml2-2.13.4-hb346dea_2.conda#69b90b70c434b916abf5a1d5ee5d55fb +https://conda.anaconda.org/conda-forge/linux-64/libxml2-2.13.5-hb346dea_0.conda#c81a9f1118541aaa418ccb22190c817e https://conda.anaconda.org/conda-forge/linux-64/mysql-libs-9.0.1-he0572af_2.conda#57a9e7ee3c0840d3c8c9012473978629 https://conda.anaconda.org/conda-forge/linux-64/python-3.9.20-h13acc7a_1_cpython.conda#951cff166a5f170e27908811917165f8 https://conda.anaconda.org/conda-forge/linux-64/xcb-util-image-0.4.0-hb711507_2.conda#a0901183f08b6c7107aab109733a3c91 @@ -118,13 +118,13 @@ https://conda.anaconda.org/conda-forge/linux-64/kiwisolver-1.4.7-py39h74842e3_0. https://conda.anaconda.org/conda-forge/linux-64/lcms2-2.16-hb7c19ff_0.conda#51bb7010fc86f70eee639b4bb7a894f5 https://conda.anaconda.org/conda-forge/linux-64/libblas-3.9.0-20_linux64_openblas.conda#2b7bb4f7562c8cf334fc2e20c2d28abc https://conda.anaconda.org/conda-forge/linux-64/libcups-2.3.3-h4637d8d_4.conda#d4529f4dff3057982a7617c7ac58fde3 -https://conda.anaconda.org/conda-forge/linux-64/libgl-1.7.0-ha4b6fd6_1.conda#204892bce2e44252b5cf272712f10bdd +https://conda.anaconda.org/conda-forge/linux-64/libgl-1.7.0-ha4b6fd6_2.conda#928b8be80851f5d8ffb016f9c81dae7a https://conda.anaconda.org/conda-forge/linux-64/libllvm19-19.1.3-ha7bfdaf_0.conda#8bd654307c455162668cd66e36494000 -https://conda.anaconda.org/conda-forge/linux-64/libpq-16.4-h2d7952a_3.conda#50e2dddb3417a419cbc2388d0b1c06f7 +https://conda.anaconda.org/conda-forge/linux-64/libpq-16.5-h2d7952a_0.conda#3b863477ad017cfa8456a5aa0a17b950 https://conda.anaconda.org/conda-forge/linux-64/libxkbcommon-1.7.0-h2c5496b_1.conda#e2eaefa4de2b7237af7c907b8bbc760a https://conda.anaconda.org/conda-forge/linux-64/openblas-0.3.25-pthreads_h7a3da1a_0.conda#87661673941b5e702275fdf0fc095ad0 https://conda.anaconda.org/conda-forge/linux-64/openjpeg-2.5.2-h488ebb8_0.conda#7f2e286780f072ed750df46dc2631138 -https://conda.anaconda.org/conda-forge/noarch/packaging-24.1-pyhd8ed1ab_0.conda#cbe1bb1f21567018ce595d9c2be0f0db +https://conda.anaconda.org/conda-forge/noarch/packaging-24.2-pyhff2d567_1.conda#8508b703977f4c4ada34d657d051972c https://conda.anaconda.org/conda-forge/noarch/pluggy-1.5.0-pyhd8ed1ab_0.conda#d3483c8fc2dc2cc3f5cf43e26d60cabf https://conda.anaconda.org/conda-forge/noarch/ply-3.11-pyhd8ed1ab_2.conda#18c6deb6f9602e32446398203c8f0e91 https://conda.anaconda.org/conda-forge/noarch/pyparsing-3.2.0-pyhd8ed1ab_1.conda#035c17fbf099f50ff60bf2eb303b0a83 @@ -133,13 +133,13 @@ https://conda.anaconda.org/conda-forge/linux-64/setuptools-59.8.0-py39hf3d152e_1 https://conda.anaconda.org/conda-forge/noarch/six-1.16.0-pyh6c4a22f_0.tar.bz2#e5f25f8dbc060e9a8d912e432202afc2 https://conda.anaconda.org/conda-forge/noarch/threadpoolctl-3.1.0-pyh8a188c0_0.tar.bz2#a2995ee828f65687ac5b1e71a2ab1e0c https://conda.anaconda.org/conda-forge/noarch/toml-0.10.2-pyhd8ed1ab_0.tar.bz2#f832c45a477c78bebd107098db465095 -https://conda.anaconda.org/conda-forge/noarch/tomli-2.0.2-pyhd8ed1ab_0.conda#e977934e00b355ff55ed154904044727 +https://conda.anaconda.org/conda-forge/noarch/tomli-2.1.0-pyhff2d567_0.conda#3fa1089b4722df3a900135925f4519d9 https://conda.anaconda.org/conda-forge/linux-64/tornado-6.4.1-py39h8cd3c5a_1.conda#48d269953fcddbbcde078429d4b27afe https://conda.anaconda.org/conda-forge/noarch/typing_extensions-4.12.2-pyha770c72_0.conda#ebe6952715e1d5eb567eeebf25250fa7 https://conda.anaconda.org/conda-forge/noarch/wheel-0.45.0-pyhd8ed1ab_0.conda#f9751d7c71df27b2d29f5cab3378982e https://conda.anaconda.org/conda-forge/linux-64/xorg-libxdamage-1.1.6-hb9d3cd8_0.conda#b5fcc7172d22516e1f965490e65e33a4 https://conda.anaconda.org/conda-forge/linux-64/xorg-libxxf86vm-1.1.5-hb9d3cd8_4.conda#7da9007c0582712c4bad4131f89c8372 -https://conda.anaconda.org/conda-forge/linux-64/coverage-7.6.4-py39h9399b63_0.conda#997fc2d288ec458e692dfd784c173704 +https://conda.anaconda.org/conda-forge/linux-64/coverage-7.6.7-py39h9399b63_0.conda#922564171f1f38b041e5398b50785ae4 https://conda.anaconda.org/conda-forge/linux-64/glib-2.82.2-h44428e9_0.conda#f19f985ab043e8843045410f3b99de8a https://conda.anaconda.org/conda-forge/linux-64/harfbuzz-9.0.0-hda332d3_1.conda#76b32dcf243444aea9c6b804bcfa40b8 https://conda.anaconda.org/conda-forge/noarch/joblib-1.2.0-pyhd8ed1ab_0.tar.bz2#7583652522d71ad78ba536bba06940eb @@ -147,7 +147,7 @@ https://conda.anaconda.org/conda-forge/linux-64/libcblas-3.9.0-20_linux64_openbl https://conda.anaconda.org/conda-forge/linux-64/libclang-cpp19.1-19.1.3-default_hb5137d0_0.conda#311e6a1d041db3d6a8a8437750d4234f https://conda.anaconda.org/conda-forge/linux-64/libclang13-19.1.3-default_h9c6a7e4_0.conda#b8a8cd77810b20754f358f2327812552 https://conda.anaconda.org/conda-forge/linux-64/libflac-1.4.3-h59595ed_0.conda#ee48bf17cc83a00f59ca1494d5646869 -https://conda.anaconda.org/conda-forge/linux-64/libgpg-error-1.50-h4f305b6_0.conda#0d7ff1a8e69565ca3add6925e18e708f +https://conda.anaconda.org/conda-forge/linux-64/libgpg-error-1.51-hbd13f7d_0.conda#a2b4a4600d432adf0ee057f63ee27b23 https://conda.anaconda.org/conda-forge/linux-64/liblapack-3.9.0-20_linux64_openblas.conda#6fabc51f5e647d09cc010c40061557e0 https://conda.anaconda.org/conda-forge/noarch/meson-1.6.0-pyhd8ed1ab_0.conda#380ba6a3eddd8e7649bfe8e6812611aa https://conda.anaconda.org/conda-forge/linux-64/pillow-11.0.0-py39h538c539_0.conda#a2bafdf8ae51c9eb6e5be684cfcedd60 diff --git a/build_tools/azure/pymin_conda_forge_openblas_ubuntu_2204_linux-64_conda.lock b/build_tools/azure/pymin_conda_forge_openblas_ubuntu_2204_linux-64_conda.lock index d8986e4f71f34..e5973688c4092 100644 --- a/build_tools/azure/pymin_conda_forge_openblas_ubuntu_2204_linux-64_conda.lock +++ b/build_tools/azure/pymin_conda_forge_openblas_ubuntu_2204_linux-64_conda.lock @@ -12,13 +12,14 @@ https://conda.anaconda.org/conda-forge/linux-64/python_abi-3.9-5_cp39.conda#4036 https://conda.anaconda.org/conda-forge/noarch/tzdata-2024b-hc8b5060_0.conda#8ac3367aafb1cc0a068483c580af8015 https://conda.anaconda.org/conda-forge/noarch/fonts-conda-forge-1-0.tar.bz2#f766549260d6815b0c52253f1fb1bb29 https://conda.anaconda.org/conda-forge/linux-64/ld_impl_linux-64-2.43-h712a8e2_2.conda#048b02e3962f066da18efe3a21b77672 -https://conda.anaconda.org/conda-forge/linux-64/libglvnd-1.7.0-ha4b6fd6_1.conda#1ece2ccb1dc8c68639712b05e0fae070 +https://conda.anaconda.org/conda-forge/linux-64/libglvnd-1.7.0-ha4b6fd6_2.conda#434ca7e50e40f4918ab701e3facd59a0 https://conda.anaconda.org/conda-forge/linux-64/llvm-openmp-19.1.3-h024ca30_0.conda#d36687dc90337917a84a96a45111ad59 https://conda.anaconda.org/conda-forge/linux-64/_openmp_mutex-4.5-2_kmp_llvm.tar.bz2#562b26ba2e19059551a811e72ab7f793 https://conda.anaconda.org/conda-forge/noarch/fonts-conda-ecosystem-1-0.tar.bz2#fee5683a3f04bd15cbd8318b096a27ab -https://conda.anaconda.org/conda-forge/linux-64/libegl-1.7.0-ha4b6fd6_1.conda#38a5cd3be5fb620b48069e27285f1a44 -https://conda.anaconda.org/conda-forge/linux-64/libopengl-1.7.0-ha4b6fd6_1.conda#e12057a66af8f2a38a839754ca4481e9 +https://conda.anaconda.org/conda-forge/linux-64/libegl-1.7.0-ha4b6fd6_2.conda#c151d5eb730e9b7480e6d48c0fc44048 +https://conda.anaconda.org/conda-forge/linux-64/libopengl-1.7.0-ha4b6fd6_2.conda#7df50d44d4a14d6c31a2c54f2cd92157 https://conda.anaconda.org/conda-forge/linux-64/libgcc-14.2.0-h77fa898_1.conda#3cb76c3f10d3bc7f1105b2fc9db984df +https://conda.anaconda.org/conda-forge/linux-64/alsa-lib-1.2.13-hb9d3cd8_0.conda#ae1370588aa6a5157c34c73e9bbb36a0 https://conda.anaconda.org/conda-forge/linux-64/libbrotlicommon-1.1.0-hb9d3cd8_2.conda#41b599ed2b02abcfdd84302bff174b23 https://conda.anaconda.org/conda-forge/linux-64/libdeflate-1.22-hb9d3cd8_0.conda#b422943d5d772b7cc858b36ad2a92db5 https://conda.anaconda.org/conda-forge/linux-64/libexpat-2.6.4-h5888daf_0.conda#db833e03127376d461e1e13e76f09b6c @@ -26,13 +27,12 @@ https://conda.anaconda.org/conda-forge/linux-64/libgcc-ng-14.2.0-h69a702a_1.cond https://conda.anaconda.org/conda-forge/linux-64/libgfortran5-14.2.0-hd5240d6_1.conda#9822b874ea29af082e5d36098d25427d https://conda.anaconda.org/conda-forge/linux-64/libstdcxx-14.2.0-hc0a3c3a_1.conda#234a5554c53625688d51062645337328 https://conda.anaconda.org/conda-forge/linux-64/libzlib-1.3.1-hb9d3cd8_2.conda#edb0dca6bc32e4f4789199455a1dbeb8 -https://conda.anaconda.org/conda-forge/linux-64/openssl-3.3.2-hb9d3cd8_0.conda#4d638782050ab6faa27275bed57e9b4e +https://conda.anaconda.org/conda-forge/linux-64/openssl-3.4.0-hb9d3cd8_0.conda#23cc74f77eb99315c0360ec3533147a9 https://conda.anaconda.org/conda-forge/linux-64/pthread-stubs-0.4-hb9d3cd8_1002.conda#b3c17d95b5a10c6e64a21fa17573e70e https://conda.anaconda.org/conda-forge/linux-64/xorg-libice-1.1.1-hb9d3cd8_1.conda#19608a9656912805b2b9a2f6bd257b04 https://conda.anaconda.org/conda-forge/linux-64/xorg-libxau-1.0.11-hb9d3cd8_1.conda#77cbc488235ebbaab2b6e912d3934bae https://conda.anaconda.org/conda-forge/linux-64/xorg-libxdmcp-1.1.5-hb9d3cd8_0.conda#8035c64cb77ed555e3f150b7b3972480 https://conda.anaconda.org/conda-forge/linux-64/xorg-xorgproto-2024.1-hb9d3cd8_1.conda#7c21106b851ec72c037b162c216d8f05 -https://conda.anaconda.org/conda-forge/linux-64/alsa-lib-1.2.12-h4ab18f5_0.conda#7ed427f0871fd41cb1d9c17727c17589 https://conda.anaconda.org/conda-forge/linux-64/bzip2-1.0.8-h4bc722e_7.conda#62ee74e96c5ebb0af99386de58cf9553 https://conda.anaconda.org/conda-forge/linux-64/expat-2.6.4-h5888daf_0.conda#1d6afef758879ef5ee78127eb4cd2c4a https://conda.anaconda.org/conda-forge/linux-64/keyutils-1.6.1-h166bdaf_0.tar.bz2#30186d27e2c9fa62b45fb1476b7200e3 @@ -85,10 +85,10 @@ https://conda.anaconda.org/conda-forge/linux-64/fontconfig-2.15.0-h7e30c49_1.con https://conda.anaconda.org/conda-forge/linux-64/krb5-1.21.3-h659f571_0.conda#3f43953b7d3fb3aaa1d0d0723d91e368 https://conda.anaconda.org/conda-forge/linux-64/libblas-3.9.0-25_linux64_openblas.conda#8ea26d42ca88ec5258802715fe1ee10b https://conda.anaconda.org/conda-forge/linux-64/libglib-2.82.2-h2ff4ddf_0.conda#13e8e54035ddd2b91875ba399f0f7c04 -https://conda.anaconda.org/conda-forge/linux-64/libglx-1.7.0-ha4b6fd6_1.conda#80a57756c545ad11f9847835aa21e6b2 +https://conda.anaconda.org/conda-forge/linux-64/libglx-1.7.0-ha4b6fd6_2.conda#c8013e438185f33b13814c5c488acd5c https://conda.anaconda.org/conda-forge/linux-64/libhiredis-1.0.2-h2cc385e_0.tar.bz2#b34907d3a81a3cd8095ee83d174c074a https://conda.anaconda.org/conda-forge/linux-64/libtiff-4.7.0-he137b08_1.conda#63872517c98aa305da58a757c443698e -https://conda.anaconda.org/conda-forge/linux-64/libxml2-2.13.4-hb346dea_2.conda#69b90b70c434b916abf5a1d5ee5d55fb +https://conda.anaconda.org/conda-forge/linux-64/libxml2-2.13.5-hb346dea_0.conda#c81a9f1118541aaa418ccb22190c817e https://conda.anaconda.org/conda-forge/linux-64/mysql-libs-9.0.1-he0572af_2.conda#57a9e7ee3c0840d3c8c9012473978629 https://conda.anaconda.org/conda-forge/linux-64/openblas-0.3.28-pthreads_h6ec200e_1.conda#8fe5d50db07e92519cc639cb0aef9b1b https://conda.anaconda.org/conda-forge/linux-64/python-3.9.20-h13acc7a_1_cpython.conda#951cff166a5f170e27908811917165f8 @@ -120,7 +120,7 @@ https://conda.anaconda.org/conda-forge/linux-64/kiwisolver-1.4.7-py39h74842e3_0. https://conda.anaconda.org/conda-forge/linux-64/lcms2-2.16-hb7c19ff_0.conda#51bb7010fc86f70eee639b4bb7a894f5 https://conda.anaconda.org/conda-forge/linux-64/libcblas-3.9.0-25_linux64_openblas.conda#5dbd1b0fc0d01ec5e0e1fbe667281a11 https://conda.anaconda.org/conda-forge/linux-64/libcups-2.3.3-h4637d8d_4.conda#d4529f4dff3057982a7617c7ac58fde3 -https://conda.anaconda.org/conda-forge/linux-64/libgl-1.7.0-ha4b6fd6_1.conda#204892bce2e44252b5cf272712f10bdd +https://conda.anaconda.org/conda-forge/linux-64/libgl-1.7.0-ha4b6fd6_2.conda#928b8be80851f5d8ffb016f9c81dae7a https://conda.anaconda.org/conda-forge/linux-64/liblapack-3.9.0-25_linux64_openblas.conda#4dc03a53fc69371a6158d0ed37214cd3 https://conda.anaconda.org/conda-forge/linux-64/libllvm19-19.1.3-ha7bfdaf_0.conda#8bd654307c455162668cd66e36494000 https://conda.anaconda.org/conda-forge/linux-64/libxkbcommon-1.7.0-h2c5496b_1.conda#e2eaefa4de2b7237af7c907b8bbc760a @@ -128,7 +128,7 @@ https://conda.anaconda.org/conda-forge/linux-64/libxslt-1.1.39-h76b75d6_0.conda# https://conda.anaconda.org/conda-forge/linux-64/markupsafe-3.0.2-py39h9399b63_0.conda#d38773fed557834d3211e019b7cf7c2f https://conda.anaconda.org/conda-forge/noarch/munkres-1.1.4-pyh9f0ad1d_0.tar.bz2#2ba8498c1018c1e9c61eb99b973dfe19 https://conda.anaconda.org/conda-forge/linux-64/openjpeg-2.5.2-h488ebb8_0.conda#7f2e286780f072ed750df46dc2631138 -https://conda.anaconda.org/conda-forge/noarch/packaging-24.1-pyhd8ed1ab_0.conda#cbe1bb1f21567018ce595d9c2be0f0db +https://conda.anaconda.org/conda-forge/noarch/packaging-24.2-pyhff2d567_1.conda#8508b703977f4c4ada34d657d051972c https://conda.anaconda.org/conda-forge/noarch/pluggy-1.5.0-pyhd8ed1ab_0.conda#d3483c8fc2dc2cc3f5cf43e26d60cabf https://conda.anaconda.org/conda-forge/noarch/pycparser-2.22-pyhd8ed1ab_0.conda#844d9eb3b43095b031874477f7d70088 https://conda.anaconda.org/conda-forge/noarch/pygments-2.18.0-pyhd8ed1ab_0.conda#b7f5c092b8f9800150d998a71b76d5a1 @@ -136,13 +136,13 @@ https://conda.anaconda.org/conda-forge/noarch/pyparsing-3.2.0-pyhd8ed1ab_1.conda https://conda.anaconda.org/conda-forge/noarch/pysocks-1.7.1-pyha2e5f31_6.tar.bz2#2a7de29fb590ca14b5243c4c812c8025 https://conda.anaconda.org/conda-forge/noarch/python-tzdata-2024.2-pyhd8ed1ab_0.conda#986287f89929b2d629bd6ef6497dc307 https://conda.anaconda.org/conda-forge/noarch/pytz-2024.1-pyhd8ed1ab_0.conda#3eeeeb9e4827ace8c0c1419c85d590ad -https://conda.anaconda.org/conda-forge/noarch/setuptools-75.3.0-pyhd8ed1ab_0.conda#2ce9825396daf72baabaade36cee16da +https://conda.anaconda.org/conda-forge/noarch/setuptools-75.5.0-pyhff2d567_0.conda#ade63405adb52eeff89d506cd55908c0 https://conda.anaconda.org/conda-forge/noarch/six-1.16.0-pyh6c4a22f_0.tar.bz2#e5f25f8dbc060e9a8d912e432202afc2 https://conda.anaconda.org/conda-forge/noarch/snowballstemmer-2.2.0-pyhd8ed1ab_0.tar.bz2#4d22a9315e78c6827f806065957d566e https://conda.anaconda.org/conda-forge/noarch/sphinxcontrib-jsmath-1.0.1-pyhd8ed1ab_0.conda#da1d979339e2714c30a8e806a33ec087 https://conda.anaconda.org/conda-forge/noarch/tabulate-0.9.0-pyhd8ed1ab_1.tar.bz2#4759805cce2d914c38472f70bf4d8bcb https://conda.anaconda.org/conda-forge/noarch/threadpoolctl-3.5.0-pyhc1e730c_0.conda#df68d78237980a159bd7149f33c0e8fd -https://conda.anaconda.org/conda-forge/noarch/tomli-2.0.2-pyhd8ed1ab_0.conda#e977934e00b355ff55ed154904044727 +https://conda.anaconda.org/conda-forge/noarch/tomli-2.1.0-pyhff2d567_0.conda#3fa1089b4722df3a900135925f4519d9 https://conda.anaconda.org/conda-forge/linux-64/tornado-6.4.1-py39h8cd3c5a_1.conda#48d269953fcddbbcde078429d4b27afe https://conda.anaconda.org/conda-forge/linux-64/unicodedata2-15.1.0-py39h8cd3c5a_1.conda#6346898044e4387631c614290789a434 https://conda.anaconda.org/conda-forge/noarch/wheel-0.45.0-pyhd8ed1ab_0.conda#f9751d7c71df27b2d29f5cab3378982e @@ -156,7 +156,7 @@ https://conda.anaconda.org/conda-forge/linux-64/xorg-libxxf86vm-1.1.5-hb9d3cd8_4 https://conda.anaconda.org/conda-forge/noarch/zipp-3.21.0-pyhd8ed1ab_0.conda#fee389bf8a4843bd7a2248ce11b7f188 https://conda.anaconda.org/conda-forge/noarch/babel-2.16.0-pyhd8ed1ab_0.conda#6d4e9ecca8d88977147e109fc7053184 https://conda.anaconda.org/conda-forge/linux-64/cffi-1.17.1-py39h15c3d72_0.conda#7e61b8777f42e00b08ff059f9e8ebc44 -https://conda.anaconda.org/conda-forge/linux-64/fonttools-4.54.1-py39h9399b63_1.conda#1a4772f78ffa4675c84a4219db3934fd +https://conda.anaconda.org/conda-forge/linux-64/fonttools-4.55.0-py39h9399b63_0.conda#61762136d872c6d2de2de7742a0c60ef https://conda.anaconda.org/conda-forge/noarch/h2-4.1.0-pyhd8ed1ab_0.tar.bz2#b748fbf7060927a6e82df7cb5ee8f097 https://conda.anaconda.org/conda-forge/linux-64/harfbuzz-9.0.0-hda332d3_1.conda#76b32dcf243444aea9c6b804bcfa40b8 https://conda.anaconda.org/conda-forge/noarch/importlib-metadata-8.5.0-pyha770c72_0.conda#54198435fce4d64d8a89af22573012a8 @@ -178,7 +178,7 @@ https://conda.anaconda.org/conda-forge/linux-64/xorg-libxtst-1.2.5-hb9d3cd8_3.co https://conda.anaconda.org/conda-forge/linux-64/blas-devel-3.9.0-25_linux64_openblas.conda#02c516384c77f5a7b4d03ed6c0412c57 https://conda.anaconda.org/conda-forge/linux-64/contourpy-1.3.0-py39h74842e3_2.conda#5645190ef7f6d3aebee71e298dc9677b https://conda.anaconda.org/conda-forge/noarch/importlib-resources-6.4.5-pyhd8ed1ab_0.conda#67f4772681cf86652f3e2261794cf045 -https://conda.anaconda.org/conda-forge/linux-64/libpq-17.0-h04577a9_4.conda#392cae2a58fbcb9db8c2147c6d6d1620 +https://conda.anaconda.org/conda-forge/linux-64/libpq-17.1-h04577a9_0.conda#c2560bae9f56de89b8c50355f7c84910 https://conda.anaconda.org/conda-forge/noarch/meson-python-0.17.1-pyh70fd9c4_0.conda#722b649da38842068d83b6e6770f11a1 https://conda.anaconda.org/conda-forge/linux-64/pandas-2.2.3-py39h3b40f6f_1.conda#d07f482720066758dad87cf90b3de111 https://conda.anaconda.org/conda-forge/noarch/pytest-xdist-3.6.1-pyhd8ed1ab_0.conda#b39568655c127a9c4a44d178ac99b6d0 diff --git a/build_tools/azure/ubuntu_atlas_lock.txt b/build_tools/azure/ubuntu_atlas_lock.txt index 0d0d0ea9fe451..954f113afd471 100644 --- a/build_tools/azure/ubuntu_atlas_lock.txt +++ b/build_tools/azure/ubuntu_atlas_lock.txt @@ -37,7 +37,7 @@ pytest-xdist==3.6.1 # via -r build_tools/azure/ubuntu_atlas_requirements.txt threadpoolctl==3.1.0 # via -r build_tools/azure/ubuntu_atlas_requirements.txt -tomli==2.0.2 +tomli==2.1.0 # via # meson-python # pytest diff --git a/build_tools/circle/doc_linux-64_conda.lock b/build_tools/circle/doc_linux-64_conda.lock index 977129629017d..8e03525e0a887 100644 --- a/build_tools/circle/doc_linux-64_conda.lock +++ b/build_tools/circle/doc_linux-64_conda.lock @@ -14,7 +14,7 @@ https://conda.anaconda.org/conda-forge/noarch/tzdata-2024b-hc8b5060_0.conda#8ac3 https://conda.anaconda.org/conda-forge/noarch/fonts-conda-forge-1-0.tar.bz2#f766549260d6815b0c52253f1fb1bb29 https://conda.anaconda.org/conda-forge/linux-64/ld_impl_linux-64-2.43-h712a8e2_2.conda#048b02e3962f066da18efe3a21b77672 https://conda.anaconda.org/conda-forge/noarch/libgcc-devel_linux-64-13.3.0-h84ea5a7_101.conda#0ce69d40c142915ac9734bc6134e514a -https://conda.anaconda.org/conda-forge/linux-64/libglvnd-1.7.0-ha4b6fd6_1.conda#1ece2ccb1dc8c68639712b05e0fae070 +https://conda.anaconda.org/conda-forge/linux-64/libglvnd-1.7.0-ha4b6fd6_2.conda#434ca7e50e40f4918ab701e3facd59a0 https://conda.anaconda.org/conda-forge/linux-64/libgomp-14.2.0-h77fa898_1.conda#cc3573974587f12dda90d96e3e55a702 https://conda.anaconda.org/conda-forge/noarch/libstdcxx-devel_linux-64-13.3.0-h84ea5a7_101.conda#29b5a4ed4613fa81a07c21045e3f5bf6 https://conda.anaconda.org/conda-forge/linux-64/llvm-openmp-19.1.3-h024ca30_0.conda#d36687dc90337917a84a96a45111ad59 @@ -22,11 +22,12 @@ https://conda.anaconda.org/conda-forge/noarch/sysroot_linux-64-2.17-h4a8ded7_18. https://conda.anaconda.org/conda-forge/linux-64/_openmp_mutex-4.5-2_kmp_llvm.tar.bz2#562b26ba2e19059551a811e72ab7f793 https://conda.anaconda.org/conda-forge/linux-64/binutils_impl_linux-64-2.43-h4bf12b8_2.conda#cf0c5521ac2a20dfa6c662a4009eeef6 https://conda.anaconda.org/conda-forge/noarch/fonts-conda-ecosystem-1-0.tar.bz2#fee5683a3f04bd15cbd8318b096a27ab -https://conda.anaconda.org/conda-forge/linux-64/libegl-1.7.0-ha4b6fd6_1.conda#38a5cd3be5fb620b48069e27285f1a44 -https://conda.anaconda.org/conda-forge/linux-64/libopengl-1.7.0-ha4b6fd6_1.conda#e12057a66af8f2a38a839754ca4481e9 +https://conda.anaconda.org/conda-forge/linux-64/libegl-1.7.0-ha4b6fd6_2.conda#c151d5eb730e9b7480e6d48c0fc44048 +https://conda.anaconda.org/conda-forge/linux-64/libopengl-1.7.0-ha4b6fd6_2.conda#7df50d44d4a14d6c31a2c54f2cd92157 https://conda.anaconda.org/conda-forge/linux-64/binutils-2.43-h4852527_2.conda#348619f90eee04901f4a70615efff35b https://conda.anaconda.org/conda-forge/linux-64/binutils_linux-64-2.43-h4852527_2.conda#18aba879ddf1f8f28145ca6fcb873d8c https://conda.anaconda.org/conda-forge/linux-64/libgcc-14.2.0-h77fa898_1.conda#3cb76c3f10d3bc7f1105b2fc9db984df +https://conda.anaconda.org/conda-forge/linux-64/alsa-lib-1.2.13-hb9d3cd8_0.conda#ae1370588aa6a5157c34c73e9bbb36a0 https://conda.anaconda.org/conda-forge/linux-64/libbrotlicommon-1.1.0-hb9d3cd8_2.conda#41b599ed2b02abcfdd84302bff174b23 https://conda.anaconda.org/conda-forge/linux-64/libdeflate-1.22-hb9d3cd8_0.conda#b422943d5d772b7cc858b36ad2a92db5 https://conda.anaconda.org/conda-forge/linux-64/libexpat-2.6.4-h5888daf_0.conda#db833e03127376d461e1e13e76f09b6c @@ -34,13 +35,12 @@ https://conda.anaconda.org/conda-forge/linux-64/libgcc-ng-14.2.0-h69a702a_1.cond https://conda.anaconda.org/conda-forge/linux-64/libgfortran5-14.2.0-hd5240d6_1.conda#9822b874ea29af082e5d36098d25427d https://conda.anaconda.org/conda-forge/linux-64/libstdcxx-14.2.0-hc0a3c3a_1.conda#234a5554c53625688d51062645337328 https://conda.anaconda.org/conda-forge/linux-64/libzlib-1.3.1-hb9d3cd8_2.conda#edb0dca6bc32e4f4789199455a1dbeb8 -https://conda.anaconda.org/conda-forge/linux-64/openssl-3.3.2-hb9d3cd8_0.conda#4d638782050ab6faa27275bed57e9b4e +https://conda.anaconda.org/conda-forge/linux-64/openssl-3.4.0-hb9d3cd8_0.conda#23cc74f77eb99315c0360ec3533147a9 https://conda.anaconda.org/conda-forge/linux-64/pthread-stubs-0.4-hb9d3cd8_1002.conda#b3c17d95b5a10c6e64a21fa17573e70e https://conda.anaconda.org/conda-forge/linux-64/xorg-libice-1.1.1-hb9d3cd8_1.conda#19608a9656912805b2b9a2f6bd257b04 https://conda.anaconda.org/conda-forge/linux-64/xorg-libxau-1.0.11-hb9d3cd8_1.conda#77cbc488235ebbaab2b6e912d3934bae https://conda.anaconda.org/conda-forge/linux-64/xorg-libxdmcp-1.1.5-hb9d3cd8_0.conda#8035c64cb77ed555e3f150b7b3972480 https://conda.anaconda.org/conda-forge/linux-64/xorg-xorgproto-2024.1-hb9d3cd8_1.conda#7c21106b851ec72c037b162c216d8f05 -https://conda.anaconda.org/conda-forge/linux-64/alsa-lib-1.2.12-h4ab18f5_0.conda#7ed427f0871fd41cb1d9c17727c17589 https://conda.anaconda.org/conda-forge/linux-64/bzip2-1.0.8-h4bc722e_7.conda#62ee74e96c5ebb0af99386de58cf9553 https://conda.anaconda.org/conda-forge/linux-64/dav1d-1.2.1-hd590300_0.conda#418c6ca5929a611cbd69204907a83995 https://conda.anaconda.org/conda-forge/linux-64/expat-2.6.4-h5888daf_0.conda#1d6afef758879ef5ee78127eb4cd2c4a @@ -109,17 +109,17 @@ https://conda.anaconda.org/conda-forge/linux-64/brotli-1.1.0-hb9d3cd8_2.conda#98 https://conda.anaconda.org/conda-forge/linux-64/c-blosc2-2.15.1-hc57e6cf_0.conda#5f84961d86d0ef78851cb34f9d5e31fe https://conda.anaconda.org/conda-forge/linux-64/fontconfig-2.15.0-h7e30c49_1.conda#8f5b0b297b59e1ac160ad4beec99dbee https://conda.anaconda.org/conda-forge/linux-64/gcc-13.3.0-h9576a4e_1.conda#606924335b5bcdf90e9aed9a2f5d22ed -https://conda.anaconda.org/conda-forge/linux-64/gcc_linux-64-13.3.0-hc28eda2_5.conda#ffbadbbc3345d9a315ba31c8a9188d4c +https://conda.anaconda.org/conda-forge/linux-64/gcc_linux-64-13.3.0-hc28eda2_6.conda#f36597909f5292c48d878f2459c89217 https://conda.anaconda.org/conda-forge/linux-64/gfortran_impl_linux-64-13.3.0-h10434e7_1.conda#6709e113709b6ba67cc0f4b0de58ef7f https://conda.anaconda.org/conda-forge/linux-64/gxx_impl_linux-64-13.3.0-hdbfa832_1.conda#806367e23a0a6ad21e51875b34c57d7e https://conda.anaconda.org/conda-forge/linux-64/krb5-1.21.3-h659f571_0.conda#3f43953b7d3fb3aaa1d0d0723d91e368 https://conda.anaconda.org/conda-forge/linux-64/libavif16-1.1.1-h1909e37_2.conda#21e468ed3786ebcb2124b123aa2484b7 https://conda.anaconda.org/conda-forge/linux-64/libblas-3.9.0-25_linux64_openblas.conda#8ea26d42ca88ec5258802715fe1ee10b https://conda.anaconda.org/conda-forge/linux-64/libglib-2.82.2-h2ff4ddf_0.conda#13e8e54035ddd2b91875ba399f0f7c04 -https://conda.anaconda.org/conda-forge/linux-64/libglx-1.7.0-ha4b6fd6_1.conda#80a57756c545ad11f9847835aa21e6b2 +https://conda.anaconda.org/conda-forge/linux-64/libglx-1.7.0-ha4b6fd6_2.conda#c8013e438185f33b13814c5c488acd5c https://conda.anaconda.org/conda-forge/linux-64/libjxl-0.11.0-hdb8da77_2.conda#9c4554fafc94db681543804037e65de2 https://conda.anaconda.org/conda-forge/linux-64/libtiff-4.7.0-he137b08_1.conda#63872517c98aa305da58a757c443698e -https://conda.anaconda.org/conda-forge/linux-64/libxml2-2.13.4-hb346dea_2.conda#69b90b70c434b916abf5a1d5ee5d55fb +https://conda.anaconda.org/conda-forge/linux-64/libxml2-2.13.5-hb346dea_0.conda#c81a9f1118541aaa418ccb22190c817e https://conda.anaconda.org/conda-forge/linux-64/mysql-libs-9.0.1-he0572af_2.conda#57a9e7ee3c0840d3c8c9012473978629 https://conda.anaconda.org/conda-forge/linux-64/openblas-0.3.28-pthreads_h6ec200e_1.conda#8fe5d50db07e92519cc639cb0aef9b1b https://conda.anaconda.org/conda-forge/linux-64/python-3.9.20-h13acc7a_1_cpython.conda#951cff166a5f170e27908811917165f8 @@ -145,9 +145,9 @@ https://conda.anaconda.org/conda-forge/noarch/docutils-0.21.2-pyhd8ed1ab_0.conda https://conda.anaconda.org/conda-forge/noarch/exceptiongroup-1.2.2-pyhd8ed1ab_0.conda#d02ae936e42063ca46af6cdad2dbd1e0 https://conda.anaconda.org/conda-forge/noarch/execnet-2.1.1-pyhd8ed1ab_0.conda#15dda3cdbf330abfe9f555d22f66db46 https://conda.anaconda.org/conda-forge/linux-64/gfortran-13.3.0-h9576a4e_1.conda#5e5e3b592d5174eb49607a973c77825b -https://conda.anaconda.org/conda-forge/linux-64/gfortran_linux-64-13.3.0-hb919d3a_5.conda#67dbd742855cc95233eb04c43004a29a +https://conda.anaconda.org/conda-forge/linux-64/gfortran_linux-64-13.3.0-hb919d3a_6.conda#ca5d1d74cfc2779465f4eaf39a35d218 https://conda.anaconda.org/conda-forge/linux-64/gxx-13.3.0-h9576a4e_1.conda#209182ca6b20aeff62f442e843961d81 -https://conda.anaconda.org/conda-forge/linux-64/gxx_linux-64-13.3.0-h6834431_5.conda#81ddb2db98fbe3031aa7ebbbf8bb3ffd +https://conda.anaconda.org/conda-forge/linux-64/gxx_linux-64-13.3.0-h6834431_6.conda#c3373b1697b90781cc3fc0be38b4bbdd https://conda.anaconda.org/conda-forge/noarch/hpack-4.0.0-pyh9f0ad1d_0.tar.bz2#914d6646c4dbb1fd3ff539830a12fd71 https://conda.anaconda.org/conda-forge/noarch/hyperframe-6.0.1-pyhd8ed1ab_0.tar.bz2#9f765cbfab6870c8435b9eefecd7a1f4 https://conda.anaconda.org/conda-forge/noarch/idna-3.10-pyhd8ed1ab_0.conda#7ba2ede0e7c795ff95088daf0dc59753 @@ -157,7 +157,7 @@ https://conda.anaconda.org/conda-forge/linux-64/kiwisolver-1.4.7-py39h74842e3_0. https://conda.anaconda.org/conda-forge/linux-64/lcms2-2.16-hb7c19ff_0.conda#51bb7010fc86f70eee639b4bb7a894f5 https://conda.anaconda.org/conda-forge/linux-64/libcblas-3.9.0-25_linux64_openblas.conda#5dbd1b0fc0d01ec5e0e1fbe667281a11 https://conda.anaconda.org/conda-forge/linux-64/libcups-2.3.3-h4637d8d_4.conda#d4529f4dff3057982a7617c7ac58fde3 -https://conda.anaconda.org/conda-forge/linux-64/libgl-1.7.0-ha4b6fd6_1.conda#204892bce2e44252b5cf272712f10bdd +https://conda.anaconda.org/conda-forge/linux-64/libgl-1.7.0-ha4b6fd6_2.conda#928b8be80851f5d8ffb016f9c81dae7a https://conda.anaconda.org/conda-forge/linux-64/liblapack-3.9.0-25_linux64_openblas.conda#4dc03a53fc69371a6158d0ed37214cd3 https://conda.anaconda.org/conda-forge/linux-64/libllvm19-19.1.3-ha7bfdaf_0.conda#8bd654307c455162668cd66e36494000 https://conda.anaconda.org/conda-forge/linux-64/libxkbcommon-1.7.0-h2c5496b_1.conda#e2eaefa4de2b7237af7c907b8bbc760a @@ -166,7 +166,7 @@ https://conda.anaconda.org/conda-forge/linux-64/markupsafe-3.0.2-py39h9399b63_0. https://conda.anaconda.org/conda-forge/noarch/munkres-1.1.4-pyh9f0ad1d_0.tar.bz2#2ba8498c1018c1e9c61eb99b973dfe19 https://conda.anaconda.org/conda-forge/noarch/networkx-3.2.1-pyhd8ed1ab_0.conda#425fce3b531bed6ec3c74fab3e5f0a1c https://conda.anaconda.org/conda-forge/linux-64/openjpeg-2.5.2-h488ebb8_0.conda#7f2e286780f072ed750df46dc2631138 -https://conda.anaconda.org/conda-forge/noarch/packaging-24.1-pyhd8ed1ab_0.conda#cbe1bb1f21567018ce595d9c2be0f0db +https://conda.anaconda.org/conda-forge/noarch/packaging-24.2-pyhff2d567_1.conda#8508b703977f4c4ada34d657d051972c https://conda.anaconda.org/conda-forge/noarch/platformdirs-4.3.6-pyhd8ed1ab_0.conda#fd8f2b18b65bbf62e8f653100690c8d2 https://conda.anaconda.org/conda-forge/noarch/pluggy-1.5.0-pyhd8ed1ab_0.conda#d3483c8fc2dc2cc3f5cf43e26d60cabf https://conda.anaconda.org/conda-forge/linux-64/psutil-6.1.0-py39h8cd3c5a_0.conda#ef257b7ce1e1cb152639ced6bc653475 @@ -176,7 +176,7 @@ https://conda.anaconda.org/conda-forge/noarch/pyparsing-3.2.0-pyhd8ed1ab_1.conda https://conda.anaconda.org/conda-forge/noarch/pysocks-1.7.1-pyha2e5f31_6.tar.bz2#2a7de29fb590ca14b5243c4c812c8025 https://conda.anaconda.org/conda-forge/noarch/python-tzdata-2024.2-pyhd8ed1ab_0.conda#986287f89929b2d629bd6ef6497dc307 https://conda.anaconda.org/conda-forge/noarch/pytz-2024.1-pyhd8ed1ab_0.conda#3eeeeb9e4827ace8c0c1419c85d590ad -https://conda.anaconda.org/conda-forge/noarch/setuptools-75.3.0-pyhd8ed1ab_0.conda#2ce9825396daf72baabaade36cee16da +https://conda.anaconda.org/conda-forge/noarch/setuptools-75.5.0-pyhff2d567_0.conda#ade63405adb52eeff89d506cd55908c0 https://conda.anaconda.org/conda-forge/noarch/six-1.16.0-pyh6c4a22f_0.tar.bz2#e5f25f8dbc060e9a8d912e432202afc2 https://conda.anaconda.org/conda-forge/noarch/snowballstemmer-2.2.0-pyhd8ed1ab_0.tar.bz2#4d22a9315e78c6827f806065957d566e https://conda.anaconda.org/conda-forge/noarch/soupsieve-2.5-pyhd8ed1ab_1.conda#3f144b2c34f8cb5a9abd9ed23a39c561 @@ -184,7 +184,7 @@ https://conda.anaconda.org/conda-forge/noarch/sphinxcontrib-jsmath-1.0.1-pyhd8ed https://conda.anaconda.org/conda-forge/noarch/tabulate-0.9.0-pyhd8ed1ab_1.tar.bz2#4759805cce2d914c38472f70bf4d8bcb https://conda.anaconda.org/conda-forge/noarch/tenacity-9.0.0-pyhd8ed1ab_0.conda#42af51ad3b654ece73572628ad2882ae https://conda.anaconda.org/conda-forge/noarch/threadpoolctl-3.5.0-pyhc1e730c_0.conda#df68d78237980a159bd7149f33c0e8fd -https://conda.anaconda.org/conda-forge/noarch/tomli-2.0.2-pyhd8ed1ab_0.conda#e977934e00b355ff55ed154904044727 +https://conda.anaconda.org/conda-forge/noarch/tomli-2.1.0-pyhff2d567_0.conda#3fa1089b4722df3a900135925f4519d9 https://conda.anaconda.org/conda-forge/linux-64/tornado-6.4.1-py39h8cd3c5a_1.conda#48d269953fcddbbcde078429d4b27afe https://conda.anaconda.org/conda-forge/noarch/typing_extensions-4.12.2-pyha770c72_0.conda#ebe6952715e1d5eb567eeebf25250fa7 https://conda.anaconda.org/conda-forge/linux-64/unicodedata2-15.1.0-py39h8cd3c5a_1.conda#6346898044e4387631c614290789a434 @@ -202,7 +202,7 @@ https://conda.anaconda.org/conda-forge/noarch/babel-2.16.0-pyhd8ed1ab_0.conda#6d https://conda.anaconda.org/conda-forge/noarch/beautifulsoup4-4.12.3-pyha770c72_0.conda#332493000404d8411859539a5a630865 https://conda.anaconda.org/conda-forge/linux-64/cffi-1.17.1-py39h15c3d72_0.conda#7e61b8777f42e00b08ff059f9e8ebc44 https://conda.anaconda.org/conda-forge/linux-64/cxx-compiler-1.8.0-h1a2810e_1.conda#3bb4907086d7187bf01c8bec397ffa5e -https://conda.anaconda.org/conda-forge/linux-64/fonttools-4.54.1-py39h9399b63_1.conda#1a4772f78ffa4675c84a4219db3934fd +https://conda.anaconda.org/conda-forge/linux-64/fonttools-4.55.0-py39h9399b63_0.conda#61762136d872c6d2de2de7742a0c60ef https://conda.anaconda.org/conda-forge/linux-64/fortran-compiler-1.8.0-h36df796_1.conda#6b57750841d53ade8d3b47eafe53dd9f https://conda.anaconda.org/conda-forge/noarch/h2-4.1.0-pyhd8ed1ab_0.tar.bz2#b748fbf7060927a6e82df7cb5ee8f097 https://conda.anaconda.org/conda-forge/linux-64/harfbuzz-9.0.0-hda332d3_1.conda#76b32dcf243444aea9c6b804bcfa40b8 @@ -231,10 +231,10 @@ https://conda.anaconda.org/conda-forge/linux-64/imagecodecs-2024.9.22-py39h1aa77 https://conda.anaconda.org/conda-forge/noarch/imageio-2.36.0-pyh12aca89_1.conda#36349844ff73fcd0140ee7f30745f0bf https://conda.anaconda.org/conda-forge/noarch/importlib-resources-6.4.5-pyhd8ed1ab_0.conda#67f4772681cf86652f3e2261794cf045 https://conda.anaconda.org/conda-forge/noarch/lazy-loader-0.4-pyhd8ed1ab_1.conda#4809b9f4c6ce106d443c3f90b8e10db2 -https://conda.anaconda.org/conda-forge/linux-64/libpq-17.0-h04577a9_4.conda#392cae2a58fbcb9db8c2147c6d6d1620 +https://conda.anaconda.org/conda-forge/linux-64/libpq-17.1-h04577a9_0.conda#c2560bae9f56de89b8c50355f7c84910 https://conda.anaconda.org/conda-forge/noarch/meson-python-0.17.1-pyh70fd9c4_0.conda#722b649da38842068d83b6e6770f11a1 https://conda.anaconda.org/conda-forge/linux-64/pandas-2.2.3-py39h3b40f6f_1.conda#d07f482720066758dad87cf90b3de111 -https://conda.anaconda.org/conda-forge/noarch/patsy-0.5.6-pyhd8ed1ab_0.conda#a5b55d1cb110cdcedc748b5c3e16e687 +https://conda.anaconda.org/conda-forge/noarch/patsy-1.0.1-pyhff2d567_0.conda#a97b9c7586cedcf4a0a158ef3479975c https://conda.anaconda.org/conda-forge/linux-64/polars-1.12.0-py39h74f158a_0.conda#698f8f845bcb227d52695b4ab6f7c381 https://conda.anaconda.org/conda-forge/noarch/pytest-xdist-3.6.1-pyhd8ed1ab_0.conda#b39568655c127a9c4a44d178ac99b6d0 https://conda.anaconda.org/conda-forge/linux-64/pywavelets-1.6.0-py39hd92a3bb_0.conda#32e26e16f60c568b17a82e3033a4d309 @@ -275,7 +275,7 @@ https://conda.anaconda.org/conda-forge/noarch/sphinxext-opengraph-0.9.1-pyhd8ed1 # pip defusedxml @ https://files.pythonhosted.org/packages/07/6c/aa3f2f849e01cb6a001cd8554a88d4c77c5c1a31c95bdf1cf9301e6d9ef4/defusedxml-0.7.1-py2.py3-none-any.whl#sha256=a352e7e428770286cc899e2542b6cdaedb2b4953ff269a210103ec58f6198a61 # pip fastjsonschema @ https://files.pythonhosted.org/packages/6d/ca/086311cdfc017ec964b2436fe0c98c1f4efcb7e4c328956a22456e497655/fastjsonschema-2.20.0-py3-none-any.whl#sha256=5875f0b0fa7a0043a91e93a9b8f793bcbbba9691e7fd83dca95c28ba26d21f0a # pip fqdn @ https://files.pythonhosted.org/packages/cf/58/8acf1b3e91c58313ce5cb67df61001fc9dcd21be4fadb76c1a2d540e09ed/fqdn-1.5.1-py3-none-any.whl#sha256=3a179af3761e4df6eb2e026ff9e1a3033d3587bf980a0b1b2e1e5d08d7358014 -# pip json5 @ https://files.pythonhosted.org/packages/a1/55/4bd7bcf5be870b5806cab717d68fbf26a8d1bf54583337950c70f0dc729b/json5-0.9.27-py3-none-any.whl#sha256=17b43d78d3a6daeca4d7030e9bf22092dba29b1282cc2d0cfa56f6febee8dc93 +# pip json5 @ https://files.pythonhosted.org/packages/2b/ea/ef9cd2423087fe726f3f24b2e747ca915004e66215e36b0580c912199752/json5-0.9.28-py3-none-any.whl#sha256=29c56f1accdd8bc2e037321237662034a7e07921e2b7223281a5ce2c46f0c4df # pip jsonpointer @ https://files.pythonhosted.org/packages/71/92/5e77f98553e9e75130c78900d000368476aed74276eb8ae8796f65f00918/jsonpointer-3.0.0-py2.py3-none-any.whl#sha256=13e088adc14fca8b6aa8177c044e12701e6ad4b28ff10e65f2267a90109c9942 # pip jupyterlab-pygments @ https://files.pythonhosted.org/packages/b1/dd/ead9d8ea85bf202d90cc513b533f9c363121c7792674f78e0d8a854b63b4/jupyterlab_pygments-0.3.0-py3-none-any.whl#sha256=841a89020971da1d8693f1a99997aefc5dc424bb1b251fd6322462a1b8842780 # pip libsass @ https://files.pythonhosted.org/packages/fd/5a/eb5b62641df0459a3291fc206cf5bd669c0feed7814dded8edef4ade8512/libsass-0.23.0-cp38-abi3-manylinux_2_5_x86_64.manylinux1_x86_64.whl#sha256=4a218406d605f325d234e4678bd57126a66a88841cb95bee2caeafdc6f138306 @@ -294,7 +294,7 @@ https://conda.anaconda.org/conda-forge/noarch/sphinxext-opengraph-0.9.1-pyhd8ed1 # pip traitlets @ https://files.pythonhosted.org/packages/00/c0/8f5d070730d7836adc9c9b6408dec68c6ced86b304a9b26a14df072a6e8c/traitlets-5.14.3-py3-none-any.whl#sha256=b74e89e397b1ed28cc831db7aea759ba6640cb3de13090ca145426688ff1ac4f # pip types-python-dateutil @ https://files.pythonhosted.org/packages/35/d6/ba5f61958f358028f2e2ba1b8e225b8e263053bd57d3a79e2d2db64c807b/types_python_dateutil-2.9.0.20241003-py3-none-any.whl#sha256=250e1d8e80e7bbc3a6c99b907762711d1a1cdd00e978ad39cb5940f6f0a87f3d # pip uri-template @ https://files.pythonhosted.org/packages/e7/00/3fca040d7cf8a32776d3d81a00c8ee7457e00f80c649f1e4a863c8321ae9/uri_template-1.3.0-py3-none-any.whl#sha256=a44a133ea12d44a0c0f06d7d42a52d71282e77e2f937d8abd5655b8d56fc1363 -# pip webcolors @ https://files.pythonhosted.org/packages/f0/33/12020ba99beaff91682b28dc0bbf0345bbc3244a4afbae7644e4fa348f23/webcolors-24.8.0-py3-none-any.whl#sha256=fc4c3b59358ada164552084a8ebee637c221e4059267d0f8325b3b560f6c7f0a +# pip webcolors @ https://files.pythonhosted.org/packages/60/e8/c0e05e4684d13459f93d312077a9a2efbe04d59c393bc2b8802248c908d4/webcolors-24.11.1-py3-none-any.whl#sha256=515291393b4cdf0eb19c155749a096f779f7d909f7cceea072791cb9095b92e9 # pip webencodings @ https://files.pythonhosted.org/packages/f4/24/2a3e3df732393fed8b3ebf2ec078f05546de641fe1b667ee316ec1dcf3b7/webencodings-0.5.1-py2.py3-none-any.whl#sha256=a0af1213f3c2226497a97e2b3aa01a7e4bee4f403f95be16fc9acd2947514a78 # pip websocket-client @ https://files.pythonhosted.org/packages/5a/84/44687a29792a70e111c5c477230a72c4b957d88d16141199bf9acb7537a3/websocket_client-1.8.0-py3-none-any.whl#sha256=17b44cc997f5c498e809b22cdf2d9c7a9e71c02c8cc2b6c56e7c2d1239bfa526 # pip anyio @ https://files.pythonhosted.org/packages/e4/f5/f2b75d2fc6f1a260f340f0e7c6a060f4dd2961cc16884ed851b0d18da06a/anyio-4.6.2.post1-py3-none-any.whl#sha256=6d170c36fba3bdd840c73d3868c1e777e33676a69c3a72cf0a0d5d6d8009b61d diff --git a/build_tools/circle/doc_min_dependencies_linux-64_conda.lock b/build_tools/circle/doc_min_dependencies_linux-64_conda.lock index 42af5bd1a5a72..e2e9d44386811 100644 --- a/build_tools/circle/doc_min_dependencies_linux-64_conda.lock +++ b/build_tools/circle/doc_min_dependencies_linux-64_conda.lock @@ -15,7 +15,7 @@ https://conda.anaconda.org/conda-forge/noarch/tzdata-2024b-hc8b5060_0.conda#8ac3 https://conda.anaconda.org/conda-forge/noarch/fonts-conda-forge-1-0.tar.bz2#f766549260d6815b0c52253f1fb1bb29 https://conda.anaconda.org/conda-forge/linux-64/ld_impl_linux-64-2.43-h712a8e2_2.conda#048b02e3962f066da18efe3a21b77672 https://conda.anaconda.org/conda-forge/noarch/libgcc-devel_linux-64-13.3.0-h84ea5a7_101.conda#0ce69d40c142915ac9734bc6134e514a -https://conda.anaconda.org/conda-forge/linux-64/libglvnd-1.7.0-ha4b6fd6_1.conda#1ece2ccb1dc8c68639712b05e0fae070 +https://conda.anaconda.org/conda-forge/linux-64/libglvnd-1.7.0-ha4b6fd6_2.conda#434ca7e50e40f4918ab701e3facd59a0 https://conda.anaconda.org/conda-forge/linux-64/libgomp-14.2.0-h77fa898_1.conda#cc3573974587f12dda90d96e3e55a702 https://conda.anaconda.org/conda-forge/noarch/libstdcxx-devel_linux-64-13.3.0-h84ea5a7_101.conda#29b5a4ed4613fa81a07c21045e3f5bf6 https://conda.anaconda.org/conda-forge/linux-64/llvm-openmp-19.1.3-h024ca30_0.conda#d36687dc90337917a84a96a45111ad59 @@ -23,10 +23,11 @@ https://conda.anaconda.org/conda-forge/noarch/sysroot_linux-64-2.17-h4a8ded7_18. https://conda.anaconda.org/conda-forge/linux-64/_openmp_mutex-4.5-2_kmp_llvm.tar.bz2#562b26ba2e19059551a811e72ab7f793 https://conda.anaconda.org/conda-forge/linux-64/binutils_impl_linux-64-2.43-h4bf12b8_2.conda#cf0c5521ac2a20dfa6c662a4009eeef6 https://conda.anaconda.org/conda-forge/noarch/fonts-conda-ecosystem-1-0.tar.bz2#fee5683a3f04bd15cbd8318b096a27ab -https://conda.anaconda.org/conda-forge/linux-64/libegl-1.7.0-ha4b6fd6_1.conda#38a5cd3be5fb620b48069e27285f1a44 +https://conda.anaconda.org/conda-forge/linux-64/libegl-1.7.0-ha4b6fd6_2.conda#c151d5eb730e9b7480e6d48c0fc44048 https://conda.anaconda.org/conda-forge/linux-64/binutils-2.43-h4852527_2.conda#348619f90eee04901f4a70615efff35b https://conda.anaconda.org/conda-forge/linux-64/binutils_linux-64-2.43-h4852527_2.conda#18aba879ddf1f8f28145ca6fcb873d8c https://conda.anaconda.org/conda-forge/linux-64/libgcc-14.2.0-h77fa898_1.conda#3cb76c3f10d3bc7f1105b2fc9db984df +https://conda.anaconda.org/conda-forge/linux-64/alsa-lib-1.2.13-hb9d3cd8_0.conda#ae1370588aa6a5157c34c73e9bbb36a0 https://conda.anaconda.org/conda-forge/linux-64/libbrotlicommon-1.1.0-hb9d3cd8_2.conda#41b599ed2b02abcfdd84302bff174b23 https://conda.anaconda.org/conda-forge/linux-64/libdeflate-1.22-hb9d3cd8_0.conda#b422943d5d772b7cc858b36ad2a92db5 https://conda.anaconda.org/conda-forge/linux-64/libexpat-2.6.4-h5888daf_0.conda#db833e03127376d461e1e13e76f09b6c @@ -34,14 +35,13 @@ https://conda.anaconda.org/conda-forge/linux-64/libgcc-ng-14.2.0-h69a702a_1.cond https://conda.anaconda.org/conda-forge/linux-64/libgfortran5-14.2.0-hd5240d6_1.conda#9822b874ea29af082e5d36098d25427d https://conda.anaconda.org/conda-forge/linux-64/libstdcxx-14.2.0-hc0a3c3a_1.conda#234a5554c53625688d51062645337328 https://conda.anaconda.org/conda-forge/linux-64/libzlib-1.3.1-hb9d3cd8_2.conda#edb0dca6bc32e4f4789199455a1dbeb8 -https://conda.anaconda.org/conda-forge/linux-64/openssl-3.3.2-hb9d3cd8_0.conda#4d638782050ab6faa27275bed57e9b4e +https://conda.anaconda.org/conda-forge/linux-64/openssl-3.4.0-hb9d3cd8_0.conda#23cc74f77eb99315c0360ec3533147a9 https://conda.anaconda.org/conda-forge/linux-64/pthread-stubs-0.4-hb9d3cd8_1002.conda#b3c17d95b5a10c6e64a21fa17573e70e https://conda.anaconda.org/conda-forge/linux-64/xorg-libice-1.1.1-hb9d3cd8_1.conda#19608a9656912805b2b9a2f6bd257b04 https://conda.anaconda.org/conda-forge/linux-64/xorg-libxau-1.0.11-hb9d3cd8_1.conda#77cbc488235ebbaab2b6e912d3934bae https://conda.anaconda.org/conda-forge/linux-64/xorg-libxdmcp-1.1.5-hb9d3cd8_0.conda#8035c64cb77ed555e3f150b7b3972480 -https://conda.anaconda.org/conda-forge/linux-64/xorg-xf86vidmodeproto-2.3.1-hb9d3cd8_1004.conda#24831329718daa6cbe35fcd071b778d4 +https://conda.anaconda.org/conda-forge/linux-64/xorg-xf86vidmodeproto-2.3.1-hb9d3cd8_1005.conda#1c08f67e3406550eef135e17263f8154 https://conda.anaconda.org/conda-forge/linux-64/xorg-xorgproto-2024.1-hb9d3cd8_1.conda#7c21106b851ec72c037b162c216d8f05 -https://conda.anaconda.org/conda-forge/linux-64/alsa-lib-1.2.12-h4ab18f5_0.conda#7ed427f0871fd41cb1d9c17727c17589 https://conda.anaconda.org/conda-forge/linux-64/attr-2.5.1-h166bdaf_1.tar.bz2#d9c69a24ad678ffce24c6543a0176b00 https://conda.anaconda.org/conda-forge/linux-64/bzip2-1.0.8-h4bc722e_7.conda#62ee74e96c5ebb0af99386de58cf9553 https://conda.anaconda.org/conda-forge/linux-64/dav1d-1.2.1-hd590300_0.conda#418c6ca5929a611cbd69204907a83995 @@ -120,17 +120,17 @@ https://conda.anaconda.org/conda-forge/linux-64/brotli-1.1.0-hb9d3cd8_2.conda#98 https://conda.anaconda.org/conda-forge/linux-64/c-blosc2-2.15.1-hc57e6cf_0.conda#5f84961d86d0ef78851cb34f9d5e31fe https://conda.anaconda.org/conda-forge/linux-64/fontconfig-2.15.0-h7e30c49_1.conda#8f5b0b297b59e1ac160ad4beec99dbee https://conda.anaconda.org/conda-forge/linux-64/gcc-13.3.0-h9576a4e_1.conda#606924335b5bcdf90e9aed9a2f5d22ed -https://conda.anaconda.org/conda-forge/linux-64/gcc_linux-64-13.3.0-hc28eda2_5.conda#ffbadbbc3345d9a315ba31c8a9188d4c +https://conda.anaconda.org/conda-forge/linux-64/gcc_linux-64-13.3.0-hc28eda2_6.conda#f36597909f5292c48d878f2459c89217 https://conda.anaconda.org/conda-forge/linux-64/gfortran_impl_linux-64-13.3.0-h10434e7_1.conda#6709e113709b6ba67cc0f4b0de58ef7f https://conda.anaconda.org/conda-forge/linux-64/gxx_impl_linux-64-13.3.0-hdbfa832_1.conda#806367e23a0a6ad21e51875b34c57d7e https://conda.anaconda.org/conda-forge/linux-64/krb5-1.21.3-h659f571_0.conda#3f43953b7d3fb3aaa1d0d0723d91e368 https://conda.anaconda.org/conda-forge/linux-64/libasprintf-devel-0.22.5-he8f35ee_3.conda#1091193789bb830127ed067a9e01ac57 https://conda.anaconda.org/conda-forge/linux-64/libavif16-1.1.1-h1909e37_2.conda#21e468ed3786ebcb2124b123aa2484b7 https://conda.anaconda.org/conda-forge/linux-64/libglib-2.82.2-h2ff4ddf_0.conda#13e8e54035ddd2b91875ba399f0f7c04 -https://conda.anaconda.org/conda-forge/linux-64/libglx-1.7.0-ha4b6fd6_1.conda#80a57756c545ad11f9847835aa21e6b2 +https://conda.anaconda.org/conda-forge/linux-64/libglx-1.7.0-ha4b6fd6_2.conda#c8013e438185f33b13814c5c488acd5c https://conda.anaconda.org/conda-forge/linux-64/libjxl-0.11.0-hdb8da77_2.conda#9c4554fafc94db681543804037e65de2 https://conda.anaconda.org/conda-forge/linux-64/libtiff-4.7.0-he137b08_1.conda#63872517c98aa305da58a757c443698e -https://conda.anaconda.org/conda-forge/linux-64/libxml2-2.13.4-hb346dea_2.conda#69b90b70c434b916abf5a1d5ee5d55fb +https://conda.anaconda.org/conda-forge/linux-64/libxml2-2.13.5-hb346dea_0.conda#c81a9f1118541aaa418ccb22190c817e https://conda.anaconda.org/conda-forge/linux-64/mysql-libs-9.0.1-he0572af_2.conda#57a9e7ee3c0840d3c8c9012473978629 https://conda.anaconda.org/conda-forge/linux-64/python-3.9.20-h13acc7a_1_cpython.conda#951cff166a5f170e27908811917165f8 https://conda.anaconda.org/conda-forge/linux-64/xcb-util-image-0.4.0-hb711507_2.conda#a0901183f08b6c7107aab109733a3c91 @@ -158,10 +158,10 @@ https://conda.anaconda.org/conda-forge/noarch/execnet-2.1.1-pyhd8ed1ab_0.conda#1 https://conda.anaconda.org/conda-forge/noarch/fsspec-2024.10.0-pyhff2d567_0.conda#816dbc4679a64e4417cd1385d661bb31 https://conda.anaconda.org/conda-forge/linux-64/gettext-0.22.5-he02047a_3.conda#c7f243bbaea97cd6ea1edd693270100e https://conda.anaconda.org/conda-forge/linux-64/gfortran-13.3.0-h9576a4e_1.conda#5e5e3b592d5174eb49607a973c77825b -https://conda.anaconda.org/conda-forge/linux-64/gfortran_linux-64-13.3.0-hb919d3a_5.conda#67dbd742855cc95233eb04c43004a29a +https://conda.anaconda.org/conda-forge/linux-64/gfortran_linux-64-13.3.0-hb919d3a_6.conda#ca5d1d74cfc2779465f4eaf39a35d218 https://conda.anaconda.org/conda-forge/linux-64/glib-tools-2.82.2-h4833e2c_0.conda#12859f91830f58b1803e32846651c6f6 https://conda.anaconda.org/conda-forge/linux-64/gxx-13.3.0-h9576a4e_1.conda#209182ca6b20aeff62f442e843961d81 -https://conda.anaconda.org/conda-forge/linux-64/gxx_linux-64-13.3.0-h6834431_5.conda#81ddb2db98fbe3031aa7ebbbf8bb3ffd +https://conda.anaconda.org/conda-forge/linux-64/gxx_linux-64-13.3.0-h6834431_6.conda#c3373b1697b90781cc3fc0be38b4bbdd https://conda.anaconda.org/conda-forge/noarch/hpack-4.0.0-pyh9f0ad1d_0.tar.bz2#914d6646c4dbb1fd3ff539830a12fd71 https://conda.anaconda.org/conda-forge/noarch/hyperframe-6.0.1-pyhd8ed1ab_0.tar.bz2#9f765cbfab6870c8435b9eefecd7a1f4 https://conda.anaconda.org/conda-forge/noarch/idna-3.10-pyhd8ed1ab_0.conda#7ba2ede0e7c795ff95088daf0dc59753 @@ -170,16 +170,16 @@ https://conda.anaconda.org/conda-forge/noarch/iniconfig-2.0.0-pyhd8ed1ab_0.conda https://conda.anaconda.org/conda-forge/linux-64/kiwisolver-1.4.7-py39h74842e3_0.conda#1bf77976372ff6de02af7b75cf034ce5 https://conda.anaconda.org/conda-forge/linux-64/lcms2-2.16-hb7c19ff_0.conda#51bb7010fc86f70eee639b4bb7a894f5 https://conda.anaconda.org/conda-forge/linux-64/libcups-2.3.3-h4637d8d_4.conda#d4529f4dff3057982a7617c7ac58fde3 -https://conda.anaconda.org/conda-forge/linux-64/libgl-1.7.0-ha4b6fd6_1.conda#204892bce2e44252b5cf272712f10bdd +https://conda.anaconda.org/conda-forge/linux-64/libgl-1.7.0-ha4b6fd6_2.conda#928b8be80851f5d8ffb016f9c81dae7a https://conda.anaconda.org/conda-forge/linux-64/libhwloc-2.11.1-default_hecaa2ac_1000.conda#f54aeebefb5c5ff84eca4fb05ca8aa3a https://conda.anaconda.org/conda-forge/linux-64/libllvm19-19.1.3-ha7bfdaf_0.conda#8bd654307c455162668cd66e36494000 -https://conda.anaconda.org/conda-forge/linux-64/libpq-16.4-h2d7952a_3.conda#50e2dddb3417a419cbc2388d0b1c06f7 +https://conda.anaconda.org/conda-forge/linux-64/libpq-16.5-h2d7952a_0.conda#3b863477ad017cfa8456a5aa0a17b950 https://conda.anaconda.org/conda-forge/linux-64/libxkbcommon-1.7.0-h2c5496b_1.conda#e2eaefa4de2b7237af7c907b8bbc760a https://conda.anaconda.org/conda-forge/noarch/locket-1.0.0-pyhd8ed1ab_0.tar.bz2#91e27ef3d05cc772ce627e51cff111c4 https://conda.anaconda.org/conda-forge/linux-64/markupsafe-3.0.2-py39h9399b63_0.conda#d38773fed557834d3211e019b7cf7c2f https://conda.anaconda.org/conda-forge/noarch/networkx-3.2-pyhd8ed1ab_0.conda#cec8cc498664cc00a070676aa89e69a7 https://conda.anaconda.org/conda-forge/linux-64/openjpeg-2.5.2-h488ebb8_0.conda#7f2e286780f072ed750df46dc2631138 -https://conda.anaconda.org/conda-forge/noarch/packaging-24.1-pyhd8ed1ab_0.conda#cbe1bb1f21567018ce595d9c2be0f0db +https://conda.anaconda.org/conda-forge/noarch/packaging-24.2-pyhff2d567_1.conda#8508b703977f4c4ada34d657d051972c https://conda.anaconda.org/conda-forge/noarch/pluggy-1.5.0-pyhd8ed1ab_0.conda#d3483c8fc2dc2cc3f5cf43e26d60cabf https://conda.anaconda.org/conda-forge/noarch/ply-3.11-pyhd8ed1ab_2.conda#18c6deb6f9602e32446398203c8f0e91 https://conda.anaconda.org/conda-forge/linux-64/psutil-6.1.0-py39h8cd3c5a_0.conda#ef257b7ce1e1cb152639ced6bc653475 @@ -197,7 +197,7 @@ https://conda.anaconda.org/conda-forge/noarch/sphinxcontrib-jsmath-1.0.1-pyhd8ed https://conda.anaconda.org/conda-forge/noarch/tenacity-9.0.0-pyhd8ed1ab_0.conda#42af51ad3b654ece73572628ad2882ae https://conda.anaconda.org/conda-forge/noarch/threadpoolctl-3.5.0-pyhc1e730c_0.conda#df68d78237980a159bd7149f33c0e8fd https://conda.anaconda.org/conda-forge/noarch/toml-0.10.2-pyhd8ed1ab_0.tar.bz2#f832c45a477c78bebd107098db465095 -https://conda.anaconda.org/conda-forge/noarch/tomli-2.0.2-pyhd8ed1ab_0.conda#e977934e00b355ff55ed154904044727 +https://conda.anaconda.org/conda-forge/noarch/tomli-2.1.0-pyhff2d567_0.conda#3fa1089b4722df3a900135925f4519d9 https://conda.anaconda.org/conda-forge/noarch/toolz-1.0.0-pyhd8ed1ab_0.conda#34feccdd4177f2d3d53c73fc44fd9a37 https://conda.anaconda.org/conda-forge/linux-64/tornado-6.4.1-py39h8cd3c5a_1.conda#48d269953fcddbbcde078429d4b27afe https://conda.anaconda.org/conda-forge/noarch/typing_extensions-4.12.2-pyha770c72_0.conda#ebe6952715e1d5eb567eeebf25250fa7 @@ -222,7 +222,7 @@ https://conda.anaconda.org/conda-forge/noarch/joblib-1.4.2-pyhd8ed1ab_0.conda#25 https://conda.anaconda.org/conda-forge/linux-64/libclang-cpp19.1-19.1.3-default_hb5137d0_0.conda#311e6a1d041db3d6a8a8437750d4234f https://conda.anaconda.org/conda-forge/linux-64/libclang13-19.1.3-default_h9c6a7e4_0.conda#b8a8cd77810b20754f358f2327812552 https://conda.anaconda.org/conda-forge/linux-64/libflac-1.4.3-h59595ed_0.conda#ee48bf17cc83a00f59ca1494d5646869 -https://conda.anaconda.org/conda-forge/linux-64/libgpg-error-1.50-h4f305b6_0.conda#0d7ff1a8e69565ca3add6925e18e708f +https://conda.anaconda.org/conda-forge/linux-64/libgpg-error-1.51-hbd13f7d_0.conda#a2b4a4600d432adf0ee057f63ee27b23 https://conda.anaconda.org/conda-forge/noarch/memory_profiler-0.61.0-pyhd8ed1ab_0.tar.bz2#8b45f9f2b2f7a98b0ec179c8991a4a9b https://conda.anaconda.org/conda-forge/noarch/meson-1.6.0-pyhd8ed1ab_0.conda#380ba6a3eddd8e7649bfe8e6812611aa https://conda.anaconda.org/conda-forge/noarch/partd-1.4.2-pyhd8ed1ab_0.conda#0badf9c54e24cecfb0ad2f99d680c163 @@ -265,7 +265,7 @@ https://conda.anaconda.org/conda-forge/linux-64/imagecodecs-2024.9.22-py39h1aa77 https://conda.anaconda.org/conda-forge/noarch/imageio-2.36.0-pyh12aca89_1.conda#36349844ff73fcd0140ee7f30745f0bf https://conda.anaconda.org/conda-forge/linux-64/matplotlib-base-3.3.4-py39h2fa2bec_0.tar.bz2#9ec0b2186fab9121c54f4844f93ee5b7 https://conda.anaconda.org/conda-forge/linux-64/pandas-1.1.5-py39hde0f152_0.tar.bz2#79fc4b5b3a865b90dd3701cecf1ad33c -https://conda.anaconda.org/conda-forge/noarch/patsy-0.5.6-pyhd8ed1ab_0.conda#a5b55d1cb110cdcedc748b5c3e16e687 +https://conda.anaconda.org/conda-forge/noarch/patsy-1.0.1-pyhff2d567_0.conda#a97b9c7586cedcf4a0a158ef3479975c https://conda.anaconda.org/conda-forge/linux-64/polars-0.20.30-py39ha963410_0.conda#322084e8890afc27fcca6df7a528df25 https://conda.anaconda.org/conda-forge/linux-64/pyqt-5.15.9-py39h52134e7_5.conda#e1f148e57d071b09187719df86f513c1 https://conda.anaconda.org/conda-forge/linux-64/pywavelets-1.6.0-py39hd92a3bb_0.conda#32e26e16f60c568b17a82e3033a4d309 From 1ee661759ca9c326ccc93e775318b28040c0d288 Mon Sep 17 00:00:00 2001 From: scikit-learn-bot Date: Mon, 18 Nov 2024 09:16:23 +0100 Subject: [PATCH 025/159] :lock: :robot: CI Update lock files for array-api CI build(s) :lock: :robot: (#30294) Co-authored-by: Lock file bot --- ...a_forge_cuda_array-api_linux-64_conda.lock | 74 +++++++++---------- 1 file changed, 37 insertions(+), 37 deletions(-) diff --git a/build_tools/github/pylatest_conda_forge_cuda_array-api_linux-64_conda.lock b/build_tools/github/pylatest_conda_forge_cuda_array-api_linux-64_conda.lock index fb8d9a76e3faf..ea9e9b06ab8f4 100644 --- a/build_tools/github/pylatest_conda_forge_cuda_array-api_linux-64_conda.lock +++ b/build_tools/github/pylatest_conda_forge_cuda_array-api_linux-64_conda.lock @@ -18,14 +18,15 @@ https://conda.anaconda.org/conda-forge/noarch/cuda-cudart-static_linux-64-12.4.1 https://conda.anaconda.org/conda-forge/noarch/cuda-cudart_linux-64-12.4.127-h85509e4_2.conda#329163110a96514802e9e64d971edf43 https://conda.anaconda.org/conda-forge/noarch/fonts-conda-forge-1-0.tar.bz2#f766549260d6815b0c52253f1fb1bb29 https://conda.anaconda.org/conda-forge/linux-64/ld_impl_linux-64-2.43-h712a8e2_2.conda#048b02e3962f066da18efe3a21b77672 -https://conda.anaconda.org/conda-forge/linux-64/libglvnd-1.7.0-ha4b6fd6_1.conda#1ece2ccb1dc8c68639712b05e0fae070 +https://conda.anaconda.org/conda-forge/linux-64/libglvnd-1.7.0-ha4b6fd6_2.conda#434ca7e50e40f4918ab701e3facd59a0 https://conda.anaconda.org/conda-forge/noarch/cuda-cudart-dev_linux-64-12.4.127-h85509e4_2.conda#12039deb2a3f103f5756831702bf29fc https://conda.anaconda.org/conda-forge/noarch/fonts-conda-ecosystem-1-0.tar.bz2#fee5683a3f04bd15cbd8318b096a27ab -https://conda.anaconda.org/conda-forge/linux-64/libegl-1.7.0-ha4b6fd6_1.conda#38a5cd3be5fb620b48069e27285f1a44 -https://conda.anaconda.org/conda-forge/linux-64/libopengl-1.7.0-ha4b6fd6_1.conda#e12057a66af8f2a38a839754ca4481e9 +https://conda.anaconda.org/conda-forge/linux-64/libegl-1.7.0-ha4b6fd6_2.conda#c151d5eb730e9b7480e6d48c0fc44048 +https://conda.anaconda.org/conda-forge/linux-64/libopengl-1.7.0-ha4b6fd6_2.conda#7df50d44d4a14d6c31a2c54f2cd92157 https://conda.anaconda.org/conda-forge/linux-64/_openmp_mutex-4.5-2_kmp_llvm.tar.bz2#562b26ba2e19059551a811e72ab7f793 https://conda.anaconda.org/conda-forge/linux-64/libgcc-14.2.0-h77fa898_1.conda#3cb76c3f10d3bc7f1105b2fc9db984df -https://conda.anaconda.org/conda-forge/linux-64/aws-c-common-0.10.0-hb9d3cd8_0.conda#f6495bc3a19a4400d3407052d22bef13 +https://conda.anaconda.org/conda-forge/linux-64/alsa-lib-1.2.13-hb9d3cd8_0.conda#ae1370588aa6a5157c34c73e9bbb36a0 +https://conda.anaconda.org/conda-forge/linux-64/aws-c-common-0.10.3-hb9d3cd8_0.conda#ff3653946d34a6a6ba10babb139d96ef https://conda.anaconda.org/conda-forge/linux-64/c-ares-1.34.3-heb4867d_0.conda#09a6c610d002e54e18353c06ef61a253 https://conda.anaconda.org/conda-forge/linux-64/libbrotlicommon-1.1.0-hb9d3cd8_2.conda#41b599ed2b02abcfdd84302bff174b23 https://conda.anaconda.org/conda-forge/linux-64/libdeflate-1.22-hb9d3cd8_0.conda#b422943d5d772b7cc858b36ad2a92db5 @@ -34,17 +35,16 @@ https://conda.anaconda.org/conda-forge/linux-64/libgcc-ng-14.2.0-h69a702a_1.cond https://conda.anaconda.org/conda-forge/linux-64/libgfortran5-14.2.0-hd5240d6_1.conda#9822b874ea29af082e5d36098d25427d https://conda.anaconda.org/conda-forge/linux-64/libstdcxx-14.2.0-hc0a3c3a_1.conda#234a5554c53625688d51062645337328 https://conda.anaconda.org/conda-forge/linux-64/libzlib-1.3.1-hb9d3cd8_2.conda#edb0dca6bc32e4f4789199455a1dbeb8 -https://conda.anaconda.org/conda-forge/linux-64/openssl-3.3.2-hb9d3cd8_0.conda#4d638782050ab6faa27275bed57e9b4e +https://conda.anaconda.org/conda-forge/linux-64/openssl-3.4.0-hb9d3cd8_0.conda#23cc74f77eb99315c0360ec3533147a9 https://conda.anaconda.org/conda-forge/linux-64/pthread-stubs-0.4-hb9d3cd8_1002.conda#b3c17d95b5a10c6e64a21fa17573e70e https://conda.anaconda.org/conda-forge/linux-64/xorg-libice-1.1.1-hb9d3cd8_1.conda#19608a9656912805b2b9a2f6bd257b04 https://conda.anaconda.org/conda-forge/linux-64/xorg-libxau-1.0.11-hb9d3cd8_1.conda#77cbc488235ebbaab2b6e912d3934bae https://conda.anaconda.org/conda-forge/linux-64/xorg-libxdmcp-1.1.5-hb9d3cd8_0.conda#8035c64cb77ed555e3f150b7b3972480 https://conda.anaconda.org/conda-forge/linux-64/xorg-xorgproto-2024.1-hb9d3cd8_1.conda#7c21106b851ec72c037b162c216d8f05 -https://conda.anaconda.org/conda-forge/linux-64/alsa-lib-1.2.12-h4ab18f5_0.conda#7ed427f0871fd41cb1d9c17727c17589 -https://conda.anaconda.org/conda-forge/linux-64/aws-c-cal-0.8.0-he70792b_1.conda#9b81a9d9395fb2abd60984fcfe7eb01a -https://conda.anaconda.org/conda-forge/linux-64/aws-c-compression-0.3.0-hba2fe39_1.conda#c6133966058e553727f0afe21ab38cd2 -https://conda.anaconda.org/conda-forge/linux-64/aws-c-sdkutils-0.2.1-hba2fe39_0.conda#f0b3524e47ed870bb8304a8d6fa67c7f -https://conda.anaconda.org/conda-forge/linux-64/aws-checksums-0.2.0-hba2fe39_1.conda#ac8d58d81bdcefa5bce4e883c6b88c42 +https://conda.anaconda.org/conda-forge/linux-64/aws-c-cal-0.8.0-hecf86a2_2.conda#c54459d686ad9d0502823cacff7e8423 +https://conda.anaconda.org/conda-forge/linux-64/aws-c-compression-0.3.0-hf42f96a_2.conda#257f4ae92fe11bd8436315c86468c39b +https://conda.anaconda.org/conda-forge/linux-64/aws-c-sdkutils-0.2.1-hf42f96a_1.conda#bbdd20fb1994a9f0ba98078fcb6c12ab +https://conda.anaconda.org/conda-forge/linux-64/aws-checksums-0.2.2-hf42f96a_1.conda#d908d43d87429be24edfb20e96543c20 https://conda.anaconda.org/conda-forge/linux-64/bzip2-1.0.8-h4bc722e_7.conda#62ee74e96c5ebb0af99386de58cf9553 https://conda.anaconda.org/conda-forge/linux-64/expat-2.6.4-h5888daf_0.conda#1d6afef758879ef5ee78127eb4cd2c4a https://conda.anaconda.org/conda-forge/linux-64/gflags-2.2.2-h5888daf_1005.conda#d411fc29e338efb48c5fd4576d71d881 @@ -74,12 +74,12 @@ https://conda.anaconda.org/conda-forge/linux-64/llvm-openmp-15.0.7-h0cdce71_0.co https://conda.anaconda.org/conda-forge/linux-64/mysql-common-9.0.1-h266115a_2.conda#85c0dc0bcd110c998b01856975486ee7 https://conda.anaconda.org/conda-forge/linux-64/ncurses-6.5-he02047a_1.conda#70caf8bb6cf39a0b6b7efc885f51c0fe https://conda.anaconda.org/conda-forge/linux-64/ocl-icd-2.3.2-hd590300_1.conda#c66f837ac65e4d1cdeb80e2a1d5fcc3d -https://conda.anaconda.org/conda-forge/linux-64/s2n-1.5.7-hd3e8b83_0.conda#b0de6ca344b9255f4adb98e419e130ad +https://conda.anaconda.org/conda-forge/linux-64/s2n-1.5.9-h0fd0ee4_0.conda#f472432f3753c5ca763d2497e2ea30bf https://conda.anaconda.org/conda-forge/linux-64/tk-8.6.13-noxft_h4845f30_101.conda#d453b98d9c83e71da0741bb0ff4d76bc https://conda.anaconda.org/conda-forge/linux-64/xz-5.2.6-h166bdaf_0.tar.bz2#2161070d867d1b1204ea749c8eec4ef0 https://conda.anaconda.org/conda-forge/linux-64/yaml-0.2.5-h7f98852_2.tar.bz2#4cb3ad778ec2d5a7acbdf254eb1c42ae https://conda.anaconda.org/conda-forge/linux-64/zlib-1.3.1-hb9d3cd8_2.conda#c9f075ab2f33b3bbee9e62d4ad0a6cd8 -https://conda.anaconda.org/conda-forge/linux-64/aws-c-io-0.15.1-h2a50c78_1.conda#67dfecff4c4253cfe33c3c8e428f1767 +https://conda.anaconda.org/conda-forge/linux-64/aws-c-io-0.15.2-hdeadb07_2.conda#461a1eaa075fd391add91bcffc9de0c1 https://conda.anaconda.org/conda-forge/linux-64/brotli-bin-1.1.0-hb9d3cd8_2.conda#c63b5e52939e795ba8d26e35d767a843 https://conda.anaconda.org/conda-forge/linux-64/cuda-cudart-12.4.127-he02047a_2.conda#a748faa52331983fc3adcc3b116fe0e4 https://conda.anaconda.org/conda-forge/linux-64/cuda-cupti-12.4.127-he02047a_2.conda#46422ef1b1161fb180027e50c598ecd0 @@ -123,21 +123,21 @@ https://conda.anaconda.org/conda-forge/linux-64/xcb-util-wm-0.4.2-hb711507_0.con https://conda.anaconda.org/conda-forge/linux-64/xorg-libsm-1.2.4-he73a12e_1.conda#05a8ea5f446de33006171a7afe6ae857 https://conda.anaconda.org/conda-forge/linux-64/xorg-libx11-1.8.10-h4f16b4b_0.conda#0b666058a179b744a622d0a4a0c56353 https://conda.anaconda.org/conda-forge/linux-64/zstd-1.5.6-ha6fb4c9_0.conda#4d056880988120e29d75bfff282e0f45 -https://conda.anaconda.org/conda-forge/linux-64/aws-c-event-stream-0.5.0-h127f702_4.conda#81d250bca40c7907ece5f5dd00de51d0 -https://conda.anaconda.org/conda-forge/linux-64/aws-c-http-0.9.0-h8a7d7e2_5.conda#c40bb8a9f3936ebeea804e97c5adf179 +https://conda.anaconda.org/conda-forge/linux-64/aws-c-event-stream-0.5.0-h1ffe551_7.conda#7cce4dfab184f4bbdfc160789251b3c5 +https://conda.anaconda.org/conda-forge/linux-64/aws-c-http-0.9.1-hab05fe4_2.conda#fb409f7053fa3dbbdf6eb41045a87795 https://conda.anaconda.org/conda-forge/linux-64/brotli-1.1.0-hb9d3cd8_2.conda#98514fe74548d768907ce7a13f680e8f https://conda.anaconda.org/conda-forge/linux-64/fontconfig-2.15.0-h7e30c49_1.conda#8f5b0b297b59e1ac160ad4beec99dbee https://conda.anaconda.org/conda-forge/linux-64/krb5-1.21.3-h659f571_0.conda#3f43953b7d3fb3aaa1d0d0723d91e368 https://conda.anaconda.org/conda-forge/linux-64/libcublas-12.4.5.8-he02047a_2.conda#d446adae085aa1ff37c44b69988a6f06 https://conda.anaconda.org/conda-forge/linux-64/libcusparse-12.3.1.170-he02047a_2.conda#1c4c7ff54dc5b947f2ab8f5ff8a28dae https://conda.anaconda.org/conda-forge/linux-64/libglib-2.82.2-h2ff4ddf_0.conda#13e8e54035ddd2b91875ba399f0f7c04 -https://conda.anaconda.org/conda-forge/linux-64/libglx-1.7.0-ha4b6fd6_1.conda#80a57756c545ad11f9847835aa21e6b2 +https://conda.anaconda.org/conda-forge/linux-64/libglx-1.7.0-ha4b6fd6_2.conda#c8013e438185f33b13814c5c488acd5c https://conda.anaconda.org/conda-forge/linux-64/libhiredis-1.0.2-h2cc385e_0.tar.bz2#b34907d3a81a3cd8095ee83d174c074a https://conda.anaconda.org/conda-forge/linux-64/libtiff-4.7.0-he137b08_1.conda#63872517c98aa305da58a757c443698e -https://conda.anaconda.org/conda-forge/linux-64/libxml2-2.13.4-hb346dea_2.conda#69b90b70c434b916abf5a1d5ee5d55fb +https://conda.anaconda.org/conda-forge/linux-64/libxml2-2.13.5-hb346dea_0.conda#c81a9f1118541aaa418ccb22190c817e https://conda.anaconda.org/conda-forge/linux-64/mpfr-4.2.1-h90cbb55_3.conda#2eeb50cab6652538eee8fc0bc3340c81 https://conda.anaconda.org/conda-forge/linux-64/mysql-libs-9.0.1-he0572af_2.conda#57a9e7ee3c0840d3c8c9012473978629 -https://conda.anaconda.org/conda-forge/linux-64/orc-2.0.2-he039a57_2.conda#5e7bb9779cc5c200e63475eb2538d382 +https://conda.anaconda.org/conda-forge/linux-64/orc-2.0.3-he039a57_0.conda#052499acd6d6b79952197a13b23e2600 https://conda.anaconda.org/conda-forge/linux-64/python-3.12.7-hc5c86c4_0_cpython.conda#0515111a9cdf69f83278f7c197db9807 https://conda.anaconda.org/conda-forge/linux-64/re2-2024.07.02-h77b4e00_1.conda#01093ff37c1b5e6bf9f17c0116747d11 https://conda.anaconda.org/conda-forge/linux-64/xcb-util-image-0.4.0-hb711507_2.conda#a0901183f08b6c7107aab109733a3c91 @@ -146,8 +146,8 @@ https://conda.anaconda.org/conda-forge/linux-64/xorg-libxext-1.3.6-hb9d3cd8_0.co https://conda.anaconda.org/conda-forge/linux-64/xorg-libxfixes-6.0.1-hb9d3cd8_0.conda#4bdb303603e9821baf5fe5fdff1dc8f8 https://conda.anaconda.org/conda-forge/linux-64/xorg-libxrender-0.9.11-hb9d3cd8_1.conda#a7a49a8b85122b49214798321e2e96b4 https://conda.anaconda.org/conda-forge/noarch/array-api-compat-1.9.1-pyhd8ed1ab_0.conda#f2328337441baa8f669d2a830cfd0097 -https://conda.anaconda.org/conda-forge/linux-64/aws-c-auth-0.8.0-hcd8ed7f_7.conda#b8725d87357c876b0458dee554c39b28 -https://conda.anaconda.org/conda-forge/linux-64/aws-c-mqtt-0.11.0-hd25e75f_5.conda#277dae7174fd2bc81c01411039ac2173 +https://conda.anaconda.org/conda-forge/linux-64/aws-c-auth-0.8.0-hb88c0a9_10.conda#409b7ee6d3473cc62bda7280f6ac20d0 +https://conda.anaconda.org/conda-forge/linux-64/aws-c-mqtt-0.11.0-h7bd072d_8.conda#0e9d67838114c0dbd267a9311268b331 https://conda.anaconda.org/conda-forge/linux-64/cairo-1.18.0-hebfffa5_3.conda#fceaedf1cdbcb02df9699a0d9b005292 https://conda.anaconda.org/conda-forge/linux-64/ccache-4.10.1-h065aff2_0.conda#d6b48c138e0c8170a6fe9c136e063540 https://conda.anaconda.org/conda-forge/noarch/certifi-2024.8.30-pyhd8ed1ab_0.conda#12f7d00853807b0531775e9be891cb11 @@ -167,7 +167,7 @@ https://conda.anaconda.org/conda-forge/linux-64/lcms2-2.16-hb7c19ff_0.conda#51bb https://conda.anaconda.org/conda-forge/linux-64/libcups-2.3.3-h4637d8d_4.conda#d4529f4dff3057982a7617c7ac58fde3 https://conda.anaconda.org/conda-forge/linux-64/libcurl-8.10.1-hbbe4b11_0.conda#6e801c50a40301f6978c53976917b277 https://conda.anaconda.org/conda-forge/linux-64/libcusolver-11.6.1.9-he02047a_2.conda#9f6877f8936be962f598db5e9b8efc51 -https://conda.anaconda.org/conda-forge/linux-64/libgl-1.7.0-ha4b6fd6_1.conda#204892bce2e44252b5cf272712f10bdd +https://conda.anaconda.org/conda-forge/linux-64/libgl-1.7.0-ha4b6fd6_2.conda#928b8be80851f5d8ffb016f9c81dae7a https://conda.anaconda.org/conda-forge/linux-64/libgrpc-1.67.1-hc2c308b_0.conda#4606a4647bfe857e3cfe21ca12ac3afb https://conda.anaconda.org/conda-forge/linux-64/libhwloc-2.11.1-default_hecaa2ac_1000.conda#f54aeebefb5c5ff84eca4fb05ca8aa3a https://conda.anaconda.org/conda-forge/linux-64/libllvm19-19.1.3-ha7bfdaf_0.conda#8bd654307c455162668cd66e36494000 @@ -177,19 +177,19 @@ https://conda.anaconda.org/conda-forge/linux-64/markupsafe-3.0.2-py312h178313f_0 https://conda.anaconda.org/conda-forge/linux-64/mpc-1.3.1-h24ddda3_1.conda#aa14b9a5196a6d8dd364164b7ce56acf https://conda.anaconda.org/conda-forge/noarch/mpmath-1.3.0-pyhd8ed1ab_0.conda#dbf6e2d89137da32fa6670f3bffc024e https://conda.anaconda.org/conda-forge/noarch/munkres-1.1.4-pyh9f0ad1d_0.tar.bz2#2ba8498c1018c1e9c61eb99b973dfe19 -https://conda.anaconda.org/conda-forge/noarch/networkx-3.4.2-pyhd8ed1ab_1.conda#1d4c088869f206413c59acdd309908b7 +https://conda.anaconda.org/conda-forge/noarch/networkx-3.4.2-pyh267e887_2.conda#fd40bf7f7f4bc4b647dc8512053d9873 https://conda.anaconda.org/conda-forge/linux-64/openjpeg-2.5.2-h488ebb8_0.conda#7f2e286780f072ed750df46dc2631138 -https://conda.anaconda.org/conda-forge/noarch/packaging-24.1-pyhd8ed1ab_0.conda#cbe1bb1f21567018ce595d9c2be0f0db +https://conda.anaconda.org/conda-forge/noarch/packaging-24.2-pyhff2d567_1.conda#8508b703977f4c4ada34d657d051972c https://conda.anaconda.org/conda-forge/noarch/pluggy-1.5.0-pyhd8ed1ab_0.conda#d3483c8fc2dc2cc3f5cf43e26d60cabf https://conda.anaconda.org/conda-forge/noarch/pyparsing-3.2.0-pyhd8ed1ab_1.conda#035c17fbf099f50ff60bf2eb303b0a83 https://conda.anaconda.org/conda-forge/noarch/python-tzdata-2024.2-pyhd8ed1ab_0.conda#986287f89929b2d629bd6ef6497dc307 https://conda.anaconda.org/conda-forge/noarch/pytz-2024.1-pyhd8ed1ab_0.conda#3eeeeb9e4827ace8c0c1419c85d590ad https://conda.anaconda.org/conda-forge/linux-64/pyyaml-6.0.2-py312h66e93f0_1.conda#549e5930e768548a89c23f595dac5a95 -https://conda.anaconda.org/conda-forge/noarch/setuptools-75.3.0-pyhd8ed1ab_0.conda#2ce9825396daf72baabaade36cee16da +https://conda.anaconda.org/conda-forge/noarch/setuptools-75.5.0-pyhff2d567_0.conda#ade63405adb52eeff89d506cd55908c0 https://conda.anaconda.org/conda-forge/noarch/six-1.16.0-pyh6c4a22f_0.tar.bz2#e5f25f8dbc060e9a8d912e432202afc2 https://conda.anaconda.org/conda-forge/noarch/threadpoolctl-3.5.0-pyhc1e730c_0.conda#df68d78237980a159bd7149f33c0e8fd https://conda.anaconda.org/conda-forge/noarch/toml-0.10.2-pyhd8ed1ab_0.tar.bz2#f832c45a477c78bebd107098db465095 -https://conda.anaconda.org/conda-forge/noarch/tomli-2.0.2-pyhd8ed1ab_0.conda#e977934e00b355ff55ed154904044727 +https://conda.anaconda.org/conda-forge/noarch/tomli-2.1.0-pyhff2d567_0.conda#3fa1089b4722df3a900135925f4519d9 https://conda.anaconda.org/conda-forge/linux-64/tornado-6.4.1-py312h66e93f0_1.conda#af648b62462794649066366af4ecd5b0 https://conda.anaconda.org/conda-forge/noarch/typing_extensions-4.12.2-pyha770c72_0.conda#ebe6952715e1d5eb567eeebf25250fa7 https://conda.anaconda.org/conda-forge/linux-64/unicodedata2-15.1.0-py312h66e93f0_1.conda#588486a61153f94c7c13816f7069e440 @@ -201,11 +201,11 @@ https://conda.anaconda.org/conda-forge/linux-64/xorg-libxdamage-1.1.6-hb9d3cd8_0 https://conda.anaconda.org/conda-forge/linux-64/xorg-libxi-1.8.2-hb9d3cd8_0.conda#17dcc85db3c7886650b8908b183d6876 https://conda.anaconda.org/conda-forge/linux-64/xorg-libxrandr-1.5.4-hb9d3cd8_0.conda#2de7f99d6581a4a7adbff607b5c278ca https://conda.anaconda.org/conda-forge/linux-64/xorg-libxxf86vm-1.1.5-hb9d3cd8_4.conda#7da9007c0582712c4bad4131f89c8372 -https://conda.anaconda.org/conda-forge/linux-64/aws-c-s3-0.7.0-h858c4ad_7.conda#1698a4867ecd97931d1bb743428686ec +https://conda.anaconda.org/conda-forge/linux-64/aws-c-s3-0.7.1-h3a84f74_3.conda#e7a54821aaa774cfd64efcd45114a4d7 https://conda.anaconda.org/conda-forge/linux-64/azure-core-cpp-1.14.0-h5cfcd09_0.conda#0a8838771cc2e985cd295e01ae83baf1 -https://conda.anaconda.org/conda-forge/linux-64/coverage-7.6.4-py312h178313f_0.conda#a32fbd2322865ac80c7db74c553f5306 +https://conda.anaconda.org/conda-forge/linux-64/coverage-7.6.7-py312h178313f_0.conda#f64f3206bf9e86338b881957fd498870 https://conda.anaconda.org/conda-forge/linux-64/cuda-libraries-12.4.1-ha770c72_1.conda#6bb3f998485d4344a7539e0b218b3fc1 -https://conda.anaconda.org/conda-forge/linux-64/fonttools-4.54.1-py312h178313f_1.conda#bbbf5fa5cab622c33907bc8d7eeea9f7 +https://conda.anaconda.org/conda-forge/linux-64/fonttools-4.55.0-py312h178313f_0.conda#f404f4fb99ccaea68b00c1cc64fc1e68 https://conda.anaconda.org/conda-forge/linux-64/gmpy2-2.1.5-py312h7201bc8_2.conda#af9faf103fb57241246416dc70b466f7 https://conda.anaconda.org/conda-forge/linux-64/harfbuzz-9.0.0-hda332d3_1.conda#76b32dcf243444aea9c6b804bcfa40b8 https://conda.anaconda.org/conda-forge/noarch/jinja2-3.1.4-pyhd8ed1ab_0.conda#7b86ecb7d3557821c649b3c31e3eb9f2 @@ -222,18 +222,18 @@ https://conda.anaconda.org/conda-forge/noarch/pytest-8.3.3-pyhd8ed1ab_0.conda#c0 https://conda.anaconda.org/conda-forge/noarch/python-dateutil-2.9.0-pyhd8ed1ab_0.conda#2cf4264fffb9e6eff6031c5b6884d61c https://conda.anaconda.org/conda-forge/linux-64/tbb-2021.13.0-h84d6215_0.conda#ee6f7fd1e76061ef1fa307d41fa86a96 https://conda.anaconda.org/conda-forge/linux-64/xorg-libxtst-1.2.5-hb9d3cd8_3.conda#7bbe9a0cc0df0ac5f5a8ad6d6a11af2f -https://conda.anaconda.org/conda-forge/linux-64/aws-crt-cpp-0.29.3-hbc793f2_2.conda#3ac9933695a731e6507eef6c3704c10f +https://conda.anaconda.org/conda-forge/linux-64/aws-crt-cpp-0.29.4-h21d7256_1.conda#963a310ba64fd6a113eb4f7fcf89f935 https://conda.anaconda.org/conda-forge/linux-64/azure-identity-cpp-1.10.0-h113e628_0.conda#73f73f60854f325a55f1d31459f2ab73 https://conda.anaconda.org/conda-forge/linux-64/azure-storage-common-cpp-12.8.0-h736e048_1.conda#13de36be8de3ae3f05ba127631599213 https://conda.anaconda.org/conda-forge/noarch/cuda-runtime-12.4.1-ha804496_0.conda#48829f4ef6005ae8d4867b99168ff2b8 https://conda.anaconda.org/conda-forge/linux-64/libgoogle-cloud-storage-2.31.0-h0121fbd_0.conda#568d6a09a6ed76337a7b97c84ae7c0f8 -https://conda.anaconda.org/conda-forge/linux-64/libpq-17.0-h04577a9_4.conda#392cae2a58fbcb9db8c2147c6d6d1620 +https://conda.anaconda.org/conda-forge/linux-64/libpq-17.1-h04577a9_0.conda#c2560bae9f56de89b8c50355f7c84910 https://conda.anaconda.org/conda-forge/noarch/meson-python-0.17.1-pyh70fd9c4_0.conda#722b649da38842068d83b6e6770f11a1 https://conda.anaconda.org/conda-forge/linux-64/mkl-2022.1.0-h84fe81f_915.tar.bz2#b9c8f925797a93dbff45e1626b025a6b https://conda.anaconda.org/conda-forge/noarch/pytest-cov-6.0.0-pyhd8ed1ab_0.conda#cb8a11b6d209e3d85e5094bdbd9ebd9c https://conda.anaconda.org/conda-forge/noarch/pytest-xdist-3.6.1-pyhd8ed1ab_0.conda#b39568655c127a9c4a44d178ac99b6d0 https://conda.anaconda.org/conda-forge/noarch/sympy-1.13.3-pyh2585a3b_104.conda#68085d736d2b2f54498832b65059875d -https://conda.anaconda.org/conda-forge/linux-64/aws-sdk-cpp-1.11.407-h5cd358a_9.conda#1bba87c0e95867ad8ef2932d603ce7ee +https://conda.anaconda.org/conda-forge/linux-64/aws-sdk-cpp-1.11.449-h1a02111_1.conda#490f72eee62d9bd7e778f137f65e9650 https://conda.anaconda.org/conda-forge/linux-64/azure-storage-blobs-cpp-12.13.0-h3cf044e_1.conda#7eb66060455c7a47d9dcdbfa9f46579b https://conda.anaconda.org/conda-forge/linux-64/libblas-3.9.0-16_linux64_mkl.tar.bz2#85f61af03fd291dae33150ffe89dc09a https://conda.anaconda.org/conda-forge/linux-64/mkl-devel-2022.1.0-ha770c72_916.tar.bz2#69ba49e445f87aea2cba343a71a35ca2 @@ -243,25 +243,25 @@ https://conda.anaconda.org/conda-forge/linux-64/azure-storage-files-datalake-cpp https://conda.anaconda.org/conda-forge/linux-64/libcblas-3.9.0-16_linux64_mkl.tar.bz2#361bf757b95488de76c4f123805742d3 https://conda.anaconda.org/conda-forge/linux-64/liblapack-3.9.0-16_linux64_mkl.tar.bz2#a2f166748917d6d6e4707841ca1f519e https://conda.anaconda.org/conda-forge/linux-64/pyside6-6.8.0.2-py312h91f0f75_0.conda#ec3da81d5f9d3612b227e09a650f7bf2 -https://conda.anaconda.org/conda-forge/linux-64/libarrow-18.0.0-h3e543c6_4_cpu.conda#98ca983152358b918afebf2abe9e5ca9 +https://conda.anaconda.org/conda-forge/linux-64/libarrow-18.0.0-h3b997a5_7_cpu.conda#32897a50e7f68187c4a524c439c0943c https://conda.anaconda.org/conda-forge/linux-64/liblapacke-3.9.0-16_linux64_mkl.tar.bz2#44ccc4d4dca6a8d57fa17442bc64b5a1 https://conda.anaconda.org/conda-forge/linux-64/numpy-2.1.3-py312h58c1407_0.conda#dfdbc12e6d81889ba4c494a23f23eba8 -https://conda.anaconda.org/conda-forge/noarch/array-api-strict-2.1.3-pyhd8ed1ab_0.conda#559ef5d7adafd925588bcd9d0dcb3ed4 +https://conda.anaconda.org/conda-forge/noarch/array-api-strict-2.2-pyhd8ed1ab_0.conda#5f8d3e0f6b42318772d0f1cdddfe3025 https://conda.anaconda.org/conda-forge/linux-64/blas-devel-3.9.0-16_linux64_mkl.tar.bz2#3f92c1c9e1c0e183462c5071aa02cae1 -https://conda.anaconda.org/conda-forge/linux-64/contourpy-1.3.0-py312h68727a3_2.conda#ff28f374b31937c048107521c814791e +https://conda.anaconda.org/conda-forge/linux-64/contourpy-1.3.1-py312h68727a3_0.conda#f5fbba0394ee45e9a64a73c2a994126a https://conda.anaconda.org/conda-forge/linux-64/cupy-core-13.3.0-py312h1acd1a8_2.conda#15e9530e87664584a6b409ecdf5c9264 -https://conda.anaconda.org/conda-forge/linux-64/libarrow-acero-18.0.0-h5888daf_4_cpu.conda#86298c079658bed57c5590690a0fb418 -https://conda.anaconda.org/conda-forge/linux-64/libparquet-18.0.0-h6bd9018_4_cpu.conda#19973fe63c087ef5e119a2826011efb4 +https://conda.anaconda.org/conda-forge/linux-64/libarrow-acero-18.0.0-h5888daf_7_cpu.conda#786a275d019708cd1c963b12a8fb0c72 +https://conda.anaconda.org/conda-forge/linux-64/libparquet-18.0.0-h6bd9018_7_cpu.conda#687870f7d9cba5262fdd7e730e9e9ba8 https://conda.anaconda.org/conda-forge/linux-64/pandas-2.2.3-py312hf9745cd_1.conda#8bce4f6caaf8c5448c7ac86d87e26b4b https://conda.anaconda.org/conda-forge/linux-64/polars-1.12.0-py312hfe7c9be_0.conda#47b6df7e8b629d1257a6f971b88c15de https://conda.anaconda.org/conda-forge/linux-64/pyarrow-core-18.0.0-py312h01725c0_1_cpu.conda#c8ae967c39337603035d59c8994c23f9 https://conda.anaconda.org/conda-forge/linux-64/scipy-1.14.1-py312h62794b6_1.conda#b43233a9e2f62fb94affe5607ea79473 https://conda.anaconda.org/conda-forge/linux-64/blas-2.116-mkl.tar.bz2#c196a26abf6b4f132c88828ab7c2231c https://conda.anaconda.org/conda-forge/linux-64/cupy-13.3.0-py312h7d319b9_2.conda#009ef049020fef7d1541183d52fab5a9 -https://conda.anaconda.org/conda-forge/linux-64/libarrow-dataset-18.0.0-h5888daf_4_cpu.conda#6ac53d3f10c9d88ade8f9fe0f515a0db +https://conda.anaconda.org/conda-forge/linux-64/libarrow-dataset-18.0.0-h5888daf_7_cpu.conda#a742b9a0452b55020ccf662721c1ce44 https://conda.anaconda.org/conda-forge/linux-64/matplotlib-base-3.9.2-py312hd3ec401_2.conda#2380c9ba933ffaac9ad16d8eac8e3318 https://conda.anaconda.org/conda-forge/linux-64/pyamg-5.2.1-py312hc39e661_1.conda#372efc32220f0dfb603e5b31ffaefa23 -https://conda.anaconda.org/conda-forge/linux-64/libarrow-substrait-18.0.0-h5c8f2c3_4_cpu.conda#24f60812bdd87979ea1c6477f2f38d3b +https://conda.anaconda.org/conda-forge/linux-64/libarrow-substrait-18.0.0-h5c8f2c3_7_cpu.conda#be76013fa3fdaec2c0c504e6fdfd282d https://conda.anaconda.org/conda-forge/linux-64/matplotlib-3.9.2-py312h7900ff3_2.conda#266d9ad348e2151d07ad9e4dc716eea5 https://conda.anaconda.org/conda-forge/linux-64/pyarrow-18.0.0-py312h7900ff3_1.conda#ea33ac754057779cd2df785661486310 https://conda.anaconda.org/pytorch/linux-64/pytorch-2.5.1-py3.12_cuda12.4_cudnn9.1.0_0.tar.bz2#42164c6ce8e563c20a542686a8b9b964 From caef55078c23503396436951cf874c6d112637d5 Mon Sep 17 00:00:00 2001 From: scikit-learn-bot Date: Mon, 18 Nov 2024 09:16:49 +0100 Subject: [PATCH 026/159] :lock: :robot: CI Update lock files for cirrus-arm CI build(s) :lock: :robot: (#30292) Co-authored-by: Lock file bot --- ...pymin_conda_forge_linux-aarch64_conda.lock | 26 +++++++++---------- 1 file changed, 13 insertions(+), 13 deletions(-) diff --git a/build_tools/cirrus/pymin_conda_forge_linux-aarch64_conda.lock b/build_tools/cirrus/pymin_conda_forge_linux-aarch64_conda.lock index 6d73489dc34a6..7ce4c020def93 100644 --- a/build_tools/cirrus/pymin_conda_forge_linux-aarch64_conda.lock +++ b/build_tools/cirrus/pymin_conda_forge_linux-aarch64_conda.lock @@ -8,16 +8,17 @@ https://conda.anaconda.org/conda-forge/noarch/font-ttf-inconsolata-3.000-h77eed3 https://conda.anaconda.org/conda-forge/noarch/font-ttf-source-code-pro-2.038-h77eed37_0.tar.bz2#4d59c254e01d9cde7957100457e2d5fb https://conda.anaconda.org/conda-forge/noarch/font-ttf-ubuntu-0.83-h77eed37_3.conda#49023d73832ef61042f6a237cb2687e7 https://conda.anaconda.org/conda-forge/linux-aarch64/ld_impl_linux-aarch64-2.43-h80caac9_2.conda#fcbde5ea19d55468953bf588770c0501 -https://conda.anaconda.org/conda-forge/linux-aarch64/libglvnd-1.7.0-hd24410f_1.conda#32763e24bc6e5ed4de4a4a1598448d5b +https://conda.anaconda.org/conda-forge/linux-aarch64/libglvnd-1.7.0-hd24410f_2.conda#9e115653741810778c9a915a2f8439e7 https://conda.anaconda.org/conda-forge/linux-aarch64/llvm-openmp-19.1.3-h013ceaa_0.conda#41689b81ad3f991ac539fd00b37af432 https://conda.anaconda.org/conda-forge/linux-aarch64/python_abi-3.9-5_cp39.conda#2d2843f11ec622f556137d72d9c72d89 https://conda.anaconda.org/conda-forge/noarch/tzdata-2024b-hc8b5060_0.conda#8ac3367aafb1cc0a068483c580af8015 https://conda.anaconda.org/conda-forge/linux-aarch64/_openmp_mutex-4.5-2_kmp_llvm.tar.bz2#98a1185182fec3c434069fa74e6473d6 https://conda.anaconda.org/conda-forge/noarch/fonts-conda-forge-1-0.tar.bz2#f766549260d6815b0c52253f1fb1bb29 -https://conda.anaconda.org/conda-forge/linux-aarch64/libegl-1.7.0-hd24410f_1.conda#f82d2736a04324c05bdce1c39a57fee6 -https://conda.anaconda.org/conda-forge/linux-aarch64/libopengl-1.7.0-hd24410f_1.conda#9e50e575daf28ab2f1a6d8f6da3027d3 +https://conda.anaconda.org/conda-forge/linux-aarch64/libegl-1.7.0-hd24410f_2.conda#cf105bce884e4ef8c8ccdca9fe6695e7 +https://conda.anaconda.org/conda-forge/linux-aarch64/libopengl-1.7.0-hd24410f_2.conda#cf9d12bfab305e48d095a4c79002c922 https://conda.anaconda.org/conda-forge/noarch/fonts-conda-ecosystem-1-0.tar.bz2#fee5683a3f04bd15cbd8318b096a27ab https://conda.anaconda.org/conda-forge/linux-aarch64/libgcc-14.2.0-he277a41_1.conda#511b511c5445e324066c3377481bcab8 +https://conda.anaconda.org/conda-forge/linux-aarch64/alsa-lib-1.2.13-h86ecc28_0.conda#f643bb02c4bbcfe7de161a8ca5df530b https://conda.anaconda.org/conda-forge/linux-aarch64/libbrotlicommon-1.1.0-h86ecc28_2.conda#3ee026955c688f551a9999840cff4c67 https://conda.anaconda.org/conda-forge/linux-aarch64/libdeflate-1.22-h86ecc28_0.conda#ff6a44e8b1707d02be2fe9a36ea88d4a https://conda.anaconda.org/conda-forge/linux-aarch64/libexpat-2.6.4-h5ad3122_0.conda#f1b3fab36861b3ce945a13f0dfdfc688 @@ -25,13 +26,12 @@ https://conda.anaconda.org/conda-forge/linux-aarch64/libgcc-ng-14.2.0-he9431aa_1 https://conda.anaconda.org/conda-forge/linux-aarch64/libgfortran5-14.2.0-hb6113d0_1.conda#fc068e11b10e18f184e027782baa12b6 https://conda.anaconda.org/conda-forge/linux-aarch64/libstdcxx-14.2.0-h3f4de04_1.conda#37f489acd39e22b623d2d1e5ac6d195c https://conda.anaconda.org/conda-forge/linux-aarch64/libzlib-1.3.1-h86ecc28_2.conda#08aad7cbe9f5a6b460d0976076b6ae64 -https://conda.anaconda.org/conda-forge/linux-aarch64/openssl-3.3.2-h86ecc28_0.conda#9e1e477b3f8ee3789297883faffa708b +https://conda.anaconda.org/conda-forge/linux-aarch64/openssl-3.4.0-h86ecc28_0.conda#b2f202b5bddafac824eb610b65dde98f https://conda.anaconda.org/conda-forge/linux-aarch64/pthread-stubs-0.4-h86ecc28_1002.conda#bb5a90c93e3bac3d5690acf76b4a6386 https://conda.anaconda.org/conda-forge/linux-aarch64/xorg-libice-1.1.1-h57736b2_1.conda#99a9c8245a1cc6dacd292ffeca39425f https://conda.anaconda.org/conda-forge/linux-aarch64/xorg-libxau-1.0.11-h86ecc28_1.conda#c5f72a733c461aa7785518d29b997cc8 https://conda.anaconda.org/conda-forge/linux-aarch64/xorg-libxdmcp-1.1.5-h57736b2_0.conda#25a5a7b797fe6e084e04ffe2db02fc62 https://conda.anaconda.org/conda-forge/linux-aarch64/xorg-xorgproto-2024.1-h86ecc28_1.conda#91cef7867bf2b47f614597b59705ff56 -https://conda.anaconda.org/conda-forge/linux-aarch64/alsa-lib-1.2.12-h68df207_0.conda#65448d015f05afb3c68ea92d0483a466 https://conda.anaconda.org/conda-forge/linux-aarch64/bzip2-1.0.8-h68df207_7.conda#56398c28220513b9ea13d7b450acfb20 https://conda.anaconda.org/conda-forge/linux-aarch64/expat-2.6.4-h5ad3122_0.conda#e8f1d587055376ea2419cc78696abd0b https://conda.anaconda.org/conda-forge/linux-aarch64/keyutils-1.6.1-h4e544f5_0.tar.bz2#1f24853e59c68892452ef94ddd8afd4b @@ -84,10 +84,10 @@ https://conda.anaconda.org/conda-forge/linux-aarch64/fontconfig-2.15.0-h8dda3cd_ https://conda.anaconda.org/conda-forge/linux-aarch64/krb5-1.21.3-h50a48e9_0.conda#29c10432a2ca1472b53f299ffb2ffa37 https://conda.anaconda.org/conda-forge/linux-aarch64/libblas-3.9.0-25_linuxaarch64_openblas.conda#f9b8a4a955ed2d0b68b1f453abcc1c9e https://conda.anaconda.org/conda-forge/linux-aarch64/libglib-2.82.2-hc486b8e_0.conda#47f6d85fe47b865e56c539f2ba5f4dad -https://conda.anaconda.org/conda-forge/linux-aarch64/libglx-1.7.0-hd24410f_1.conda#b4e4c7703e944564b512dabbcc1130d0 +https://conda.anaconda.org/conda-forge/linux-aarch64/libglx-1.7.0-hd24410f_2.conda#1d4269e233636148696a67e2d30dad2a https://conda.anaconda.org/conda-forge/linux-aarch64/libhiredis-1.0.2-h05efe27_0.tar.bz2#a87f068744fd20334cd41489eb163bee https://conda.anaconda.org/conda-forge/linux-aarch64/libtiff-4.7.0-hec21d91_1.conda#1f80061f5ba6956fcdc381f34618cd8d -https://conda.anaconda.org/conda-forge/linux-aarch64/libxml2-2.13.4-hf4efe5d_2.conda#0e28ab30d29c5a566d05bf73dfc5c184 +https://conda.anaconda.org/conda-forge/linux-aarch64/libxml2-2.13.5-hf4efe5d_0.conda#5650ac8a6ed680c032bdabe40ad19ee0 https://conda.anaconda.org/conda-forge/linux-aarch64/mysql-libs-9.0.1-h11569fd_2.conda#94c70f21e0a1f8558941d901027215a4 https://conda.anaconda.org/conda-forge/linux-aarch64/openblas-0.3.28-pthreads_h3a8cbd8_1.conda#d36b4f01d28df4f90c7e37adb8e9adb5 https://conda.anaconda.org/conda-forge/linux-aarch64/python-3.9.20-h4a649e4_1_cpython.conda#c2833e3d5a6d210ffb433cbd4a1cf174 @@ -111,20 +111,20 @@ https://conda.anaconda.org/conda-forge/linux-aarch64/kiwisolver-1.4.7-py39h78c8b https://conda.anaconda.org/conda-forge/linux-aarch64/lcms2-2.16-h922389a_0.conda#ffdd8267a04c515e7ce69c727b051414 https://conda.anaconda.org/conda-forge/linux-aarch64/libcblas-3.9.0-25_linuxaarch64_openblas.conda#db6af51123c67814572a8c25542cb368 https://conda.anaconda.org/conda-forge/linux-aarch64/libcups-2.3.3-h405e4a8_4.conda#d42c670b0c96c1795fd859d5e0275a55 -https://conda.anaconda.org/conda-forge/linux-aarch64/libgl-1.7.0-hd24410f_1.conda#06cf88e73c69957c56318c6a1ccc5306 +https://conda.anaconda.org/conda-forge/linux-aarch64/libgl-1.7.0-hd24410f_2.conda#0d00176464ebb25af83d40736a2cd3bb https://conda.anaconda.org/conda-forge/linux-aarch64/liblapack-3.9.0-25_linuxaarch64_openblas.conda#0eb74e81de46454960bde9e44e7ee378 https://conda.anaconda.org/conda-forge/linux-aarch64/libllvm19-19.1.3-h2edbd07_0.conda#4f335bb2183b2a9a062518cbc079dc8b https://conda.anaconda.org/conda-forge/linux-aarch64/libxkbcommon-1.7.0-h46f2afe_1.conda#78a24e611ab9c09c518f519be49c2e46 https://conda.anaconda.org/conda-forge/linux-aarch64/libxslt-1.1.39-h1cc9640_0.conda#13e1d3f9188e85c6d59a98651aced002 https://conda.anaconda.org/conda-forge/noarch/munkres-1.1.4-pyh9f0ad1d_0.tar.bz2#2ba8498c1018c1e9c61eb99b973dfe19 https://conda.anaconda.org/conda-forge/linux-aarch64/openjpeg-2.5.2-h0d9d63b_0.conda#fd2898519e839d5ceb778343f39a3176 -https://conda.anaconda.org/conda-forge/noarch/packaging-24.1-pyhd8ed1ab_0.conda#cbe1bb1f21567018ce595d9c2be0f0db +https://conda.anaconda.org/conda-forge/noarch/packaging-24.2-pyhff2d567_1.conda#8508b703977f4c4ada34d657d051972c https://conda.anaconda.org/conda-forge/noarch/pluggy-1.5.0-pyhd8ed1ab_0.conda#d3483c8fc2dc2cc3f5cf43e26d60cabf https://conda.anaconda.org/conda-forge/noarch/pyparsing-3.2.0-pyhd8ed1ab_1.conda#035c17fbf099f50ff60bf2eb303b0a83 -https://conda.anaconda.org/conda-forge/noarch/setuptools-75.3.0-pyhd8ed1ab_0.conda#2ce9825396daf72baabaade36cee16da +https://conda.anaconda.org/conda-forge/noarch/setuptools-75.5.0-pyhff2d567_0.conda#ade63405adb52eeff89d506cd55908c0 https://conda.anaconda.org/conda-forge/noarch/six-1.16.0-pyh6c4a22f_0.tar.bz2#e5f25f8dbc060e9a8d912e432202afc2 https://conda.anaconda.org/conda-forge/noarch/threadpoolctl-3.5.0-pyhc1e730c_0.conda#df68d78237980a159bd7149f33c0e8fd -https://conda.anaconda.org/conda-forge/noarch/tomli-2.0.2-pyhd8ed1ab_0.conda#e977934e00b355ff55ed154904044727 +https://conda.anaconda.org/conda-forge/noarch/tomli-2.1.0-pyhff2d567_0.conda#3fa1089b4722df3a900135925f4519d9 https://conda.anaconda.org/conda-forge/linux-aarch64/tornado-6.4.1-py39h3e3acee_1.conda#a4d4b0a58bf2fadfa1285f4710b72f99 https://conda.anaconda.org/conda-forge/linux-aarch64/unicodedata2-15.1.0-py39h060674a_1.conda#22a119d3f80e6d91b28fbc49a3cc08b2 https://conda.anaconda.org/conda-forge/noarch/wheel-0.45.0-pyhd8ed1ab_0.conda#f9751d7c71df27b2d29f5cab3378982e @@ -136,7 +136,7 @@ https://conda.anaconda.org/conda-forge/linux-aarch64/xorg-libxi-1.8.2-h57736b2_0 https://conda.anaconda.org/conda-forge/linux-aarch64/xorg-libxrandr-1.5.4-h86ecc28_0.conda#dd3e74283a082381aa3860312e3c721e https://conda.anaconda.org/conda-forge/linux-aarch64/xorg-libxxf86vm-1.1.5-h57736b2_4.conda#82fa1f5642ef7ac7172e295327ce20e2 https://conda.anaconda.org/conda-forge/noarch/zipp-3.21.0-pyhd8ed1ab_0.conda#fee389bf8a4843bd7a2248ce11b7f188 -https://conda.anaconda.org/conda-forge/linux-aarch64/fonttools-4.54.1-py39hbebea31_1.conda#48e4d4179d70359d8d1fa6716467ef62 +https://conda.anaconda.org/conda-forge/linux-aarch64/fonttools-4.55.0-py39hbebea31_0.conda#bc7a7c58b3502d757efcc276e3ba7f0b https://conda.anaconda.org/conda-forge/linux-aarch64/harfbuzz-9.0.0-hbf49d6b_1.conda#ceb458f664cab8550fcd74fff26451db https://conda.anaconda.org/conda-forge/noarch/importlib_resources-6.4.5-pyhd8ed1ab_0.conda#c808991d29b9838fb4d96ce8267ec9ec https://conda.anaconda.org/conda-forge/noarch/joblib-1.4.2-pyhd8ed1ab_0.conda#25df261d4523d9f9783bcdb7208d872f @@ -155,7 +155,7 @@ https://conda.anaconda.org/conda-forge/linux-aarch64/xorg-libxtst-1.2.5-h57736b2 https://conda.anaconda.org/conda-forge/linux-aarch64/blas-devel-3.9.0-25_linuxaarch64_openblas.conda#32539a9b9e09140a83e987edf3c09926 https://conda.anaconda.org/conda-forge/linux-aarch64/contourpy-1.3.0-py39hbd2ca3f_2.conda#57fa6811a7a80c5641e373408389bc5a https://conda.anaconda.org/conda-forge/noarch/importlib-resources-6.4.5-pyhd8ed1ab_0.conda#67f4772681cf86652f3e2261794cf045 -https://conda.anaconda.org/conda-forge/linux-aarch64/libpq-17.0-h081282e_4.conda#4627c6a062463cf4191aafca4d6c748c +https://conda.anaconda.org/conda-forge/linux-aarch64/libpq-17.1-h081282e_0.conda#aadc97bccac4e4d77c766b224a811440 https://conda.anaconda.org/conda-forge/noarch/meson-python-0.17.1-pyh70fd9c4_0.conda#722b649da38842068d83b6e6770f11a1 https://conda.anaconda.org/conda-forge/noarch/pytest-xdist-3.6.1-pyhd8ed1ab_0.conda#b39568655c127a9c4a44d178ac99b6d0 https://conda.anaconda.org/conda-forge/linux-aarch64/scipy-1.13.1-py39hb921187_0.conda#1aac9080de661e03d286f18fb71e5240 From 358b3b8d20e08dc5817614443c08db64e57e27a5 Mon Sep 17 00:00:00 2001 From: Guillaume Lemaitre Date: Mon, 18 Nov 2024 10:32:50 +0100 Subject: [PATCH 027/159] :lock: :robot: CI Update lock files for scipy-dev CI build(s) :lock: :robot: (#30296) Co-authored-by: Lock file bot --- .../azure/pylatest_pip_scipy_dev_linux-64_conda.lock | 2 +- sklearn/utils/tests/test_validation.py | 6 +++--- 2 files changed, 4 insertions(+), 4 deletions(-) diff --git a/build_tools/azure/pylatest_pip_scipy_dev_linux-64_conda.lock b/build_tools/azure/pylatest_pip_scipy_dev_linux-64_conda.lock index 8d834dcf0cc5e..fa213e9652d89 100644 --- a/build_tools/azure/pylatest_pip_scipy_dev_linux-64_conda.lock +++ b/build_tools/azure/pylatest_pip_scipy_dev_linux-64_conda.lock @@ -32,7 +32,7 @@ https://repo.anaconda.com/pkgs/main/linux-64/pip-24.2-py313h06a4308_0.conda#59f8 # pip babel @ https://files.pythonhosted.org/packages/ed/20/bc79bc575ba2e2a7f70e8a1155618bb1301eaa5132a8271373a6903f73f8/babel-2.16.0-py3-none-any.whl#sha256=368b5b98b37c06b7daf6696391c3240c938b37767d4584413e8438c5c435fa8b # pip certifi @ https://files.pythonhosted.org/packages/12/90/3c9ff0512038035f59d279fddeb79f5f1eccd8859f06d6163c58798b9487/certifi-2024.8.30-py3-none-any.whl#sha256=922820b53db7a7257ffbda3f597266d435245903d80737e34f8a45ff3e3230d8 # pip charset-normalizer @ https://files.pythonhosted.org/packages/2b/c9/1c8fe3ce05d30c87eff498592c89015b19fade13df42850aafae09e94f35/charset_normalizer-3.4.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl#sha256=4796efc4faf6b53a18e3d46343535caed491776a22af773f366534056c4e1fbc -# pip coverage @ https://files.pythonhosted.org/packages/7f/f8/4436a643631a2fbab4b44d54f515028f6099bfb1cd95b13cfbf701e7f2f2/coverage-7.6.4-cp313-cp313-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl#sha256=dacbc52de979f2823a819571f2e3a350a7e36b8cb7484cdb1e289bceaf35305f +# pip coverage @ https://files.pythonhosted.org/packages/2b/19/7a70458c1624724086195b40628e91bc5b9ca180cdfefcc778285c49c7b2/coverage-7.6.7-cp313-cp313-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl#sha256=2d608a7808793e3615e54e9267519351c3ae204a6d85764d8337bd95993581a8 # pip docutils @ https://files.pythonhosted.org/packages/8f/d7/9322c609343d929e75e7e5e6255e614fcc67572cfd083959cdef3b7aad79/docutils-0.21.2-py3-none-any.whl#sha256=dafca5b9e384f0e419294eb4d2ff9fa826435bf15f15b7bd45723e8ad76811b2 # pip execnet @ https://files.pythonhosted.org/packages/43/09/2aea36ff60d16dd8879bdb2f5b3ee0ba8d08cbbdcdfe870e695ce3784385/execnet-2.1.1-py3-none-any.whl#sha256=26dee51f1b80cebd6d0ca8e74dd8745419761d3bef34163928cbebbdc4749fdc # pip idna @ https://files.pythonhosted.org/packages/76/c6/c88e154df9c4e1a2a66ccf0005a88dfb2650c1dffb6f5ce603dfbd452ce3/idna-3.10-py3-none-any.whl#sha256=946d195a0d259cbba61165e88e65941f16e9b36ea6ddb97f00452bae8b1287d3 diff --git a/sklearn/utils/tests/test_validation.py b/sklearn/utils/tests/test_validation.py index 5ae5a003d0d0a..669e40e137e17 100644 --- a/sklearn/utils/tests/test_validation.py +++ b/sklearn/utils/tests/test_validation.py @@ -1833,19 +1833,19 @@ def test_num_features_errors_1d_containers(X, constructor_name): if constructor_name == "array": expected_type_name = "numpy.ndarray" elif constructor_name == "series": - expected_type_name = "pandas.core.series.Series" + expected_type_name = "pandas.*Series" else: expected_type_name = constructor_name message = ( f"Unable to find the number of features from X of type {expected_type_name}" ) if hasattr(X, "shape"): - message += " with shape (3,)" + message += re.escape(" with shape (3,)") elif isinstance(X[0], str): message += " where the samples are of type str" elif isinstance(X[0], dict): message += " where the samples are of type dict" - with pytest.raises(TypeError, match=re.escape(message)): + with pytest.raises(TypeError, match=message): _num_features(X) From f22f6a6650fccceb512a466a21489035c5fb63a1 Mon Sep 17 00:00:00 2001 From: viktor765 Date: Tue, 19 Nov 2024 08:59:31 +0100 Subject: [PATCH 028/159] DOC: Clarify the sign in log marginal likelihood plot. (#30273) --- examples/gaussian_process/plot_gpr_noisy.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/examples/gaussian_process/plot_gpr_noisy.py b/examples/gaussian_process/plot_gpr_noisy.py index 986bcace5e92f..8aa01a70fc64a 100644 --- a/examples/gaussian_process/plot_gpr_noisy.py +++ b/examples/gaussian_process/plot_gpr_noisy.py @@ -151,7 +151,7 @@ def target_generator(X, add_noise=False): # Looking at the kernel hyperparameters, we see that the best combination found # has a smaller noise level and shorter length scale than the first model. # -# We can inspect the Log-Marginal-Likelihood (LML) of +# We can inspect the negative Log-Marginal-Likelihood (LML) of # :class:`~sklearn.gaussian_process.GaussianProcessRegressor` # for different hyperparameters to get a sense of the local minima. from matplotlib.colors import LogNorm @@ -181,7 +181,7 @@ def target_generator(X, add_noise=False): plt.yscale("log") plt.xlabel("Length-scale") plt.ylabel("Noise-level") -plt.title("Log-marginal-likelihood") +plt.title("Negative log-marginal-likelihood") plt.show() # %% From 87d82366b1a775a89a937d912d0bc31934f2bafb Mon Sep 17 00:00:00 2001 From: Aaron Schumacher Date: Tue, 19 Nov 2024 06:29:04 -0500 Subject: [PATCH 029/159] FOC fix link for dictionary learning paper (#30301) --- doc/modules/decomposition.rst | 4 ++-- sklearn/decomposition/_dict_learning.py | 4 ++-- 2 files changed, 4 insertions(+), 4 deletions(-) diff --git a/doc/modules/decomposition.rst b/doc/modules/decomposition.rst index 926a4482f1428..57130c49d3292 100644 --- a/doc/modules/decomposition.rst +++ b/doc/modules/decomposition.rst @@ -255,7 +255,7 @@ factorization, while larger values shrink many coefficients to zero. .. rubric:: References .. [Mrl09] `"Online Dictionary Learning for Sparse Coding" - `_ + `_ J. Mairal, F. Bach, J. Ponce, G. Sapiro, 2009 .. [Jen09] `"Structured Sparse Principal Component Analysis" `_ @@ -590,7 +590,7 @@ extracted from part of the image of a raccoon face looks like. .. rubric:: References * `"Online dictionary learning for sparse coding" - `_ + `_ J. Mairal, F. Bach, J. Ponce, G. Sapiro, 2009 .. _MiniBatchDictionaryLearning: diff --git a/sklearn/decomposition/_dict_learning.py b/sklearn/decomposition/_dict_learning.py index b1f1ed8db865b..7410eeb4405df 100644 --- a/sklearn/decomposition/_dict_learning.py +++ b/sklearn/decomposition/_dict_learning.py @@ -1513,7 +1513,7 @@ class DictionaryLearning(_BaseSparseCoding, BaseEstimator): ---------- J. Mairal, F. Bach, J. Ponce, G. Sapiro, 2009: Online dictionary learning - for sparse coding (https://www.di.ens.fr/sierra/pdfs/icml09.pdf) + for sparse coding (https://www.di.ens.fr/~fbach/mairal_icml09.pdf) Examples -------- @@ -1874,7 +1874,7 @@ class MiniBatchDictionaryLearning(_BaseSparseCoding, BaseEstimator): ---------- J. Mairal, F. Bach, J. Ponce, G. Sapiro, 2009: Online dictionary learning - for sparse coding (https://www.di.ens.fr/sierra/pdfs/icml09.pdf) + for sparse coding (https://www.di.ens.fr/~fbach/mairal_icml09.pdf) Examples -------- From 1429d59417f422f19ba2ade4c58bde9cbbc913fd Mon Sep 17 00:00:00 2001 From: Guillaume Lemaitre Date: Tue, 19 Nov 2024 23:45:04 +0100 Subject: [PATCH 030/159] MAINT add deprecation for transition to new developer API tools (#30299) Co-authored-by: Adrin Jalali --- sklearn/base.py | 32 ++++++++++++++++++++++++++++++++ sklearn/tests/test_common.py | 35 +++++++++++++++++++++++++++++++++++ 2 files changed, 67 insertions(+) diff --git a/sklearn/base.py b/sklearn/base.py index bd5e07c2167dd..d646f8d3e56bf 100644 --- a/sklearn/base.py +++ b/sklearn/base.py @@ -30,11 +30,14 @@ ) from .utils.fixes import _IS_32BIT from .utils.validation import ( + _check_feature_names, _check_feature_names_in, + _check_n_features, _generate_get_feature_names_out, _is_fitted, check_array, check_is_fitted, + validate_data, ) @@ -439,6 +442,35 @@ def _repr_mimebundle_(self, **kwargs): output["text/html"] = estimator_html_repr(self) return output + # TODO(1.7): Remove this method + def _validate_data(self, *args, **kwargs): + warnings.warn( + "`BaseEstimator._validate_data` is deprecated in 1.6 and will be removed " + "in 1.7. Use `sklearn.utils.validation.validate_data` instead. This " + "function becomes public and is part of the scikit-learn developer API.", + FutureWarning, + ) + return validate_data(self, *args, **kwargs) + + # TODO(1.7): Remove this method + def _check_n_features(self, *args, **kwargs): + warnings.warn( + "`BaseEstimator._check_n_features` is deprecated in 1.6 and will be " + "removed in 1.7. Use `sklearn.utils.validation._check_n_features` instead.", + FutureWarning, + ) + _check_n_features(self, *args, **kwargs) + + # TODO(1.7): Remove this method + def _check_feature_names(self, *args, **kwargs): + warnings.warn( + "`BaseEstimator._check_feature_names` is deprecated in 1.6 and will be " + "removed in 1.7. Use `sklearn.utils.validation._check_feature_names` " + "instead.", + FutureWarning, + ) + _check_feature_names(self, *args, **kwargs) + class ClassifierMixin: """Mixin class for all classifiers in scikit-learn. diff --git a/sklearn/tests/test_common.py b/sklearn/tests/test_common.py index d54916059c163..59b45b93a7e24 100644 --- a/sklearn/tests/test_common.py +++ b/sklearn/tests/test_common.py @@ -19,6 +19,7 @@ import sklearn from sklearn.base import BaseEstimator from sklearn.compose import ColumnTransformer +from sklearn.datasets import make_classification from sklearn.exceptions import ConvergenceWarning # make it possible to discover experimental estimators when calling `all_estimators` @@ -403,3 +404,37 @@ def test_check_inplace_ensure_writeable(estimator): estimator.set_params(kernel="precomputed") check_inplace_ensure_writeable(name, estimator) + + +# TODO(1.7): Remove this test when the deprecation cycle is over +def test_transition_public_api_deprecations(): + """This test checks that we raised deprecation warning explaining how to transition + to the new developer public API from 1.5 to 1.6. + """ + + class OldEstimator(BaseEstimator): + def fit(self, X, y=None): + X = self._validate_data(X) + self._check_n_features(X, reset=True) + self._check_feature_names(X, reset=True) + return self + + def transform(self, X): + return X # pragma: no cover + + X, y = make_classification(n_samples=10, n_features=5, random_state=0) + + old_estimator = OldEstimator() + with pytest.warns(FutureWarning) as warning_list: + old_estimator.fit(X) + + assert len(warning_list) == 3 + assert str(warning_list[0].message).startswith( + "`BaseEstimator._validate_data` is deprecated" + ) + assert str(warning_list[1].message).startswith( + "`BaseEstimator._check_n_features` is deprecated" + ) + assert str(warning_list[2].message).startswith( + "`BaseEstimator._check_feature_names` is deprecated" + ) From 0e68084097199ed79432a595170558732aa2ecdc Mon Sep 17 00:00:00 2001 From: Lucy Liu Date: Wed, 20 Nov 2024 20:28:33 +1100 Subject: [PATCH 031/159] DOC Add info when `scoring = None` in `cross_validate` (#30303) --- sklearn/model_selection/_validation.py | 3 ++- 1 file changed, 2 insertions(+), 1 deletion(-) diff --git a/sklearn/model_selection/_validation.py b/sklearn/model_selection/_validation.py index 63252e818c3a6..dddc0cce795af 100644 --- a/sklearn/model_selection/_validation.py +++ b/sklearn/model_selection/_validation.py @@ -169,7 +169,8 @@ def cross_validate( scoring : str, callable, list, tuple, or dict, default=None Strategy to evaluate the performance of the cross-validated model on - the test set. + the test set. If `None`, the + :ref:`default evaluation criterion ` of the estimator is used. If `scoring` represents a single score, one can use: From 5780de3c90a25369b532fa72a6cd8f1c4009eb36 Mon Sep 17 00:00:00 2001 From: Sylvain Combettes <48064216+sylvaincom@users.noreply.github.com> Date: Wed, 20 Nov 2024 17:34:44 +0100 Subject: [PATCH 032/159] DOC fix typo in cyclical feature engineering example (#30314) --- examples/applications/plot_cyclical_feature_engineering.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/examples/applications/plot_cyclical_feature_engineering.py b/examples/applications/plot_cyclical_feature_engineering.py index f7c561da48f8b..253316d7dd4fd 100644 --- a/examples/applications/plot_cyclical_feature_engineering.py +++ b/examples/applications/plot_cyclical_feature_engineering.py @@ -198,7 +198,7 @@ # %% # -# Lets evaluate our gradient boosting model with the mean absolute error of the +# Let's evaluate our gradient boosting model with the mean absolute error of the # relative demand averaged across our 5 time-based cross-validation splits: import numpy as np From 6ab2c8deaf74f81b979ce548da19ddb6588ace8a Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Lo=C3=AFc=20Est=C3=A8ve?= Date: Wed, 20 Nov 2024 19:53:45 +0100 Subject: [PATCH 033/159] CI Use conda for free threaded build (#30312) --- .github/workflows/update-lock-files.yml | 3 + azure-pipelines.yml | 6 +- .../azure/cpython_free_threaded_lock.txt | 35 ----------- .../cpython_free_threaded_requirements.txt | 14 ----- build_tools/azure/install.sh | 40 +++++-------- .../pylatest_free_threaded_environment.yml | 16 +++++ ...pylatest_free_threaded_linux-64_conda.lock | 58 +++++++++++++++++++ build_tools/shared.sh | 2 +- .../update_environments_and_lock_files.py | 25 ++++++++ 9 files changed, 119 insertions(+), 80 deletions(-) delete mode 100644 build_tools/azure/cpython_free_threaded_lock.txt delete mode 100644 build_tools/azure/cpython_free_threaded_requirements.txt create mode 100644 build_tools/azure/pylatest_free_threaded_environment.yml create mode 100644 build_tools/azure/pylatest_free_threaded_linux-64_conda.lock diff --git a/.github/workflows/update-lock-files.yml b/.github/workflows/update-lock-files.yml index 656f608f4814a..0b8fdd0aed322 100644 --- a/.github/workflows/update-lock-files.yml +++ b/.github/workflows/update-lock-files.yml @@ -22,6 +22,9 @@ jobs: - name: scipy-dev update_script_args: "--select-tag scipy-dev" additional_commit_message: "[scipy-dev]" + - name: free-threaded + update_script_args: "--select-tag free-threaded" + additional_commit_message: "[free-threaded]" - name: cirrus-arm update_script_args: "--select-tag arm" additional_commit_message: "[cirrus arm]" diff --git a/azure-pipelines.yml b/azure-pipelines.yml index fc4010e95176e..c5ad86bf0caa8 100644 --- a/azure-pipelines.yml +++ b/azure-pipelines.yml @@ -83,10 +83,10 @@ jobs: ) ) matrix: - pylatest_pip_free_threaded: + pylatest_free_threaded: PYTHON_GIL: '0' - DISTRIB: 'pip-free-threaded' - LOCK_FILE: './build_tools/azure/cpython_free_threaded_lock.txt' + DISTRIB: 'conda-free-threaded' + LOCK_FILE: './build_tools/azure/pylatest_free_threaded_linux-64_conda.lock' COVERAGE: 'false' - job: Linux_Nightly_Pyodide diff --git a/build_tools/azure/cpython_free_threaded_lock.txt b/build_tools/azure/cpython_free_threaded_lock.txt deleted file mode 100644 index 91b5021b05b4b..0000000000000 --- a/build_tools/azure/cpython_free_threaded_lock.txt +++ /dev/null @@ -1,35 +0,0 @@ -# -# This file is autogenerated by pip-compile with Python 3.13 -# by the following command: -# -# pip-compile --output-file=/scikit-learn/build_tools/azure/cpython_free_threaded_lock.txt /scikit-learn/build_tools/azure/cpython_free_threaded_requirements.txt -# -execnet==2.1.1 - # via pytest-xdist -iniconfig==2.0.0 - # via pytest -joblib==1.4.2 - # via -r /scikit-learn/build_tools/azure/cpython_free_threaded_requirements.txt -meson==1.4.1 - # via meson-python -meson-python==0.16.0 - # via -r /scikit-learn/build_tools/azure/cpython_free_threaded_requirements.txt -ninja==1.11.1.1 - # via -r /scikit-learn/build_tools/azure/cpython_free_threaded_requirements.txt -packaging==24.0 - # via - # meson-python - # pyproject-metadata - # pytest -pluggy==1.5.0 - # via pytest -pyproject-metadata==0.8.0 - # via meson-python -pytest==8.2.2 - # via - # -r /scikit-learn/build_tools/azure/cpython_free_threaded_requirements.txt - # pytest-xdist -pytest-xdist==3.6.1 - # via -r /scikit-learn/build_tools/azure/cpython_free_threaded_requirements.txt -threadpoolctl==3.5.0 - # via -r /scikit-learn/build_tools/azure/cpython_free_threaded_requirements.txt diff --git a/build_tools/azure/cpython_free_threaded_requirements.txt b/build_tools/azure/cpython_free_threaded_requirements.txt deleted file mode 100644 index bdcb169bac3ae..0000000000000 --- a/build_tools/azure/cpython_free_threaded_requirements.txt +++ /dev/null @@ -1,14 +0,0 @@ -# To generate cpython_free_threaded_lock.txt, use the following command: -# docker run -v $PWD:/scikit-learn -it ubuntu bash -c 'export DEBIAN_FRONTEND=noninteractive; apt-get -yq update; apt-get install software-properties-common ccache -y; add-apt-repository --yes ppa:deadsnakes/nightly; apt-get update -y; apt-get install -y --no-install-recommends python3.13-dev python3.13-venv python3.13-nogil; python3.13t -m venv /venvs/myenv; source /venvs/myenv/bin/activate; pip install pip-tools; pip-compile /scikit-learn/build_tools/azure/cpython_free_threaded_requirements.txt -o /scikit-learn/build_tools/azure/cpython_free_threaded_lock.txt' - -# The reason behind it is that you need python-3.13t to generate the pip lock -# file. For pure Python wheel this does not really matter. But when there are -# cython, numpy and scipy releases that have a CPython 3.13 free-threaded -# wheel, we can add them here and this is important that the Python 3.13 -# free-threaded wheel is picked up in the lock-file -joblib -threadpoolctl -pytest -pytest-xdist -ninja -meson-python diff --git a/build_tools/azure/install.sh b/build_tools/azure/install.sh index 315c9a4e9d4a1..44fd9ebe64d5a 100755 --- a/build_tools/azure/install.sh +++ b/build_tools/azure/install.sh @@ -41,17 +41,6 @@ pre_python_environment_install() { apt-get install -y python3-dev python3-numpy python3-scipy \ python3-matplotlib libopenblas-dev \ python3-virtualenv python3-pandas ccache git - - # TODO for now we use CPython 3.13 from Ubuntu deadsnakes PPA. When CPython - # 3.13 is released (scheduled October 2024) we can use something more - # similar to other conda+pip based builds - elif [[ "$DISTRIB" == "pip-free-threaded" ]]; then - sudo apt-get -yq update - sudo apt-get install -yq ccache - sudo apt-get install -yq software-properties-common - sudo add-apt-repository --yes ppa:deadsnakes/nightly - sudo apt-get update -yq - sudo apt-get install -yq --no-install-recommends python3.13-dev python3.13-venv python3.13-nogil fi } @@ -68,30 +57,27 @@ check_packages_dev_version() { python_environment_install_and_activate() { if [[ "$DISTRIB" == "conda"* ]]; then create_conda_environment_from_lock_file $VIRTUALENV $LOCK_FILE - source activate $VIRTUALENV + activate_environment elif [[ "$DISTRIB" == "ubuntu" || "$DISTRIB" == "debian-32" ]]; then python3 -m virtualenv --system-site-packages --python=python3 $VIRTUALENV - source $VIRTUALENV/bin/activate + activate_environment pip install -r "${LOCK_FILE}" - elif [[ "$DISTRIB" == "pip-free-threaded" ]]; then - python3.13t -m venv $VIRTUALENV - source $VIRTUALENV/bin/activate - pip install -r "${LOCK_FILE}" - # TODO you need pip>=24.1 to find free-threaded wheels. This may be - # removed when the underlying Ubuntu image has pip>=24.1. - pip install 'pip>=24.1' - # TODO When there are CPython 3.13 free-threaded wheels for numpy, - # scipy and cython move them to - # build_tools/azure/cpython_free_threaded_requirements.txt. For now we - # install them from scientific-python-nightly-wheels + fi + + # Install additional packages on top of the lock-file in specific cases + if [[ "$DISTRIB" == "conda-free-threaded" ]]; then + # TODO We install scipy and cython from + # scientific-python-nightly-wheels. When there are conda-forge packages + # for scipy and cython, we can update + # build_tools/update_environments_and_lock_files.py and remove the + # lines below dev_anaconda_url=https://pypi.anaconda.org/scientific-python-nightly-wheels/simple - dev_packages="numpy scipy Cython" + dev_packages="scipy Cython" pip install --pre --upgrade --timeout=60 --extra-index $dev_anaconda_url $dev_packages --only-binary :all: - fi - if [[ "$DISTRIB" == "conda-pip-scipy-dev" ]]; then + elif [[ "$DISTRIB" == "conda-pip-scipy-dev" ]]; then echo "Installing development dependency wheels" dev_anaconda_url=https://pypi.anaconda.org/scientific-python-nightly-wheels/simple dev_packages="numpy scipy pandas Cython" diff --git a/build_tools/azure/pylatest_free_threaded_environment.yml b/build_tools/azure/pylatest_free_threaded_environment.yml new file mode 100644 index 0000000000000..b947f31beb14a --- /dev/null +++ b/build_tools/azure/pylatest_free_threaded_environment.yml @@ -0,0 +1,16 @@ +# DO NOT EDIT: this file is generated from the specification found in the +# following script to centralize the configuration for CI builds: +# build_tools/update_environments_and_lock_files.py +channels: + - conda-forge +dependencies: + - python-freethreading + - numpy + - joblib + - threadpoolctl + - pytest + - pytest-xdist + - ninja + - meson-python + - ccache + - pip diff --git a/build_tools/azure/pylatest_free_threaded_linux-64_conda.lock b/build_tools/azure/pylatest_free_threaded_linux-64_conda.lock new file mode 100644 index 0000000000000..a1746aa39c1ce --- /dev/null +++ b/build_tools/azure/pylatest_free_threaded_linux-64_conda.lock @@ -0,0 +1,58 @@ +# Generated by conda-lock. +# platform: linux-64 +# input_hash: 8bf0c47c0d22842fa5a5531ad2ad62b4795b6b1cbf713816fa1101103a2e3dcc +@EXPLICIT +https://conda.anaconda.org/conda-forge/linux-64/_libgcc_mutex-0.1-conda_forge.tar.bz2#d7c89558ba9fa0495403155b64376d81 +https://conda.anaconda.org/conda-forge/linux-64/ca-certificates-2024.8.30-hbcca054_0.conda#c27d1c142233b5bc9ca570c6e2e0c244 +https://conda.anaconda.org/conda-forge/linux-64/python_abi-3.13-5_cp313t.conda#ea4c21b96e8280414d9e243da0ec3201 +https://conda.anaconda.org/conda-forge/noarch/tzdata-2024b-hc8b5060_0.conda#8ac3367aafb1cc0a068483c580af8015 +https://conda.anaconda.org/conda-forge/linux-64/ld_impl_linux-64-2.43-h712a8e2_2.conda#048b02e3962f066da18efe3a21b77672 +https://conda.anaconda.org/conda-forge/linux-64/libgomp-14.2.0-h77fa898_1.conda#cc3573974587f12dda90d96e3e55a702 +https://conda.anaconda.org/conda-forge/linux-64/_openmp_mutex-4.5-2_gnu.tar.bz2#73aaf86a425cc6e73fcf236a5a46396d +https://conda.anaconda.org/conda-forge/linux-64/libgcc-14.2.0-h77fa898_1.conda#3cb76c3f10d3bc7f1105b2fc9db984df +https://conda.anaconda.org/conda-forge/linux-64/libexpat-2.6.4-h5888daf_0.conda#db833e03127376d461e1e13e76f09b6c +https://conda.anaconda.org/conda-forge/linux-64/libgcc-ng-14.2.0-h69a702a_1.conda#e39480b9ca41323497b05492a63bc35b +https://conda.anaconda.org/conda-forge/linux-64/libgfortran5-14.2.0-hd5240d6_1.conda#9822b874ea29af082e5d36098d25427d +https://conda.anaconda.org/conda-forge/linux-64/libstdcxx-14.2.0-hc0a3c3a_1.conda#234a5554c53625688d51062645337328 +https://conda.anaconda.org/conda-forge/linux-64/libzlib-1.3.1-hb9d3cd8_2.conda#edb0dca6bc32e4f4789199455a1dbeb8 +https://conda.anaconda.org/conda-forge/linux-64/openssl-3.4.0-hb9d3cd8_0.conda#23cc74f77eb99315c0360ec3533147a9 +https://conda.anaconda.org/conda-forge/linux-64/bzip2-1.0.8-h4bc722e_7.conda#62ee74e96c5ebb0af99386de58cf9553 +https://conda.anaconda.org/conda-forge/linux-64/libffi-3.4.2-h7f98852_5.tar.bz2#d645c6d2ac96843a2bfaccd2d62b3ac3 +https://conda.anaconda.org/conda-forge/linux-64/libgfortran-14.2.0-h69a702a_1.conda#f1fd30127802683586f768875127a987 +https://conda.anaconda.org/conda-forge/linux-64/libmpdec-4.0.0-h4bc722e_0.conda#aeb98fdeb2e8f25d43ef71fbacbeec80 +https://conda.anaconda.org/conda-forge/linux-64/libsqlite-3.47.0-hadc24fc_1.conda#b6f02b52a174e612e89548f4663ce56a +https://conda.anaconda.org/conda-forge/linux-64/libstdcxx-ng-14.2.0-h4852527_1.conda#8371ac6457591af2cf6159439c1fd051 +https://conda.anaconda.org/conda-forge/linux-64/libuuid-2.38.1-h0b41bf4_0.conda#40b61aab5c7ba9ff276c41cfffe6b80b +https://conda.anaconda.org/conda-forge/linux-64/ncurses-6.5-he02047a_1.conda#70caf8bb6cf39a0b6b7efc885f51c0fe +https://conda.anaconda.org/conda-forge/linux-64/tk-8.6.13-noxft_h4845f30_101.conda#d453b98d9c83e71da0741bb0ff4d76bc +https://conda.anaconda.org/conda-forge/linux-64/xz-5.2.6-h166bdaf_0.tar.bz2#2161070d867d1b1204ea749c8eec4ef0 +https://conda.anaconda.org/conda-forge/linux-64/libgfortran-ng-14.2.0-h69a702a_1.conda#0a7f4cd238267c88e5d69f7826a407eb +https://conda.anaconda.org/conda-forge/linux-64/libopenblas-0.3.28-pthreads_h94d23a6_1.conda#62857b389e42b36b686331bec0922050 +https://conda.anaconda.org/conda-forge/linux-64/ninja-1.12.1-h297d8ca_0.conda#3aa1c7e292afeff25a0091ddd7c69b72 +https://conda.anaconda.org/conda-forge/linux-64/readline-8.2-h8228510_1.conda#47d31b792659ce70f470b5c82fdfb7a4 +https://conda.anaconda.org/conda-forge/linux-64/zstd-1.5.6-ha6fb4c9_0.conda#4d056880988120e29d75bfff282e0f45 +https://conda.anaconda.org/conda-forge/linux-64/libblas-3.9.0-25_linux64_openblas.conda#8ea26d42ca88ec5258802715fe1ee10b +https://conda.anaconda.org/conda-forge/linux-64/libhiredis-1.0.2-h2cc385e_0.tar.bz2#b34907d3a81a3cd8095ee83d174c074a +https://conda.anaconda.org/conda-forge/linux-64/python-3.13.0-h6355ac2_0_cp313t.conda#10b52576e09161c4e744cbd95d35e648 +https://conda.anaconda.org/conda-forge/linux-64/ccache-4.10.1-h065aff2_0.conda#d6b48c138e0c8170a6fe9c136e063540 +https://conda.anaconda.org/conda-forge/noarch/colorama-0.4.6-pyhd8ed1ab_0.tar.bz2#3faab06a954c2a04039983f2c4a50d99 +https://conda.anaconda.org/conda-forge/noarch/cpython-3.13.0-py313hd8ed1ab_0.conda#efdede3c85221d80346fadb903a97bf6 +https://conda.anaconda.org/conda-forge/noarch/exceptiongroup-1.2.2-pyhd8ed1ab_0.conda#d02ae936e42063ca46af6cdad2dbd1e0 +https://conda.anaconda.org/conda-forge/noarch/execnet-2.1.1-pyhd8ed1ab_0.conda#15dda3cdbf330abfe9f555d22f66db46 +https://conda.anaconda.org/conda-forge/noarch/iniconfig-2.0.0-pyhd8ed1ab_0.conda#f800d2da156d08e289b14e87e43c1ae5 +https://conda.anaconda.org/conda-forge/linux-64/libcblas-3.9.0-25_linux64_openblas.conda#5dbd1b0fc0d01ec5e0e1fbe667281a11 +https://conda.anaconda.org/conda-forge/linux-64/liblapack-3.9.0-25_linux64_openblas.conda#4dc03a53fc69371a6158d0ed37214cd3 +https://conda.anaconda.org/conda-forge/noarch/packaging-24.2-pyhff2d567_1.conda#8508b703977f4c4ada34d657d051972c +https://conda.anaconda.org/conda-forge/noarch/pip-24.3.1-pyh145f28c_0.conda#ca3afe2d7b893a8c8cdf489d30a2b1a3 +https://conda.anaconda.org/conda-forge/noarch/pluggy-1.5.0-pyhd8ed1ab_0.conda#d3483c8fc2dc2cc3f5cf43e26d60cabf +https://conda.anaconda.org/conda-forge/noarch/setuptools-75.5.0-pyhff2d567_0.conda#ade63405adb52eeff89d506cd55908c0 +https://conda.anaconda.org/conda-forge/noarch/threadpoolctl-3.5.0-pyhc1e730c_0.conda#df68d78237980a159bd7149f33c0e8fd +https://conda.anaconda.org/conda-forge/noarch/tomli-2.1.0-pyhff2d567_0.conda#3fa1089b4722df3a900135925f4519d9 +https://conda.anaconda.org/conda-forge/noarch/joblib-1.4.2-pyhd8ed1ab_0.conda#25df261d4523d9f9783bcdb7208d872f +https://conda.anaconda.org/conda-forge/noarch/meson-1.6.0-pyhd8ed1ab_0.conda#380ba6a3eddd8e7649bfe8e6812611aa +https://conda.anaconda.org/conda-forge/linux-64/numpy-2.1.3-py313hb01392b_0.conda#edd0335b8d3c81f0a91aa68cb8749929 +https://conda.anaconda.org/conda-forge/noarch/pyproject-metadata-0.9.0-pyh2cfa8aa_0.conda#10906a130eeb4a68645bf97c28333141 +https://conda.anaconda.org/conda-forge/noarch/pytest-8.3.3-pyhd8ed1ab_0.conda#c03d61f31f38fdb9facf70c29958bf7a +https://conda.anaconda.org/conda-forge/noarch/python-freethreading-3.13.0-h92d6c8b_0.conda#4c3f45e4597606f5b0e2770743bbcd7e +https://conda.anaconda.org/conda-forge/noarch/meson-python-0.17.1-pyh70fd9c4_0.conda#722b649da38842068d83b6e6770f11a1 +https://conda.anaconda.org/conda-forge/noarch/pytest-xdist-3.6.1-pyhd8ed1ab_0.conda#b39568655c127a9c4a44d178ac99b6d0 diff --git a/build_tools/shared.sh b/build_tools/shared.sh index cb5242239d7cf..b4e56556be749 100644 --- a/build_tools/shared.sh +++ b/build_tools/shared.sh @@ -29,7 +29,7 @@ show_installed_libraries(){ activate_environment() { if [[ "$DISTRIB" =~ ^conda.* ]]; then source activate $VIRTUALENV - elif [[ "$DISTRIB" == "ubuntu" || "$DISTRIB" == "debian-32" || "$DISTRIB" == "pip-free-threaded" ]]; then + elif [[ "$DISTRIB" == "ubuntu" || "$DISTRIB" == "debian-32" ]]; then source $VIRTUALENV/bin/activate fi } diff --git a/build_tools/update_environments_and_lock_files.py b/build_tools/update_environments_and_lock_files.py index 03fae3c0f99ae..97ac445e0e425 100644 --- a/build_tools/update_environments_and_lock_files.py +++ b/build_tools/update_environments_and_lock_files.py @@ -266,6 +266,31 @@ def remove_from(alist, to_remove): + ["python-dateutil"] ), }, + { + "name": "pylatest_free_threaded", + "type": "conda", + "tag": "free-threaded", + "folder": "build_tools/azure", + "platform": "linux-64", + "channels": ["conda-forge"], + "conda_dependencies": [ + "python-freethreading", + "numpy", + # TODO add cython and scipy when there are conda-forge packages for + # them and remove dev version install in + # build_tools/azure/install.sh. Note that for now conda-lock does + # not deal with free-threaded wheels correctly, see + # https://github.com/conda/conda-lock/issues/754. + "joblib", + "threadpoolctl", + "pytest", + "pytest-xdist", + "ninja", + "meson-python", + "ccache", + "pip", + ], + }, { "name": "pymin_conda_forge_mkl", "type": "conda", From 4eb215cdebe9c17a405ba0edb913c77c297866a5 Mon Sep 17 00:00:00 2001 From: Lucy Liu Date: Thu, 21 Nov 2024 20:34:39 +1100 Subject: [PATCH 034/159] DOC CI Add option of matching regex to `assert_docstring_consistency` (#29867) --- sklearn/metrics/_classification.py | 8 ++-- sklearn/tests/test_docstring_parameters.py | 49 +++++++++++++++++----- sklearn/utils/_testing.py | 49 ++++++++++++++++++---- sklearn/utils/tests/test_testing.py | 38 +++++++++++++++++ 4 files changed, 121 insertions(+), 23 deletions(-) diff --git a/sklearn/metrics/_classification.py b/sklearn/metrics/_classification.py index e93241a1ec137..e9f90ae4fefec 100644 --- a/sklearn/metrics/_classification.py +++ b/sklearn/metrics/_classification.py @@ -1191,7 +1191,7 @@ def f1_score( average : {'micro', 'macro', 'samples', 'weighted', 'binary'} or None, \ default='binary' This parameter is required for multiclass/multilabel targets. - If ``None``, the scores for each class are returned. Otherwise, this + If ``None``, the metrics for each class are returned. Otherwise, this determines the type of averaging performed on the data: ``'binary'``: @@ -1394,7 +1394,7 @@ def fbeta_score( average : {'micro', 'macro', 'samples', 'weighted', 'binary'} or None, \ default='binary' This parameter is required for multiclass/multilabel targets. - If ``None``, the scores for each class are returned. Otherwise, this + If ``None``, the metrics for each class are returned. Otherwise, this determines the type of averaging performed on the data: ``'binary'``: @@ -2116,7 +2116,7 @@ def precision_score( average : {'micro', 'macro', 'samples', 'weighted', 'binary'} or None, \ default='binary' This parameter is required for multiclass/multilabel targets. - If ``None``, the scores for each class are returned. Otherwise, this + If ``None``, the metrics for each class are returned. Otherwise, this determines the type of averaging performed on the data: ``'binary'``: @@ -2295,7 +2295,7 @@ def recall_score( average : {'micro', 'macro', 'samples', 'weighted', 'binary'} or None, \ default='binary' This parameter is required for multiclass/multilabel targets. - If ``None``, the scores for each class are returned. Otherwise, this + If ``None``, the metrics for each class are returned. Otherwise, this determines the type of averaging performed on the data: ``'binary'``: diff --git a/sklearn/tests/test_docstring_parameters.py b/sklearn/tests/test_docstring_parameters.py index f3a6ba999f7f6..4fc7d0f3d7009 100644 --- a/sklearn/tests/test_docstring_parameters.py +++ b/sklearn/tests/test_docstring_parameters.py @@ -327,21 +327,50 @@ def _get_all_fitted_attributes(estimator): @skip_if_no_numpydoc def test_precision_recall_f_score_docstring_consistency(): """Check docstrings parameters of related metrics are consistent.""" + metrics_to_check = [ + metrics.precision_recall_fscore_support, + metrics.f1_score, + metrics.fbeta_score, + metrics.precision_score, + metrics.recall_score, + ] assert_docstring_consistency( - [ - metrics.precision_recall_fscore_support, - metrics.f1_score, - metrics.fbeta_score, - metrics.precision_score, - metrics.recall_score, - ], + metrics_to_check, include_params=True, - # "average" - in `recall_score` we have an additional line: 'Weighted recall - # is equal to accuracy.'. # "zero_division" - the reason for zero division differs between f scores, - # precison and recall. + # precision and recall. exclude_params=["average", "zero_division"], ) + description_regex = ( + r"""This parameter is required for multiclass/multilabel targets\. + If ``None``, the metrics for each class are returned\. Otherwise, this + determines the type of averaging performed on the data: + ``'binary'``: + Only report results for the class specified by ``pos_label``\. + This is applicable only if targets \(``y_\{true,pred\}``\) are binary\. + ``'micro'``: + Calculate metrics globally by counting the total true positives, + false negatives and false positives\. + ``'macro'``: + Calculate metrics for each label, and find their unweighted + mean\. This does not take label imbalance into account\. + ``'weighted'``: + Calculate metrics for each label, and find their average weighted + by support \(the number of true instances for each label\)\. This + alters 'macro' to account for label imbalance; it can result in an + F-score that is not between precision and recall\.""" + + r"[\s\w]*\.*" # optionally match additonal sentence + + r""" + ``'samples'``: + Calculate metrics for each instance, and find their average \(only + meaningful for multilabel classification where this differs from + :func:`accuracy_score`\)\.""" + ) + assert_docstring_consistency( + metrics_to_check, + include_params=["average"], + descr_regex_pattern=" ".join(description_regex.split()), + ) @skip_if_no_numpydoc diff --git a/sklearn/utils/_testing.py b/sklearn/utils/_testing.py index 91efe88eeb354..ba8901e4b9050 100644 --- a/sklearn/utils/_testing.py +++ b/sklearn/utils/_testing.py @@ -687,17 +687,32 @@ def _get_diff_msg(docstrings_grouped): return msg_diff -def _check_consistency_items(items_docs, type_or_desc, section, n_objects): +def _check_consistency_items( + items_docs, type_or_desc, section, n_objects, descr_regex_pattern="" +): """Helper to check docstring consistency of all `items_docs`. If item is not present in all objects, checking is skipped and warning raised. + If `regex` provided, match descriptions to all descriptions. """ skipped = [] for item_name, docstrings_grouped in items_docs.items(): # If item not found in all objects, skip if sum([len(objs) for objs in docstrings_grouped.values()]) < n_objects: skipped.append(item_name) - # If more than one key, docstrings not consistent between objects + # If regex provided, match to all descriptions + elif type_or_desc == "description" and descr_regex_pattern: + not_matched = [] + for docstring, group in docstrings_grouped.items(): + if not re.search(descr_regex_pattern, docstring): + not_matched.extend(group) + if not_matched: + msg = textwrap.fill( + f"The description of {section[:-1]} '{item_name}' in {not_matched}" + f" does not match 'descr_regex_pattern': {descr_regex_pattern} " + ) + raise AssertionError(msg) + # Otherwise, if more than one key, docstrings not consistent between objects elif len(docstrings_grouped.keys()) > 1: msg_diff = _get_diff_msg(docstrings_grouped) obj_groups = " and ".join( @@ -724,8 +739,9 @@ def assert_docstring_consistency( exclude_attrs=None, include_returns=False, exclude_returns=None, + descr_regex_pattern=None, ): - """Check consistency between docstring parameters/attributes/returns of objects. + r"""Check consistency between docstring parameters/attributes/returns of objects. Checks if parameters/attributes/returns have the same type specification and description (ignoring whitespace) across `objects`. Intended to be used for @@ -767,18 +783,27 @@ def assert_docstring_consistency( List of returns to be excluded. If None, no returns are excluded. Can only be set if `include_returns` is True. + descr_regex_pattern : str, default=None + Regular expression to match to all descriptions of included + parameters/attributes/returns. If None, will revert to default behavior + of comparing descriptions between objects. + Examples -------- - >>> from sklearn.metrics import (mean_absolute_error, mean_squared_error, - ... median_absolute_error) - >>> from sklearn.utils.testing import assert_docstring_consistency + >>> from sklearn.metrics import (accuracy_score, classification_report, + ... mean_absolute_error, mean_squared_error, median_absolute_error) + >>> from sklearn.utils._testing import assert_docstring_consistency ... # doctest: +SKIP >>> assert_docstring_consistency([mean_absolute_error, mean_squared_error], ... include_params=['y_true', 'y_pred', 'sample_weight']) # doctest: +SKIP >>> assert_docstring_consistency([median_absolute_error, mean_squared_error], ... include_params=True) # doctest: +SKIP + >>> assert_docstring_consistency([accuracy_score, classification_report], + ... include_params=["y_true"], + ... descr_regex_pattern=r"Ground truth \(correct\) (labels|target values)") + ... # doctest: +SKIP """ - from numpydoc import docscrape + from numpydoc.docscrape import NumpyDocString Args = namedtuple("args", ["include", "exclude", "arg_name"]) @@ -805,7 +830,7 @@ def _create_args(include, exclude, arg_name, section_name): or inspect.isfunction(obj) or inspect.isclass(obj) ): - objects_doc[obj.__name__] = docscrape.NumpyDocString(inspect.getdoc(obj)) + objects_doc[obj.__name__] = NumpyDocString(inspect.getdoc(obj)) else: raise TypeError( "All 'objects' must be one of: function, class or descriptor, " @@ -827,7 +852,13 @@ def _create_args(include, exclude, arg_name, section_name): desc_items[item_name][desc].append(obj_name) _check_consistency_items(type_items, "type specification", section, n_objects) - _check_consistency_items(desc_items, "description", section, n_objects) + _check_consistency_items( + desc_items, + "description", + section, + n_objects, + descr_regex_pattern=descr_regex_pattern, + ) def assert_run_python_script_without_output(source_code, pattern=".+", timeout=60): diff --git a/sklearn/utils/tests/test_testing.py b/sklearn/utils/tests/test_testing.py index bc13019dab550..ecc74ecaae7c4 100644 --- a/sklearn/utils/tests/test_testing.py +++ b/sklearn/utils/tests/test_testing.py @@ -782,6 +782,44 @@ def test_assert_docstring_consistency_error_msg(): assert_docstring_consistency([f_four, f_five, f_six], include_params=True) +@skip_if_no_numpydoc +def test_assert_docstring_consistency_descr_regex_pattern(): + """Check `assert_docstring_consistency` `descr_regex_pattern` works.""" + # Check regex that matches full parameter descriptions + regex_full = ( + r"The (set|group) " # match 'set' or 'group' + + r"of labels to (include|add) " # match 'include' or 'add' + + r"when `average \!\= 'binary'`, and (their|the) " # match 'their' or 'the' + + r"order if `average is None`\." + + r"[\s\w]*\.* " # optionally match additonal sentence + + r"Labels present (on|in) " # match 'on' or 'in' + + r"(them|the) " # match 'them' or 'the' + + r"datas? can be excluded\." # match 'data' or 'datas' + ) + + assert_docstring_consistency( + [f_four, f_five, f_six], + include_params=True, + descr_regex_pattern=" ".join(regex_full.split()), + ) + # Check we can just match a few alternate words + regex_words = r"(labels|average|binary)" # match any of these 3 words + assert_docstring_consistency( + [f_four, f_five, f_six], + include_params=True, + descr_regex_pattern=" ".join(regex_words.split()), + ) + # Check error raised when regex doesn't match + regex_error = r"The set of labels to include when.+" + msg = r"The description of Parameter 'labels' in \['f_six'\] does not match" + with pytest.raises(AssertionError, match=msg): + assert_docstring_consistency( + [f_four, f_five, f_six], + include_params=True, + descr_regex_pattern=" ".join(regex_error.split()), + ) + + class RegistrationCounter: def __init__(self): self.nb_calls = 0 From 1b2d6e99f4b93635455dc1adb08306d566764af3 Mon Sep 17 00:00:00 2001 From: fabianhenning <35563234+fabianhenning@users.noreply.github.com> Date: Thu, 21 Nov 2024 12:20:31 +0100 Subject: [PATCH 035/159] Fix typo in cross_validation.rst (#30317) --- doc/modules/cross_validation.rst | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/doc/modules/cross_validation.rst b/doc/modules/cross_validation.rst index 766ab712d72d9..3d06554be5815 100644 --- a/doc/modules/cross_validation.rst +++ b/doc/modules/cross_validation.rst @@ -608,7 +608,7 @@ samples that are part of the validation set, and to -1 for all other samples. Cross-validation iterators for grouped data ------------------------------------------- -The i.i.d. assumption is broken if the underlying generative process yield +The i.i.d. assumption is broken if the underlying generative process yields groups of dependent samples. Such a grouping of data is domain specific. An example would be when there is From f9116782f06fe884a7769d012e8f664c1d62bfd2 Mon Sep 17 00:00:00 2001 From: Lucy Liu Date: Thu, 21 Nov 2024 23:53:04 +1100 Subject: [PATCH 036/159] DOC Fix typo in `RidgeCV` (#30320) --- sklearn/linear_model/_ridge.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/sklearn/linear_model/_ridge.py b/sklearn/linear_model/_ridge.py index 0ca549b7e1523..e0a614129053a 100644 --- a/sklearn/linear_model/_ridge.py +++ b/sklearn/linear_model/_ridge.py @@ -2595,7 +2595,7 @@ class RidgeCV(MultiOutputMixin, RegressorMixin, _BaseRidgeCV): store_cv_results : bool, default=False Flag indicating if the cross-validation values corresponding to - each alpha should be stored in the ``cv_values_`` attribute (see + each alpha should be stored in the ``cv_results_`` attribute (see below). This flag is only compatible with ``cv=None`` (i.e. using Leave-One-Out Cross-Validation). From 1d1645c942776befc52aa548e88bdf14714ee9e2 Mon Sep 17 00:00:00 2001 From: Guillaume Lemaitre Date: Thu, 21 Nov 2024 22:21:37 +0100 Subject: [PATCH 037/159] MAINT resize plotly figure to take right-hand sidebar into account (#30297) --- doc/conf.py | 1 + doc/js/scripts/sg_plotly_resize.js | 14 ++++++++++++++ 2 files changed, 15 insertions(+) create mode 100644 doc/js/scripts/sg_plotly_resize.js diff --git a/doc/conf.py b/doc/conf.py index 98e36f4fe36de..4a5d2a6ec9c6b 100644 --- a/doc/conf.py +++ b/doc/conf.py @@ -346,6 +346,7 @@ html_js_files = [ "scripts/dropdown.js", "scripts/version-switcher.js", + "scripts/sg_plotly_resize.js", ] # Compile scss files into css files using sphinxcontrib-sass diff --git a/doc/js/scripts/sg_plotly_resize.js b/doc/js/scripts/sg_plotly_resize.js new file mode 100644 index 0000000000000..72ccb5dd50838 --- /dev/null +++ b/doc/js/scripts/sg_plotly_resize.js @@ -0,0 +1,14 @@ +// Related to https://github.com/scikit-learn/scikit-learn/issues/30279 +// There an interaction between plotly and bootstrap/pydata-sphinx-theme +// that causes plotly figures to not detect the right-hand sidebar width + +function resizePlotlyGraphs() { + const plotlyDivs = document.getElementsByClassName("plotly-graph-div"); + + for (const div of plotlyDivs) { + Plotly.Plots.resize(div); + } +} + +window.addEventListener("resize", resizePlotlyGraphs); +document.addEventListener("DOMContentLoaded", resizePlotlyGraphs); From 0f334d43bdea946baa4258dfffbf199fd93db670 Mon Sep 17 00:00:00 2001 From: antoinebaker Date: Fri, 22 Nov 2024 18:05:45 +0100 Subject: [PATCH 038/159] Check sample weight equivalence on sparse data (#30137) Co-authored-by: Olivier Grisel --- .../sklearn.utils/29818.api.rst | 9 +- .../sklearn.utils/30137.api.rst | 7 + .../utils/_test_common/instance_generator.py | 244 ++++++++++++++---- sklearn/utils/estimator_checks.py | 41 ++- 4 files changed, 235 insertions(+), 66 deletions(-) create mode 100644 doc/whats_new/upcoming_changes/sklearn.utils/30137.api.rst diff --git a/doc/whats_new/upcoming_changes/sklearn.utils/29818.api.rst b/doc/whats_new/upcoming_changes/sklearn.utils/29818.api.rst index df30e3af6ee6e..e7a92f8c49b1e 100644 --- a/doc/whats_new/upcoming_changes/sklearn.utils/29818.api.rst +++ b/doc/whats_new/upcoming_changes/sklearn.utils/29818.api.rst @@ -1,4 +1,7 @@ -- :func:`check_estimators.check_sample_weights_invariance` replaced by - :func:`check_estimators.check_sample_weight_equivalence` which uses - integer (including zero) weights. +- `utils.estimator_checks.check_sample_weights_invariance` + replaced by + `utils.estimator_checks.check_sample_weight_equivalence_on_dense_data` + which uses integer (including zero) weights and + `utils.estimator_checks.check_sample_weight_equivalence_on_sparse_data` + which does the same on sparse data. By :user:`Antoine Baker ` diff --git a/doc/whats_new/upcoming_changes/sklearn.utils/30137.api.rst b/doc/whats_new/upcoming_changes/sklearn.utils/30137.api.rst new file mode 100644 index 0000000000000..e7a92f8c49b1e --- /dev/null +++ b/doc/whats_new/upcoming_changes/sklearn.utils/30137.api.rst @@ -0,0 +1,7 @@ +- `utils.estimator_checks.check_sample_weights_invariance` + replaced by + `utils.estimator_checks.check_sample_weight_equivalence_on_dense_data` + which uses integer (including zero) weights and + `utils.estimator_checks.check_sample_weight_equivalence_on_sparse_data` + which does the same on sparse data. + By :user:`Antoine Baker ` diff --git a/sklearn/utils/_test_common/instance_generator.py b/sklearn/utils/_test_common/instance_generator.py index e74afd28a0dc3..49422947a0fe7 100644 --- a/sklearn/utils/_test_common/instance_generator.py +++ b/sklearn/utils/_test_common/instance_generator.py @@ -506,19 +506,30 @@ BisectingKMeans: {"check_dict_unchanged": dict(max_iter=5, n_clusters=1, n_init=2)}, CCA: {"check_dict_unchanged": dict(max_iter=5, n_components=1)}, DecisionTreeRegressor: { - "check_sample_weight_equivalence": [ + "check_sample_weight_equivalence_on_dense_data": [ dict(criterion="squared_error"), dict(criterion="absolute_error"), dict(criterion="friedman_mse"), dict(criterion="poisson"), - ] + ], + "check_sample_weight_equivalence_on_sparse_data": [ + dict(criterion="squared_error"), + dict(criterion="absolute_error"), + dict(criterion="friedman_mse"), + dict(criterion="poisson"), + ], }, DecisionTreeClassifier: { - "check_sample_weight_equivalence": [ + "check_sample_weight_equivalence_on_dense_data": [ dict(criterion="gini"), dict(criterion="log_loss"), dict(criterion="entropy"), - ] + ], + "check_sample_weight_equivalence_on_sparse_data": [ + dict(criterion="gini"), + dict(criterion="log_loss"), + dict(criterion="entropy"), + ], }, DictionaryLearning: { "check_dict_unchanged": dict( @@ -529,10 +540,10 @@ FastICA: {"check_dict_unchanged": dict(max_iter=5, n_components=1)}, FeatureAgglomeration: {"check_dict_unchanged": dict(n_clusters=1)}, GammaRegressor: { - "check_sample_weight_equivalence": [ + "check_sample_weight_equivalence_on_dense_data": [ dict(solver="newton-cholesky"), dict(solver="lbfgs"), - ] + ], }, GaussianMixture: {"check_dict_unchanged": dict(max_iter=5, n_init=2)}, GaussianRandomProjection: {"check_dict_unchanged": dict(n_components=1)}, @@ -547,12 +558,15 @@ LinearDiscriminantAnalysis: {"check_dict_unchanged": dict(n_components=1)}, LocallyLinearEmbedding: {"check_dict_unchanged": dict(max_iter=5, n_components=1)}, LogisticRegression: { - "check_sample_weight_equivalence": [ + "check_sample_weight_equivalence_on_dense_data": [ dict(solver="lbfgs"), dict(solver="liblinear"), dict(solver="newton-cg"), dict(solver="newton-cholesky"), - ] + ], + "check_sample_weight_equivalence_on_sparse_data": [ + dict(solver="liblinear"), + ], }, MDS: {"check_dict_unchanged": dict(max_iter=5, n_components=1, n_init=2)}, MiniBatchDictionaryLearning: { @@ -579,38 +593,45 @@ PLSRegression: {"check_dict_unchanged": dict(max_iter=5, n_components=1)}, PLSSVD: {"check_dict_unchanged": dict(n_components=1)}, PoissonRegressor: { - "check_sample_weight_equivalence": [ + "check_sample_weight_equivalence_on_dense_data": [ dict(solver="newton-cholesky"), dict(solver="lbfgs"), - ] + ], }, PolynomialCountSketch: {"check_dict_unchanged": dict(n_components=1)}, QuantileRegressor: { - "check_sample_weight_equivalence": [ + "check_sample_weight_equivalence_on_dense_data": [ dict(quantile=0.5), dict(quantile=0.75), dict(solver="highs-ds"), dict(solver="highs-ipm"), - ] + ], }, RBFSampler: {"check_dict_unchanged": dict(n_components=1)}, Ridge: { - "check_sample_weight_equivalence": [ + "check_sample_weight_equivalence_on_dense_data": [ dict(solver="svd"), dict(solver="cholesky"), dict(solver="sparse_cg"), dict(solver="lsqr"), dict(solver="lbfgs", positive=True), - ] + ], + "check_sample_weight_equivalence_on_sparse_data": [ + dict(solver="sparse_cg"), + dict(solver="lsqr"), + ], }, RidgeClassifier: { - "check_sample_weight_equivalence": [ + "check_sample_weight_equivalence_on_dense_data": [ dict(solver="svd"), dict(solver="cholesky"), dict(solver="sparse_cg"), dict(solver="lsqr"), - dict(solver="lbfgs", positive=True), - ] + ], + "check_sample_weight_equivalence_on_sparse_data": [ + dict(solver="sparse_cg"), + dict(solver="lsqr"), + ], }, SkewedChi2Sampler: {"check_dict_unchanged": dict(n_components=1)}, SparsePCA: {"check_dict_unchanged": dict(max_iter=5, n_components=1)}, @@ -623,13 +644,22 @@ }, SpectralCoclustering: {"check_dict_unchanged": dict(n_clusters=1, n_init=2)}, SpectralEmbedding: {"check_dict_unchanged": dict(eigen_tol=1e-05, n_components=1)}, + StandardScaler: { + "check_sample_weight_equivalence_on_dense_data": [ + dict(with_mean=True), + dict(with_mean=False), + ], + "check_sample_weight_equivalence_on_sparse_data": [ + dict(with_mean=False), + ], + }, TSNE: {"check_dict_unchanged": dict(n_components=1, perplexity=2)}, TruncatedSVD: {"check_dict_unchanged": dict(n_components=1)}, TweedieRegressor: { - "check_sample_weight_equivalence": [ + "check_sample_weight_equivalence_on_dense_data": [ dict(solver="newton-cholesky"), dict(solver="lbfgs"), - ] + ], }, } @@ -741,31 +771,46 @@ def _yield_instances_for_check(check, estimator_orig): PER_ESTIMATOR_XFAIL_CHECKS = { AdaBoostClassifier: { # TODO: replace by a statistical test, see meta-issue #16298 - "check_sample_weight_equivalence": ( + "check_sample_weight_equivalence_on_dense_data": ( + "sample_weight is not equivalent to removing/repeating samples." + ), + "check_sample_weight_equivalence_on_sparse_data": ( "sample_weight is not equivalent to removing/repeating samples." ), }, AdaBoostRegressor: { # TODO: replace by a statistical test, see meta-issue #16298 - "check_sample_weight_equivalence": ( + "check_sample_weight_equivalence_on_dense_data": ( + "sample_weight is not equivalent to removing/repeating samples." + ), + "check_sample_weight_equivalence_on_sparse_data": ( "sample_weight is not equivalent to removing/repeating samples." ), }, BaggingClassifier: { # TODO: replace by a statistical test, see meta-issue #16298 - "check_sample_weight_equivalence": ( + "check_sample_weight_equivalence_on_dense_data": ( + "sample_weight is not equivalent to removing/repeating samples." + ), + "check_sample_weight_equivalence_on_sparse_data": ( "sample_weight is not equivalent to removing/repeating samples." ), }, BaggingRegressor: { # TODO: replace by a statistical test, see meta-issue #16298 - "check_sample_weight_equivalence": ( + "check_sample_weight_equivalence_on_dense_data": ( + "sample_weight is not equivalent to removing/repeating samples." + ), + "check_sample_weight_equivalence_on_sparse_data": ( "sample_weight is not equivalent to removing/repeating samples." ), }, BayesianRidge: { # TODO: fix sample_weight handling of this estimator, see meta-issue #16298 - "check_sample_weight_equivalence": ( + "check_sample_weight_equivalence_on_dense_data": ( + "sample_weight is not equivalent to removing/repeating samples." + ), + "check_sample_weight_equivalence_on_sparse_data": ( "sample_weight is not equivalent to removing/repeating samples." ), }, @@ -775,13 +820,19 @@ def _yield_instances_for_check(check, estimator_orig): }, BisectingKMeans: { # TODO: replace by a statistical test, see meta-issue #16298 - "check_sample_weight_equivalence": ( + "check_sample_weight_equivalence_on_dense_data": ( + "sample_weight is not equivalent to removing/repeating samples." + ), + "check_sample_weight_equivalence_on_sparse_data": ( "sample_weight is not equivalent to removing/repeating samples." ), }, CategoricalNB: { # TODO: fix sample_weight handling of this estimator, see meta-issue #16298 - "check_sample_weight_equivalence": ( + "check_sample_weight_equivalence_on_dense_data": ( + "sample_weight is not equivalent to removing/repeating samples." + ), + "check_sample_weight_equivalence_on_sparse_data": ( "sample_weight is not equivalent to removing/repeating samples." ), }, @@ -806,21 +857,30 @@ def _yield_instances_for_check(check, estimator_orig): }, FixedThresholdClassifier: { "check_classifiers_train": "Threshold at probability 0.5 does not hold", - "check_sample_weight_equivalence": ( + "check_sample_weight_equivalence_on_dense_data": ( "Due to the cross-validation and sample ordering, removing a sample" " is not strictly equal to putting is weight to zero. Specific unit" " tests are added for TunedThresholdClassifierCV specifically." ), + "check_sample_weight_equivalence_on_sparse_data": ( + "sample_weight is not equivalent to removing/repeating samples." + ), }, GradientBoostingClassifier: { # TODO: investigate failure see meta-issue #16298 - "check_sample_weight_equivalence": ( + "check_sample_weight_equivalence_on_dense_data": ( + "sample_weight is not equivalent to removing/repeating samples." + ), + "check_sample_weight_equivalence_on_sparse_data": ( "sample_weight is not equivalent to removing/repeating samples." ), }, GradientBoostingRegressor: { # TODO: investigate failure see meta-issue #16298 - "check_sample_weight_equivalence": ( + "check_sample_weight_equivalence_on_dense_data": ( + "sample_weight is not equivalent to removing/repeating samples." + ), + "check_sample_weight_equivalence_on_sparse_data": ( "sample_weight is not equivalent to removing/repeating samples." ), }, @@ -852,34 +912,51 @@ def _yield_instances_for_check(check, estimator_orig): }, HistGradientBoostingClassifier: { # TODO: replace by a statistical test, see meta-issue #16298 - "check_sample_weight_equivalence": ( + "check_sample_weight_equivalence_on_dense_data": ( + "sample_weight is not equivalent to removing/repeating samples." + ), + "check_sample_weight_equivalence_on_sparse_data": ( "sample_weight is not equivalent to removing/repeating samples." ), }, HistGradientBoostingRegressor: { # TODO: replace by a statistical test, see meta-issue #16298 - "check_sample_weight_equivalence": ( + "check_sample_weight_equivalence_on_dense_data": ( + "sample_weight is not equivalent to removing/repeating samples." + ), + "check_sample_weight_equivalence_on_sparse_data": ( "sample_weight is not equivalent to removing/repeating samples." ), }, IsolationForest: { # TODO: replace by a statistical test, see meta-issue #16298 - "check_sample_weight_equivalence": ( + "check_sample_weight_equivalence_on_dense_data": ( + "sample_weight is not equivalent to removing/repeating samples." + ), + "check_sample_weight_equivalence_on_sparse_data": ( "sample_weight is not equivalent to removing/repeating samples." ), }, KBinsDiscretizer: { # TODO: fix sample_weight handling of this estimator, see meta-issue #16298 - "check_sample_weight_equivalence": ( + "check_sample_weight_equivalence_on_dense_data": ( + "sample_weight is not equivalent to removing/repeating samples." + ), + "check_sample_weight_equivalence_on_sparse_data": ( "sample_weight is not equivalent to removing/repeating samples." ), }, KernelDensity: { - "check_sample_weight_equivalence": "sample_weight must have positive values" + "check_sample_weight_equivalence_on_dense_data": ( + "sample_weight must have positive values" + ), }, KMeans: { # TODO: replace by a statistical test, see meta-issue #16298 - "check_sample_weight_equivalence": ( + "check_sample_weight_equivalence_on_dense_data": ( + "sample_weight is not equivalent to removing/repeating samples." + ), + "check_sample_weight_equivalence_on_sparse_data": ( "sample_weight is not equivalent to removing/repeating samples." ), }, @@ -894,13 +971,19 @@ def _yield_instances_for_check(check, estimator_orig): # running the equivalence check even if n_features > n_samples. Maybe # this is is not the case and a different choice of solver could fix # this problem. - "check_sample_weight_equivalence": ( + "check_sample_weight_equivalence_on_dense_data": ( + "sample_weight is not equivalent to removing/repeating samples." + ), + "check_sample_weight_equivalence_on_sparse_data": ( "sample_weight is not equivalent to removing/repeating samples." ), }, LinearSVC: { # TODO: replace by a statistical test when _dual=True, see meta-issue #16298 - "check_sample_weight_equivalence": ( + "check_sample_weight_equivalence_on_dense_data": ( + "sample_weight is not equivalent to removing/repeating samples." + ), + "check_sample_weight_equivalence_on_sparse_data": ( "sample_weight is not equivalent to removing/repeating samples." ), "check_non_transformer_estimators_n_iter": ( @@ -909,19 +992,28 @@ def _yield_instances_for_check(check, estimator_orig): }, LinearSVR: { # TODO: replace by a statistical test, see meta-issue #16298 - "check_sample_weight_equivalence": ( + "check_sample_weight_equivalence_on_dense_data": ( + "sample_weight is not equivalent to removing/repeating samples." + ), + "check_sample_weight_equivalence_on_sparse_data": ( "sample_weight is not equivalent to removing/repeating samples." ), }, LogisticRegression: { # TODO: fix sample_weight handling of this estimator, see meta-issue #16298 - "check_sample_weight_equivalence": ( + "check_sample_weight_equivalence_on_dense_data": ( + "sample_weight is not equivalent to removing/repeating samples." + ), + "check_sample_weight_equivalence_on_sparse_data": ( "sample_weight is not equivalent to removing/repeating samples." ), }, MiniBatchKMeans: { # TODO: replace by a statistical test, see meta-issue #16298 - "check_sample_weight_equivalence": ( + "check_sample_weight_equivalence_on_dense_data": ( + "sample_weight is not equivalent to removing/repeating samples." + ), + "check_sample_weight_equivalence_on_sparse_data": ( "sample_weight is not equivalent to removing/repeating samples." ), }, @@ -930,7 +1022,10 @@ def _yield_instances_for_check(check, estimator_orig): # TODO: fix sample_weight handling of this estimator when probability=False # TODO: replace by a statistical test when probability=True # see meta-issue #16298 - "check_sample_weight_equivalence": ( + "check_sample_weight_equivalence_on_dense_data": ( + "sample_weight is not equivalent to removing/repeating samples." + ), + "check_sample_weight_equivalence_on_sparse_data": ( "sample_weight is not equivalent to removing/repeating samples." ), "check_classifiers_one_label_sample_weights": ( @@ -939,7 +1034,10 @@ def _yield_instances_for_check(check, estimator_orig): }, NuSVR: { # TODO: fix sample_weight handling of this estimator, see meta-issue #16298 - "check_sample_weight_equivalence": ( + "check_sample_weight_equivalence_on_dense_data": ( + "sample_weight is not equivalent to removing/repeating samples." + ), + "check_sample_weight_equivalence_on_sparse_data": ( "sample_weight is not equivalent to removing/repeating samples." ), }, @@ -950,13 +1048,19 @@ def _yield_instances_for_check(check, estimator_orig): }, OneClassSVM: { # TODO: fix sample_weight handling of this estimator, see meta-issue #16298 - "check_sample_weight_equivalence": ( + "check_sample_weight_equivalence_on_dense_data": ( + "sample_weight is not equivalent to removing/repeating samples." + ), + "check_sample_weight_equivalence_on_sparse_data": ( "sample_weight is not equivalent to removing/repeating samples." ), }, Perceptron: { # TODO: replace by a statistical test, see meta-issue #16298 - "check_sample_weight_equivalence": ( + "check_sample_weight_equivalence_on_dense_data": ( + "sample_weight is not equivalent to removing/repeating samples." + ), + "check_sample_weight_equivalence_on_sparse_data": ( "sample_weight is not equivalent to removing/repeating samples." ), }, @@ -975,13 +1079,19 @@ def _yield_instances_for_check(check, estimator_orig): }, RandomForestClassifier: { # TODO: replace by a statistical test, see meta-issue #16298 - "check_sample_weight_equivalence": ( + "check_sample_weight_equivalence_on_dense_data": ( + "sample_weight is not equivalent to removing/repeating samples." + ), + "check_sample_weight_equivalence_on_sparse_data": ( "sample_weight is not equivalent to removing/repeating samples." ), }, RandomForestRegressor: { # TODO: replace by a statistical test, see meta-issue #16298 - "check_sample_weight_equivalence": ( + "check_sample_weight_equivalence_on_dense_data": ( + "sample_weight is not equivalent to removing/repeating samples." + ), + "check_sample_weight_equivalence_on_sparse_data": ( "sample_weight is not equivalent to removing/repeating samples." ), }, @@ -991,13 +1101,19 @@ def _yield_instances_for_check(check, estimator_orig): }, RandomTreesEmbedding: { # TODO: replace by a statistical test, see meta-issue #16298 - "check_sample_weight_equivalence": ( + "check_sample_weight_equivalence_on_dense_data": ( + "sample_weight is not equivalent to removing/repeating samples." + ), + "check_sample_weight_equivalence_on_sparse_data": ( "sample_weight is not equivalent to removing/repeating samples." ), }, RANSACRegressor: { # TODO: replace by a statistical test, see meta-issue #16298 - "check_sample_weight_equivalence": ( + "check_sample_weight_equivalence_on_dense_data": ( + "sample_weight is not equivalent to removing/repeating samples." + ), + "check_sample_weight_equivalence_on_sparse_data": ( "sample_weight is not equivalent to removing/repeating samples." ), }, @@ -1012,28 +1128,40 @@ def _yield_instances_for_check(check, estimator_orig): ) }, RidgeCV: { - "check_sample_weight_equivalence": ( + "check_sample_weight_equivalence_on_dense_data": ( "GridSearchCV does not forward the weights to the scorer by default." ), + "check_sample_weight_equivalence_on_sparse_data": ( + "sample_weight is not equivalent to removing/repeating samples." + ), }, SelfTrainingClassifier: { "check_non_transformer_estimators_n_iter": "n_iter_ can be 0." }, SGDClassifier: { # TODO: replace by a statistical test, see meta-issue #16298 - "check_sample_weight_equivalence": ( + "check_sample_weight_equivalence_on_dense_data": ( + "sample_weight is not equivalent to removing/repeating samples." + ), + "check_sample_weight_equivalence_on_sparse_data": ( "sample_weight is not equivalent to removing/repeating samples." ), }, SGDOneClassSVM: { # TODO: replace by a statistical test, see meta-issue #16298 - "check_sample_weight_equivalence": ( + "check_sample_weight_equivalence_on_dense_data": ( + "sample_weight is not equivalent to removing/repeating samples." + ), + "check_sample_weight_equivalence_on_sparse_data": ( "sample_weight is not equivalent to removing/repeating samples." ), }, SGDRegressor: { # TODO: replace by a statistical test, see meta-issue #16298 - "check_sample_weight_equivalence": ( + "check_sample_weight_equivalence_on_dense_data": ( + "sample_weight is not equivalent to removing/repeating samples." + ), + "check_sample_weight_equivalence_on_sparse_data": ( "sample_weight is not equivalent to removing/repeating samples." ), }, @@ -1070,19 +1198,25 @@ def _yield_instances_for_check(check, estimator_orig): # TODO: fix sample_weight handling of this estimator when probability=False # TODO: replace by a statistical test when probability=True # see meta-issue #16298 - "check_sample_weight_equivalence": ( + "check_sample_weight_equivalence_on_dense_data": ( + "sample_weight is not equivalent to removing/repeating samples." + ), + "check_sample_weight_equivalence_on_sparse_data": ( "sample_weight is not equivalent to removing/repeating samples." ), }, SVR: { # TODO: fix sample_weight handling of this estimator, see meta-issue #16298 - "check_sample_weight_equivalence": ( + "check_sample_weight_equivalence_on_dense_data": ( + "sample_weight is not equivalent to removing/repeating samples." + ), + "check_sample_weight_equivalence_on_sparse_data": ( "sample_weight is not equivalent to removing/repeating samples." ), }, TunedThresholdClassifierCV: { "check_classifiers_train": "Threshold at probability 0.5 does not hold", - "check_sample_weight_equivalence": ( + "check_sample_weight_equivalence_on_dense_data": ( "Due to the cross-validation and sample ordering, removing a sample" " is not strictly equal to putting is weight to zero. Specific unit" " tests are added for TunedThresholdClassifierCV specifically." diff --git a/sklearn/utils/estimator_checks.py b/sklearn/utils/estimator_checks.py index abf272e955bc2..6bb6524974a3a 100644 --- a/sklearn/utils/estimator_checks.py +++ b/sklearn/utils/estimator_checks.py @@ -163,7 +163,11 @@ def _yield_checks(estimator): # We skip pairwise because the data is not pairwise yield check_sample_weights_shape yield check_sample_weights_not_overwritten - yield check_sample_weight_equivalence + yield check_sample_weight_equivalence_on_dense_data + # FIXME: filter on tags.input_tags.sparse + # (estimator accepts sparse arrays) + # once issue #30139 is fixed. + yield check_sample_weight_equivalence_on_sparse_data # Check that all estimator yield informative messages when # trained on empty datasets @@ -1407,7 +1411,7 @@ def check_sample_weights_shape(name, estimator_orig): @ignore_warnings(category=FutureWarning) -def check_sample_weight_equivalence(name, estimator_orig): +def _check_sample_weight_equivalence(name, estimator_orig, sparse_container): # check that setting sample_weight to zero / integer is equivalent # to removing / repeating corresponding samples. estimator_weighted = clone(estimator_orig) @@ -1422,13 +1426,13 @@ def check_sample_weight_equivalence(name, estimator_orig): # Use random integers (including zero) as weights. sw = rng.randint(0, 5, size=n_samples) - X_weigthed = X + X_weighted = X y_weighted = y # repeat samples according to weights - X_repeated = X_weigthed.repeat(repeats=sw, axis=0) + X_repeated = X_weighted.repeat(repeats=sw, axis=0) y_repeated = y_weighted.repeat(repeats=sw) - X_weigthed, y_weighted, sw = shuffle(X_weigthed, y_weighted, sw, random_state=0) + X_weighted, y_weighted, sw = shuffle(X_weighted, y_weighted, sw, random_state=0) # when the estimator has an internal CV scheme # we only use weights / repetitions in a specific CV group (here group=0) @@ -1437,10 +1441,10 @@ def check_sample_weight_equivalence(name, estimator_orig): [np.full_like(y_weighted, 0), np.full_like(y, 1), np.full_like(y, 2)] ) sw = np.hstack([sw, np.ones_like(y), np.ones_like(y)]) - X_weigthed = np.vstack([X_weigthed, X, X]) + X_weighted = np.vstack([X_weighted, X, X]) y_weighted = np.hstack([y_weighted, y, y]) splits_weighted = list( - LeaveOneGroupOut().split(X_weigthed, groups=groups_weighted) + LeaveOneGroupOut().split(X_weighted, groups=groups_weighted) ) estimator_weighted.set_params(cv=splits_weighted) @@ -1457,8 +1461,13 @@ def check_sample_weight_equivalence(name, estimator_orig): y_weighted = _enforce_estimator_tags_y(estimator_weighted, y_weighted) y_repeated = _enforce_estimator_tags_y(estimator_repeated, y_repeated) + # convert to sparse X if needed + if sparse_container is not None: + X_weighted = sparse_container(X_weighted) + X_repeated = sparse_container(X_repeated) + estimator_repeated.fit(X_repeated, y=y_repeated, sample_weight=None) - estimator_weighted.fit(X_weigthed, y=y_weighted, sample_weight=sw) + estimator_weighted.fit(X_weighted, y=y_weighted, sample_weight=sw) for method in ["predict_proba", "decision_function", "predict", "transform"]: if hasattr(estimator_orig, method): @@ -1472,6 +1481,22 @@ def check_sample_weight_equivalence(name, estimator_orig): assert_allclose_dense_sparse(X_pred1, X_pred2, err_msg=err_msg) +def check_sample_weight_equivalence_on_dense_data(name, estimator_orig): + _check_sample_weight_equivalence(name, estimator_orig, sparse_container=None) + + +def check_sample_weight_equivalence_on_sparse_data(name, estimator_orig): + if SPARSE_ARRAY_PRESENT: + sparse_container = sparse.csr_array + else: + sparse_container = sparse.csr_matrix + # FIXME: remove the catch once issue #30139 is fixed. + try: + _check_sample_weight_equivalence(name, estimator_orig, sparse_container) + except TypeError: + return + + def check_sample_weights_not_overwritten(name, estimator_orig): # check that estimators don't override the passed sample_weight parameter estimator = clone(estimator_orig) From 96491993998ee813019932dedfdece9bb961de91 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Lo=C3=AFc=20Est=C3=A8ve?= Date: Fri, 22 Nov 2024 18:17:58 +0100 Subject: [PATCH 039/159] CI Limit ninja number of parallel jobs in CircleCI (#30333) --- build_tools/circle/build_doc.sh | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/build_tools/circle/build_doc.sh b/build_tools/circle/build_doc.sh index cf7eed08e63df..30a0d3fc8a9b5 100755 --- a/build_tools/circle/build_doc.sh +++ b/build_tools/circle/build_doc.sh @@ -183,7 +183,7 @@ conda activate $CONDA_ENV_NAME show_installed_libraries -pip install -e . --no-build-isolation +pip install -e . --no-build-isolation --config-settings=compile-args="-j4" echo "ccache build summary:" ccache -s From cce5062a5fb24bf32cf79f5211503da4bd4bc5e5 Mon Sep 17 00:00:00 2001 From: Stefanie Senger <91849487+StefanieSenger@users.noreply.github.com> Date: Fri, 22 Nov 2024 19:37:54 +0100 Subject: [PATCH 040/159] DOC Add section on resolving conflicts in lock files to developer guide (#29882) --- doc/developers/contributing.rst | 39 ++++++++++++++++++++++++++++++--- doc/developers/tips.rst | 6 ----- 2 files changed, 36 insertions(+), 9 deletions(-) diff --git a/doc/developers/contributing.rst b/doc/developers/contributing.rst index 129325e275963..3a939ee1be6e6 100644 --- a/doc/developers/contributing.rst +++ b/doc/developers/contributing.rst @@ -562,12 +562,15 @@ Commit Message Marker Action Taken by CI Note that, by default, the documentation is built but only the examples that are directly modified by the pull request are executed. -Lock files -^^^^^^^^^^ +.. _build_lock_files: + +Build lock files +^^^^^^^^^^^^^^^^ CIs use lock files to build environments with specific versions of dependencies. When a PR needs to modify the dependencies or their versions, the lock files should be updated -accordingly. This can be done by commenting in the PR: +accordingly. This can be done by adding the following comment directly in the GitHub +Pull Request (PR) discussion: .. code-block:: text @@ -592,6 +595,36 @@ update documentation-related lock files and add the `[doc build]` marker to the @scikit-learn-bot update lock-files --select-build doc --commit-marker "[doc build]" +Resolve conflicts in lock files +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ + +Here is a bash snippet that helps resolving conflicts in environment and lock files: + +.. prompt:: bash + + # pull latest upstream/main + git pull upstream main --no-rebase + # resolve conflicts - keeping the upstream/main version for specific files + git checkout --theirs build_tools/*/*.lock build_tools/*/*environment.yml \ + build_tools/*/*lock.txt build_tools/*/*requirements.txt + git add build_tools/*/*.lock build_tools/*/*environment.yml \ + build_tools/*/*lock.txt build_tools/*/*requirements.txt + git merge --continue + +This will merge `upstream/main` into our branch, automatically prioritising the +`upstream/main` for conflicting environment and lock files (this is good enough, because +we will re-generate the lock files afterwards). + +Note that this only fixes conflicts in environment and lock files and you might have +other conflicts to resolve. + +Finally, we have to re-generate the environment and lock files for the CIs, as described +in :ref:`Build lock files `, or by running: + +.. prompt:: bash + + python build_tools/update_environments_and_lock_files.py + .. _stalled_pull_request: Stalled pull requests diff --git a/doc/developers/tips.rst b/doc/developers/tips.rst index 70c201b688578..207e0814dc374 100644 --- a/doc/developers/tips.rst +++ b/doc/developers/tips.rst @@ -218,12 +218,6 @@ PR-WIP: Regression test needed Please add a [non-regression test](https://en.wikipedia.org/wiki/Non-regression_testing) that would fail at main but pass in this PR. -PR-WIP: PEP8 - -:: - - You have some [PEP8](https://www.python.org/dev/peps/pep-0008/) violations, whose details you can see in the Circle CI `lint` job. It might be worth configuring your code editor to check for such errors on the fly, so you can catch them before committing. - PR-MRG: Patience :: From ce2376ebcdd7e6913a1e059e926f34665ef3f8fd Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Lo=C3=AFc=20Est=C3=A8ve?= Date: Fri, 22 Nov 2024 23:56:02 +0100 Subject: [PATCH 041/159] FIX Fix ExtraTreeRegressor missing data handling (#30318) --- .../sklearn.tree/27966.feature.rst | 2 +- .../sklearn.tree/30318.feature.rst | 5 +++++ sklearn/tree/_partitioner.pyx | 2 +- sklearn/tree/tests/test_tree.py | 20 +++++++++++++++---- 4 files changed, 23 insertions(+), 6 deletions(-) create mode 100644 doc/whats_new/upcoming_changes/sklearn.tree/30318.feature.rst diff --git a/doc/whats_new/upcoming_changes/sklearn.tree/27966.feature.rst b/doc/whats_new/upcoming_changes/sklearn.tree/27966.feature.rst index bc3ae222fc2cf..a5ad971ac02b9 100644 --- a/doc/whats_new/upcoming_changes/sklearn.tree/27966.feature.rst +++ b/doc/whats_new/upcoming_changes/sklearn.tree/27966.feature.rst @@ -2,4 +2,4 @@ support missing-values in the data matrix ``X``. Missing-values are handled by randomly moving all of the samples to the left, or right child node as the tree is traversed. - By :user:`Adam Li ` + By :user:`Adam Li ` and :user:`Loïc Estève ` diff --git a/doc/whats_new/upcoming_changes/sklearn.tree/30318.feature.rst b/doc/whats_new/upcoming_changes/sklearn.tree/30318.feature.rst new file mode 100644 index 0000000000000..a5ad971ac02b9 --- /dev/null +++ b/doc/whats_new/upcoming_changes/sklearn.tree/30318.feature.rst @@ -0,0 +1,5 @@ +- :class:`tree.ExtraTreeClassifier` and :class:`tree.ExtraTreeRegressor` now + support missing-values in the data matrix ``X``. Missing-values are handled by + randomly moving all of the samples to the left, or right child node as the tree is + traversed. + By :user:`Adam Li ` and :user:`Loïc Estève ` diff --git a/sklearn/tree/_partitioner.pyx b/sklearn/tree/_partitioner.pyx index 57801c3f279ed..195b7e2caf67c 100644 --- a/sklearn/tree/_partitioner.pyx +++ b/sklearn/tree/_partitioner.pyx @@ -194,7 +194,7 @@ cdef class DensePartitioner: """Partition samples for feature_values at the current_threshold.""" cdef: intp_t p = self.start - intp_t partition_end = self.end + intp_t partition_end = self.end - self.n_missing intp_t[::1] samples = self.samples float32_t[::1] feature_values = self.feature_values diff --git a/sklearn/tree/tests/test_tree.py b/sklearn/tree/tests/test_tree.py index fb5af073fc8c6..28ae86bc73f05 100644 --- a/sklearn/tree/tests/test_tree.py +++ b/sklearn/tree/tests/test_tree.py @@ -2689,10 +2689,8 @@ def test_regression_tree_missing_values_toy(Tree, X, criterion): impurity = tree.tree_.impurity assert all(impurity >= 0), impurity.min() # MSE should always be positive - # Note: the impurity matches after the first split only on greedy trees - if Tree is DecisionTreeRegressor: - # Check the impurity match after the first split - assert_allclose(tree.tree_.impurity[:2], tree_ref.tree_.impurity[:2]) + # Check the impurity match after the first split + assert_allclose(tree.tree_.impurity[:2], tree_ref.tree_.impurity[:2]) # Find the leaves with a single sample where the MSE should be 0 leaves_idx = np.flatnonzero( @@ -2701,6 +2699,20 @@ def test_regression_tree_missing_values_toy(Tree, X, criterion): assert_allclose(tree.tree_.impurity[leaves_idx], 0.0) +def test_regression_extra_tree_missing_values_toy(global_random_seed): + rng = np.random.RandomState(global_random_seed) + n_samples = 100 + X = np.arange(n_samples, dtype=np.float64).reshape(-1, 1) + X[-20:, :] = np.nan + rng.shuffle(X) + y = np.arange(n_samples) + + tree = ExtraTreeRegressor(random_state=global_random_seed, max_depth=5).fit(X, y) + + impurity = tree.tree_.impurity + assert all(impurity >= 0), impurity # MSE should always be positive + + def test_classification_tree_missing_values_toy(): """Check that we properly handle missing values in clasification trees using a toy dataset. From bfd91d7ade1007ddfb8a5cbba43241282ddaa3e8 Mon Sep 17 00:00:00 2001 From: Guillaume Lemaitre Date: Sat, 23 Nov 2024 04:54:41 +0100 Subject: [PATCH 042/159] MAINT conversion old->new/new->old tags (bis) (#30327) MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit Co-authored-by: Adrin Jalali Co-authored-by: Thomas J. Fan Co-authored-by: Loïc Estève --- sklearn/base.py | 27 ++ sklearn/utils/_tags.py | 271 ++++++++++++++- sklearn/utils/tests/test_tags.py | 554 ++++++++++++++++++++++++++++++- 3 files changed, 840 insertions(+), 12 deletions(-) diff --git a/sklearn/base.py b/sklearn/base.py index d646f8d3e56bf..2c82cf05a6c5a 100644 --- a/sklearn/base.py +++ b/sklearn/base.py @@ -389,6 +389,33 @@ def __setstate__(self, state): except AttributeError: self.__dict__.update(state) + # TODO(1.7): Remove this method + def _more_tags(self): + """This code should never be reached since our `get_tags` will fallback on + `__sklearn_tags__` implemented below. We keep it for backward compatibility. + It is tested in `test_base_estimator_more_tags` in + `sklearn/utils/testing/test_tags.py`.""" + from sklearn.utils._tags import _to_old_tags, default_tags + + warnings.warn( + "The `_more_tags` method is deprecated in 1.6 and will be removed in " + "1.7. Please implement the `__sklearn_tags__` method.", + category=FutureWarning, + ) + return _to_old_tags(default_tags(self)) + + # TODO(1.7): Remove this method + def _get_tags(self): + from sklearn.utils._tags import _to_old_tags, get_tags + + warnings.warn( + "The `_get_tags` method is deprecated in 1.6 and will be removed in " + "1.7. Please implement the `__sklearn_tags__` method.", + category=FutureWarning, + ) + + return _to_old_tags(get_tags(self)) + def __sklearn_tags__(self): return Tags( estimator_type=None, diff --git a/sklearn/utils/_tags.py b/sklearn/utils/_tags.py index ccbc9d2438268..1ba1913c37234 100644 --- a/sklearn/utils/_tags.py +++ b/sklearn/utils/_tags.py @@ -1,7 +1,9 @@ from __future__ import annotations import warnings +from collections import OrderedDict from dataclasses import dataclass, field +from itertools import chain from .fixes import _dataclass_args @@ -290,6 +292,71 @@ def default_tags(estimator) -> Tags: ) +# TODO(1.7): Remove this function +def _find_tags_provider(estimator, warn=True): + """Find the tags provider for an estimator. + + Parameters + ---------- + estimator : estimator object + The estimator to find the tags provider for. + + warn : bool, default=True + Whether to warn if the tags provider is not found. + + Returns + ------- + tag_provider : str + The tags provider for the estimator. Can be one of: + - "_get_tags": to use the old tags infrastructure + - "__sklearn_tags__": to use the new tags infrastructure + """ + mro_model = type(estimator).mro() + tags_mro = OrderedDict() + for klass in mro_model: + tags_provider = [] + if "_more_tags" in vars(klass): + tags_provider.append("_more_tags") + if "_get_tags" in vars(klass): + tags_provider.append("_get_tags") + if "__sklearn_tags__" in vars(klass): + tags_provider.append("__sklearn_tags__") + tags_mro[klass.__name__] = tags_provider + + all_providers = set(chain.from_iterable(tags_mro.values())) + if "__sklearn_tags__" not in all_providers: + # default on the old tags infrastructure + return "_get_tags" + + tag_provider = "__sklearn_tags__" + for klass in tags_mro: + has_get_or_more_tags = any( + provider in tags_mro[klass] for provider in ("_get_tags", "_more_tags") + ) + has_sklearn_tags = "__sklearn_tags__" in tags_mro[klass] + + if tags_mro[klass] and tag_provider == "__sklearn_tags__": # is it empty + if has_get_or_more_tags and not has_sklearn_tags: + # Case where a class does not implement __sklearn_tags__ and we fallback + # to _get_tags. We should therefore warn for implementing + # __sklearn_tags__. + tag_provider = "_get_tags" + break + + if warn and tag_provider == "_get_tags": + warnings.warn( + f"The {estimator.__class__.__name__} or classes from which it inherits " + "use `_get_tags` and `_more_tags`. Please define the " + "`__sklearn_tags__` method, or inherit from `sklearn.base.BaseEstimator` " + "and/or other appropriate mixins such as `sklearn.base.TransformerMixin`, " + "`sklearn.base.ClassifierMixin`, `sklearn.base.RegressorMixin`, and " + "`sklearn.base.OutlierMixin`. From scikit-learn 1.7, not defining " + "`__sklearn_tags__` will raise an error.", + category=FutureWarning, + ) + return tag_provider + + def get_tags(estimator) -> Tags: """Get estimator tags. @@ -316,19 +383,201 @@ def get_tags(estimator) -> Tags: The estimator tags. """ - if hasattr(estimator, "__sklearn_tags__"): + tag_provider = _find_tags_provider(estimator) + + if tag_provider == "__sklearn_tags__": tags = estimator.__sklearn_tags__() else: - warnings.warn( - f"Estimator {estimator} has no __sklearn_tags__ attribute, which is " - "defined in `sklearn.base.BaseEstimator`. This will raise an error in " - "scikit-learn 1.8. Please define the __sklearn_tags__ method, or inherit " - "from `sklearn.base.BaseEstimator` and other appropriate mixins such as " - "`sklearn.base.TransformerMixin`, `sklearn.base.ClassifierMixin`, " - "`sklearn.base.RegressorMixin`, and `sklearn.base.ClusterMixin`, and " - "`sklearn.base.OutlierMixin`.", - category=FutureWarning, + # TODO(1.7): Remove this branch of the code + # Let's go through the MRO and patch each class implementing _more_tags + sklearn_tags_provider = {} + more_tags_provider = {} + class_order = [] + for klass in reversed(type(estimator).mro()): + if "__sklearn_tags__" in vars(klass): + sklearn_tags_provider[klass] = klass.__sklearn_tags__(estimator) # type: ignore[attr-defined] + class_order.append(klass) + elif "_more_tags" in vars(klass): + more_tags_provider[klass] = klass._more_tags(estimator) # type: ignore[attr-defined] + class_order.append(klass) + + # Find differences between consecutive in the case of __sklearn_tags__ + # inheritance + sklearn_tags_diff = {} + items = list(sklearn_tags_provider.items()) + for current_item, next_item in zip(items[:-1], items[1:]): + current_name, current_tags = current_item + next_name, next_tags = next_item + current_tags = _to_old_tags(current_tags) + next_tags = _to_old_tags(next_tags) + + # Compare tags and store differences + diff = {} + for key in current_tags: + if current_tags[key] != next_tags[key]: + diff[key] = next_tags[key] + + sklearn_tags_diff[next_name] = diff + + tags = {} + for klass in class_order: + if klass in sklearn_tags_diff: + tags.update(sklearn_tags_diff[klass]) + elif klass in more_tags_provider: + tags.update(more_tags_provider[klass]) + + tags = _to_new_tags( + {**_to_old_tags(default_tags(estimator)), **tags}, estimator ) - tags = default_tags(estimator) return tags + + +# TODO(1.7): Remove this function +def _safe_tags(estimator, key=None): + warnings.warn( + "The `_safe_tags` function is deprecated in 1.6 and will be removed in " + "1.7. Use the public `get_tags` function instead and make sure to implement " + "the `__sklearn_tags__` method.", + category=FutureWarning, + ) + tags = _to_old_tags(get_tags(estimator)) + + if key is not None: + if key not in tags: + raise ValueError( + f"The key {key} is not defined for the class " + f"{estimator.__class__.__name__}." + ) + return tags[key] + return tags + + +# TODO(1.7): Remove this function +def _to_new_tags(old_tags, estimator=None): + """Utility function convert old tags (dictionary) to new tags (dataclass).""" + input_tags = InputTags( + one_d_array="1darray" in old_tags["X_types"], + two_d_array="2darray" in old_tags["X_types"], + three_d_array="3darray" in old_tags["X_types"], + sparse="sparse" in old_tags["X_types"], + categorical="categorical" in old_tags["X_types"], + string="string" in old_tags["X_types"], + dict="dict" in old_tags["X_types"], + positive_only=old_tags["requires_positive_X"], + allow_nan=old_tags["allow_nan"], + pairwise=old_tags["pairwise"], + ) + target_tags = TargetTags( + required=old_tags["requires_y"], + one_d_labels="1dlabels" in old_tags["X_types"], + two_d_labels="2dlabels" in old_tags["X_types"], + positive_only=old_tags["requires_positive_y"], + multi_output=old_tags["multioutput"] or old_tags["multioutput_only"], + single_output=not old_tags["multioutput_only"], + ) + if estimator is not None and ( + hasattr(estimator, "transform") or hasattr(estimator, "fit_transform") + ): + transformer_tags = TransformerTags( + preserves_dtype=old_tags["preserves_dtype"], + ) + else: + transformer_tags = None + estimator_type = getattr(estimator, "_estimator_type", None) + if estimator_type == "classifier": + classifier_tags = ClassifierTags( + poor_score=old_tags["poor_score"], + multi_class=not old_tags["binary_only"], + multi_label=old_tags["multilabel"], + ) + else: + classifier_tags = None + if estimator_type == "regressor": + regressor_tags = RegressorTags( + poor_score=old_tags["poor_score"], + multi_label=old_tags["multilabel"], + ) + else: + regressor_tags = None + return Tags( + estimator_type=estimator_type, + target_tags=target_tags, + transformer_tags=transformer_tags, + classifier_tags=classifier_tags, + regressor_tags=regressor_tags, + input_tags=input_tags, + array_api_support=old_tags["array_api_support"], + no_validation=old_tags["no_validation"], + non_deterministic=old_tags["non_deterministic"], + requires_fit=old_tags["requires_fit"], + _skip_test=old_tags["_skip_test"], + ) + + +# TODO(1.7): Remove this function +def _to_old_tags(new_tags): + """Utility function convert old tags (dictionary) to new tags (dataclass).""" + if new_tags.classifier_tags: + binary_only = not new_tags.classifier_tags.multi_class + multilabel_clf = new_tags.classifier_tags.multi_label + poor_score_clf = new_tags.classifier_tags.poor_score + else: + binary_only = False + multilabel_clf = False + poor_score_clf = False + + if new_tags.regressor_tags: + multilabel_reg = new_tags.regressor_tags.multi_label + poor_score_reg = new_tags.regressor_tags.poor_score + else: + multilabel_reg = False + poor_score_reg = False + + if new_tags.transformer_tags: + preserves_dtype = new_tags.transformer_tags.preserves_dtype + else: + preserves_dtype = ["float64"] + + tags = { + "allow_nan": new_tags.input_tags.allow_nan, + "array_api_support": new_tags.array_api_support, + "binary_only": binary_only, + "multilabel": multilabel_clf or multilabel_reg, + "multioutput": new_tags.target_tags.multi_output, + "multioutput_only": ( + not new_tags.target_tags.single_output and new_tags.target_tags.multi_output + ), + "no_validation": new_tags.no_validation, + "non_deterministic": new_tags.non_deterministic, + "pairwise": new_tags.input_tags.pairwise, + "preserves_dtype": preserves_dtype, + "poor_score": poor_score_clf or poor_score_reg, + "requires_fit": new_tags.requires_fit, + "requires_positive_X": new_tags.input_tags.positive_only, + "requires_y": new_tags.target_tags.required, + "requires_positive_y": new_tags.target_tags.positive_only, + "_skip_test": new_tags._skip_test, + "stateless": new_tags.requires_fit, + } + X_types = [] + if new_tags.input_tags.one_d_array: + X_types.append("1darray") + if new_tags.input_tags.two_d_array: + X_types.append("2darray") + if new_tags.input_tags.three_d_array: + X_types.append("3darray") + if new_tags.input_tags.sparse: + X_types.append("sparse") + if new_tags.input_tags.categorical: + X_types.append("categorical") + if new_tags.input_tags.string: + X_types.append("string") + if new_tags.input_tags.dict: + X_types.append("dict") + if new_tags.target_tags.one_d_labels: + X_types.append("1dlabels") + if new_tags.target_tags.two_d_labels: + X_types.append("2dlabels") + tags["X_types"] = X_types + return tags diff --git a/sklearn/utils/tests/test_tags.py b/sklearn/utils/tests/test_tags.py index 413fbc6bbd3de..86e4e2d7c431e 100644 --- a/sklearn/utils/tests/test_tags.py +++ b/sklearn/utils/tests/test_tags.py @@ -7,7 +7,16 @@ RegressorMixin, TransformerMixin, ) -from sklearn.utils import Tags, get_tags +from sklearn.utils import ( + ClassifierTags, + InputTags, + RegressorTags, + Tags, + TargetTags, + TransformerTags, + get_tags, +) +from sklearn.utils._tags import _safe_tags, _to_new_tags, _to_old_tags, default_tags from sklearn.utils.estimator_checks import ( check_estimator_tags_renamed, check_valid_tag_types, @@ -78,3 +87,546 @@ def __sklearn_tags__(self): return tags check_valid_tag_types("MyEstimator", MyEstimator()) + + +######################################################################################## +# Test for the deprecation +# TODO(1.7): Remove this +######################################################################################## + + +class MixinAllowNanOldTags: + def _more_tags(self): + return {"allow_nan": True} + + +class MixinAllowNanNewTags: + def __sklearn_tags__(self): + tags = super().__sklearn_tags__() + tags.input_tags.allow_nan = True + return tags + + +class MixinAllowNanOldNewTags: + def _more_tags(self): + return {"allow_nan": True} # pragma: no cover + + def __sklearn_tags__(self): + tags = super().__sklearn_tags__() + tags.input_tags.allow_nan = True + return tags + + +class MixinArrayApiSupportOldTags: + def _more_tags(self): + return {"array_api_support": True} + + +class MixinArrayApiSupportNewTags: + def __sklearn_tags__(self): + tags = super().__sklearn_tags__() + tags.array_api_support = True + return tags + + +class MixinArrayApiSupportOldNewTags: + def _more_tags(self): + return {"array_api_support": True} # pragma: no cover + + def __sklearn_tags__(self): + tags = super().__sklearn_tags__() + tags.array_api_support = True + return tags + + +class PredictorOldTags(BaseEstimator): + def _more_tags(self): + return {"requires_fit": True} + + +class PredictorNewTags(BaseEstimator): + def __sklearn_tags__(self): + tags = super().__sklearn_tags__() + tags.requires_fit = True + return tags + + +class PredictorOldNewTags(BaseEstimator): + def _more_tags(self): + return {"requires_fit": True} # pragma: no cover + + def __sklearn_tags__(self): + tags = super().__sklearn_tags__() + tags.requires_fit = True + return tags + + +def test_get_tags_backward_compatibility(): + warn_msg = "Please define the `__sklearn_tags__` method" + + #################################################################################### + # only predictor inheriting from BaseEstimator + predictor_classes = [PredictorNewTags, PredictorOldNewTags, PredictorOldTags] + for predictor_cls in predictor_classes: + if predictor_cls.__name__.endswith("OldTags"): + with pytest.warns(FutureWarning, match=warn_msg): + tags = get_tags(predictor_cls()) + else: + tags = get_tags(predictor_cls()) + assert tags.requires_fit + + #################################################################################### + # one mixin and one predictor all inheriting from BaseEstimator + predictor_classes = [PredictorNewTags, PredictorOldNewTags, PredictorOldTags] + allow_nan_classes = [ + MixinAllowNanNewTags, + MixinAllowNanOldNewTags, + MixinAllowNanOldTags, + ] + + for allow_nan_cls in allow_nan_classes: + for predictor_cls in predictor_classes: + + class ChildClass(allow_nan_cls, predictor_cls): + pass + + if any( + base_cls.__name__.endswith("OldTags") + for base_cls in (predictor_cls, allow_nan_cls) + ): + with pytest.warns(FutureWarning, match=warn_msg): + tags = get_tags(ChildClass()) + else: + tags = get_tags(ChildClass()) + + assert tags.input_tags.allow_nan + assert tags.requires_fit + + #################################################################################### + # two mixins and one predictor all inheriting from BaseEstimator + predictor_classes = [PredictorNewTags, PredictorOldNewTags, PredictorOldTags] + array_api_classes = [ + MixinArrayApiSupportNewTags, + MixinArrayApiSupportOldNewTags, + MixinArrayApiSupportOldTags, + ] + allow_nan_classes = [ + MixinAllowNanNewTags, + MixinAllowNanOldNewTags, + MixinAllowNanOldTags, + ] + + for predictor_cls in predictor_classes: + for array_api_cls in array_api_classes: + for allow_nan_cls in allow_nan_classes: + + class ChildClass(allow_nan_cls, array_api_cls, predictor_cls): + pass + + if any( + base_cls.__name__.endswith("OldTags") + for base_cls in (predictor_cls, array_api_cls, allow_nan_cls) + ): + with pytest.warns(FutureWarning, match=warn_msg): + tags = get_tags(ChildClass()) + else: + tags = get_tags(ChildClass()) + + assert tags.input_tags.allow_nan + assert tags.array_api_support + assert tags.requires_fit + + +@pytest.mark.filterwarnings( + "ignore:.*Please define the `__sklearn_tags__` method.*:FutureWarning" +) +def test_safe_tags_backward_compatibility(): + warn_msg = "The `_safe_tags` function is deprecated in 1.6" + + #################################################################################### + # only predictor inheriting from BaseEstimator + predictor_classes = [PredictorNewTags, PredictorOldNewTags, PredictorOldTags] + for predictor_cls in predictor_classes: + with pytest.warns(FutureWarning, match=warn_msg): + tags = _safe_tags(predictor_cls()) + assert tags["requires_fit"] + + #################################################################################### + # one mixin and one predictor all inheriting from BaseEstimator + predictor_classes = [PredictorNewTags, PredictorOldNewTags, PredictorOldTags] + allow_nan_classes = [ + MixinAllowNanNewTags, + MixinAllowNanOldNewTags, + MixinAllowNanOldTags, + ] + + for allow_nan_cls in allow_nan_classes: + for predictor_cls in predictor_classes: + + class ChildClass(allow_nan_cls, predictor_cls): + pass + + with pytest.warns(FutureWarning, match=warn_msg): + tags = _safe_tags(ChildClass()) + + assert tags["allow_nan"] + assert tags["requires_fit"] + + #################################################################################### + # two mixins and one predictor all inheriting from BaseEstimator + predictor_classes = [PredictorNewTags, PredictorOldNewTags, PredictorOldTags] + array_api_classes = [ + MixinArrayApiSupportNewTags, + MixinArrayApiSupportOldNewTags, + MixinArrayApiSupportOldTags, + ] + allow_nan_classes = [ + MixinAllowNanNewTags, + MixinAllowNanOldNewTags, + MixinAllowNanOldTags, + ] + + for predictor_cls in predictor_classes: + for array_api_cls in array_api_classes: + for allow_nan_cls in allow_nan_classes: + + class ChildClass(allow_nan_cls, array_api_cls, predictor_cls): + pass + + with pytest.warns(FutureWarning, match=warn_msg): + tags = _safe_tags(ChildClass()) + + assert tags["allow_nan"] + assert tags["array_api_support"] + assert tags["requires_fit"] + + +@pytest.mark.filterwarnings( + "ignore:.*Please define the `__sklearn_tags__` method.*:FutureWarning" +) +def test__get_tags_backward_compatibility(): + warn_msg = "The `_get_tags` method is deprecated in 1.6" + + #################################################################################### + # only predictor inheriting from BaseEstimator + predictor_classes = [PredictorNewTags, PredictorOldNewTags, PredictorOldTags] + for predictor_cls in predictor_classes: + with pytest.warns(FutureWarning, match=warn_msg): + tags = predictor_cls()._get_tags() + assert tags["requires_fit"] + + #################################################################################### + # one mixin and one predictor all inheriting from BaseEstimator + predictor_classes = [PredictorNewTags, PredictorOldNewTags, PredictorOldTags] + allow_nan_classes = [ + MixinAllowNanNewTags, + MixinAllowNanOldNewTags, + MixinAllowNanOldTags, + ] + + for allow_nan_cls in allow_nan_classes: + for predictor_cls in predictor_classes: + + class ChildClass(allow_nan_cls, predictor_cls): + pass + + with pytest.warns(FutureWarning, match=warn_msg): + tags = ChildClass()._get_tags() + + assert tags["allow_nan"] + assert tags["requires_fit"] + + #################################################################################### + # two mixins and one predictor all inheriting from BaseEstimator + predictor_classes = [PredictorNewTags, PredictorOldNewTags, PredictorOldTags] + array_api_classes = [ + MixinArrayApiSupportNewTags, + MixinArrayApiSupportOldNewTags, + MixinArrayApiSupportOldTags, + ] + allow_nan_classes = [ + MixinAllowNanNewTags, + MixinAllowNanOldNewTags, + MixinAllowNanOldTags, + ] + + for predictor_cls in predictor_classes: + for array_api_cls in array_api_classes: + for allow_nan_cls in allow_nan_classes: + + class ChildClass(allow_nan_cls, array_api_cls, predictor_cls): + pass + + with pytest.warns(FutureWarning, match=warn_msg): + tags = ChildClass()._get_tags() + + assert tags["allow_nan"] + assert tags["array_api_support"] + assert tags["requires_fit"] + + +def test_roundtrip_tags(): + estimator = PredictorNewTags() + tags = default_tags(estimator) + assert _to_new_tags(_to_old_tags(tags), estimator=estimator) == tags + + +def test_base_estimator_more_tags(): + """Test that the `_more_tags` and `_get_tags` methods are equivalent for + `BaseEstimator`. + """ + estimator = BaseEstimator() + with pytest.warns(FutureWarning, match="The `_more_tags` method is deprecated"): + more_tags = BaseEstimator._more_tags(estimator) + + with pytest.warns(FutureWarning, match="The `_get_tags` method is deprecated"): + get_tags = BaseEstimator._get_tags(estimator) + + assert more_tags == get_tags + + +def test_safe_tags(): + estimator = PredictorNewTags() + with pytest.warns(FutureWarning, match="The `_safe_tags` function is deprecated"): + tags = _safe_tags(estimator) + + with pytest.warns(FutureWarning, match="The `_safe_tags` function is deprecated"): + tags_requires_fit = _safe_tags(estimator, key="requires_fit") + + assert tags_requires_fit == tags["requires_fit"] + + err_msg = "The key unknown_key is not defined" + with pytest.raises(ValueError, match=err_msg): + with pytest.warns( + FutureWarning, match="The `_safe_tags` function is deprecated" + ): + _safe_tags(estimator, key="unknown_key") + + +def test_old_tags(): + """Set to non-default values and check that we get the expected old tags.""" + + class MyClass: + _estimator_type = "regressor" + + def __sklearn_tags__(self): + input_tags = InputTags( + one_d_array=True, + two_d_array=False, + three_d_array=True, + sparse=True, + categorical=True, + string=True, + dict=True, + positive_only=True, + allow_nan=True, + pairwise=True, + ) + target_tags = TargetTags( + required=False, + one_d_labels=True, + two_d_labels=True, + positive_only=True, + multi_output=True, + single_output=False, + ) + transformer_tags = None + classifier_tags = None + regressor_tags = RegressorTags( + poor_score=True, + multi_label=True, + ) + return Tags( + estimator_type=self._estimator_type, + input_tags=input_tags, + target_tags=target_tags, + transformer_tags=transformer_tags, + classifier_tags=classifier_tags, + regressor_tags=regressor_tags, + ) + + estimator = MyClass() + new_tags = get_tags(estimator) + old_tags = _to_old_tags(new_tags) + expected_tags = { + "allow_nan": True, + "array_api_support": False, + "binary_only": False, + "multilabel": True, + "multioutput": True, + "multioutput_only": True, + "no_validation": False, + "non_deterministic": False, + "pairwise": True, + "preserves_dtype": ["float64"], + "poor_score": True, + "requires_fit": True, + "requires_positive_X": True, + "requires_y": False, + "requires_positive_y": True, + "_skip_test": False, + "stateless": True, + "X_types": [ + "1darray", + "3darray", + "sparse", + "categorical", + "string", + "dict", + "1dlabels", + "2dlabels", + ], + } + assert old_tags == expected_tags + assert _to_new_tags(_to_old_tags(new_tags), estimator=estimator) == new_tags + + class MyClass: + _estimator_type = "classifier" + + def __sklearn_tags__(self): + input_tags = InputTags( + one_d_array=True, + two_d_array=False, + three_d_array=True, + sparse=True, + categorical=True, + string=True, + dict=True, + positive_only=True, + allow_nan=True, + pairwise=True, + ) + target_tags = TargetTags( + required=False, + one_d_labels=True, + two_d_labels=False, + positive_only=True, + multi_output=True, + single_output=False, + ) + transformer_tags = None + classifier_tags = ClassifierTags( + poor_score=True, + multi_class=False, + multi_label=True, + ) + regressor_tags = None + return Tags( + estimator_type=self._estimator_type, + input_tags=input_tags, + target_tags=target_tags, + transformer_tags=transformer_tags, + classifier_tags=classifier_tags, + regressor_tags=regressor_tags, + ) + + estimator = MyClass() + new_tags = get_tags(estimator) + old_tags = _to_old_tags(new_tags) + expected_tags = { + "allow_nan": True, + "array_api_support": False, + "binary_only": True, + "multilabel": True, + "multioutput": True, + "multioutput_only": True, + "no_validation": False, + "non_deterministic": False, + "pairwise": True, + "preserves_dtype": ["float64"], + "poor_score": True, + "requires_fit": True, + "requires_positive_X": True, + "requires_y": False, + "requires_positive_y": True, + "_skip_test": False, + "stateless": True, + "X_types": [ + "1darray", + "3darray", + "sparse", + "categorical", + "string", + "dict", + "1dlabels", + ], + } + assert old_tags == expected_tags + assert _to_new_tags(_to_old_tags(new_tags), estimator=estimator) == new_tags + + class MyClass: + + def fit(self, X, y=None): + return self # pragma: no cover + + def transform(self, X): + return X # pragma: no cover + + def __sklearn_tags__(self): + input_tags = InputTags( + one_d_array=True, + two_d_array=False, + three_d_array=True, + sparse=True, + categorical=True, + string=True, + dict=True, + positive_only=True, + allow_nan=True, + pairwise=True, + ) + target_tags = TargetTags( + required=False, + one_d_labels=True, + two_d_labels=False, + positive_only=True, + multi_output=True, + single_output=False, + ) + transformer_tags = TransformerTags( + preserves_dtype=["float64"], + ) + classifier_tags = None + regressor_tags = None + return Tags( + estimator_type=None, + input_tags=input_tags, + target_tags=target_tags, + transformer_tags=transformer_tags, + classifier_tags=classifier_tags, + regressor_tags=regressor_tags, + ) + + estimator = MyClass() + new_tags = get_tags(estimator) + old_tags = _to_old_tags(new_tags) + expected_tags = { + "allow_nan": True, + "array_api_support": False, + "binary_only": False, + "multilabel": False, + "multioutput": True, + "multioutput_only": True, + "no_validation": False, + "non_deterministic": False, + "pairwise": True, + "preserves_dtype": ["float64"], + "poor_score": False, + "requires_fit": True, + "requires_positive_X": True, + "requires_y": False, + "requires_positive_y": True, + "_skip_test": False, + "stateless": True, + "X_types": [ + "1darray", + "3darray", + "sparse", + "categorical", + "string", + "dict", + "1dlabels", + ], + } + assert old_tags == expected_tags + assert _to_new_tags(_to_old_tags(new_tags), estimator=estimator) == new_tags From 8fb18b4bb43728217b1d04a6fd92c3203391b11a Mon Sep 17 00:00:00 2001 From: scikit-learn-bot Date: Mon, 25 Nov 2024 09:08:34 +0100 Subject: [PATCH 043/159] :lock: :robot: CI Update lock files for cirrus-arm CI build(s) :lock: :robot: (#30342) Co-authored-by: Lock file bot --- .../pymin_conda_forge_linux-aarch64_conda.lock | 18 +++++++++--------- 1 file changed, 9 insertions(+), 9 deletions(-) diff --git a/build_tools/cirrus/pymin_conda_forge_linux-aarch64_conda.lock b/build_tools/cirrus/pymin_conda_forge_linux-aarch64_conda.lock index 7ce4c020def93..ff250fdc0044f 100644 --- a/build_tools/cirrus/pymin_conda_forge_linux-aarch64_conda.lock +++ b/build_tools/cirrus/pymin_conda_forge_linux-aarch64_conda.lock @@ -9,7 +9,7 @@ https://conda.anaconda.org/conda-forge/noarch/font-ttf-source-code-pro-2.038-h77 https://conda.anaconda.org/conda-forge/noarch/font-ttf-ubuntu-0.83-h77eed37_3.conda#49023d73832ef61042f6a237cb2687e7 https://conda.anaconda.org/conda-forge/linux-aarch64/ld_impl_linux-aarch64-2.43-h80caac9_2.conda#fcbde5ea19d55468953bf588770c0501 https://conda.anaconda.org/conda-forge/linux-aarch64/libglvnd-1.7.0-hd24410f_2.conda#9e115653741810778c9a915a2f8439e7 -https://conda.anaconda.org/conda-forge/linux-aarch64/llvm-openmp-19.1.3-h013ceaa_0.conda#41689b81ad3f991ac539fd00b37af432 +https://conda.anaconda.org/conda-forge/linux-aarch64/llvm-openmp-19.1.4-h013ceaa_0.conda#2c5b3f823c988b7e5ce11b16c183f334 https://conda.anaconda.org/conda-forge/linux-aarch64/python_abi-3.9-5_cp39.conda#2d2843f11ec622f556137d72d9c72d89 https://conda.anaconda.org/conda-forge/noarch/tzdata-2024b-hc8b5060_0.conda#8ac3367aafb1cc0a068483c580af8015 https://conda.anaconda.org/conda-forge/linux-aarch64/_openmp_mutex-4.5-2_kmp_llvm.tar.bz2#98a1185182fec3c434069fa74e6473d6 @@ -113,7 +113,7 @@ https://conda.anaconda.org/conda-forge/linux-aarch64/libcblas-3.9.0-25_linuxaarc https://conda.anaconda.org/conda-forge/linux-aarch64/libcups-2.3.3-h405e4a8_4.conda#d42c670b0c96c1795fd859d5e0275a55 https://conda.anaconda.org/conda-forge/linux-aarch64/libgl-1.7.0-hd24410f_2.conda#0d00176464ebb25af83d40736a2cd3bb https://conda.anaconda.org/conda-forge/linux-aarch64/liblapack-3.9.0-25_linuxaarch64_openblas.conda#0eb74e81de46454960bde9e44e7ee378 -https://conda.anaconda.org/conda-forge/linux-aarch64/libllvm19-19.1.3-h2edbd07_0.conda#4f335bb2183b2a9a062518cbc079dc8b +https://conda.anaconda.org/conda-forge/linux-aarch64/libllvm19-19.1.4-h2edbd07_0.conda#81e165b3003383652447640a21f3db07 https://conda.anaconda.org/conda-forge/linux-aarch64/libxkbcommon-1.7.0-h46f2afe_1.conda#78a24e611ab9c09c518f519be49c2e46 https://conda.anaconda.org/conda-forge/linux-aarch64/libxslt-1.1.39-h1cc9640_0.conda#13e1d3f9188e85c6d59a98651aced002 https://conda.anaconda.org/conda-forge/noarch/munkres-1.1.4-pyh9f0ad1d_0.tar.bz2#2ba8498c1018c1e9c61eb99b973dfe19 @@ -121,13 +121,13 @@ https://conda.anaconda.org/conda-forge/linux-aarch64/openjpeg-2.5.2-h0d9d63b_0.c https://conda.anaconda.org/conda-forge/noarch/packaging-24.2-pyhff2d567_1.conda#8508b703977f4c4ada34d657d051972c https://conda.anaconda.org/conda-forge/noarch/pluggy-1.5.0-pyhd8ed1ab_0.conda#d3483c8fc2dc2cc3f5cf43e26d60cabf https://conda.anaconda.org/conda-forge/noarch/pyparsing-3.2.0-pyhd8ed1ab_1.conda#035c17fbf099f50ff60bf2eb303b0a83 -https://conda.anaconda.org/conda-forge/noarch/setuptools-75.5.0-pyhff2d567_0.conda#ade63405adb52eeff89d506cd55908c0 +https://conda.anaconda.org/conda-forge/noarch/setuptools-75.6.0-pyhff2d567_0.conda#68d7d406366926b09a6a023e3d0f71d7 https://conda.anaconda.org/conda-forge/noarch/six-1.16.0-pyh6c4a22f_0.tar.bz2#e5f25f8dbc060e9a8d912e432202afc2 https://conda.anaconda.org/conda-forge/noarch/threadpoolctl-3.5.0-pyhc1e730c_0.conda#df68d78237980a159bd7149f33c0e8fd https://conda.anaconda.org/conda-forge/noarch/tomli-2.1.0-pyhff2d567_0.conda#3fa1089b4722df3a900135925f4519d9 https://conda.anaconda.org/conda-forge/linux-aarch64/tornado-6.4.1-py39h3e3acee_1.conda#a4d4b0a58bf2fadfa1285f4710b72f99 https://conda.anaconda.org/conda-forge/linux-aarch64/unicodedata2-15.1.0-py39h060674a_1.conda#22a119d3f80e6d91b28fbc49a3cc08b2 -https://conda.anaconda.org/conda-forge/noarch/wheel-0.45.0-pyhd8ed1ab_0.conda#f9751d7c71df27b2d29f5cab3378982e +https://conda.anaconda.org/conda-forge/noarch/wheel-0.45.1-pyhd8ed1ab_0.conda#bdb2f437ce62fd2f1fef9119a37a12d9 https://conda.anaconda.org/conda-forge/linux-aarch64/xcb-util-cursor-0.1.5-h86ecc28_0.conda#d6bb2038d26fa118d5cbc2761116f3e5 https://conda.anaconda.org/conda-forge/linux-aarch64/xorg-libxcomposite-0.4.6-h86ecc28_2.conda#86051eee0766c3542be24844a9c3cf36 https://conda.anaconda.org/conda-forge/linux-aarch64/xorg-libxcursor-1.2.3-h86ecc28_0.conda#f2054759c2203d12d0007005e1f1296d @@ -140,22 +140,22 @@ https://conda.anaconda.org/conda-forge/linux-aarch64/fonttools-4.55.0-py39hbebea https://conda.anaconda.org/conda-forge/linux-aarch64/harfbuzz-9.0.0-hbf49d6b_1.conda#ceb458f664cab8550fcd74fff26451db https://conda.anaconda.org/conda-forge/noarch/importlib_resources-6.4.5-pyhd8ed1ab_0.conda#c808991d29b9838fb4d96ce8267ec9ec https://conda.anaconda.org/conda-forge/noarch/joblib-1.4.2-pyhd8ed1ab_0.conda#25df261d4523d9f9783bcdb7208d872f -https://conda.anaconda.org/conda-forge/linux-aarch64/libclang-cpp19.1-19.1.3-default_he324ac1_0.conda#9ac4956d6676bdb251279d8c27406954 -https://conda.anaconda.org/conda-forge/linux-aarch64/libclang13-19.1.3-default_h4390ef5_0.conda#d23cae404c2763d07fee33a9299f2d63 +https://conda.anaconda.org/conda-forge/linux-aarch64/libclang-cpp19.1-19.1.4-default_he324ac1_0.conda#d27a942c1106233db06764714df8dea6 +https://conda.anaconda.org/conda-forge/linux-aarch64/libclang13-19.1.4-default_h4390ef5_0.conda#d3855a39eb67f4758cfb3b66728f7007 https://conda.anaconda.org/conda-forge/linux-aarch64/liblapacke-3.9.0-25_linuxaarch64_openblas.conda#1e68063075954830f707b41dab6c7fd8 https://conda.anaconda.org/conda-forge/noarch/meson-1.6.0-pyhd8ed1ab_0.conda#380ba6a3eddd8e7649bfe8e6812611aa -https://conda.anaconda.org/conda-forge/linux-aarch64/numpy-2.0.2-py39h4a34e27_0.conda#4d6edcc002364ced01e4fc947832eee6 +https://conda.anaconda.org/conda-forge/linux-aarch64/numpy-2.0.2-py39h4a34e27_1.conda#fe586ddf9512644add97b0526129ed95 https://conda.anaconda.org/conda-forge/linux-aarch64/openldap-2.6.8-h50f9a67_0.conda#6f6627099ae614fe176e162e6eeae240 https://conda.anaconda.org/conda-forge/linux-aarch64/pillow-11.0.0-py39hb20fde8_0.conda#78cdfe29a452feee8c5bd689c2c871bd https://conda.anaconda.org/conda-forge/noarch/pip-24.3.1-pyh8b19718_0.conda#5dd546fe99b44fda83963d15f84263b7 https://conda.anaconda.org/conda-forge/noarch/pyproject-metadata-0.9.0-pyh2cfa8aa_0.conda#10906a130eeb4a68645bf97c28333141 https://conda.anaconda.org/conda-forge/noarch/pytest-8.3.3-pyhd8ed1ab_0.conda#c03d61f31f38fdb9facf70c29958bf7a -https://conda.anaconda.org/conda-forge/noarch/python-dateutil-2.9.0-pyhd8ed1ab_0.conda#2cf4264fffb9e6eff6031c5b6884d61c +https://conda.anaconda.org/conda-forge/noarch/python-dateutil-2.9.0.post0-pyhff2d567_0.conda#b6dfd90a2141e573e4b6a81630b56df5 https://conda.anaconda.org/conda-forge/linux-aarch64/xorg-libxtst-1.2.5-h57736b2_3.conda#c05698071b5c8e0da82a282085845860 https://conda.anaconda.org/conda-forge/linux-aarch64/blas-devel-3.9.0-25_linuxaarch64_openblas.conda#32539a9b9e09140a83e987edf3c09926 https://conda.anaconda.org/conda-forge/linux-aarch64/contourpy-1.3.0-py39hbd2ca3f_2.conda#57fa6811a7a80c5641e373408389bc5a https://conda.anaconda.org/conda-forge/noarch/importlib-resources-6.4.5-pyhd8ed1ab_0.conda#67f4772681cf86652f3e2261794cf045 -https://conda.anaconda.org/conda-forge/linux-aarch64/libpq-17.1-h081282e_0.conda#aadc97bccac4e4d77c766b224a811440 +https://conda.anaconda.org/conda-forge/linux-aarch64/libpq-17.2-h081282e_0.conda#cfef255cbd6e1c9d5b15fad06667aa02 https://conda.anaconda.org/conda-forge/noarch/meson-python-0.17.1-pyh70fd9c4_0.conda#722b649da38842068d83b6e6770f11a1 https://conda.anaconda.org/conda-forge/noarch/pytest-xdist-3.6.1-pyhd8ed1ab_0.conda#b39568655c127a9c4a44d178ac99b6d0 https://conda.anaconda.org/conda-forge/linux-aarch64/scipy-1.13.1-py39hb921187_0.conda#1aac9080de661e03d286f18fb71e5240 From 52f4cd6c1830f53911fd5a18c69d57898642b700 Mon Sep 17 00:00:00 2001 From: scikit-learn-bot Date: Mon, 25 Nov 2024 09:09:34 +0100 Subject: [PATCH 044/159] :lock: :robot: CI Update lock files for free-threaded CI build(s) :lock: :robot: (#30343) Co-authored-by: Lock file bot --- build_tools/azure/pylatest_free_threaded_linux-64_conda.lock | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/build_tools/azure/pylatest_free_threaded_linux-64_conda.lock b/build_tools/azure/pylatest_free_threaded_linux-64_conda.lock index a1746aa39c1ce..88c8d17345bcd 100644 --- a/build_tools/azure/pylatest_free_threaded_linux-64_conda.lock +++ b/build_tools/azure/pylatest_free_threaded_linux-64_conda.lock @@ -45,7 +45,7 @@ https://conda.anaconda.org/conda-forge/linux-64/liblapack-3.9.0-25_linux64_openb https://conda.anaconda.org/conda-forge/noarch/packaging-24.2-pyhff2d567_1.conda#8508b703977f4c4ada34d657d051972c https://conda.anaconda.org/conda-forge/noarch/pip-24.3.1-pyh145f28c_0.conda#ca3afe2d7b893a8c8cdf489d30a2b1a3 https://conda.anaconda.org/conda-forge/noarch/pluggy-1.5.0-pyhd8ed1ab_0.conda#d3483c8fc2dc2cc3f5cf43e26d60cabf -https://conda.anaconda.org/conda-forge/noarch/setuptools-75.5.0-pyhff2d567_0.conda#ade63405adb52eeff89d506cd55908c0 +https://conda.anaconda.org/conda-forge/noarch/setuptools-75.6.0-pyhff2d567_0.conda#68d7d406366926b09a6a023e3d0f71d7 https://conda.anaconda.org/conda-forge/noarch/threadpoolctl-3.5.0-pyhc1e730c_0.conda#df68d78237980a159bd7149f33c0e8fd https://conda.anaconda.org/conda-forge/noarch/tomli-2.1.0-pyhff2d567_0.conda#3fa1089b4722df3a900135925f4519d9 https://conda.anaconda.org/conda-forge/noarch/joblib-1.4.2-pyhd8ed1ab_0.conda#25df261d4523d9f9783bcdb7208d872f From 5257a4288b10df72ecdeacc3fe64a86cce1b54a3 Mon Sep 17 00:00:00 2001 From: scikit-learn-bot Date: Mon, 25 Nov 2024 09:10:27 +0100 Subject: [PATCH 045/159] :lock: :robot: CI Update lock files for array-api CI build(s) :lock: :robot: (#30345) Co-authored-by: Lock file bot --- ...a_forge_cuda_array-api_linux-64_conda.lock | 40 +++++++++---------- 1 file changed, 20 insertions(+), 20 deletions(-) diff --git a/build_tools/github/pylatest_conda_forge_cuda_array-api_linux-64_conda.lock b/build_tools/github/pylatest_conda_forge_cuda_array-api_linux-64_conda.lock index ea9e9b06ab8f4..c0f5aa13cecef 100644 --- a/build_tools/github/pylatest_conda_forge_cuda_array-api_linux-64_conda.lock +++ b/build_tools/github/pylatest_conda_forge_cuda_array-api_linux-64_conda.lock @@ -27,7 +27,7 @@ https://conda.anaconda.org/conda-forge/linux-64/_openmp_mutex-4.5-2_kmp_llvm.tar https://conda.anaconda.org/conda-forge/linux-64/libgcc-14.2.0-h77fa898_1.conda#3cb76c3f10d3bc7f1105b2fc9db984df https://conda.anaconda.org/conda-forge/linux-64/alsa-lib-1.2.13-hb9d3cd8_0.conda#ae1370588aa6a5157c34c73e9bbb36a0 https://conda.anaconda.org/conda-forge/linux-64/aws-c-common-0.10.3-hb9d3cd8_0.conda#ff3653946d34a6a6ba10babb139d96ef -https://conda.anaconda.org/conda-forge/linux-64/c-ares-1.34.3-heb4867d_0.conda#09a6c610d002e54e18353c06ef61a253 +https://conda.anaconda.org/conda-forge/linux-64/c-ares-1.34.3-hb9d3cd8_1.conda#ee228789a85f961d14567252a03e725f https://conda.anaconda.org/conda-forge/linux-64/libbrotlicommon-1.1.0-hb9d3cd8_2.conda#41b599ed2b02abcfdd84302bff174b23 https://conda.anaconda.org/conda-forge/linux-64/libdeflate-1.22-hb9d3cd8_0.conda#b422943d5d772b7cc858b36ad2a92db5 https://conda.anaconda.org/conda-forge/linux-64/libexpat-2.6.4-h5888daf_0.conda#db833e03127376d461e1e13e76f09b6c @@ -63,7 +63,7 @@ https://conda.anaconda.org/conda-forge/linux-64/libntlm-1.4-h7f98852_1002.tar.bz https://conda.anaconda.org/conda-forge/linux-64/libpciaccess-0.18-hd590300_0.conda#48f4330bfcd959c3cfb704d424903c82 https://conda.anaconda.org/conda-forge/linux-64/libpng-1.6.44-hadc24fc_0.conda#f4cc49d7aa68316213e4b12be35308d1 https://conda.anaconda.org/conda-forge/linux-64/libsqlite-3.47.0-hadc24fc_1.conda#b6f02b52a174e612e89548f4663ce56a -https://conda.anaconda.org/conda-forge/linux-64/libssh2-1.11.0-h0841786_0.conda#1f5a58e686b13bcfde88b93f547d23fe +https://conda.anaconda.org/conda-forge/linux-64/libssh2-1.11.1-hf672d98_0.conda#be2de152d8073ef1c01b7728475f2fe7 https://conda.anaconda.org/conda-forge/linux-64/libstdcxx-ng-14.2.0-h4852527_1.conda#8371ac6457591af2cf6159439c1fd051 https://conda.anaconda.org/conda-forge/linux-64/libutf8proc-2.8.0-h166bdaf_0.tar.bz2#ede4266dc02e875fe1ea77b25dd43747 https://conda.anaconda.org/conda-forge/linux-64/libuuid-2.38.1-h0b41bf4_0.conda#40b61aab5c7ba9ff276c41cfffe6b80b @@ -170,7 +170,7 @@ https://conda.anaconda.org/conda-forge/linux-64/libcusolver-11.6.1.9-he02047a_2. https://conda.anaconda.org/conda-forge/linux-64/libgl-1.7.0-ha4b6fd6_2.conda#928b8be80851f5d8ffb016f9c81dae7a https://conda.anaconda.org/conda-forge/linux-64/libgrpc-1.67.1-hc2c308b_0.conda#4606a4647bfe857e3cfe21ca12ac3afb https://conda.anaconda.org/conda-forge/linux-64/libhwloc-2.11.1-default_hecaa2ac_1000.conda#f54aeebefb5c5ff84eca4fb05ca8aa3a -https://conda.anaconda.org/conda-forge/linux-64/libllvm19-19.1.3-ha7bfdaf_0.conda#8bd654307c455162668cd66e36494000 +https://conda.anaconda.org/conda-forge/linux-64/libllvm19-19.1.4-ha7bfdaf_0.conda#5f7d7eabf470bc56903b18f169f4f784 https://conda.anaconda.org/conda-forge/linux-64/libxkbcommon-1.7.0-h2c5496b_1.conda#e2eaefa4de2b7237af7c907b8bbc760a https://conda.anaconda.org/conda-forge/linux-64/libxslt-1.1.39-h76b75d6_0.conda#e71f31f8cfb0a91439f2086fc8aa0461 https://conda.anaconda.org/conda-forge/linux-64/markupsafe-3.0.2-py312h178313f_0.conda#a755704ea0e2503f8c227d84829a8e81 @@ -185,7 +185,7 @@ https://conda.anaconda.org/conda-forge/noarch/pyparsing-3.2.0-pyhd8ed1ab_1.conda https://conda.anaconda.org/conda-forge/noarch/python-tzdata-2024.2-pyhd8ed1ab_0.conda#986287f89929b2d629bd6ef6497dc307 https://conda.anaconda.org/conda-forge/noarch/pytz-2024.1-pyhd8ed1ab_0.conda#3eeeeb9e4827ace8c0c1419c85d590ad https://conda.anaconda.org/conda-forge/linux-64/pyyaml-6.0.2-py312h66e93f0_1.conda#549e5930e768548a89c23f595dac5a95 -https://conda.anaconda.org/conda-forge/noarch/setuptools-75.5.0-pyhff2d567_0.conda#ade63405adb52eeff89d506cd55908c0 +https://conda.anaconda.org/conda-forge/noarch/setuptools-75.6.0-pyhff2d567_0.conda#68d7d406366926b09a6a023e3d0f71d7 https://conda.anaconda.org/conda-forge/noarch/six-1.16.0-pyh6c4a22f_0.tar.bz2#e5f25f8dbc060e9a8d912e432202afc2 https://conda.anaconda.org/conda-forge/noarch/threadpoolctl-3.5.0-pyhc1e730c_0.conda#df68d78237980a159bd7149f33c0e8fd https://conda.anaconda.org/conda-forge/noarch/toml-0.10.2-pyhd8ed1ab_0.tar.bz2#f832c45a477c78bebd107098db465095 @@ -193,7 +193,7 @@ https://conda.anaconda.org/conda-forge/noarch/tomli-2.1.0-pyhff2d567_0.conda#3fa https://conda.anaconda.org/conda-forge/linux-64/tornado-6.4.1-py312h66e93f0_1.conda#af648b62462794649066366af4ecd5b0 https://conda.anaconda.org/conda-forge/noarch/typing_extensions-4.12.2-pyha770c72_0.conda#ebe6952715e1d5eb567eeebf25250fa7 https://conda.anaconda.org/conda-forge/linux-64/unicodedata2-15.1.0-py312h66e93f0_1.conda#588486a61153f94c7c13816f7069e440 -https://conda.anaconda.org/conda-forge/noarch/wheel-0.45.0-pyhd8ed1ab_0.conda#f9751d7c71df27b2d29f5cab3378982e +https://conda.anaconda.org/conda-forge/noarch/wheel-0.45.1-pyhd8ed1ab_0.conda#bdb2f437ce62fd2f1fef9119a37a12d9 https://conda.anaconda.org/conda-forge/linux-64/xcb-util-cursor-0.1.5-hb9d3cd8_0.conda#eb44b3b6deb1cab08d72cb61686fe64c https://conda.anaconda.org/conda-forge/linux-64/xorg-libxcomposite-0.4.6-hb9d3cd8_2.conda#d3c295b50f092ab525ffe3c2aa4b7413 https://conda.anaconda.org/conda-forge/linux-64/xorg-libxcursor-1.2.3-hb9d3cd8_0.conda#2ccd714aa2242315acaf0a67faea780b @@ -203,15 +203,15 @@ https://conda.anaconda.org/conda-forge/linux-64/xorg-libxrandr-1.5.4-hb9d3cd8_0. https://conda.anaconda.org/conda-forge/linux-64/xorg-libxxf86vm-1.1.5-hb9d3cd8_4.conda#7da9007c0582712c4bad4131f89c8372 https://conda.anaconda.org/conda-forge/linux-64/aws-c-s3-0.7.1-h3a84f74_3.conda#e7a54821aaa774cfd64efcd45114a4d7 https://conda.anaconda.org/conda-forge/linux-64/azure-core-cpp-1.14.0-h5cfcd09_0.conda#0a8838771cc2e985cd295e01ae83baf1 -https://conda.anaconda.org/conda-forge/linux-64/coverage-7.6.7-py312h178313f_0.conda#f64f3206bf9e86338b881957fd498870 +https://conda.anaconda.org/conda-forge/linux-64/coverage-7.6.8-py312h178313f_0.conda#fe8c93f4c75908fe2a1cc45ed0c47edf https://conda.anaconda.org/conda-forge/linux-64/cuda-libraries-12.4.1-ha770c72_1.conda#6bb3f998485d4344a7539e0b218b3fc1 https://conda.anaconda.org/conda-forge/linux-64/fonttools-4.55.0-py312h178313f_0.conda#f404f4fb99ccaea68b00c1cc64fc1e68 https://conda.anaconda.org/conda-forge/linux-64/gmpy2-2.1.5-py312h7201bc8_2.conda#af9faf103fb57241246416dc70b466f7 https://conda.anaconda.org/conda-forge/linux-64/harfbuzz-9.0.0-hda332d3_1.conda#76b32dcf243444aea9c6b804bcfa40b8 https://conda.anaconda.org/conda-forge/noarch/jinja2-3.1.4-pyhd8ed1ab_0.conda#7b86ecb7d3557821c649b3c31e3eb9f2 https://conda.anaconda.org/conda-forge/noarch/joblib-1.4.2-pyhd8ed1ab_0.conda#25df261d4523d9f9783bcdb7208d872f -https://conda.anaconda.org/conda-forge/linux-64/libclang-cpp19.1-19.1.3-default_hb5137d0_0.conda#311e6a1d041db3d6a8a8437750d4234f -https://conda.anaconda.org/conda-forge/linux-64/libclang13-19.1.3-default_h9c6a7e4_0.conda#b8a8cd77810b20754f358f2327812552 +https://conda.anaconda.org/conda-forge/linux-64/libclang-cpp19.1-19.1.4-default_hb5137d0_0.conda#e7e4a0ebe1f6eedf483f6f5d4f7d2bdd +https://conda.anaconda.org/conda-forge/linux-64/libclang13-19.1.4-default_h9c6a7e4_0.conda#6c450adae455c7d648856e8b0cfcebd6 https://conda.anaconda.org/conda-forge/linux-64/libgoogle-cloud-2.31.0-h804f50b_0.conda#35ab838423b60f233391eb86d324a830 https://conda.anaconda.org/conda-forge/noarch/meson-1.6.0-pyhd8ed1ab_0.conda#380ba6a3eddd8e7649bfe8e6812611aa https://conda.anaconda.org/conda-forge/linux-64/openldap-2.6.8-hedd0468_0.conda#dcd0ed5147d8876b0848a552b416ce76 @@ -219,21 +219,21 @@ https://conda.anaconda.org/conda-forge/linux-64/pillow-11.0.0-py312h7b63e92_0.co https://conda.anaconda.org/conda-forge/noarch/pip-24.3.1-pyh8b19718_0.conda#5dd546fe99b44fda83963d15f84263b7 https://conda.anaconda.org/conda-forge/noarch/pyproject-metadata-0.9.0-pyh2cfa8aa_0.conda#10906a130eeb4a68645bf97c28333141 https://conda.anaconda.org/conda-forge/noarch/pytest-8.3.3-pyhd8ed1ab_0.conda#c03d61f31f38fdb9facf70c29958bf7a -https://conda.anaconda.org/conda-forge/noarch/python-dateutil-2.9.0-pyhd8ed1ab_0.conda#2cf4264fffb9e6eff6031c5b6884d61c +https://conda.anaconda.org/conda-forge/noarch/python-dateutil-2.9.0.post0-pyhff2d567_0.conda#b6dfd90a2141e573e4b6a81630b56df5 https://conda.anaconda.org/conda-forge/linux-64/tbb-2021.13.0-h84d6215_0.conda#ee6f7fd1e76061ef1fa307d41fa86a96 https://conda.anaconda.org/conda-forge/linux-64/xorg-libxtst-1.2.5-hb9d3cd8_3.conda#7bbe9a0cc0df0ac5f5a8ad6d6a11af2f -https://conda.anaconda.org/conda-forge/linux-64/aws-crt-cpp-0.29.4-h21d7256_1.conda#963a310ba64fd6a113eb4f7fcf89f935 +https://conda.anaconda.org/conda-forge/linux-64/aws-crt-cpp-0.29.5-h21d7256_0.conda#b2468de19999ee8452757f12f15a9b34 https://conda.anaconda.org/conda-forge/linux-64/azure-identity-cpp-1.10.0-h113e628_0.conda#73f73f60854f325a55f1d31459f2ab73 https://conda.anaconda.org/conda-forge/linux-64/azure-storage-common-cpp-12.8.0-h736e048_1.conda#13de36be8de3ae3f05ba127631599213 https://conda.anaconda.org/conda-forge/noarch/cuda-runtime-12.4.1-ha804496_0.conda#48829f4ef6005ae8d4867b99168ff2b8 https://conda.anaconda.org/conda-forge/linux-64/libgoogle-cloud-storage-2.31.0-h0121fbd_0.conda#568d6a09a6ed76337a7b97c84ae7c0f8 -https://conda.anaconda.org/conda-forge/linux-64/libpq-17.1-h04577a9_0.conda#c2560bae9f56de89b8c50355f7c84910 +https://conda.anaconda.org/conda-forge/linux-64/libpq-17.2-h04577a9_0.conda#52dd46162c6fb2765b49e6fd06adf8d5 https://conda.anaconda.org/conda-forge/noarch/meson-python-0.17.1-pyh70fd9c4_0.conda#722b649da38842068d83b6e6770f11a1 https://conda.anaconda.org/conda-forge/linux-64/mkl-2022.1.0-h84fe81f_915.tar.bz2#b9c8f925797a93dbff45e1626b025a6b https://conda.anaconda.org/conda-forge/noarch/pytest-cov-6.0.0-pyhd8ed1ab_0.conda#cb8a11b6d209e3d85e5094bdbd9ebd9c https://conda.anaconda.org/conda-forge/noarch/pytest-xdist-3.6.1-pyhd8ed1ab_0.conda#b39568655c127a9c4a44d178ac99b6d0 https://conda.anaconda.org/conda-forge/noarch/sympy-1.13.3-pyh2585a3b_104.conda#68085d736d2b2f54498832b65059875d -https://conda.anaconda.org/conda-forge/linux-64/aws-sdk-cpp-1.11.449-h1a02111_1.conda#490f72eee62d9bd7e778f137f65e9650 +https://conda.anaconda.org/conda-forge/linux-64/aws-sdk-cpp-1.11.449-hdaa582e_3.conda#0dca4b37cf80312f8ef84b649e6ad3a3 https://conda.anaconda.org/conda-forge/linux-64/azure-storage-blobs-cpp-12.13.0-h3cf044e_1.conda#7eb66060455c7a47d9dcdbfa9f46579b https://conda.anaconda.org/conda-forge/linux-64/libblas-3.9.0-16_linux64_mkl.tar.bz2#85f61af03fd291dae33150ffe89dc09a https://conda.anaconda.org/conda-forge/linux-64/mkl-devel-2022.1.0-ha770c72_916.tar.bz2#69ba49e445f87aea2cba343a71a35ca2 @@ -243,26 +243,26 @@ https://conda.anaconda.org/conda-forge/linux-64/azure-storage-files-datalake-cpp https://conda.anaconda.org/conda-forge/linux-64/libcblas-3.9.0-16_linux64_mkl.tar.bz2#361bf757b95488de76c4f123805742d3 https://conda.anaconda.org/conda-forge/linux-64/liblapack-3.9.0-16_linux64_mkl.tar.bz2#a2f166748917d6d6e4707841ca1f519e https://conda.anaconda.org/conda-forge/linux-64/pyside6-6.8.0.2-py312h91f0f75_0.conda#ec3da81d5f9d3612b227e09a650f7bf2 -https://conda.anaconda.org/conda-forge/linux-64/libarrow-18.0.0-h3b997a5_7_cpu.conda#32897a50e7f68187c4a524c439c0943c +https://conda.anaconda.org/conda-forge/linux-64/libarrow-18.0.0-h94eee4b_9_cpu.conda#fe2841c29f3753146d4e89217d22d043 https://conda.anaconda.org/conda-forge/linux-64/liblapacke-3.9.0-16_linux64_mkl.tar.bz2#44ccc4d4dca6a8d57fa17442bc64b5a1 https://conda.anaconda.org/conda-forge/linux-64/numpy-2.1.3-py312h58c1407_0.conda#dfdbc12e6d81889ba4c494a23f23eba8 https://conda.anaconda.org/conda-forge/noarch/array-api-strict-2.2-pyhd8ed1ab_0.conda#5f8d3e0f6b42318772d0f1cdddfe3025 https://conda.anaconda.org/conda-forge/linux-64/blas-devel-3.9.0-16_linux64_mkl.tar.bz2#3f92c1c9e1c0e183462c5071aa02cae1 https://conda.anaconda.org/conda-forge/linux-64/contourpy-1.3.1-py312h68727a3_0.conda#f5fbba0394ee45e9a64a73c2a994126a https://conda.anaconda.org/conda-forge/linux-64/cupy-core-13.3.0-py312h1acd1a8_2.conda#15e9530e87664584a6b409ecdf5c9264 -https://conda.anaconda.org/conda-forge/linux-64/libarrow-acero-18.0.0-h5888daf_7_cpu.conda#786a275d019708cd1c963b12a8fb0c72 -https://conda.anaconda.org/conda-forge/linux-64/libparquet-18.0.0-h6bd9018_7_cpu.conda#687870f7d9cba5262fdd7e730e9e9ba8 +https://conda.anaconda.org/conda-forge/linux-64/libarrow-acero-18.0.0-h5888daf_9_cpu.conda#b36def03eb1624ad1ca6cd5866104096 +https://conda.anaconda.org/conda-forge/linux-64/libparquet-18.0.0-h6bd9018_9_cpu.conda#79817c62827b836349adf32b218edd95 https://conda.anaconda.org/conda-forge/linux-64/pandas-2.2.3-py312hf9745cd_1.conda#8bce4f6caaf8c5448c7ac86d87e26b4b -https://conda.anaconda.org/conda-forge/linux-64/polars-1.12.0-py312hfe7c9be_0.conda#47b6df7e8b629d1257a6f971b88c15de -https://conda.anaconda.org/conda-forge/linux-64/pyarrow-core-18.0.0-py312h01725c0_1_cpu.conda#c8ae967c39337603035d59c8994c23f9 +https://conda.anaconda.org/conda-forge/linux-64/polars-1.14.0-py312hfe7c9be_1.conda#2fe02335a7c7e5412e4433b712d695ff +https://conda.anaconda.org/conda-forge/linux-64/pyarrow-core-18.0.0-py312h01725c0_2_cpu.conda#190d4fccaa0d28d9f3a7489add69294e https://conda.anaconda.org/conda-forge/linux-64/scipy-1.14.1-py312h62794b6_1.conda#b43233a9e2f62fb94affe5607ea79473 https://conda.anaconda.org/conda-forge/linux-64/blas-2.116-mkl.tar.bz2#c196a26abf6b4f132c88828ab7c2231c https://conda.anaconda.org/conda-forge/linux-64/cupy-13.3.0-py312h7d319b9_2.conda#009ef049020fef7d1541183d52fab5a9 -https://conda.anaconda.org/conda-forge/linux-64/libarrow-dataset-18.0.0-h5888daf_7_cpu.conda#a742b9a0452b55020ccf662721c1ce44 +https://conda.anaconda.org/conda-forge/linux-64/libarrow-dataset-18.0.0-h5888daf_9_cpu.conda#07a60ef65486d08c96f324594dc2b5a1 https://conda.anaconda.org/conda-forge/linux-64/matplotlib-base-3.9.2-py312hd3ec401_2.conda#2380c9ba933ffaac9ad16d8eac8e3318 https://conda.anaconda.org/conda-forge/linux-64/pyamg-5.2.1-py312hc39e661_1.conda#372efc32220f0dfb603e5b31ffaefa23 -https://conda.anaconda.org/conda-forge/linux-64/libarrow-substrait-18.0.0-h5c8f2c3_7_cpu.conda#be76013fa3fdaec2c0c504e6fdfd282d +https://conda.anaconda.org/conda-forge/linux-64/libarrow-substrait-18.0.0-h5c8f2c3_9_cpu.conda#a8fcd78ee422057362d928e2dd63ed8e https://conda.anaconda.org/conda-forge/linux-64/matplotlib-3.9.2-py312h7900ff3_2.conda#266d9ad348e2151d07ad9e4dc716eea5 -https://conda.anaconda.org/conda-forge/linux-64/pyarrow-18.0.0-py312h7900ff3_1.conda#ea33ac754057779cd2df785661486310 +https://conda.anaconda.org/conda-forge/linux-64/pyarrow-18.0.0-py312h7900ff3_2.conda#3d91e33cf1a2274d52b9a1ca95bd34a0 https://conda.anaconda.org/pytorch/linux-64/pytorch-2.5.1-py3.12_cuda12.4_cudnn9.1.0_0.tar.bz2#42164c6ce8e563c20a542686a8b9b964 https://conda.anaconda.org/pytorch/linux-64/torchtriton-3.1.0-py312.tar.bz2#bb4b2d07cb6b9b476e78740c08ba69fe From 0a55ca49ed3508a888daed6b9fe1562ad874ee61 Mon Sep 17 00:00:00 2001 From: scikit-learn-bot Date: Mon, 25 Nov 2024 09:10:55 +0100 Subject: [PATCH 046/159] :lock: :robot: CI Update lock files for scipy-dev CI build(s) :lock: :robot: (#30344) Co-authored-by: Lock file bot --- build_tools/azure/pylatest_pip_scipy_dev_linux-64_conda.lock | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/build_tools/azure/pylatest_pip_scipy_dev_linux-64_conda.lock b/build_tools/azure/pylatest_pip_scipy_dev_linux-64_conda.lock index fa213e9652d89..4125df2840fdb 100644 --- a/build_tools/azure/pylatest_pip_scipy_dev_linux-64_conda.lock +++ b/build_tools/azure/pylatest_pip_scipy_dev_linux-64_conda.lock @@ -32,7 +32,7 @@ https://repo.anaconda.com/pkgs/main/linux-64/pip-24.2-py313h06a4308_0.conda#59f8 # pip babel @ https://files.pythonhosted.org/packages/ed/20/bc79bc575ba2e2a7f70e8a1155618bb1301eaa5132a8271373a6903f73f8/babel-2.16.0-py3-none-any.whl#sha256=368b5b98b37c06b7daf6696391c3240c938b37767d4584413e8438c5c435fa8b # pip certifi @ https://files.pythonhosted.org/packages/12/90/3c9ff0512038035f59d279fddeb79f5f1eccd8859f06d6163c58798b9487/certifi-2024.8.30-py3-none-any.whl#sha256=922820b53db7a7257ffbda3f597266d435245903d80737e34f8a45ff3e3230d8 # pip charset-normalizer @ https://files.pythonhosted.org/packages/2b/c9/1c8fe3ce05d30c87eff498592c89015b19fade13df42850aafae09e94f35/charset_normalizer-3.4.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl#sha256=4796efc4faf6b53a18e3d46343535caed491776a22af773f366534056c4e1fbc -# pip coverage @ https://files.pythonhosted.org/packages/2b/19/7a70458c1624724086195b40628e91bc5b9ca180cdfefcc778285c49c7b2/coverage-7.6.7-cp313-cp313-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl#sha256=2d608a7808793e3615e54e9267519351c3ae204a6d85764d8337bd95993581a8 +# pip coverage @ https://files.pythonhosted.org/packages/d4/e4/a91e9bb46809c8b63e68fc5db5c4d567d3423b6691d049a4f950e38fbe9d/coverage-7.6.8-cp313-cp313-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl#sha256=3b4b4299dd0d2c67caaaf286d58aef5e75b125b95615dda4542561a5a566a1e3 # pip docutils @ https://files.pythonhosted.org/packages/8f/d7/9322c609343d929e75e7e5e6255e614fcc67572cfd083959cdef3b7aad79/docutils-0.21.2-py3-none-any.whl#sha256=dafca5b9e384f0e419294eb4d2ff9fa826435bf15f15b7bd45723e8ad76811b2 # pip execnet @ https://files.pythonhosted.org/packages/43/09/2aea36ff60d16dd8879bdb2f5b3ee0ba8d08cbbdcdfe870e695ce3784385/execnet-2.1.1-py3-none-any.whl#sha256=26dee51f1b80cebd6d0ca8e74dd8745419761d3bef34163928cbebbdc4749fdc # pip idna @ https://files.pythonhosted.org/packages/76/c6/c88e154df9c4e1a2a66ccf0005a88dfb2650c1dffb6f5ce603dfbd452ce3/idna-3.10-py3-none-any.whl#sha256=946d195a0d259cbba61165e88e65941f16e9b36ea6ddb97f00452bae8b1287d3 @@ -40,7 +40,7 @@ https://repo.anaconda.com/pkgs/main/linux-64/pip-24.2-py313h06a4308_0.conda#59f8 # pip iniconfig @ https://files.pythonhosted.org/packages/ef/a6/62565a6e1cf69e10f5727360368e451d4b7f58beeac6173dc9db836a5b46/iniconfig-2.0.0-py3-none-any.whl#sha256=b6a85871a79d2e3b22d2d1b94ac2824226a63c6b741c88f7ae975f18b6778374 # pip markupsafe @ https://files.pythonhosted.org/packages/0c/91/96cf928db8236f1bfab6ce15ad070dfdd02ed88261c2afafd4b43575e9e9/MarkupSafe-3.0.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl#sha256=15ab75ef81add55874e7ab7055e9c397312385bd9ced94920f2802310c930396 # pip meson @ https://files.pythonhosted.org/packages/76/73/3dc4edc855c9988ff05ea5590f5c7bda72b6e0d138b2ddc1fab92a1f242f/meson-1.6.0-py3-none-any.whl#sha256=234a45f9206c6ee33b473ec1baaef359d20c0b89a71871d58c65a6db6d98fe74 -# pip ninja @ https://files.pythonhosted.org/packages/6d/92/8d7aebd4430ab5ff65df2bfee6d5745f95c004284db2d8ca76dcbfd9de47/ninja-1.11.1.1-py2.py3-none-manylinux1_x86_64.manylinux_2_5_x86_64.whl#sha256=84502ec98f02a037a169c4b0d5d86075eaf6afc55e1879003d6cab51ced2ea4b +# pip ninja @ https://files.pythonhosted.org/packages/62/54/787bb70e6af2f1b1853af9bab62a5e7cb35b957d72daf253b7f3c653c005/ninja-1.11.1.2-py3-none-manylinux_2_12_x86_64.manylinux2010_x86_64.whl#sha256=33d258809c8eda81f9d80e18a081a6eef3215e5fd1ba8902400d786641994e89 # pip packaging @ https://files.pythonhosted.org/packages/88/ef/eb23f262cca3c0c4eb7ab1933c3b1f03d021f2c48f54763065b6f0e321be/packaging-24.2-py3-none-any.whl#sha256=09abb1bccd265c01f4a3aa3f7a7db064b36514d2cba19a2f694fe6150451a759 # pip platformdirs @ https://files.pythonhosted.org/packages/3c/a6/bc1012356d8ece4d66dd75c4b9fc6c1f6650ddd5991e421177d9f8f671be/platformdirs-4.3.6-py3-none-any.whl#sha256=73e575e1408ab8103900836b97580d5307456908a03e92031bab39e4554cc3fb # pip pluggy @ https://files.pythonhosted.org/packages/88/5f/e351af9a41f866ac3f1fac4ca0613908d9a41741cfcf2228f4ad853b697d/pluggy-1.5.0-py3-none-any.whl#sha256=44e1ad92c8ca002de6377e165f3e0f1be63266ab4d554740532335b9d75ea669 From 9672c2e3b0a547f27d9e0af05c7b4d4e6b56e344 Mon Sep 17 00:00:00 2001 From: Xiao Yuan Date: Mon, 25 Nov 2024 16:12:49 +0800 Subject: [PATCH 047/159] DOC Fix some typos in doc of RandomizedSearchCV and GridSearchCV (#30341) --- sklearn/model_selection/_search.py | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/sklearn/model_selection/_search.py b/sklearn/model_selection/_search.py index 7515436af33da..d37ece5df7249 100644 --- a/sklearn/model_selection/_search.py +++ b/sklearn/model_selection/_search.py @@ -1254,7 +1254,7 @@ class GridSearchCV(BaseSearchCV): - a list or tuple of unique strings; - a callable returning a dictionary where the keys are the metric names and the values are the metric scores; - - a dictionary with metric names as keys and callables a values. + - a dictionary with metric names as keys and callables as values. See :ref:`multimetric_grid_search` for an example. @@ -1630,7 +1630,7 @@ class RandomizedSearchCV(BaseSearchCV): - a list or tuple of unique strings; - a callable returning a dictionary where the keys are the metric names and the values are the metric scores; - - a dictionary with metric names as keys and callables a values. + - a dictionary with metric names as keys and callables as values. See :ref:`multimetric_grid_search` for an example. @@ -1655,7 +1655,7 @@ class RandomizedSearchCV(BaseSearchCV): Where there are considerations other than maximum score in choosing a best estimator, ``refit`` can be set to a function which - returns the selected ``best_index_`` given the ``cv_results``. In that + returns the selected ``best_index_`` given the ``cv_results_``. In that case, the ``best_estimator_`` and ``best_params_`` will be set according to the returned ``best_index_`` while the ``best_score_`` attribute will not be available. From 0e7f7b4c2bcb8fe0b544938f81a1d08be48d7561 Mon Sep 17 00:00:00 2001 From: scikit-learn-bot Date: Mon, 25 Nov 2024 09:15:19 +0100 Subject: [PATCH 048/159] :lock: :robot: CI Update lock files for main CI build(s) :lock: :robot: (#30346) Co-authored-by: Lock file bot --- build_tools/azure/debian_32bit_lock.txt | 4 +- ...latest_conda_forge_mkl_linux-64_conda.lock | 85 +++++++++---------- ...pylatest_conda_forge_mkl_osx-64_conda.lock | 18 ++-- ...test_conda_mkl_no_openmp_osx-64_conda.lock | 2 +- ...st_pip_openblas_pandas_linux-64_conda.lock | 4 +- .../pymin_conda_forge_mkl_win-64_conda.lock | 12 +-- ...nblas_min_dependencies_linux-64_conda.lock | 26 +++--- ...e_openblas_ubuntu_2204_linux-64_conda.lock | 18 ++-- build_tools/azure/ubuntu_atlas_lock.txt | 2 +- build_tools/circle/doc_linux-64_conda.lock | 28 +++--- .../doc_min_dependencies_linux-64_conda.lock | 34 ++++---- 11 files changed, 115 insertions(+), 118 deletions(-) diff --git a/build_tools/azure/debian_32bit_lock.txt b/build_tools/azure/debian_32bit_lock.txt index 7e7b3a934c41f..1a62ee5235896 100644 --- a/build_tools/azure/debian_32bit_lock.txt +++ b/build_tools/azure/debian_32bit_lock.txt @@ -4,7 +4,7 @@ # # pip-compile --output-file=build_tools/azure/debian_32bit_lock.txt build_tools/azure/debian_32bit_requirements.txt # -coverage[toml]==7.6.7 +coverage[toml]==7.6.8 # via pytest-cov cython==3.0.11 # via -r build_tools/azure/debian_32bit_requirements.txt @@ -16,7 +16,7 @@ meson==1.6.0 # via meson-python meson-python==0.17.1 # via -r build_tools/azure/debian_32bit_requirements.txt -ninja==1.11.1.1 +ninja==1.11.1.2 # via -r build_tools/azure/debian_32bit_requirements.txt packaging==24.2 # via diff --git a/build_tools/azure/pylatest_conda_forge_mkl_linux-64_conda.lock b/build_tools/azure/pylatest_conda_forge_mkl_linux-64_conda.lock index d63e923aa477f..8fcb4bef263f0 100644 --- a/build_tools/azure/pylatest_conda_forge_mkl_linux-64_conda.lock +++ b/build_tools/azure/pylatest_conda_forge_mkl_linux-64_conda.lock @@ -9,12 +9,12 @@ https://conda.anaconda.org/conda-forge/noarch/font-ttf-inconsolata-3.000-h77eed3 https://conda.anaconda.org/conda-forge/noarch/font-ttf-source-code-pro-2.038-h77eed37_0.tar.bz2#4d59c254e01d9cde7957100457e2d5fb https://conda.anaconda.org/conda-forge/noarch/font-ttf-ubuntu-0.83-h77eed37_3.conda#49023d73832ef61042f6a237cb2687e7 https://conda.anaconda.org/conda-forge/linux-64/mkl-include-2024.2.2-ha957f24_16.conda#42b0d14354b5910a9f41e29289914f6b -https://conda.anaconda.org/conda-forge/linux-64/python_abi-3.12-5_cp312.conda#0424ae29b104430108f5218a66db7260 +https://conda.anaconda.org/conda-forge/linux-64/python_abi-3.13-5_cp313.conda#381bbd2a92c863f640a55b6ff3c35161 https://conda.anaconda.org/conda-forge/noarch/tzdata-2024b-hc8b5060_0.conda#8ac3367aafb1cc0a068483c580af8015 https://conda.anaconda.org/conda-forge/noarch/fonts-conda-forge-1-0.tar.bz2#f766549260d6815b0c52253f1fb1bb29 https://conda.anaconda.org/conda-forge/linux-64/ld_impl_linux-64-2.43-h712a8e2_2.conda#048b02e3962f066da18efe3a21b77672 https://conda.anaconda.org/conda-forge/linux-64/libglvnd-1.7.0-ha4b6fd6_2.conda#434ca7e50e40f4918ab701e3facd59a0 -https://conda.anaconda.org/conda-forge/linux-64/llvm-openmp-19.1.3-h024ca30_0.conda#d36687dc90337917a84a96a45111ad59 +https://conda.anaconda.org/conda-forge/linux-64/llvm-openmp-19.1.4-h024ca30_0.conda#9370a10ba6a13079cc0c0e09d2ec13a8 https://conda.anaconda.org/conda-forge/linux-64/_openmp_mutex-4.5-2_kmp_llvm.tar.bz2#562b26ba2e19059551a811e72ab7f793 https://conda.anaconda.org/conda-forge/noarch/fonts-conda-ecosystem-1-0.tar.bz2#fee5683a3f04bd15cbd8318b096a27ab https://conda.anaconda.org/conda-forge/linux-64/libegl-1.7.0-ha4b6fd6_2.conda#c151d5eb730e9b7480e6d48c0fc44048 @@ -22,7 +22,7 @@ https://conda.anaconda.org/conda-forge/linux-64/libopengl-1.7.0-ha4b6fd6_2.conda https://conda.anaconda.org/conda-forge/linux-64/libgcc-14.2.0-h77fa898_1.conda#3cb76c3f10d3bc7f1105b2fc9db984df https://conda.anaconda.org/conda-forge/linux-64/alsa-lib-1.2.13-hb9d3cd8_0.conda#ae1370588aa6a5157c34c73e9bbb36a0 https://conda.anaconda.org/conda-forge/linux-64/aws-c-common-0.10.3-hb9d3cd8_0.conda#ff3653946d34a6a6ba10babb139d96ef -https://conda.anaconda.org/conda-forge/linux-64/c-ares-1.34.3-heb4867d_0.conda#09a6c610d002e54e18353c06ef61a253 +https://conda.anaconda.org/conda-forge/linux-64/c-ares-1.34.3-hb9d3cd8_1.conda#ee228789a85f961d14567252a03e725f https://conda.anaconda.org/conda-forge/linux-64/libbrotlicommon-1.1.0-hb9d3cd8_2.conda#41b599ed2b02abcfdd84302bff174b23 https://conda.anaconda.org/conda-forge/linux-64/libdeflate-1.22-hb9d3cd8_0.conda#b422943d5d772b7cc858b36ad2a92db5 https://conda.anaconda.org/conda-forge/linux-64/libexpat-2.6.4-h5888daf_0.conda#db833e03127376d461e1e13e76f09b6c @@ -54,18 +54,17 @@ https://conda.anaconda.org/conda-forge/linux-64/libffi-3.4.2-h7f98852_5.tar.bz2# https://conda.anaconda.org/conda-forge/linux-64/libgfortran-14.2.0-h69a702a_1.conda#f1fd30127802683586f768875127a987 https://conda.anaconda.org/conda-forge/linux-64/libiconv-1.17-hd590300_2.conda#d66573916ffcf376178462f1b61c941e https://conda.anaconda.org/conda-forge/linux-64/libjpeg-turbo-3.0.0-hd590300_1.conda#ea25936bb4080d843790b586850f82b8 -https://conda.anaconda.org/conda-forge/linux-64/libnsl-2.0.1-hd590300_0.conda#30fd6e37fe21f86f4bd26d6ee73eeec7 +https://conda.anaconda.org/conda-forge/linux-64/libmpdec-4.0.0-h4bc722e_0.conda#aeb98fdeb2e8f25d43ef71fbacbeec80 https://conda.anaconda.org/conda-forge/linux-64/libntlm-1.4-h7f98852_1002.tar.bz2#e728e874159b042d92b90238a3cb0dc2 https://conda.anaconda.org/conda-forge/linux-64/libpciaccess-0.18-hd590300_0.conda#48f4330bfcd959c3cfb704d424903c82 https://conda.anaconda.org/conda-forge/linux-64/libpng-1.6.44-hadc24fc_0.conda#f4cc49d7aa68316213e4b12be35308d1 https://conda.anaconda.org/conda-forge/linux-64/libsqlite-3.47.0-hadc24fc_1.conda#b6f02b52a174e612e89548f4663ce56a -https://conda.anaconda.org/conda-forge/linux-64/libssh2-1.11.0-h0841786_0.conda#1f5a58e686b13bcfde88b93f547d23fe +https://conda.anaconda.org/conda-forge/linux-64/libssh2-1.11.1-hf672d98_0.conda#be2de152d8073ef1c01b7728475f2fe7 https://conda.anaconda.org/conda-forge/linux-64/libstdcxx-ng-14.2.0-h4852527_1.conda#8371ac6457591af2cf6159439c1fd051 https://conda.anaconda.org/conda-forge/linux-64/libutf8proc-2.8.0-h166bdaf_0.tar.bz2#ede4266dc02e875fe1ea77b25dd43747 https://conda.anaconda.org/conda-forge/linux-64/libuuid-2.38.1-h0b41bf4_0.conda#40b61aab5c7ba9ff276c41cfffe6b80b https://conda.anaconda.org/conda-forge/linux-64/libwebp-base-1.4.0-hd590300_0.conda#b26e8aa824079e1be0294e7152ca4559 https://conda.anaconda.org/conda-forge/linux-64/libxcb-1.17.0-h8a09558_0.conda#92ed62436b625154323d40d5f2f11dd7 -https://conda.anaconda.org/conda-forge/linux-64/libxcrypt-4.4.36-hd590300_1.conda#5aa797f8787fe7a17d1b0821485b5adc https://conda.anaconda.org/conda-forge/linux-64/mysql-common-9.0.1-h266115a_2.conda#85c0dc0bcd110c998b01856975486ee7 https://conda.anaconda.org/conda-forge/linux-64/ncurses-6.5-he02047a_1.conda#70caf8bb6cf39a0b6b7efc885f51c0fe https://conda.anaconda.org/conda-forge/linux-64/s2n-1.5.9-h0fd0ee4_0.conda#f472432f3753c5ca763d2497e2ea30bf @@ -118,7 +117,7 @@ https://conda.anaconda.org/conda-forge/linux-64/libxml2-2.13.5-hb346dea_0.conda# https://conda.anaconda.org/conda-forge/linux-64/mpfr-4.2.1-h90cbb55_3.conda#2eeb50cab6652538eee8fc0bc3340c81 https://conda.anaconda.org/conda-forge/linux-64/mysql-libs-9.0.1-he0572af_2.conda#57a9e7ee3c0840d3c8c9012473978629 https://conda.anaconda.org/conda-forge/linux-64/orc-2.0.3-he039a57_0.conda#052499acd6d6b79952197a13b23e2600 -https://conda.anaconda.org/conda-forge/linux-64/python-3.12.7-hc5c86c4_0_cpython.conda#0515111a9cdf69f83278f7c197db9807 +https://conda.anaconda.org/conda-forge/linux-64/python-3.13.0-h9ebbce0_100_cp313.conda#08e9aef080f33daeb192b2ddc7e4721f https://conda.anaconda.org/conda-forge/linux-64/re2-2024.07.02-h77b4e00_1.conda#01093ff37c1b5e6bf9f17c0116747d11 https://conda.anaconda.org/conda-forge/linux-64/xcb-util-image-0.4.0-hb711507_2.conda#a0901183f08b6c7107aab109733a3c91 https://conda.anaconda.org/conda-forge/linux-64/xkeyboard-config-2.43-hb9d3cd8_0.conda#f725c7425d6d7c15e31f3b99a88ea02f @@ -132,46 +131,45 @@ https://conda.anaconda.org/conda-forge/linux-64/cairo-1.18.0-hebfffa5_3.conda#fc https://conda.anaconda.org/conda-forge/linux-64/ccache-4.10.1-h065aff2_0.conda#d6b48c138e0c8170a6fe9c136e063540 https://conda.anaconda.org/conda-forge/noarch/certifi-2024.8.30-pyhd8ed1ab_0.conda#12f7d00853807b0531775e9be891cb11 https://conda.anaconda.org/conda-forge/noarch/colorama-0.4.6-pyhd8ed1ab_0.tar.bz2#3faab06a954c2a04039983f2c4a50d99 -https://conda.anaconda.org/conda-forge/noarch/cpython-3.12.7-py312hd8ed1ab_0.conda#f0d1309310498284ab13c9fd73db4781 +https://conda.anaconda.org/conda-forge/noarch/cpython-3.13.0-py313hd8ed1ab_100.conda#150059fe488fb313446030b75672e5db https://conda.anaconda.org/conda-forge/noarch/cycler-0.12.1-pyhd8ed1ab_0.conda#5cd86562580f274031ede6aa6aa24441 https://conda.anaconda.org/conda-forge/linux-64/cyrus-sasl-2.1.27-h54b06d7_7.conda#dce22f70b4e5a407ce88f2be046f4ceb -https://conda.anaconda.org/conda-forge/linux-64/cython-3.0.11-py312h8fd2918_3.conda#21e433caf1bb1e4c95832f8bb731d64c +https://conda.anaconda.org/conda-forge/linux-64/cython-3.0.11-py313hc66aa0d_3.conda#1778443eb12b2da98428fa69152a2a2e https://conda.anaconda.org/conda-forge/linux-64/dbus-1.13.6-h5008d03_3.tar.bz2#ecfff944ba3960ecb334b9a2663d708d https://conda.anaconda.org/conda-forge/noarch/exceptiongroup-1.2.2-pyhd8ed1ab_0.conda#d02ae936e42063ca46af6cdad2dbd1e0 https://conda.anaconda.org/conda-forge/noarch/execnet-2.1.1-pyhd8ed1ab_0.conda#15dda3cdbf330abfe9f555d22f66db46 https://conda.anaconda.org/conda-forge/noarch/filelock-3.16.1-pyhd8ed1ab_0.conda#916f8ec5dd4128cd5f207a3c4c07b2c6 https://conda.anaconda.org/conda-forge/noarch/fsspec-2024.10.0-pyhff2d567_0.conda#816dbc4679a64e4417cd1385d661bb31 https://conda.anaconda.org/conda-forge/noarch/iniconfig-2.0.0-pyhd8ed1ab_0.conda#f800d2da156d08e289b14e87e43c1ae5 -https://conda.anaconda.org/conda-forge/linux-64/kiwisolver-1.4.7-py312h68727a3_0.conda#444266743652a4f1538145e9362f6d3b +https://conda.anaconda.org/conda-forge/linux-64/kiwisolver-1.4.7-py313h33d0bda_0.conda#9862d13a5e466273d5a4738cffcb8d6c https://conda.anaconda.org/conda-forge/linux-64/lcms2-2.16-hb7c19ff_0.conda#51bb7010fc86f70eee639b4bb7a894f5 https://conda.anaconda.org/conda-forge/linux-64/libcups-2.3.3-h4637d8d_4.conda#d4529f4dff3057982a7617c7ac58fde3 https://conda.anaconda.org/conda-forge/linux-64/libcurl-8.10.1-hbbe4b11_0.conda#6e801c50a40301f6978c53976917b277 https://conda.anaconda.org/conda-forge/linux-64/libgl-1.7.0-ha4b6fd6_2.conda#928b8be80851f5d8ffb016f9c81dae7a https://conda.anaconda.org/conda-forge/linux-64/libgrpc-1.67.1-hc2c308b_0.conda#4606a4647bfe857e3cfe21ca12ac3afb https://conda.anaconda.org/conda-forge/linux-64/libhwloc-2.11.1-default_hecaa2ac_1000.conda#f54aeebefb5c5ff84eca4fb05ca8aa3a -https://conda.anaconda.org/conda-forge/linux-64/libllvm19-19.1.3-ha7bfdaf_0.conda#8bd654307c455162668cd66e36494000 +https://conda.anaconda.org/conda-forge/linux-64/libllvm19-19.1.4-ha7bfdaf_0.conda#5f7d7eabf470bc56903b18f169f4f784 https://conda.anaconda.org/conda-forge/linux-64/libxkbcommon-1.7.0-h2c5496b_1.conda#e2eaefa4de2b7237af7c907b8bbc760a https://conda.anaconda.org/conda-forge/linux-64/libxslt-1.1.39-h76b75d6_0.conda#e71f31f8cfb0a91439f2086fc8aa0461 -https://conda.anaconda.org/conda-forge/linux-64/markupsafe-3.0.2-py312h178313f_0.conda#a755704ea0e2503f8c227d84829a8e81 +https://conda.anaconda.org/conda-forge/linux-64/markupsafe-3.0.2-py313h8060acc_0.conda#ab825f8b676368beb91350c6a2da6e11 https://conda.anaconda.org/conda-forge/linux-64/mpc-1.3.1-h24ddda3_1.conda#aa14b9a5196a6d8dd364164b7ce56acf https://conda.anaconda.org/conda-forge/noarch/mpmath-1.3.0-pyhd8ed1ab_0.conda#dbf6e2d89137da32fa6670f3bffc024e https://conda.anaconda.org/conda-forge/noarch/munkres-1.1.4-pyh9f0ad1d_0.tar.bz2#2ba8498c1018c1e9c61eb99b973dfe19 https://conda.anaconda.org/conda-forge/noarch/networkx-3.4.2-pyh267e887_2.conda#fd40bf7f7f4bc4b647dc8512053d9873 https://conda.anaconda.org/conda-forge/linux-64/openjpeg-2.5.2-h488ebb8_0.conda#7f2e286780f072ed750df46dc2631138 https://conda.anaconda.org/conda-forge/noarch/packaging-24.2-pyhff2d567_1.conda#8508b703977f4c4ada34d657d051972c +https://conda.anaconda.org/conda-forge/noarch/pip-24.3.1-pyh145f28c_0.conda#ca3afe2d7b893a8c8cdf489d30a2b1a3 https://conda.anaconda.org/conda-forge/noarch/pluggy-1.5.0-pyhd8ed1ab_0.conda#d3483c8fc2dc2cc3f5cf43e26d60cabf https://conda.anaconda.org/conda-forge/noarch/pyparsing-3.2.0-pyhd8ed1ab_1.conda#035c17fbf099f50ff60bf2eb303b0a83 https://conda.anaconda.org/conda-forge/noarch/python-tzdata-2024.2-pyhd8ed1ab_0.conda#986287f89929b2d629bd6ef6497dc307 https://conda.anaconda.org/conda-forge/noarch/pytz-2024.1-pyhd8ed1ab_0.conda#3eeeeb9e4827ace8c0c1419c85d590ad -https://conda.anaconda.org/conda-forge/noarch/setuptools-75.5.0-pyhff2d567_0.conda#ade63405adb52eeff89d506cd55908c0 +https://conda.anaconda.org/conda-forge/noarch/setuptools-75.6.0-pyhff2d567_0.conda#68d7d406366926b09a6a023e3d0f71d7 https://conda.anaconda.org/conda-forge/noarch/six-1.16.0-pyh6c4a22f_0.tar.bz2#e5f25f8dbc060e9a8d912e432202afc2 https://conda.anaconda.org/conda-forge/noarch/threadpoolctl-3.5.0-pyhc1e730c_0.conda#df68d78237980a159bd7149f33c0e8fd https://conda.anaconda.org/conda-forge/noarch/toml-0.10.2-pyhd8ed1ab_0.tar.bz2#f832c45a477c78bebd107098db465095 https://conda.anaconda.org/conda-forge/noarch/tomli-2.1.0-pyhff2d567_0.conda#3fa1089b4722df3a900135925f4519d9 -https://conda.anaconda.org/conda-forge/linux-64/tornado-6.4.1-py312h66e93f0_1.conda#af648b62462794649066366af4ecd5b0 +https://conda.anaconda.org/conda-forge/linux-64/tornado-6.4.1-py313h536fd9c_1.conda#70b5b6dfd7d1760cd59849e2271d937b https://conda.anaconda.org/conda-forge/noarch/typing_extensions-4.12.2-pyha770c72_0.conda#ebe6952715e1d5eb567eeebf25250fa7 -https://conda.anaconda.org/conda-forge/linux-64/unicodedata2-15.1.0-py312h66e93f0_1.conda#588486a61153f94c7c13816f7069e440 -https://conda.anaconda.org/conda-forge/noarch/wheel-0.45.0-pyhd8ed1ab_0.conda#f9751d7c71df27b2d29f5cab3378982e https://conda.anaconda.org/conda-forge/linux-64/xcb-util-cursor-0.1.5-hb9d3cd8_0.conda#eb44b3b6deb1cab08d72cb61686fe64c https://conda.anaconda.org/conda-forge/linux-64/xorg-libxcomposite-0.4.6-hb9d3cd8_2.conda#d3c295b50f092ab525ffe3c2aa4b7413 https://conda.anaconda.org/conda-forge/linux-64/xorg-libxcursor-1.2.3-hb9d3cd8_0.conda#2ccd714aa2242315acaf0a67faea780b @@ -181,35 +179,34 @@ https://conda.anaconda.org/conda-forge/linux-64/xorg-libxrandr-1.5.4-hb9d3cd8_0. https://conda.anaconda.org/conda-forge/linux-64/xorg-libxxf86vm-1.1.5-hb9d3cd8_4.conda#7da9007c0582712c4bad4131f89c8372 https://conda.anaconda.org/conda-forge/linux-64/aws-c-s3-0.7.1-h3a84f74_3.conda#e7a54821aaa774cfd64efcd45114a4d7 https://conda.anaconda.org/conda-forge/linux-64/azure-core-cpp-1.14.0-h5cfcd09_0.conda#0a8838771cc2e985cd295e01ae83baf1 -https://conda.anaconda.org/conda-forge/linux-64/coverage-7.6.7-py312h178313f_0.conda#f64f3206bf9e86338b881957fd498870 -https://conda.anaconda.org/conda-forge/linux-64/fonttools-4.55.0-py312h178313f_0.conda#f404f4fb99ccaea68b00c1cc64fc1e68 -https://conda.anaconda.org/conda-forge/linux-64/gmpy2-2.1.5-py312h7201bc8_2.conda#af9faf103fb57241246416dc70b466f7 +https://conda.anaconda.org/conda-forge/linux-64/coverage-7.6.8-py313h8060acc_0.conda#cf7681f6c2dc94ff8577430e4c280dc6 +https://conda.anaconda.org/conda-forge/linux-64/fonttools-4.55.0-py313h8060acc_0.conda#0ff3a44b54d02157f6e99074432b7396 +https://conda.anaconda.org/conda-forge/linux-64/gmpy2-2.1.5-py313h11186cd_2.conda#9eeedd9535d90c23a79ee109f5d4f391 https://conda.anaconda.org/conda-forge/linux-64/harfbuzz-9.0.0-hda332d3_1.conda#76b32dcf243444aea9c6b804bcfa40b8 https://conda.anaconda.org/conda-forge/noarch/jinja2-3.1.4-pyhd8ed1ab_0.conda#7b86ecb7d3557821c649b3c31e3eb9f2 https://conda.anaconda.org/conda-forge/noarch/joblib-1.4.2-pyhd8ed1ab_0.conda#25df261d4523d9f9783bcdb7208d872f -https://conda.anaconda.org/conda-forge/linux-64/libclang-cpp19.1-19.1.3-default_hb5137d0_0.conda#311e6a1d041db3d6a8a8437750d4234f -https://conda.anaconda.org/conda-forge/linux-64/libclang13-19.1.3-default_h9c6a7e4_0.conda#b8a8cd77810b20754f358f2327812552 +https://conda.anaconda.org/conda-forge/linux-64/libclang-cpp19.1-19.1.4-default_hb5137d0_0.conda#e7e4a0ebe1f6eedf483f6f5d4f7d2bdd +https://conda.anaconda.org/conda-forge/linux-64/libclang13-19.1.4-default_h9c6a7e4_0.conda#6c450adae455c7d648856e8b0cfcebd6 https://conda.anaconda.org/conda-forge/linux-64/libgoogle-cloud-2.31.0-h804f50b_0.conda#35ab838423b60f233391eb86d324a830 https://conda.anaconda.org/conda-forge/noarch/meson-1.6.0-pyhd8ed1ab_0.conda#380ba6a3eddd8e7649bfe8e6812611aa https://conda.anaconda.org/conda-forge/linux-64/openldap-2.6.8-hedd0468_0.conda#dcd0ed5147d8876b0848a552b416ce76 -https://conda.anaconda.org/conda-forge/linux-64/pillow-11.0.0-py312h7b63e92_0.conda#385f46a4df6f97892503a841121a9acf -https://conda.anaconda.org/conda-forge/noarch/pip-24.3.1-pyh8b19718_0.conda#5dd546fe99b44fda83963d15f84263b7 +https://conda.anaconda.org/conda-forge/linux-64/pillow-11.0.0-py313h2d7ed13_0.conda#0d95e1cda6bf9ce501e751c02561204e https://conda.anaconda.org/conda-forge/noarch/pyproject-metadata-0.9.0-pyh2cfa8aa_0.conda#10906a130eeb4a68645bf97c28333141 https://conda.anaconda.org/conda-forge/noarch/pytest-8.3.3-pyhd8ed1ab_0.conda#c03d61f31f38fdb9facf70c29958bf7a -https://conda.anaconda.org/conda-forge/noarch/python-dateutil-2.9.0-pyhd8ed1ab_0.conda#2cf4264fffb9e6eff6031c5b6884d61c +https://conda.anaconda.org/conda-forge/noarch/python-dateutil-2.9.0.post0-pyhff2d567_0.conda#b6dfd90a2141e573e4b6a81630b56df5 https://conda.anaconda.org/conda-forge/linux-64/tbb-2021.13.0-h84d6215_0.conda#ee6f7fd1e76061ef1fa307d41fa86a96 https://conda.anaconda.org/conda-forge/linux-64/xorg-libxtst-1.2.5-hb9d3cd8_3.conda#7bbe9a0cc0df0ac5f5a8ad6d6a11af2f -https://conda.anaconda.org/conda-forge/linux-64/aws-crt-cpp-0.29.4-h21d7256_1.conda#963a310ba64fd6a113eb4f7fcf89f935 +https://conda.anaconda.org/conda-forge/linux-64/aws-crt-cpp-0.29.5-h21d7256_0.conda#b2468de19999ee8452757f12f15a9b34 https://conda.anaconda.org/conda-forge/linux-64/azure-identity-cpp-1.10.0-h113e628_0.conda#73f73f60854f325a55f1d31459f2ab73 https://conda.anaconda.org/conda-forge/linux-64/azure-storage-common-cpp-12.8.0-h736e048_1.conda#13de36be8de3ae3f05ba127631599213 https://conda.anaconda.org/conda-forge/linux-64/libgoogle-cloud-storage-2.31.0-h0121fbd_0.conda#568d6a09a6ed76337a7b97c84ae7c0f8 -https://conda.anaconda.org/conda-forge/linux-64/libpq-17.1-h04577a9_0.conda#c2560bae9f56de89b8c50355f7c84910 +https://conda.anaconda.org/conda-forge/linux-64/libpq-17.2-h04577a9_0.conda#52dd46162c6fb2765b49e6fd06adf8d5 https://conda.anaconda.org/conda-forge/noarch/meson-python-0.17.1-pyh70fd9c4_0.conda#722b649da38842068d83b6e6770f11a1 https://conda.anaconda.org/conda-forge/linux-64/mkl-2024.2.2-ha957f24_16.conda#1459379c79dda834673426504d52b319 https://conda.anaconda.org/conda-forge/noarch/pytest-cov-6.0.0-pyhd8ed1ab_0.conda#cb8a11b6d209e3d85e5094bdbd9ebd9c https://conda.anaconda.org/conda-forge/noarch/pytest-xdist-3.6.1-pyhd8ed1ab_0.conda#b39568655c127a9c4a44d178ac99b6d0 https://conda.anaconda.org/conda-forge/noarch/sympy-1.13.3-pyh2585a3b_104.conda#68085d736d2b2f54498832b65059875d -https://conda.anaconda.org/conda-forge/linux-64/aws-sdk-cpp-1.11.449-h1a02111_1.conda#490f72eee62d9bd7e778f137f65e9650 +https://conda.anaconda.org/conda-forge/linux-64/aws-sdk-cpp-1.11.449-hdaa582e_3.conda#0dca4b37cf80312f8ef84b649e6ad3a3 https://conda.anaconda.org/conda-forge/linux-64/azure-storage-blobs-cpp-12.13.0-h3cf044e_1.conda#7eb66060455c7a47d9dcdbfa9f46579b https://conda.anaconda.org/conda-forge/linux-64/libblas-3.9.0-25_linux64_mkl.conda#b77ebfb548eae4d91639e2ca003662c8 https://conda.anaconda.org/conda-forge/linux-64/mkl-devel-2024.2.2-ha770c72_16.conda#140891ea14285fc634353b31e9e40a95 @@ -217,26 +214,26 @@ https://conda.anaconda.org/conda-forge/linux-64/qt6-main-6.8.0-h6e8976b_0.conda# https://conda.anaconda.org/conda-forge/linux-64/azure-storage-files-datalake-cpp-12.12.0-ha633028_1.conda#7c1980f89dd41b097549782121a73490 https://conda.anaconda.org/conda-forge/linux-64/libcblas-3.9.0-25_linux64_mkl.conda#e48aeb4ab1a293f621fe995959f1d32f https://conda.anaconda.org/conda-forge/linux-64/liblapack-3.9.0-25_linux64_mkl.conda#d5afbe3777c594434e4de6481254e99c -https://conda.anaconda.org/conda-forge/linux-64/pyside6-6.8.0.2-py312h91f0f75_0.conda#ec3da81d5f9d3612b227e09a650f7bf2 -https://conda.anaconda.org/conda-forge/linux-64/libarrow-18.0.0-h3b997a5_7_cpu.conda#32897a50e7f68187c4a524c439c0943c +https://conda.anaconda.org/conda-forge/linux-64/pyside6-6.8.0.2-py313h5f61773_0.conda#eb4dd1755647ad183e70c8668f5eb97b +https://conda.anaconda.org/conda-forge/linux-64/libarrow-18.0.0-h94eee4b_9_cpu.conda#fe2841c29f3753146d4e89217d22d043 https://conda.anaconda.org/conda-forge/linux-64/liblapacke-3.9.0-25_linux64_mkl.conda#cbddb4169d3d24b13b308403b45f401e https://conda.anaconda.org/conda-forge/linux-64/libtorch-2.5.1-cpu_mkl_hb9d73ce_103.conda#5b17e90804ffc01546025c643d14fd6e -https://conda.anaconda.org/conda-forge/linux-64/numpy-2.1.3-py312h58c1407_0.conda#dfdbc12e6d81889ba4c494a23f23eba8 +https://conda.anaconda.org/conda-forge/linux-64/numpy-2.1.3-py313h4bf6692_0.conda#17bcf851cceab793dad11ab8089d4bc4 https://conda.anaconda.org/conda-forge/noarch/array-api-strict-2.2-pyhd8ed1ab_0.conda#5f8d3e0f6b42318772d0f1cdddfe3025 https://conda.anaconda.org/conda-forge/linux-64/blas-devel-3.9.0-25_linux64_mkl.conda#cb60caae3cb30988431d7107691bd587 -https://conda.anaconda.org/conda-forge/linux-64/contourpy-1.3.1-py312h68727a3_0.conda#f5fbba0394ee45e9a64a73c2a994126a -https://conda.anaconda.org/conda-forge/linux-64/libarrow-acero-18.0.0-h5888daf_7_cpu.conda#786a275d019708cd1c963b12a8fb0c72 -https://conda.anaconda.org/conda-forge/linux-64/libparquet-18.0.0-h6bd9018_7_cpu.conda#687870f7d9cba5262fdd7e730e9e9ba8 -https://conda.anaconda.org/conda-forge/linux-64/pandas-2.2.3-py312hf9745cd_1.conda#8bce4f6caaf8c5448c7ac86d87e26b4b -https://conda.anaconda.org/conda-forge/linux-64/polars-1.12.0-py312hfe7c9be_0.conda#47b6df7e8b629d1257a6f971b88c15de -https://conda.anaconda.org/conda-forge/linux-64/pyarrow-core-18.0.0-py312h01725c0_1_cpu.conda#c8ae967c39337603035d59c8994c23f9 -https://conda.anaconda.org/conda-forge/linux-64/pytorch-2.5.1-cpu_mkl_py312h01fbe9c_103.conda#fea446aa105ad2989f5ad2e97d94720d -https://conda.anaconda.org/conda-forge/linux-64/scipy-1.14.1-py312h62794b6_1.conda#b43233a9e2f62fb94affe5607ea79473 +https://conda.anaconda.org/conda-forge/linux-64/contourpy-1.3.1-py313h33d0bda_0.conda#6b6768e7c585d7029f79a04cbc4cbff0 +https://conda.anaconda.org/conda-forge/linux-64/libarrow-acero-18.0.0-h5888daf_9_cpu.conda#b36def03eb1624ad1ca6cd5866104096 +https://conda.anaconda.org/conda-forge/linux-64/libparquet-18.0.0-h6bd9018_9_cpu.conda#79817c62827b836349adf32b218edd95 +https://conda.anaconda.org/conda-forge/linux-64/pandas-2.2.3-py313ha87cce1_1.conda#c5d63dd501db554b84a30dea33824164 +https://conda.anaconda.org/conda-forge/linux-64/polars-1.14.0-py313ha816797_1.conda#c12f731895f1c520f50b283aa91dfe5c +https://conda.anaconda.org/conda-forge/linux-64/pyarrow-core-18.0.0-py313he5f92c8_2_cpu.conda#605b4c37d021bed2b765849bec9d3eda +https://conda.anaconda.org/conda-forge/linux-64/pytorch-2.5.1-cpu_mkl_py313h9aca207_103.conda#293c38d523b10254475b97c973864b48 +https://conda.anaconda.org/conda-forge/linux-64/scipy-1.14.1-py313h27c5614_1.conda#c5c52b95724a6d4adb72499912eea085 https://conda.anaconda.org/conda-forge/linux-64/blas-2.125-mkl.conda#8a0ffaaae2bccf691cffdde83cb0f1a5 -https://conda.anaconda.org/conda-forge/linux-64/libarrow-dataset-18.0.0-h5888daf_7_cpu.conda#a742b9a0452b55020ccf662721c1ce44 -https://conda.anaconda.org/conda-forge/linux-64/matplotlib-base-3.9.2-py312hd3ec401_2.conda#2380c9ba933ffaac9ad16d8eac8e3318 -https://conda.anaconda.org/conda-forge/linux-64/pyamg-5.2.1-py312hc39e661_1.conda#372efc32220f0dfb603e5b31ffaefa23 +https://conda.anaconda.org/conda-forge/linux-64/libarrow-dataset-18.0.0-h5888daf_9_cpu.conda#07a60ef65486d08c96f324594dc2b5a1 +https://conda.anaconda.org/conda-forge/linux-64/matplotlib-base-3.9.2-py313h129903b_2.conda#71d8f34a558d7e4d6656679c609b65d5 +https://conda.anaconda.org/conda-forge/linux-64/pyamg-5.2.1-py313hf0ab243_1.conda#4c769bf3858f424cb2ecf952175ec600 https://conda.anaconda.org/conda-forge/linux-64/pytorch-cpu-2.5.1-cpu_mkl_h74a56ca_103.conda#8c195d4079bb69030cb6c883e8981ff0 -https://conda.anaconda.org/conda-forge/linux-64/libarrow-substrait-18.0.0-h5c8f2c3_7_cpu.conda#be76013fa3fdaec2c0c504e6fdfd282d -https://conda.anaconda.org/conda-forge/linux-64/matplotlib-3.9.2-py312h7900ff3_2.conda#266d9ad348e2151d07ad9e4dc716eea5 -https://conda.anaconda.org/conda-forge/linux-64/pyarrow-18.0.0-py312h7900ff3_1.conda#ea33ac754057779cd2df785661486310 +https://conda.anaconda.org/conda-forge/linux-64/libarrow-substrait-18.0.0-h5c8f2c3_9_cpu.conda#a8fcd78ee422057362d928e2dd63ed8e +https://conda.anaconda.org/conda-forge/linux-64/matplotlib-3.9.2-py313h78bf25f_2.conda#1aa3c80617fecbf4614a7c5c21ec0897 +https://conda.anaconda.org/conda-forge/linux-64/pyarrow-18.0.0-py313h78bf25f_2.conda#bf35cb06f78888facd234bd09f7e88eb diff --git a/build_tools/azure/pylatest_conda_forge_mkl_osx-64_conda.lock b/build_tools/azure/pylatest_conda_forge_mkl_osx-64_conda.lock index 142ec0f4b5e64..54fc1ddd92832 100644 --- a/build_tools/azure/pylatest_conda_forge_mkl_osx-64_conda.lock +++ b/build_tools/azure/pylatest_conda_forge_mkl_osx-64_conda.lock @@ -15,12 +15,12 @@ https://conda.anaconda.org/conda-forge/osx-64/xz-5.2.6-h775f41a_0.tar.bz2#a72f9d https://conda.anaconda.org/conda-forge/osx-64/bzip2-1.0.8-hfdf4475_7.conda#7ed4301d437b59045be7e051a0308211 https://conda.anaconda.org/conda-forge/osx-64/icu-75.1-h120a0e1_0.conda#d68d48a3060eb5abdc1cdc8e2a3a5966 https://conda.anaconda.org/conda-forge/osx-64/libbrotlicommon-1.1.0-h00291cd_2.conda#58f2c4bdd56c46cc7451596e4ae68e0b -https://conda.anaconda.org/conda-forge/osx-64/libcxx-19.1.3-hf95d169_0.conda#86801fc56d4641e3ef7a63f5d996b960 +https://conda.anaconda.org/conda-forge/osx-64/libcxx-19.1.4-hf95d169_0.conda#5f23923c08151687ff2fc3002b0a7234 https://conda.anaconda.org/conda-forge/osx-64/libdeflate-1.22-h00291cd_0.conda#a15785ccc62ae2a8febd299424081efb https://conda.anaconda.org/conda-forge/osx-64/libexpat-2.6.4-h240833e_0.conda#20307f4049a735a78a29073be1be2626 https://conda.anaconda.org/conda-forge/osx-64/libmpdec-4.0.0-hfdf4475_0.conda#ed625b2e59dff82859c23dd24774156b https://conda.anaconda.org/conda-forge/osx-64/libzlib-1.3.1-hd23fc13_2.conda#003a54a4e32b02f7355b50a837e699da -https://conda.anaconda.org/conda-forge/osx-64/llvm-openmp-19.1.3-hf78d878_0.conda#18a8498d57d871da066beaa09263a638 +https://conda.anaconda.org/conda-forge/osx-64/llvm-openmp-19.1.4-ha54dae1_0.conda#193715d512f648fe0865f6f13b1957e3 https://conda.anaconda.org/conda-forge/osx-64/ncurses-6.5-hf036a51_1.conda#e102bbf8a6ceeaf429deab8032fc8977 https://conda.anaconda.org/conda-forge/osx-64/openssl-3.4.0-hd471939_0.conda#ec99d2ce0b3033a75cbad01bbc7c5b71 https://conda.anaconda.org/conda-forge/osx-64/pthread-stubs-0.4-h00291cd_1002.conda#8bcf980d2c6b17094961198284b8e862 @@ -76,7 +76,7 @@ https://conda.anaconda.org/conda-forge/noarch/pluggy-1.5.0-pyhd8ed1ab_0.conda#d3 https://conda.anaconda.org/conda-forge/noarch/pyparsing-3.2.0-pyhd8ed1ab_1.conda#035c17fbf099f50ff60bf2eb303b0a83 https://conda.anaconda.org/conda-forge/noarch/python-tzdata-2024.2-pyhd8ed1ab_0.conda#986287f89929b2d629bd6ef6497dc307 https://conda.anaconda.org/conda-forge/noarch/pytz-2024.1-pyhd8ed1ab_0.conda#3eeeeb9e4827ace8c0c1419c85d590ad -https://conda.anaconda.org/conda-forge/noarch/setuptools-75.5.0-pyhff2d567_0.conda#ade63405adb52eeff89d506cd55908c0 +https://conda.anaconda.org/conda-forge/noarch/setuptools-75.6.0-pyhff2d567_0.conda#68d7d406366926b09a6a023e3d0f71d7 https://conda.anaconda.org/conda-forge/noarch/six-1.16.0-pyh6c4a22f_0.tar.bz2#e5f25f8dbc060e9a8d912e432202afc2 https://conda.anaconda.org/conda-forge/osx-64/tbb-2021.13.0-h37c8870_0.conda#89742f5ac7aeb5c44ec2b4c3c6692c3c https://conda.anaconda.org/conda-forge/noarch/threadpoolctl-3.5.0-pyhc1e730c_0.conda#df68d78237980a159bd7149f33c0e8fd @@ -86,7 +86,7 @@ https://conda.anaconda.org/conda-forge/osx-64/tornado-6.4.1-py313ha37c0e0_1.cond https://conda.anaconda.org/conda-forge/osx-64/ccache-4.10.1-hee5fd93_0.conda#09898bb80e196695cea9e07402cff215 https://conda.anaconda.org/conda-forge/osx-64/cctools_osx-64-1010.6-h98e843e_1.conda#ed757b98aaa22a9e38c5a76191fb477c https://conda.anaconda.org/conda-forge/osx-64/clang-17-17.0.6-default_hb173f14_7.conda#809e36447b1bfb87ed1b7fb46339561a -https://conda.anaconda.org/conda-forge/osx-64/coverage-7.6.7-py313h717bdf5_0.conda#af478bad7acf724bfe42e1ccefdc06d7 +https://conda.anaconda.org/conda-forge/osx-64/coverage-7.6.8-py313h717bdf5_0.conda#1f858c8c3b1dee85e64ce68fdaa0b6e7 https://conda.anaconda.org/conda-forge/osx-64/fonttools-4.55.0-py313h717bdf5_0.conda#8652d2398f4c9e160d022844800f6be3 https://conda.anaconda.org/conda-forge/osx-64/gfortran_impl_osx-64-13.2.0-h2bc304d_3.conda#57aa4cb95277a27aa0a1834ed97be45b https://conda.anaconda.org/conda-forge/noarch/joblib-1.4.2-pyhd8ed1ab_0.conda#25df261d4523d9f9783bcdb7208d872f @@ -96,7 +96,7 @@ https://conda.anaconda.org/conda-forge/osx-64/mkl-2023.2.0-h54c2260_50500.conda# https://conda.anaconda.org/conda-forge/osx-64/pillow-11.0.0-py313h4d44d4f_0.conda#d5a3e556600840a77c61394c48ee52d9 https://conda.anaconda.org/conda-forge/noarch/pyproject-metadata-0.9.0-pyh2cfa8aa_0.conda#10906a130eeb4a68645bf97c28333141 https://conda.anaconda.org/conda-forge/noarch/pytest-8.3.3-pyhd8ed1ab_0.conda#c03d61f31f38fdb9facf70c29958bf7a -https://conda.anaconda.org/conda-forge/noarch/python-dateutil-2.9.0-pyhd8ed1ab_0.conda#2cf4264fffb9e6eff6031c5b6884d61c +https://conda.anaconda.org/conda-forge/noarch/python-dateutil-2.9.0.post0-pyhff2d567_0.conda#b6dfd90a2141e573e4b6a81630b56df5 https://conda.anaconda.org/conda-forge/osx-64/cctools-1010.6-h5b2de21_1.conda#5a08ae55869b0b1eb7fbee910aa30d19 https://conda.anaconda.org/conda-forge/osx-64/clang-17.0.6-default_he371ed4_7.conda#fd6888f26c44ddb10c9954a2df5765c7 https://conda.anaconda.org/conda-forge/osx-64/libblas-3.9.0-20_osx64_mkl.conda#160fdc97a51d66d51dc782fb67d35205 @@ -116,15 +116,15 @@ https://conda.anaconda.org/conda-forge/osx-64/contourpy-1.3.1-py313ha0b1807_0.co https://conda.anaconda.org/conda-forge/osx-64/pandas-2.2.3-py313h38cdd20_1.conda#ab61fb255c951a0514616e92dd2e18b2 https://conda.anaconda.org/conda-forge/osx-64/scipy-1.14.1-py313hbd2dc07_1.conda#63098e1999a8f08b82ae921440e6ed0a https://conda.anaconda.org/conda-forge/osx-64/blas-2.120-mkl.conda#b041a7677a412f3d925d8208936cb1e2 -https://conda.anaconda.org/conda-forge/osx-64/clang_impl_osx-64-17.0.6-h1af8efd_21.conda#6ef491cbc462aae64eaa0213e7ae6222 +https://conda.anaconda.org/conda-forge/osx-64/clang_impl_osx-64-17.0.6-h1af8efd_23.conda#90132dd643d402883e4fbd8f0527e152 https://conda.anaconda.org/conda-forge/osx-64/matplotlib-base-3.9.2-py313h04f2f9a_2.conda#73c8a15c5101126f8adc9ab9a6818959 https://conda.anaconda.org/conda-forge/osx-64/pyamg-5.2.1-py313h0322a6a_1.conda#4bda5182eeaef3d2017a2ec625802e1a -https://conda.anaconda.org/conda-forge/osx-64/clang_osx-64-17.0.6-hb91bd55_21.conda#d94a0f2c03e7a50203d2b78d7dd9fa25 +https://conda.anaconda.org/conda-forge/osx-64/clang_osx-64-17.0.6-h7e5c614_23.conda#615b86de1eb0162b7fa77bb8cbf57f1d https://conda.anaconda.org/conda-forge/osx-64/matplotlib-3.9.2-py313habf4b1d_2.conda#4b81b94ada5a3bc121a91fc60d61fdd1 https://conda.anaconda.org/conda-forge/osx-64/c-compiler-1.8.0-hfc4bf79_1.conda#d6e3cf55128335736c8d4bb86e73c191 -https://conda.anaconda.org/conda-forge/osx-64/clangxx_impl_osx-64-17.0.6-hc3430b7_21.conda#9dbdec57445cac0f0c39aefe3d3900bc +https://conda.anaconda.org/conda-forge/osx-64/clangxx_impl_osx-64-17.0.6-hc3430b7_23.conda#b724718bfe53f93e782fe944ec58029e https://conda.anaconda.org/conda-forge/osx-64/gfortran_osx-64-13.2.0-h18f7dce_1.conda#71d59c1ae3fea7a97154ff0e20b38df3 -https://conda.anaconda.org/conda-forge/osx-64/clangxx_osx-64-17.0.6-hb91bd55_21.conda#cfcbb6790123280b5be7992d392e8194 +https://conda.anaconda.org/conda-forge/osx-64/clangxx_osx-64-17.0.6-h7e5c614_23.conda#78039b25bfcffb920407522839555289 https://conda.anaconda.org/conda-forge/osx-64/gfortran-13.2.0-h2c809b3_1.conda#b5ad3b799b9ae996fcc8aab3a60fb48e https://conda.anaconda.org/conda-forge/osx-64/cxx-compiler-1.8.0-h385f146_1.conda#b72f72f89de328cc907bcdf88b85447d https://conda.anaconda.org/conda-forge/osx-64/fortran-compiler-1.8.0-h33d1f46_1.conda#f3f15da7cbc7be80ea112ecd5dd73b22 diff --git a/build_tools/azure/pylatest_conda_mkl_no_openmp_osx-64_conda.lock b/build_tools/azure/pylatest_conda_mkl_no_openmp_osx-64_conda.lock index d0a181140dd9a..55c991abb9cb0 100644 --- a/build_tools/azure/pylatest_conda_mkl_no_openmp_osx-64_conda.lock +++ b/build_tools/azure/pylatest_conda_mkl_no_openmp_osx-64_conda.lock @@ -41,7 +41,7 @@ https://repo.anaconda.com/pkgs/main/osx-64/libtiff-4.5.1-hcec6c5f_0.conda#e127a8 https://repo.anaconda.com/pkgs/main/osx-64/python-3.12.7-hcd54a6c_0.conda#6eabc1d6b0c0a5dcbf5adfa79f18b95e https://repo.anaconda.com/pkgs/main/osx-64/coverage-7.6.1-py312h46256e1_0.conda#08c49d882d5749d2d34385050584f014 https://repo.anaconda.com/pkgs/main/noarch/cycler-0.11.0-pyhd3eb1b0_0.conda#f5e365d2cdb66d547eb8c3ab93843aab -https://repo.anaconda.com/pkgs/main/noarch/execnet-1.9.0-pyhd3eb1b0_0.conda#f895937671af67cebb8af617494b3513 +https://repo.anaconda.com/pkgs/main/noarch/execnet-2.1.1-pyhd3eb1b0_0.conda#b3cb797432ee4657d5907b91a5dc65ad https://repo.anaconda.com/pkgs/main/noarch/iniconfig-1.1.1-pyhd3eb1b0_0.tar.bz2#e40edff2c5708f342cef43c7f280c507 https://repo.anaconda.com/pkgs/main/osx-64/joblib-1.4.2-py312hecd8cb5_0.conda#8ab03dfa447b4e0bfa0bd3d25930f3b6 https://repo.anaconda.com/pkgs/main/osx-64/kiwisolver-1.4.4-py312hcec6c5f_0.conda#2ba6561ddd1d05936fe74f5d118ce7dd diff --git a/build_tools/azure/pylatest_pip_openblas_pandas_linux-64_conda.lock b/build_tools/azure/pylatest_pip_openblas_pandas_linux-64_conda.lock index 89b0b4f130b50..48e52ea831ffd 100644 --- a/build_tools/azure/pylatest_pip_openblas_pandas_linux-64_conda.lock +++ b/build_tools/azure/pylatest_pip_openblas_pandas_linux-64_conda.lock @@ -30,7 +30,7 @@ https://repo.anaconda.com/pkgs/main/linux-64/pip-24.2-py311h06a4308_0.conda#eff3 # pip babel @ https://files.pythonhosted.org/packages/ed/20/bc79bc575ba2e2a7f70e8a1155618bb1301eaa5132a8271373a6903f73f8/babel-2.16.0-py3-none-any.whl#sha256=368b5b98b37c06b7daf6696391c3240c938b37767d4584413e8438c5c435fa8b # pip certifi @ https://files.pythonhosted.org/packages/12/90/3c9ff0512038035f59d279fddeb79f5f1eccd8859f06d6163c58798b9487/certifi-2024.8.30-py3-none-any.whl#sha256=922820b53db7a7257ffbda3f597266d435245903d80737e34f8a45ff3e3230d8 # pip charset-normalizer @ https://files.pythonhosted.org/packages/eb/5b/6f10bad0f6461fa272bfbbdf5d0023b5fb9bc6217c92bf068fa5a99820f5/charset_normalizer-3.4.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl#sha256=3710a9751938947e6327ea9f3ea6332a09bf0ba0c09cae9cb1f250bd1f1549bc -# pip coverage @ https://files.pythonhosted.org/packages/1c/dc/e77d98ae433c556c29328712a07fed0e6d159a63b2ec81039ce0a13a24a3/coverage-7.6.7-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl#sha256=e69ad502f1a2243f739f5bd60565d14a278be58be4c137d90799f2c263e7049a +# pip coverage @ https://files.pythonhosted.org/packages/43/23/c79e497bf4d8fcacd316bebe1d559c765485b8ec23ac4e23025be6bfce09/coverage-7.6.8-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl#sha256=44e6c85bbdc809383b509d732b06419fb4544dca29ebe18480379633623baafb # pip cycler @ https://files.pythonhosted.org/packages/e7/05/c19819d5e3d95294a6f5947fb9b9629efb316b96de511b418c53d245aae6/cycler-0.12.1-py3-none-any.whl#sha256=85cef7cff222d8644161529808465972e51340599459b8ac3ccbac5a854e0d30 # pip cython @ https://files.pythonhosted.org/packages/93/03/e330b241ad8aa12bb9d98b58fb76d4eb7dcbe747479aab5c29fce937b9e7/Cython-3.0.11-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl#sha256=3999fb52d3328a6a5e8c63122b0a8bd110dfcdb98dda585a3def1426b991cba7 # pip docutils @ https://files.pythonhosted.org/packages/8f/d7/9322c609343d929e75e7e5e6255e614fcc67572cfd083959cdef3b7aad79/docutils-0.21.2-py3-none-any.whl#sha256=dafca5b9e384f0e419294eb4d2ff9fa826435bf15f15b7bd45723e8ad76811b2 @@ -44,7 +44,7 @@ https://repo.anaconda.com/pkgs/main/linux-64/pip-24.2-py311h06a4308_0.conda#eff3 # pip markupsafe @ https://files.pythonhosted.org/packages/f1/a4/aefb044a2cd8d7334c8a47d3fb2c9f328ac48cb349468cc31c20b539305f/MarkupSafe-3.0.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl#sha256=a123e330ef0853c6e822384873bef7507557d8e4a082961e1defa947aa59ba84 # pip meson @ https://files.pythonhosted.org/packages/76/73/3dc4edc855c9988ff05ea5590f5c7bda72b6e0d138b2ddc1fab92a1f242f/meson-1.6.0-py3-none-any.whl#sha256=234a45f9206c6ee33b473ec1baaef359d20c0b89a71871d58c65a6db6d98fe74 # pip networkx @ https://files.pythonhosted.org/packages/b9/54/dd730b32ea14ea797530a4479b2ed46a6fb250f682a9cfb997e968bf0261/networkx-3.4.2-py3-none-any.whl#sha256=df5d4365b724cf81b8c6a7312509d0c22386097011ad1abe274afd5e9d3bbc5f -# pip ninja @ https://files.pythonhosted.org/packages/6d/92/8d7aebd4430ab5ff65df2bfee6d5745f95c004284db2d8ca76dcbfd9de47/ninja-1.11.1.1-py2.py3-none-manylinux1_x86_64.manylinux_2_5_x86_64.whl#sha256=84502ec98f02a037a169c4b0d5d86075eaf6afc55e1879003d6cab51ced2ea4b +# pip ninja @ https://files.pythonhosted.org/packages/62/54/787bb70e6af2f1b1853af9bab62a5e7cb35b957d72daf253b7f3c653c005/ninja-1.11.1.2-py3-none-manylinux_2_12_x86_64.manylinux2010_x86_64.whl#sha256=33d258809c8eda81f9d80e18a081a6eef3215e5fd1ba8902400d786641994e89 # pip numpy @ https://files.pythonhosted.org/packages/7a/f0/80811e836484262b236c684a75dfc4ba0424bc670e765afaa911468d9f39/numpy-2.1.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl#sha256=bc6f24b3d1ecc1eebfbf5d6051faa49af40b03be1aaa781ebdadcbc090b4539b # pip packaging @ https://files.pythonhosted.org/packages/88/ef/eb23f262cca3c0c4eb7ab1933c3b1f03d021f2c48f54763065b6f0e321be/packaging-24.2-py3-none-any.whl#sha256=09abb1bccd265c01f4a3aa3f7a7db064b36514d2cba19a2f694fe6150451a759 # pip pillow @ https://files.pythonhosted.org/packages/39/63/b3fc299528d7df1f678b0666002b37affe6b8751225c3d9c12cf530e73ed/pillow-11.0.0-cp311-cp311-manylinux_2_28_x86_64.whl#sha256=45c566eb10b8967d71bf1ab8e4a525e5a93519e29ea071459ce517f6b903d7fa diff --git a/build_tools/azure/pymin_conda_forge_mkl_win-64_conda.lock b/build_tools/azure/pymin_conda_forge_mkl_win-64_conda.lock index b9507ff415b63..ed7dc04952413 100644 --- a/build_tools/azure/pymin_conda_forge_mkl_win-64_conda.lock +++ b/build_tools/azure/pymin_conda_forge_mkl_win-64_conda.lock @@ -64,7 +64,7 @@ https://conda.anaconda.org/conda-forge/win-64/freetype-2.12.1-hdaf720e_2.conda#3 https://conda.anaconda.org/conda-forge/noarch/iniconfig-2.0.0-pyhd8ed1ab_0.conda#f800d2da156d08e289b14e87e43c1ae5 https://conda.anaconda.org/conda-forge/win-64/kiwisolver-1.4.7-py39h2b77a98_0.conda#c116c25e2e36f770f065559ad2a1da73 https://conda.anaconda.org/conda-forge/win-64/libblas-3.9.0-25_win64_mkl.conda#499208e81242efb6e5abc7366c91c816 -https://conda.anaconda.org/conda-forge/win-64/libclang13-19.1.3-default_ha5278ca_0.conda#fe6aa50eeb307558f8974f115305388f +https://conda.anaconda.org/conda-forge/win-64/libclang13-19.1.4-default_ha5278ca_0.conda#6acaf8464e71abf0713a030e0eba8317 https://conda.anaconda.org/conda-forge/win-64/libgfortran5-14.2.0-hf020157_1.conda#294a5033b744648a2ba816b34ffd810a https://conda.anaconda.org/conda-forge/win-64/libglib-2.82.2-h7025463_0.conda#3e379c1b908a7101ecbc503def24613f https://conda.anaconda.org/conda-forge/win-64/libtiff-4.7.0-hfc51747_1.conda#eac317ed1cc6b9c0af0c27297e364665 @@ -75,19 +75,19 @@ https://conda.anaconda.org/conda-forge/noarch/packaging-24.2-pyhff2d567_1.conda# https://conda.anaconda.org/conda-forge/noarch/pluggy-1.5.0-pyhd8ed1ab_0.conda#d3483c8fc2dc2cc3f5cf43e26d60cabf https://conda.anaconda.org/conda-forge/win-64/pthread-stubs-0.4-h0e40799_1002.conda#3c8f2573569bb816483e5cf57efbbe29 https://conda.anaconda.org/conda-forge/noarch/pyparsing-3.2.0-pyhd8ed1ab_1.conda#035c17fbf099f50ff60bf2eb303b0a83 -https://conda.anaconda.org/conda-forge/noarch/setuptools-75.5.0-pyhff2d567_0.conda#ade63405adb52eeff89d506cd55908c0 +https://conda.anaconda.org/conda-forge/noarch/setuptools-75.6.0-pyhff2d567_0.conda#68d7d406366926b09a6a023e3d0f71d7 https://conda.anaconda.org/conda-forge/noarch/six-1.16.0-pyh6c4a22f_0.tar.bz2#e5f25f8dbc060e9a8d912e432202afc2 https://conda.anaconda.org/conda-forge/noarch/threadpoolctl-3.5.0-pyhc1e730c_0.conda#df68d78237980a159bd7149f33c0e8fd https://conda.anaconda.org/conda-forge/noarch/toml-0.10.2-pyhd8ed1ab_0.tar.bz2#f832c45a477c78bebd107098db465095 https://conda.anaconda.org/conda-forge/noarch/tomli-2.1.0-pyhff2d567_0.conda#3fa1089b4722df3a900135925f4519d9 https://conda.anaconda.org/conda-forge/win-64/tornado-6.4.1-py39ha55e580_1.conda#4a93d22ed5b2cede80fbee7f7f775a9d https://conda.anaconda.org/conda-forge/win-64/unicodedata2-15.1.0-py39ha55e580_1.conda#7b7e5732092b9a635440ec939e45651d -https://conda.anaconda.org/conda-forge/noarch/wheel-0.45.0-pyhd8ed1ab_0.conda#f9751d7c71df27b2d29f5cab3378982e +https://conda.anaconda.org/conda-forge/noarch/wheel-0.45.1-pyhd8ed1ab_0.conda#bdb2f437ce62fd2f1fef9119a37a12d9 https://conda.anaconda.org/conda-forge/win-64/xorg-libxau-1.0.11-h0e40799_1.conda#ca66d6f8fe86dd53664e8de5087ef6b1 https://conda.anaconda.org/conda-forge/win-64/xorg-libxdmcp-1.1.5-h0e40799_0.conda#8393c0f7e7870b4eb45553326f81f0ff https://conda.anaconda.org/conda-forge/noarch/zipp-3.21.0-pyhd8ed1ab_0.conda#fee389bf8a4843bd7a2248ce11b7f188 https://conda.anaconda.org/conda-forge/win-64/brotli-1.1.0-h2466b09_2.conda#378f1c9421775dfe644731cb121c8979 -https://conda.anaconda.org/conda-forge/win-64/coverage-7.6.7-py39hf73967f_0.conda#11a82c4ebc8dcb145e50e546dbf6d508 +https://conda.anaconda.org/conda-forge/win-64/coverage-7.6.8-py39hf73967f_0.conda#99c682c1bde1e5661ad0af5c32710330 https://conda.anaconda.org/conda-forge/win-64/fontconfig-2.15.0-h765892d_1.conda#9bb0026a2131b09404c59c4290c697cd https://conda.anaconda.org/conda-forge/noarch/importlib_resources-6.4.5-pyhd8ed1ab_0.conda#c808991d29b9838fb4d96ce8267ec9ec https://conda.anaconda.org/conda-forge/noarch/joblib-1.4.2-pyhd8ed1ab_0.conda#25df261d4523d9f9783bcdb7208d872f @@ -101,13 +101,13 @@ https://conda.anaconda.org/conda-forge/win-64/openjpeg-2.5.2-h3d672ee_0.conda#7e https://conda.anaconda.org/conda-forge/noarch/pip-24.3.1-pyh8b19718_0.conda#5dd546fe99b44fda83963d15f84263b7 https://conda.anaconda.org/conda-forge/noarch/pyproject-metadata-0.9.0-pyh2cfa8aa_0.conda#10906a130eeb4a68645bf97c28333141 https://conda.anaconda.org/conda-forge/noarch/pytest-8.3.3-pyhd8ed1ab_0.conda#c03d61f31f38fdb9facf70c29958bf7a -https://conda.anaconda.org/conda-forge/noarch/python-dateutil-2.9.0-pyhd8ed1ab_0.conda#2cf4264fffb9e6eff6031c5b6884d61c +https://conda.anaconda.org/conda-forge/noarch/python-dateutil-2.9.0.post0-pyhff2d567_0.conda#b6dfd90a2141e573e4b6a81630b56df5 https://conda.anaconda.org/conda-forge/win-64/cairo-1.18.0-h32b962e_3.conda#8f43723a4925c51e55c2d81725a97db4 https://conda.anaconda.org/conda-forge/win-64/fonttools-4.55.0-py39hf73967f_0.conda#ec6d6a149d4e18a07f4bb959f68c4961 https://conda.anaconda.org/conda-forge/noarch/importlib-resources-6.4.5-pyhd8ed1ab_0.conda#67f4772681cf86652f3e2261794cf045 https://conda.anaconda.org/conda-forge/win-64/liblapacke-3.9.0-25_win64_mkl.conda#d59fc46f1e1c2f3cf38a08a0a76ffee5 https://conda.anaconda.org/conda-forge/noarch/meson-python-0.17.1-pyh70fd9c4_0.conda#722b649da38842068d83b6e6770f11a1 -https://conda.anaconda.org/conda-forge/win-64/numpy-2.0.2-py39h60232e0_0.conda#13c59f25f5d4ad7d1c677667555f6547 +https://conda.anaconda.org/conda-forge/win-64/numpy-2.0.2-py39h60232e0_1.conda#d8801e13476c0ae89e410307fbc5a612 https://conda.anaconda.org/conda-forge/win-64/pillow-11.0.0-py39h5ee314c_0.conda#0c57206c5215a7e56414ce0332805226 https://conda.anaconda.org/conda-forge/noarch/pytest-cov-6.0.0-pyhd8ed1ab_0.conda#cb8a11b6d209e3d85e5094bdbd9ebd9c https://conda.anaconda.org/conda-forge/noarch/pytest-xdist-3.6.1-pyhd8ed1ab_0.conda#b39568655c127a9c4a44d178ac99b6d0 diff --git a/build_tools/azure/pymin_conda_forge_openblas_min_dependencies_linux-64_conda.lock b/build_tools/azure/pymin_conda_forge_openblas_min_dependencies_linux-64_conda.lock index 4c79d6b3ce3c2..6abdc8c5b72fe 100644 --- a/build_tools/azure/pymin_conda_forge_openblas_min_dependencies_linux-64_conda.lock +++ b/build_tools/azure/pymin_conda_forge_openblas_min_dependencies_linux-64_conda.lock @@ -13,7 +13,7 @@ https://conda.anaconda.org/conda-forge/noarch/tzdata-2024b-hc8b5060_0.conda#8ac3 https://conda.anaconda.org/conda-forge/noarch/fonts-conda-forge-1-0.tar.bz2#f766549260d6815b0c52253f1fb1bb29 https://conda.anaconda.org/conda-forge/linux-64/ld_impl_linux-64-2.43-h712a8e2_2.conda#048b02e3962f066da18efe3a21b77672 https://conda.anaconda.org/conda-forge/linux-64/libglvnd-1.7.0-ha4b6fd6_2.conda#434ca7e50e40f4918ab701e3facd59a0 -https://conda.anaconda.org/conda-forge/linux-64/llvm-openmp-19.1.3-h024ca30_0.conda#d36687dc90337917a84a96a45111ad59 +https://conda.anaconda.org/conda-forge/linux-64/llvm-openmp-19.1.4-h024ca30_0.conda#9370a10ba6a13079cc0c0e09d2ec13a8 https://conda.anaconda.org/conda-forge/linux-64/_openmp_mutex-4.5-2_kmp_llvm.tar.bz2#562b26ba2e19059551a811e72ab7f793 https://conda.anaconda.org/conda-forge/noarch/fonts-conda-ecosystem-1-0.tar.bz2#fee5683a3f04bd15cbd8318b096a27ab https://conda.anaconda.org/conda-forge/linux-64/libegl-1.7.0-ha4b6fd6_2.conda#c151d5eb730e9b7480e6d48c0fc44048 @@ -42,6 +42,7 @@ https://conda.anaconda.org/conda-forge/linux-64/libevent-2.1.12-hf998b51_1.conda https://conda.anaconda.org/conda-forge/linux-64/libffi-3.4.2-h7f98852_5.tar.bz2#d645c6d2ac96843a2bfaccd2d62b3ac3 https://conda.anaconda.org/conda-forge/linux-64/libgettextpo-0.22.5-he02047a_3.conda#efab66b82ec976930b96d62a976de8e7 https://conda.anaconda.org/conda-forge/linux-64/libgfortran-14.2.0-h69a702a_1.conda#f1fd30127802683586f768875127a987 +https://conda.anaconda.org/conda-forge/linux-64/libgpg-error-1.51-hbd13f7d_1.conda#168cc19c031482f83b23c4eebbb94e26 https://conda.anaconda.org/conda-forge/linux-64/libiconv-1.17-hd590300_2.conda#d66573916ffcf376178462f1b61c941e https://conda.anaconda.org/conda-forge/linux-64/libjpeg-turbo-3.0.0-hd590300_1.conda#ea25936bb4080d843790b586850f82b8 https://conda.anaconda.org/conda-forge/linux-64/libnsl-2.0.1-hd590300_0.conda#30fd6e37fe21f86f4bd26d6ee73eeec7 @@ -70,12 +71,13 @@ https://conda.anaconda.org/conda-forge/linux-64/libasprintf-0.22.5-he8f35ee_3.co https://conda.anaconda.org/conda-forge/linux-64/libcap-2.69-h0f662aa_0.conda#25cb5999faa414e5ccb2c1388f62d3d5 https://conda.anaconda.org/conda-forge/linux-64/libdrm-2.4.123-hb9d3cd8_0.conda#ee605e794bdc14e2b7f84c4faa0d8c2c https://conda.anaconda.org/conda-forge/linux-64/libedit-3.1.20191231-he28a2e2_2.tar.bz2#4d331e44109e3f0e19b4cb8f9b82f3e1 +https://conda.anaconda.org/conda-forge/linux-64/libgcrypt-1.11.0-h4ab18f5_1.conda#14858a47d4cc995892e79f2b340682d7 https://conda.anaconda.org/conda-forge/linux-64/libgettextpo-devel-0.22.5-he02047a_3.conda#9aba7960731e6b4547b3a52f812ed801 https://conda.anaconda.org/conda-forge/linux-64/libgfortran-ng-14.2.0-h69a702a_1.conda#0a7f4cd238267c88e5d69f7826a407eb https://conda.anaconda.org/conda-forge/linux-64/libvorbis-1.3.7-h9c3ff4c_0.tar.bz2#309dec04b70a3cc0f1e84a4013683bc0 https://conda.anaconda.org/conda-forge/linux-64/lz4-c-1.9.4-hcb278e6_0.conda#318b08df404f9c9be5712aaa5a6f0bb0 https://conda.anaconda.org/conda-forge/linux-64/ninja-1.12.1-h297d8ca_0.conda#3aa1c7e292afeff25a0091ddd7c69b72 -https://conda.anaconda.org/conda-forge/linux-64/nss-3.106-hdf54f9c_0.conda#efe735c7dc47dddbb14b3433d11c6feb +https://conda.anaconda.org/conda-forge/linux-64/nss-3.107-hdf54f9c_0.conda#294b7009fe9010b35c25bb683f663bc3 https://conda.anaconda.org/conda-forge/linux-64/pcre2-10.44-hba22ea6_2.conda#df359c09c41cd186fffb93a2d87aa6f5 https://conda.anaconda.org/conda-forge/linux-64/pixman-0.43.2-h59595ed_0.conda#71004cbf7924e19c02746ccde9fd7123 https://conda.anaconda.org/conda-forge/linux-64/readline-8.2-h8228510_1.conda#47d31b792659ce70f470b5c82fdfb7a4 @@ -93,6 +95,7 @@ https://conda.anaconda.org/conda-forge/linux-64/libglib-2.82.2-h2ff4ddf_0.conda# https://conda.anaconda.org/conda-forge/linux-64/libglx-1.7.0-ha4b6fd6_2.conda#c8013e438185f33b13814c5c488acd5c https://conda.anaconda.org/conda-forge/linux-64/libhiredis-1.0.2-h2cc385e_0.tar.bz2#b34907d3a81a3cd8095ee83d174c074a https://conda.anaconda.org/conda-forge/linux-64/libopenblas-0.3.25-pthreads_h413a1c8_0.conda#d172b34a443b95f86089e8229ddc9a17 +https://conda.anaconda.org/conda-forge/linux-64/libsystemd0-256.7-h2774228_1.conda#ad328c530a12a8798776e5f03942090f https://conda.anaconda.org/conda-forge/linux-64/libtiff-4.7.0-he137b08_1.conda#63872517c98aa305da58a757c443698e https://conda.anaconda.org/conda-forge/linux-64/libxml2-2.13.5-hb346dea_0.conda#c81a9f1118541aaa418ccb22190c817e https://conda.anaconda.org/conda-forge/linux-64/mysql-libs-9.0.1-he0572af_2.conda#57a9e7ee3c0840d3c8c9012473978629 @@ -119,8 +122,8 @@ https://conda.anaconda.org/conda-forge/linux-64/lcms2-2.16-hb7c19ff_0.conda#51bb https://conda.anaconda.org/conda-forge/linux-64/libblas-3.9.0-20_linux64_openblas.conda#2b7bb4f7562c8cf334fc2e20c2d28abc https://conda.anaconda.org/conda-forge/linux-64/libcups-2.3.3-h4637d8d_4.conda#d4529f4dff3057982a7617c7ac58fde3 https://conda.anaconda.org/conda-forge/linux-64/libgl-1.7.0-ha4b6fd6_2.conda#928b8be80851f5d8ffb016f9c81dae7a -https://conda.anaconda.org/conda-forge/linux-64/libllvm19-19.1.3-ha7bfdaf_0.conda#8bd654307c455162668cd66e36494000 -https://conda.anaconda.org/conda-forge/linux-64/libpq-16.5-h2d7952a_0.conda#3b863477ad017cfa8456a5aa0a17b950 +https://conda.anaconda.org/conda-forge/linux-64/libllvm19-19.1.4-ha7bfdaf_0.conda#5f7d7eabf470bc56903b18f169f4f784 +https://conda.anaconda.org/conda-forge/linux-64/libpq-16.6-h2d7952a_0.conda#7fa1f554b760a2d6018ecc673fb73f6c https://conda.anaconda.org/conda-forge/linux-64/libxkbcommon-1.7.0-h2c5496b_1.conda#e2eaefa4de2b7237af7c907b8bbc760a https://conda.anaconda.org/conda-forge/linux-64/openblas-0.3.25-pthreads_h7a3da1a_0.conda#87661673941b5e702275fdf0fc095ad0 https://conda.anaconda.org/conda-forge/linux-64/openjpeg-2.5.2-h488ebb8_0.conda#7f2e286780f072ed750df46dc2631138 @@ -136,28 +139,26 @@ https://conda.anaconda.org/conda-forge/noarch/toml-0.10.2-pyhd8ed1ab_0.tar.bz2#f https://conda.anaconda.org/conda-forge/noarch/tomli-2.1.0-pyhff2d567_0.conda#3fa1089b4722df3a900135925f4519d9 https://conda.anaconda.org/conda-forge/linux-64/tornado-6.4.1-py39h8cd3c5a_1.conda#48d269953fcddbbcde078429d4b27afe https://conda.anaconda.org/conda-forge/noarch/typing_extensions-4.12.2-pyha770c72_0.conda#ebe6952715e1d5eb567eeebf25250fa7 -https://conda.anaconda.org/conda-forge/noarch/wheel-0.45.0-pyhd8ed1ab_0.conda#f9751d7c71df27b2d29f5cab3378982e +https://conda.anaconda.org/conda-forge/noarch/wheel-0.45.1-pyhd8ed1ab_0.conda#bdb2f437ce62fd2f1fef9119a37a12d9 https://conda.anaconda.org/conda-forge/linux-64/xorg-libxdamage-1.1.6-hb9d3cd8_0.conda#b5fcc7172d22516e1f965490e65e33a4 https://conda.anaconda.org/conda-forge/linux-64/xorg-libxxf86vm-1.1.5-hb9d3cd8_4.conda#7da9007c0582712c4bad4131f89c8372 -https://conda.anaconda.org/conda-forge/linux-64/coverage-7.6.7-py39h9399b63_0.conda#922564171f1f38b041e5398b50785ae4 +https://conda.anaconda.org/conda-forge/linux-64/coverage-7.6.8-py39h9399b63_0.conda#72f225b8c205b8c37330aa1311cba9b0 https://conda.anaconda.org/conda-forge/linux-64/glib-2.82.2-h44428e9_0.conda#f19f985ab043e8843045410f3b99de8a https://conda.anaconda.org/conda-forge/linux-64/harfbuzz-9.0.0-hda332d3_1.conda#76b32dcf243444aea9c6b804bcfa40b8 https://conda.anaconda.org/conda-forge/noarch/joblib-1.2.0-pyhd8ed1ab_0.tar.bz2#7583652522d71ad78ba536bba06940eb https://conda.anaconda.org/conda-forge/linux-64/libcblas-3.9.0-20_linux64_openblas.conda#36d486d72ab64ffea932329a1d3729a3 -https://conda.anaconda.org/conda-forge/linux-64/libclang-cpp19.1-19.1.3-default_hb5137d0_0.conda#311e6a1d041db3d6a8a8437750d4234f -https://conda.anaconda.org/conda-forge/linux-64/libclang13-19.1.3-default_h9c6a7e4_0.conda#b8a8cd77810b20754f358f2327812552 +https://conda.anaconda.org/conda-forge/linux-64/libclang-cpp19.1-19.1.4-default_hb5137d0_0.conda#e7e4a0ebe1f6eedf483f6f5d4f7d2bdd +https://conda.anaconda.org/conda-forge/linux-64/libclang13-19.1.4-default_h9c6a7e4_0.conda#6c450adae455c7d648856e8b0cfcebd6 https://conda.anaconda.org/conda-forge/linux-64/libflac-1.4.3-h59595ed_0.conda#ee48bf17cc83a00f59ca1494d5646869 -https://conda.anaconda.org/conda-forge/linux-64/libgpg-error-1.51-hbd13f7d_0.conda#a2b4a4600d432adf0ee057f63ee27b23 https://conda.anaconda.org/conda-forge/linux-64/liblapack-3.9.0-20_linux64_openblas.conda#6fabc51f5e647d09cc010c40061557e0 https://conda.anaconda.org/conda-forge/noarch/meson-1.6.0-pyhd8ed1ab_0.conda#380ba6a3eddd8e7649bfe8e6812611aa https://conda.anaconda.org/conda-forge/linux-64/pillow-11.0.0-py39h538c539_0.conda#a2bafdf8ae51c9eb6e5be684cfcedd60 https://conda.anaconda.org/conda-forge/noarch/pip-24.3.1-pyh8b19718_0.conda#5dd546fe99b44fda83963d15f84263b7 https://conda.anaconda.org/conda-forge/noarch/pyproject-metadata-0.9.0-pyh2cfa8aa_0.conda#10906a130eeb4a68645bf97c28333141 https://conda.anaconda.org/conda-forge/noarch/pytest-8.3.3-pyhd8ed1ab_0.conda#c03d61f31f38fdb9facf70c29958bf7a -https://conda.anaconda.org/conda-forge/noarch/python-dateutil-2.9.0-pyhd8ed1ab_0.conda#2cf4264fffb9e6eff6031c5b6884d61c +https://conda.anaconda.org/conda-forge/noarch/python-dateutil-2.9.0.post0-pyhff2d567_0.conda#b6dfd90a2141e573e4b6a81630b56df5 https://conda.anaconda.org/conda-forge/linux-64/sip-6.7.12-py39h3d6467e_0.conda#e667a3ab0df62c54e60e1843d2e6defb https://conda.anaconda.org/conda-forge/linux-64/gstreamer-1.24.7-hf3bb09a_0.conda#c78bc4ef0afb3cd2365d9973c71fc876 -https://conda.anaconda.org/conda-forge/linux-64/libgcrypt-1.11.0-h4ab18f5_1.conda#14858a47d4cc995892e79f2b340682d7 https://conda.anaconda.org/conda-forge/linux-64/liblapacke-3.9.0-20_linux64_openblas.conda#05c5862c7dc25e65ba6c471d96429dae https://conda.anaconda.org/conda-forge/linux-64/libsndfile-1.2.2-hc60ed4a_1.conda#ef1910918dd895516a769ed36b5b3a4e https://conda.anaconda.org/conda-forge/noarch/meson-python-0.16.0-pyh0c530f3_0.conda#e16f0dbf502da873be9f9adb0dc52547 @@ -167,13 +168,12 @@ https://conda.anaconda.org/conda-forge/noarch/pytest-cov-6.0.0-pyhd8ed1ab_0.cond https://conda.anaconda.org/conda-forge/noarch/pytest-xdist-3.6.1-pyhd8ed1ab_0.conda#b39568655c127a9c4a44d178ac99b6d0 https://conda.anaconda.org/conda-forge/linux-64/blas-devel-3.9.0-20_linux64_openblas.conda#9932a1d4e9ecf2d35fb19475446e361e https://conda.anaconda.org/conda-forge/linux-64/gst-plugins-base-1.24.7-h0a52356_0.conda#d368425fbd031a2f8e801a40c3415c72 -https://conda.anaconda.org/conda-forge/linux-64/libsystemd0-256.7-h2774228_1.conda#ad328c530a12a8798776e5f03942090f https://conda.anaconda.org/conda-forge/linux-64/matplotlib-base-3.3.4-py39h2fa2bec_0.tar.bz2#9ec0b2186fab9121c54f4844f93ee5b7 https://conda.anaconda.org/conda-forge/linux-64/pandas-1.1.5-py39hde0f152_0.tar.bz2#79fc4b5b3a865b90dd3701cecf1ad33c https://conda.anaconda.org/conda-forge/linux-64/polars-0.20.30-py39ha963410_0.conda#322084e8890afc27fcca6df7a528df25 +https://conda.anaconda.org/conda-forge/linux-64/pulseaudio-client-17.0-hb77b528_0.conda#07f45f1be1c25345faddb8db0de8039b https://conda.anaconda.org/conda-forge/linux-64/scipy-1.6.0-py39hee8e79c_0.tar.bz2#3afcb78281836e61351a2924f3230060 https://conda.anaconda.org/conda-forge/linux-64/blas-2.120-openblas.conda#c8f6916a81a340650078171b1d852574 -https://conda.anaconda.org/conda-forge/linux-64/pulseaudio-client-17.0-hb77b528_0.conda#07f45f1be1c25345faddb8db0de8039b https://conda.anaconda.org/conda-forge/linux-64/pyamg-4.2.3-py39hac2352c_1.tar.bz2#6fb0628d6195d8b6caa2422d09296399 https://conda.anaconda.org/conda-forge/linux-64/qt-main-5.15.15-h374914d_0.conda#26e8b00e73c114c9b787d36edcbf4424 https://conda.anaconda.org/conda-forge/linux-64/pyqt-5.15.9-py39h52134e7_5.conda#e1f148e57d071b09187719df86f513c1 diff --git a/build_tools/azure/pymin_conda_forge_openblas_ubuntu_2204_linux-64_conda.lock b/build_tools/azure/pymin_conda_forge_openblas_ubuntu_2204_linux-64_conda.lock index e5973688c4092..62c33e1ea96b9 100644 --- a/build_tools/azure/pymin_conda_forge_openblas_ubuntu_2204_linux-64_conda.lock +++ b/build_tools/azure/pymin_conda_forge_openblas_ubuntu_2204_linux-64_conda.lock @@ -13,7 +13,7 @@ https://conda.anaconda.org/conda-forge/noarch/tzdata-2024b-hc8b5060_0.conda#8ac3 https://conda.anaconda.org/conda-forge/noarch/fonts-conda-forge-1-0.tar.bz2#f766549260d6815b0c52253f1fb1bb29 https://conda.anaconda.org/conda-forge/linux-64/ld_impl_linux-64-2.43-h712a8e2_2.conda#048b02e3962f066da18efe3a21b77672 https://conda.anaconda.org/conda-forge/linux-64/libglvnd-1.7.0-ha4b6fd6_2.conda#434ca7e50e40f4918ab701e3facd59a0 -https://conda.anaconda.org/conda-forge/linux-64/llvm-openmp-19.1.3-h024ca30_0.conda#d36687dc90337917a84a96a45111ad59 +https://conda.anaconda.org/conda-forge/linux-64/llvm-openmp-19.1.4-h024ca30_0.conda#9370a10ba6a13079cc0c0e09d2ec13a8 https://conda.anaconda.org/conda-forge/linux-64/_openmp_mutex-4.5-2_kmp_llvm.tar.bz2#562b26ba2e19059551a811e72ab7f793 https://conda.anaconda.org/conda-forge/noarch/fonts-conda-ecosystem-1-0.tar.bz2#fee5683a3f04bd15cbd8318b096a27ab https://conda.anaconda.org/conda-forge/linux-64/libegl-1.7.0-ha4b6fd6_2.conda#c151d5eb730e9b7480e6d48c0fc44048 @@ -122,7 +122,7 @@ https://conda.anaconda.org/conda-forge/linux-64/libcblas-3.9.0-25_linux64_openbl https://conda.anaconda.org/conda-forge/linux-64/libcups-2.3.3-h4637d8d_4.conda#d4529f4dff3057982a7617c7ac58fde3 https://conda.anaconda.org/conda-forge/linux-64/libgl-1.7.0-ha4b6fd6_2.conda#928b8be80851f5d8ffb016f9c81dae7a https://conda.anaconda.org/conda-forge/linux-64/liblapack-3.9.0-25_linux64_openblas.conda#4dc03a53fc69371a6158d0ed37214cd3 -https://conda.anaconda.org/conda-forge/linux-64/libllvm19-19.1.3-ha7bfdaf_0.conda#8bd654307c455162668cd66e36494000 +https://conda.anaconda.org/conda-forge/linux-64/libllvm19-19.1.4-ha7bfdaf_0.conda#5f7d7eabf470bc56903b18f169f4f784 https://conda.anaconda.org/conda-forge/linux-64/libxkbcommon-1.7.0-h2c5496b_1.conda#e2eaefa4de2b7237af7c907b8bbc760a https://conda.anaconda.org/conda-forge/linux-64/libxslt-1.1.39-h76b75d6_0.conda#e71f31f8cfb0a91439f2086fc8aa0461 https://conda.anaconda.org/conda-forge/linux-64/markupsafe-3.0.2-py39h9399b63_0.conda#d38773fed557834d3211e019b7cf7c2f @@ -136,7 +136,7 @@ https://conda.anaconda.org/conda-forge/noarch/pyparsing-3.2.0-pyhd8ed1ab_1.conda https://conda.anaconda.org/conda-forge/noarch/pysocks-1.7.1-pyha2e5f31_6.tar.bz2#2a7de29fb590ca14b5243c4c812c8025 https://conda.anaconda.org/conda-forge/noarch/python-tzdata-2024.2-pyhd8ed1ab_0.conda#986287f89929b2d629bd6ef6497dc307 https://conda.anaconda.org/conda-forge/noarch/pytz-2024.1-pyhd8ed1ab_0.conda#3eeeeb9e4827ace8c0c1419c85d590ad -https://conda.anaconda.org/conda-forge/noarch/setuptools-75.5.0-pyhff2d567_0.conda#ade63405adb52eeff89d506cd55908c0 +https://conda.anaconda.org/conda-forge/noarch/setuptools-75.6.0-pyhff2d567_0.conda#68d7d406366926b09a6a023e3d0f71d7 https://conda.anaconda.org/conda-forge/noarch/six-1.16.0-pyh6c4a22f_0.tar.bz2#e5f25f8dbc060e9a8d912e432202afc2 https://conda.anaconda.org/conda-forge/noarch/snowballstemmer-2.2.0-pyhd8ed1ab_0.tar.bz2#4d22a9315e78c6827f806065957d566e https://conda.anaconda.org/conda-forge/noarch/sphinxcontrib-jsmath-1.0.1-pyhd8ed1ab_0.conda#da1d979339e2714c30a8e806a33ec087 @@ -145,7 +145,7 @@ https://conda.anaconda.org/conda-forge/noarch/threadpoolctl-3.5.0-pyhc1e730c_0.c https://conda.anaconda.org/conda-forge/noarch/tomli-2.1.0-pyhff2d567_0.conda#3fa1089b4722df3a900135925f4519d9 https://conda.anaconda.org/conda-forge/linux-64/tornado-6.4.1-py39h8cd3c5a_1.conda#48d269953fcddbbcde078429d4b27afe https://conda.anaconda.org/conda-forge/linux-64/unicodedata2-15.1.0-py39h8cd3c5a_1.conda#6346898044e4387631c614290789a434 -https://conda.anaconda.org/conda-forge/noarch/wheel-0.45.0-pyhd8ed1ab_0.conda#f9751d7c71df27b2d29f5cab3378982e +https://conda.anaconda.org/conda-forge/noarch/wheel-0.45.1-pyhd8ed1ab_0.conda#bdb2f437ce62fd2f1fef9119a37a12d9 https://conda.anaconda.org/conda-forge/linux-64/xcb-util-cursor-0.1.5-hb9d3cd8_0.conda#eb44b3b6deb1cab08d72cb61686fe64c https://conda.anaconda.org/conda-forge/linux-64/xorg-libxcomposite-0.4.6-hb9d3cd8_2.conda#d3c295b50f092ab525ffe3c2aa4b7413 https://conda.anaconda.org/conda-forge/linux-64/xorg-libxcursor-1.2.3-hb9d3cd8_0.conda#2ccd714aa2242315acaf0a67faea780b @@ -163,22 +163,22 @@ https://conda.anaconda.org/conda-forge/noarch/importlib-metadata-8.5.0-pyha770c7 https://conda.anaconda.org/conda-forge/noarch/importlib_resources-6.4.5-pyhd8ed1ab_0.conda#c808991d29b9838fb4d96ce8267ec9ec https://conda.anaconda.org/conda-forge/noarch/jinja2-3.1.4-pyhd8ed1ab_0.conda#7b86ecb7d3557821c649b3c31e3eb9f2 https://conda.anaconda.org/conda-forge/noarch/joblib-1.4.2-pyhd8ed1ab_0.conda#25df261d4523d9f9783bcdb7208d872f -https://conda.anaconda.org/conda-forge/linux-64/libclang-cpp19.1-19.1.3-default_hb5137d0_0.conda#311e6a1d041db3d6a8a8437750d4234f -https://conda.anaconda.org/conda-forge/linux-64/libclang13-19.1.3-default_h9c6a7e4_0.conda#b8a8cd77810b20754f358f2327812552 +https://conda.anaconda.org/conda-forge/linux-64/libclang-cpp19.1-19.1.4-default_hb5137d0_0.conda#e7e4a0ebe1f6eedf483f6f5d4f7d2bdd +https://conda.anaconda.org/conda-forge/linux-64/libclang13-19.1.4-default_h9c6a7e4_0.conda#6c450adae455c7d648856e8b0cfcebd6 https://conda.anaconda.org/conda-forge/linux-64/liblapacke-3.9.0-25_linux64_openblas.conda#8f5ead31b3a168aedd488b8a87736c41 https://conda.anaconda.org/conda-forge/noarch/meson-1.6.0-pyhd8ed1ab_0.conda#380ba6a3eddd8e7649bfe8e6812611aa -https://conda.anaconda.org/conda-forge/linux-64/numpy-2.0.2-py39h9cb892a_0.conda#ed28982e8b085c5d47361fc4af0902ac +https://conda.anaconda.org/conda-forge/linux-64/numpy-2.0.2-py39h9cb892a_1.conda#be95cf76ebd05d08be67e50e88d3cd49 https://conda.anaconda.org/conda-forge/linux-64/openldap-2.6.8-hedd0468_0.conda#dcd0ed5147d8876b0848a552b416ce76 https://conda.anaconda.org/conda-forge/linux-64/pillow-11.0.0-py39h538c539_0.conda#a2bafdf8ae51c9eb6e5be684cfcedd60 https://conda.anaconda.org/conda-forge/noarch/pip-24.3.1-pyh8b19718_0.conda#5dd546fe99b44fda83963d15f84263b7 https://conda.anaconda.org/conda-forge/noarch/pyproject-metadata-0.9.0-pyh2cfa8aa_0.conda#10906a130eeb4a68645bf97c28333141 https://conda.anaconda.org/conda-forge/noarch/pytest-8.3.3-pyhd8ed1ab_0.conda#c03d61f31f38fdb9facf70c29958bf7a -https://conda.anaconda.org/conda-forge/noarch/python-dateutil-2.9.0-pyhd8ed1ab_0.conda#2cf4264fffb9e6eff6031c5b6884d61c +https://conda.anaconda.org/conda-forge/noarch/python-dateutil-2.9.0.post0-pyhff2d567_0.conda#b6dfd90a2141e573e4b6a81630b56df5 https://conda.anaconda.org/conda-forge/linux-64/xorg-libxtst-1.2.5-hb9d3cd8_3.conda#7bbe9a0cc0df0ac5f5a8ad6d6a11af2f https://conda.anaconda.org/conda-forge/linux-64/blas-devel-3.9.0-25_linux64_openblas.conda#02c516384c77f5a7b4d03ed6c0412c57 https://conda.anaconda.org/conda-forge/linux-64/contourpy-1.3.0-py39h74842e3_2.conda#5645190ef7f6d3aebee71e298dc9677b https://conda.anaconda.org/conda-forge/noarch/importlib-resources-6.4.5-pyhd8ed1ab_0.conda#67f4772681cf86652f3e2261794cf045 -https://conda.anaconda.org/conda-forge/linux-64/libpq-17.1-h04577a9_0.conda#c2560bae9f56de89b8c50355f7c84910 +https://conda.anaconda.org/conda-forge/linux-64/libpq-17.2-h04577a9_0.conda#52dd46162c6fb2765b49e6fd06adf8d5 https://conda.anaconda.org/conda-forge/noarch/meson-python-0.17.1-pyh70fd9c4_0.conda#722b649da38842068d83b6e6770f11a1 https://conda.anaconda.org/conda-forge/linux-64/pandas-2.2.3-py39h3b40f6f_1.conda#d07f482720066758dad87cf90b3de111 https://conda.anaconda.org/conda-forge/noarch/pytest-xdist-3.6.1-pyhd8ed1ab_0.conda#b39568655c127a9c4a44d178ac99b6d0 diff --git a/build_tools/azure/ubuntu_atlas_lock.txt b/build_tools/azure/ubuntu_atlas_lock.txt index 954f113afd471..f3423be743d58 100644 --- a/build_tools/azure/ubuntu_atlas_lock.txt +++ b/build_tools/azure/ubuntu_atlas_lock.txt @@ -18,7 +18,7 @@ meson==1.6.0 # via meson-python meson-python==0.17.1 # via -r build_tools/azure/ubuntu_atlas_requirements.txt -ninja==1.11.1.1 +ninja==1.11.1.2 # via -r build_tools/azure/ubuntu_atlas_requirements.txt packaging==24.2 # via diff --git a/build_tools/circle/doc_linux-64_conda.lock b/build_tools/circle/doc_linux-64_conda.lock index 8e03525e0a887..ea6b71666ade1 100644 --- a/build_tools/circle/doc_linux-64_conda.lock +++ b/build_tools/circle/doc_linux-64_conda.lock @@ -17,7 +17,7 @@ https://conda.anaconda.org/conda-forge/noarch/libgcc-devel_linux-64-13.3.0-h84ea https://conda.anaconda.org/conda-forge/linux-64/libglvnd-1.7.0-ha4b6fd6_2.conda#434ca7e50e40f4918ab701e3facd59a0 https://conda.anaconda.org/conda-forge/linux-64/libgomp-14.2.0-h77fa898_1.conda#cc3573974587f12dda90d96e3e55a702 https://conda.anaconda.org/conda-forge/noarch/libstdcxx-devel_linux-64-13.3.0-h84ea5a7_101.conda#29b5a4ed4613fa81a07c21045e3f5bf6 -https://conda.anaconda.org/conda-forge/linux-64/llvm-openmp-19.1.3-h024ca30_0.conda#d36687dc90337917a84a96a45111ad59 +https://conda.anaconda.org/conda-forge/linux-64/llvm-openmp-19.1.4-h024ca30_0.conda#9370a10ba6a13079cc0c0e09d2ec13a8 https://conda.anaconda.org/conda-forge/noarch/sysroot_linux-64-2.17-h4a8ded7_18.conda#0ea96f90a10838f58412aa84fdd9df09 https://conda.anaconda.org/conda-forge/linux-64/_openmp_mutex-4.5-2_kmp_llvm.tar.bz2#562b26ba2e19059551a811e72ab7f793 https://conda.anaconda.org/conda-forge/linux-64/binutils_impl_linux-64-2.43-h4bf12b8_2.conda#cf0c5521ac2a20dfa6c662a4009eeef6 @@ -109,7 +109,7 @@ https://conda.anaconda.org/conda-forge/linux-64/brotli-1.1.0-hb9d3cd8_2.conda#98 https://conda.anaconda.org/conda-forge/linux-64/c-blosc2-2.15.1-hc57e6cf_0.conda#5f84961d86d0ef78851cb34f9d5e31fe https://conda.anaconda.org/conda-forge/linux-64/fontconfig-2.15.0-h7e30c49_1.conda#8f5b0b297b59e1ac160ad4beec99dbee https://conda.anaconda.org/conda-forge/linux-64/gcc-13.3.0-h9576a4e_1.conda#606924335b5bcdf90e9aed9a2f5d22ed -https://conda.anaconda.org/conda-forge/linux-64/gcc_linux-64-13.3.0-hc28eda2_6.conda#f36597909f5292c48d878f2459c89217 +https://conda.anaconda.org/conda-forge/linux-64/gcc_linux-64-13.3.0-hc28eda2_7.conda#ac23afbf5805389eb771e2ad3b476f75 https://conda.anaconda.org/conda-forge/linux-64/gfortran_impl_linux-64-13.3.0-h10434e7_1.conda#6709e113709b6ba67cc0f4b0de58ef7f https://conda.anaconda.org/conda-forge/linux-64/gxx_impl_linux-64-13.3.0-hdbfa832_1.conda#806367e23a0a6ad21e51875b34c57d7e https://conda.anaconda.org/conda-forge/linux-64/krb5-1.21.3-h659f571_0.conda#3f43953b7d3fb3aaa1d0d0723d91e368 @@ -145,9 +145,9 @@ https://conda.anaconda.org/conda-forge/noarch/docutils-0.21.2-pyhd8ed1ab_0.conda https://conda.anaconda.org/conda-forge/noarch/exceptiongroup-1.2.2-pyhd8ed1ab_0.conda#d02ae936e42063ca46af6cdad2dbd1e0 https://conda.anaconda.org/conda-forge/noarch/execnet-2.1.1-pyhd8ed1ab_0.conda#15dda3cdbf330abfe9f555d22f66db46 https://conda.anaconda.org/conda-forge/linux-64/gfortran-13.3.0-h9576a4e_1.conda#5e5e3b592d5174eb49607a973c77825b -https://conda.anaconda.org/conda-forge/linux-64/gfortran_linux-64-13.3.0-hb919d3a_6.conda#ca5d1d74cfc2779465f4eaf39a35d218 +https://conda.anaconda.org/conda-forge/linux-64/gfortran_linux-64-13.3.0-hb919d3a_7.conda#0b8e7413559c4c892a37c35de4559969 https://conda.anaconda.org/conda-forge/linux-64/gxx-13.3.0-h9576a4e_1.conda#209182ca6b20aeff62f442e843961d81 -https://conda.anaconda.org/conda-forge/linux-64/gxx_linux-64-13.3.0-h6834431_6.conda#c3373b1697b90781cc3fc0be38b4bbdd +https://conda.anaconda.org/conda-forge/linux-64/gxx_linux-64-13.3.0-h6834431_7.conda#7c82ca9bda609b6f72f670e4219d3787 https://conda.anaconda.org/conda-forge/noarch/hpack-4.0.0-pyh9f0ad1d_0.tar.bz2#914d6646c4dbb1fd3ff539830a12fd71 https://conda.anaconda.org/conda-forge/noarch/hyperframe-6.0.1-pyhd8ed1ab_0.tar.bz2#9f765cbfab6870c8435b9eefecd7a1f4 https://conda.anaconda.org/conda-forge/noarch/idna-3.10-pyhd8ed1ab_0.conda#7ba2ede0e7c795ff95088daf0dc59753 @@ -159,7 +159,7 @@ https://conda.anaconda.org/conda-forge/linux-64/libcblas-3.9.0-25_linux64_openbl https://conda.anaconda.org/conda-forge/linux-64/libcups-2.3.3-h4637d8d_4.conda#d4529f4dff3057982a7617c7ac58fde3 https://conda.anaconda.org/conda-forge/linux-64/libgl-1.7.0-ha4b6fd6_2.conda#928b8be80851f5d8ffb016f9c81dae7a https://conda.anaconda.org/conda-forge/linux-64/liblapack-3.9.0-25_linux64_openblas.conda#4dc03a53fc69371a6158d0ed37214cd3 -https://conda.anaconda.org/conda-forge/linux-64/libllvm19-19.1.3-ha7bfdaf_0.conda#8bd654307c455162668cd66e36494000 +https://conda.anaconda.org/conda-forge/linux-64/libllvm19-19.1.4-ha7bfdaf_0.conda#5f7d7eabf470bc56903b18f169f4f784 https://conda.anaconda.org/conda-forge/linux-64/libxkbcommon-1.7.0-h2c5496b_1.conda#e2eaefa4de2b7237af7c907b8bbc760a https://conda.anaconda.org/conda-forge/linux-64/libxslt-1.1.39-h76b75d6_0.conda#e71f31f8cfb0a91439f2086fc8aa0461 https://conda.anaconda.org/conda-forge/linux-64/markupsafe-3.0.2-py39h9399b63_0.conda#d38773fed557834d3211e019b7cf7c2f @@ -176,7 +176,7 @@ https://conda.anaconda.org/conda-forge/noarch/pyparsing-3.2.0-pyhd8ed1ab_1.conda https://conda.anaconda.org/conda-forge/noarch/pysocks-1.7.1-pyha2e5f31_6.tar.bz2#2a7de29fb590ca14b5243c4c812c8025 https://conda.anaconda.org/conda-forge/noarch/python-tzdata-2024.2-pyhd8ed1ab_0.conda#986287f89929b2d629bd6ef6497dc307 https://conda.anaconda.org/conda-forge/noarch/pytz-2024.1-pyhd8ed1ab_0.conda#3eeeeb9e4827ace8c0c1419c85d590ad -https://conda.anaconda.org/conda-forge/noarch/setuptools-75.5.0-pyhff2d567_0.conda#ade63405adb52eeff89d506cd55908c0 +https://conda.anaconda.org/conda-forge/noarch/setuptools-75.6.0-pyhff2d567_0.conda#68d7d406366926b09a6a023e3d0f71d7 https://conda.anaconda.org/conda-forge/noarch/six-1.16.0-pyh6c4a22f_0.tar.bz2#e5f25f8dbc060e9a8d912e432202afc2 https://conda.anaconda.org/conda-forge/noarch/snowballstemmer-2.2.0-pyhd8ed1ab_0.tar.bz2#4d22a9315e78c6827f806065957d566e https://conda.anaconda.org/conda-forge/noarch/soupsieve-2.5-pyhd8ed1ab_1.conda#3f144b2c34f8cb5a9abd9ed23a39c561 @@ -188,7 +188,7 @@ https://conda.anaconda.org/conda-forge/noarch/tomli-2.1.0-pyhff2d567_0.conda#3fa https://conda.anaconda.org/conda-forge/linux-64/tornado-6.4.1-py39h8cd3c5a_1.conda#48d269953fcddbbcde078429d4b27afe https://conda.anaconda.org/conda-forge/noarch/typing_extensions-4.12.2-pyha770c72_0.conda#ebe6952715e1d5eb567eeebf25250fa7 https://conda.anaconda.org/conda-forge/linux-64/unicodedata2-15.1.0-py39h8cd3c5a_1.conda#6346898044e4387631c614290789a434 -https://conda.anaconda.org/conda-forge/noarch/wheel-0.45.0-pyhd8ed1ab_0.conda#f9751d7c71df27b2d29f5cab3378982e +https://conda.anaconda.org/conda-forge/noarch/wheel-0.45.1-pyhd8ed1ab_0.conda#bdb2f437ce62fd2f1fef9119a37a12d9 https://conda.anaconda.org/conda-forge/linux-64/xcb-util-cursor-0.1.5-hb9d3cd8_0.conda#eb44b3b6deb1cab08d72cb61686fe64c https://conda.anaconda.org/conda-forge/linux-64/xorg-libxcomposite-0.4.6-hb9d3cd8_2.conda#d3c295b50f092ab525ffe3c2aa4b7413 https://conda.anaconda.org/conda-forge/linux-64/xorg-libxcursor-1.2.3-hb9d3cd8_0.conda#2ccd714aa2242315acaf0a67faea780b @@ -210,19 +210,19 @@ https://conda.anaconda.org/conda-forge/noarch/importlib-metadata-8.5.0-pyha770c7 https://conda.anaconda.org/conda-forge/noarch/importlib_resources-6.4.5-pyhd8ed1ab_0.conda#c808991d29b9838fb4d96ce8267ec9ec https://conda.anaconda.org/conda-forge/noarch/jinja2-3.1.4-pyhd8ed1ab_0.conda#7b86ecb7d3557821c649b3c31e3eb9f2 https://conda.anaconda.org/conda-forge/noarch/joblib-1.4.2-pyhd8ed1ab_0.conda#25df261d4523d9f9783bcdb7208d872f -https://conda.anaconda.org/conda-forge/linux-64/libclang-cpp19.1-19.1.3-default_hb5137d0_0.conda#311e6a1d041db3d6a8a8437750d4234f -https://conda.anaconda.org/conda-forge/linux-64/libclang13-19.1.3-default_h9c6a7e4_0.conda#b8a8cd77810b20754f358f2327812552 +https://conda.anaconda.org/conda-forge/linux-64/libclang-cpp19.1-19.1.4-default_hb5137d0_0.conda#e7e4a0ebe1f6eedf483f6f5d4f7d2bdd +https://conda.anaconda.org/conda-forge/linux-64/libclang13-19.1.4-default_h9c6a7e4_0.conda#6c450adae455c7d648856e8b0cfcebd6 https://conda.anaconda.org/conda-forge/linux-64/liblapacke-3.9.0-25_linux64_openblas.conda#8f5ead31b3a168aedd488b8a87736c41 https://conda.anaconda.org/conda-forge/noarch/memory_profiler-0.61.0-pyhd8ed1ab_0.tar.bz2#8b45f9f2b2f7a98b0ec179c8991a4a9b https://conda.anaconda.org/conda-forge/noarch/meson-1.6.0-pyhd8ed1ab_0.conda#380ba6a3eddd8e7649bfe8e6812611aa -https://conda.anaconda.org/conda-forge/linux-64/numpy-2.0.2-py39h9cb892a_0.conda#ed28982e8b085c5d47361fc4af0902ac +https://conda.anaconda.org/conda-forge/linux-64/numpy-2.0.2-py39h9cb892a_1.conda#be95cf76ebd05d08be67e50e88d3cd49 https://conda.anaconda.org/conda-forge/linux-64/openldap-2.6.8-hedd0468_0.conda#dcd0ed5147d8876b0848a552b416ce76 https://conda.anaconda.org/conda-forge/linux-64/pillow-11.0.0-py39h538c539_0.conda#a2bafdf8ae51c9eb6e5be684cfcedd60 https://conda.anaconda.org/conda-forge/noarch/pip-24.3.1-pyh8b19718_0.conda#5dd546fe99b44fda83963d15f84263b7 https://conda.anaconda.org/conda-forge/noarch/plotly-5.24.1-pyhd8ed1ab_0.conda#81bb643d6c3ab4cbeaf724e9d68d0a6a https://conda.anaconda.org/conda-forge/noarch/pyproject-metadata-0.9.0-pyh2cfa8aa_0.conda#10906a130eeb4a68645bf97c28333141 https://conda.anaconda.org/conda-forge/noarch/pytest-8.3.3-pyhd8ed1ab_0.conda#c03d61f31f38fdb9facf70c29958bf7a -https://conda.anaconda.org/conda-forge/noarch/python-dateutil-2.9.0-pyhd8ed1ab_0.conda#2cf4264fffb9e6eff6031c5b6884d61c +https://conda.anaconda.org/conda-forge/noarch/python-dateutil-2.9.0.post0-pyhff2d567_0.conda#b6dfd90a2141e573e4b6a81630b56df5 https://conda.anaconda.org/conda-forge/linux-64/xorg-libxtst-1.2.5-hb9d3cd8_3.conda#7bbe9a0cc0df0ac5f5a8ad6d6a11af2f https://conda.anaconda.org/conda-forge/linux-64/blas-devel-3.9.0-25_linux64_openblas.conda#02c516384c77f5a7b4d03ed6c0412c57 https://conda.anaconda.org/conda-forge/linux-64/compilers-1.8.0-ha770c72_1.conda#061e111d02f33a99548f0de07169d9fb @@ -231,11 +231,11 @@ https://conda.anaconda.org/conda-forge/linux-64/imagecodecs-2024.9.22-py39h1aa77 https://conda.anaconda.org/conda-forge/noarch/imageio-2.36.0-pyh12aca89_1.conda#36349844ff73fcd0140ee7f30745f0bf https://conda.anaconda.org/conda-forge/noarch/importlib-resources-6.4.5-pyhd8ed1ab_0.conda#67f4772681cf86652f3e2261794cf045 https://conda.anaconda.org/conda-forge/noarch/lazy-loader-0.4-pyhd8ed1ab_1.conda#4809b9f4c6ce106d443c3f90b8e10db2 -https://conda.anaconda.org/conda-forge/linux-64/libpq-17.1-h04577a9_0.conda#c2560bae9f56de89b8c50355f7c84910 +https://conda.anaconda.org/conda-forge/linux-64/libpq-17.2-h04577a9_0.conda#52dd46162c6fb2765b49e6fd06adf8d5 https://conda.anaconda.org/conda-forge/noarch/meson-python-0.17.1-pyh70fd9c4_0.conda#722b649da38842068d83b6e6770f11a1 https://conda.anaconda.org/conda-forge/linux-64/pandas-2.2.3-py39h3b40f6f_1.conda#d07f482720066758dad87cf90b3de111 https://conda.anaconda.org/conda-forge/noarch/patsy-1.0.1-pyhff2d567_0.conda#a97b9c7586cedcf4a0a158ef3479975c -https://conda.anaconda.org/conda-forge/linux-64/polars-1.12.0-py39h74f158a_0.conda#698f8f845bcb227d52695b4ab6f7c381 +https://conda.anaconda.org/conda-forge/linux-64/polars-1.14.0-py39h74f158a_1.conda#e97a6ff57c37ac0a6f967d74dd73b464 https://conda.anaconda.org/conda-forge/noarch/pytest-xdist-3.6.1-pyhd8ed1ab_0.conda#b39568655c127a9c4a44d178ac99b6d0 https://conda.anaconda.org/conda-forge/linux-64/pywavelets-1.6.0-py39hd92a3bb_0.conda#32e26e16f60c568b17a82e3033a4d309 https://conda.anaconda.org/conda-forge/linux-64/scipy-1.13.1-py39haf93ffa_0.conda#492a2cd65862d16a4aaf535ae9ccb761 @@ -316,7 +316,7 @@ https://conda.anaconda.org/conda-forge/noarch/sphinxext-opengraph-0.9.1-pyhd8ed1 # pip jupyter-server-terminals @ https://files.pythonhosted.org/packages/07/2d/2b32cdbe8d2a602f697a649798554e4f072115438e92249624e532e8aca6/jupyter_server_terminals-0.5.3-py3-none-any.whl#sha256=41ee0d7dc0ebf2809c668e0fc726dfaf258fcd3e769568996ca731b6194ae9aa # pip jupyterlite-core @ https://files.pythonhosted.org/packages/35/ae/32b4040a66b8a2980d3581516478d0e258ec0627db34fcbfdf9373bce317/jupyterlite_core-0.4.4-py3-none-any.whl#sha256=cb64b5649c8171027cfaceed7d1615098a5c6db270cb8be281ca3f4b6caa4094 # pip jsonschema @ https://files.pythonhosted.org/packages/69/4a/4f9dbeb84e8850557c02365a0eee0649abe5eb1d84af92a25731c6c0f922/jsonschema-4.23.0-py3-none-any.whl#sha256=fbadb6f8b144a8f8cf9f0b89ba94501d143e50411a1278633f56a7acf7fd5566 -# pip jupyterlite-pyodide-kernel @ https://files.pythonhosted.org/packages/ea/f1/bd65f1fe3b9535f5aa00d89ed2b2bf3cf4cff39273a3e7dac97e890141cd/jupyterlite_pyodide_kernel-0.4.3-py3-none-any.whl#sha256=88ddfddb2c17d71db0180c1a5b335213bd2fd1d8a964b84c3b69dda1f949dfad +# pip jupyterlite-pyodide-kernel @ https://files.pythonhosted.org/packages/ca/4c/42bb232529ad3b11db6d87de6accb3a9daeafc0fdf5892ff047ee842e0a8/jupyterlite_pyodide_kernel-0.4.4-py3-none-any.whl#sha256=5569843bad0d1d4e5f2a61b093d325cd9113a6e5ac761395a28cfd483a370290 # pip jupyter-events @ https://files.pythonhosted.org/packages/a5/94/059180ea70a9a326e1815176b2370da56376da347a796f8c4f0b830208ef/jupyter_events-0.10.0-py3-none-any.whl#sha256=4b72130875e59d57716d327ea70d3ebc3af1944d3717e5a498b8a06c6c159960 # pip nbformat @ https://files.pythonhosted.org/packages/a9/82/0340caa499416c78e5d8f5f05947ae4bc3cba53c9f038ab6e9ed964e22f1/nbformat-5.10.4-py3-none-any.whl#sha256=3b48d6c8fbca4b299bf3982ea7db1af21580e4fec269ad087b9e81588891200b # pip nbclient @ https://files.pythonhosted.org/packages/66/e8/00517a23d3eeaed0513e718fbc94aab26eaa1758f5690fc8578839791c79/nbclient-0.10.0-py3-none-any.whl#sha256=f13e3529332a1f1f81d82a53210322476a168bb7090a0289c795fe9cc11c9d3f diff --git a/build_tools/circle/doc_min_dependencies_linux-64_conda.lock b/build_tools/circle/doc_min_dependencies_linux-64_conda.lock index e2e9d44386811..959276fbf9e68 100644 --- a/build_tools/circle/doc_min_dependencies_linux-64_conda.lock +++ b/build_tools/circle/doc_min_dependencies_linux-64_conda.lock @@ -18,7 +18,7 @@ https://conda.anaconda.org/conda-forge/noarch/libgcc-devel_linux-64-13.3.0-h84ea https://conda.anaconda.org/conda-forge/linux-64/libglvnd-1.7.0-ha4b6fd6_2.conda#434ca7e50e40f4918ab701e3facd59a0 https://conda.anaconda.org/conda-forge/linux-64/libgomp-14.2.0-h77fa898_1.conda#cc3573974587f12dda90d96e3e55a702 https://conda.anaconda.org/conda-forge/noarch/libstdcxx-devel_linux-64-13.3.0-h84ea5a7_101.conda#29b5a4ed4613fa81a07c21045e3f5bf6 -https://conda.anaconda.org/conda-forge/linux-64/llvm-openmp-19.1.3-h024ca30_0.conda#d36687dc90337917a84a96a45111ad59 +https://conda.anaconda.org/conda-forge/linux-64/llvm-openmp-19.1.4-h024ca30_0.conda#9370a10ba6a13079cc0c0e09d2ec13a8 https://conda.anaconda.org/conda-forge/noarch/sysroot_linux-64-2.17-h4a8ded7_18.conda#0ea96f90a10838f58412aa84fdd9df09 https://conda.anaconda.org/conda-forge/linux-64/_openmp_mutex-4.5-2_kmp_llvm.tar.bz2#562b26ba2e19059551a811e72ab7f793 https://conda.anaconda.org/conda-forge/linux-64/binutils_impl_linux-64-2.43-h4bf12b8_2.conda#cf0c5521ac2a20dfa6c662a4009eeef6 @@ -57,6 +57,7 @@ https://conda.anaconda.org/conda-forge/linux-64/libevent-2.1.12-hf998b51_1.conda https://conda.anaconda.org/conda-forge/linux-64/libffi-3.4.2-h7f98852_5.tar.bz2#d645c6d2ac96843a2bfaccd2d62b3ac3 https://conda.anaconda.org/conda-forge/linux-64/libgettextpo-0.22.5-he02047a_3.conda#efab66b82ec976930b96d62a976de8e7 https://conda.anaconda.org/conda-forge/linux-64/libgfortran-14.2.0-h69a702a_1.conda#f1fd30127802683586f768875127a987 +https://conda.anaconda.org/conda-forge/linux-64/libgpg-error-1.51-hbd13f7d_1.conda#168cc19c031482f83b23c4eebbb94e26 https://conda.anaconda.org/conda-forge/linux-64/libiconv-1.17-hd590300_2.conda#d66573916ffcf376178462f1b61c941e https://conda.anaconda.org/conda-forge/linux-64/libjpeg-turbo-3.0.0-hd590300_1.conda#ea25936bb4080d843790b586850f82b8 https://conda.anaconda.org/conda-forge/linux-64/libnsl-2.0.1-hd590300_0.conda#30fd6e37fe21f86f4bd26d6ee73eeec7 @@ -96,6 +97,7 @@ https://conda.anaconda.org/conda-forge/linux-64/libasprintf-0.22.5-he8f35ee_3.co https://conda.anaconda.org/conda-forge/linux-64/libcap-2.69-h0f662aa_0.conda#25cb5999faa414e5ccb2c1388f62d3d5 https://conda.anaconda.org/conda-forge/linux-64/libdrm-2.4.123-hb9d3cd8_0.conda#ee605e794bdc14e2b7f84c4faa0d8c2c https://conda.anaconda.org/conda-forge/linux-64/libedit-3.1.20191231-he28a2e2_2.tar.bz2#4d331e44109e3f0e19b4cb8f9b82f3e1 +https://conda.anaconda.org/conda-forge/linux-64/libgcrypt-1.11.0-h4ab18f5_1.conda#14858a47d4cc995892e79f2b340682d7 https://conda.anaconda.org/conda-forge/linux-64/libgettextpo-devel-0.22.5-he02047a_3.conda#9aba7960731e6b4547b3a52f812ed801 https://conda.anaconda.org/conda-forge/linux-64/libgfortran-ng-14.2.0-h69a702a_1.conda#0a7f4cd238267c88e5d69f7826a407eb https://conda.anaconda.org/conda-forge/linux-64/libhwy-1.1.0-h00ab1b0_0.conda#88928158ccfe797eac29ef5e03f7d23d @@ -103,7 +105,7 @@ https://conda.anaconda.org/conda-forge/linux-64/libvorbis-1.3.7-h9c3ff4c_0.tar.b https://conda.anaconda.org/conda-forge/linux-64/libzopfli-1.0.3-h9c3ff4c_0.tar.bz2#c66fe2d123249af7651ebde8984c51c2 https://conda.anaconda.org/conda-forge/linux-64/lz4-c-1.9.4-hcb278e6_0.conda#318b08df404f9c9be5712aaa5a6f0bb0 https://conda.anaconda.org/conda-forge/linux-64/ninja-1.12.1-h297d8ca_0.conda#3aa1c7e292afeff25a0091ddd7c69b72 -https://conda.anaconda.org/conda-forge/linux-64/nss-3.106-hdf54f9c_0.conda#efe735c7dc47dddbb14b3433d11c6feb +https://conda.anaconda.org/conda-forge/linux-64/nss-3.107-hdf54f9c_0.conda#294b7009fe9010b35c25bb683f663bc3 https://conda.anaconda.org/conda-forge/linux-64/pcre2-10.44-hba22ea6_2.conda#df359c09c41cd186fffb93a2d87aa6f5 https://conda.anaconda.org/conda-forge/linux-64/pixman-0.43.2-h59595ed_0.conda#71004cbf7924e19c02746ccde9fd7123 https://conda.anaconda.org/conda-forge/linux-64/readline-8.2-h8228510_1.conda#47d31b792659ce70f470b5c82fdfb7a4 @@ -120,7 +122,7 @@ https://conda.anaconda.org/conda-forge/linux-64/brotli-1.1.0-hb9d3cd8_2.conda#98 https://conda.anaconda.org/conda-forge/linux-64/c-blosc2-2.15.1-hc57e6cf_0.conda#5f84961d86d0ef78851cb34f9d5e31fe https://conda.anaconda.org/conda-forge/linux-64/fontconfig-2.15.0-h7e30c49_1.conda#8f5b0b297b59e1ac160ad4beec99dbee https://conda.anaconda.org/conda-forge/linux-64/gcc-13.3.0-h9576a4e_1.conda#606924335b5bcdf90e9aed9a2f5d22ed -https://conda.anaconda.org/conda-forge/linux-64/gcc_linux-64-13.3.0-hc28eda2_6.conda#f36597909f5292c48d878f2459c89217 +https://conda.anaconda.org/conda-forge/linux-64/gcc_linux-64-13.3.0-hc28eda2_7.conda#ac23afbf5805389eb771e2ad3b476f75 https://conda.anaconda.org/conda-forge/linux-64/gfortran_impl_linux-64-13.3.0-h10434e7_1.conda#6709e113709b6ba67cc0f4b0de58ef7f https://conda.anaconda.org/conda-forge/linux-64/gxx_impl_linux-64-13.3.0-hdbfa832_1.conda#806367e23a0a6ad21e51875b34c57d7e https://conda.anaconda.org/conda-forge/linux-64/krb5-1.21.3-h659f571_0.conda#3f43953b7d3fb3aaa1d0d0723d91e368 @@ -129,6 +131,7 @@ https://conda.anaconda.org/conda-forge/linux-64/libavif16-1.1.1-h1909e37_2.conda https://conda.anaconda.org/conda-forge/linux-64/libglib-2.82.2-h2ff4ddf_0.conda#13e8e54035ddd2b91875ba399f0f7c04 https://conda.anaconda.org/conda-forge/linux-64/libglx-1.7.0-ha4b6fd6_2.conda#c8013e438185f33b13814c5c488acd5c https://conda.anaconda.org/conda-forge/linux-64/libjxl-0.11.0-hdb8da77_2.conda#9c4554fafc94db681543804037e65de2 +https://conda.anaconda.org/conda-forge/linux-64/libsystemd0-256.7-h2774228_1.conda#ad328c530a12a8798776e5f03942090f https://conda.anaconda.org/conda-forge/linux-64/libtiff-4.7.0-he137b08_1.conda#63872517c98aa305da58a757c443698e https://conda.anaconda.org/conda-forge/linux-64/libxml2-2.13.5-hb346dea_0.conda#c81a9f1118541aaa418ccb22190c817e https://conda.anaconda.org/conda-forge/linux-64/mysql-libs-9.0.1-he0572af_2.conda#57a9e7ee3c0840d3c8c9012473978629 @@ -158,10 +161,10 @@ https://conda.anaconda.org/conda-forge/noarch/execnet-2.1.1-pyhd8ed1ab_0.conda#1 https://conda.anaconda.org/conda-forge/noarch/fsspec-2024.10.0-pyhff2d567_0.conda#816dbc4679a64e4417cd1385d661bb31 https://conda.anaconda.org/conda-forge/linux-64/gettext-0.22.5-he02047a_3.conda#c7f243bbaea97cd6ea1edd693270100e https://conda.anaconda.org/conda-forge/linux-64/gfortran-13.3.0-h9576a4e_1.conda#5e5e3b592d5174eb49607a973c77825b -https://conda.anaconda.org/conda-forge/linux-64/gfortran_linux-64-13.3.0-hb919d3a_6.conda#ca5d1d74cfc2779465f4eaf39a35d218 +https://conda.anaconda.org/conda-forge/linux-64/gfortran_linux-64-13.3.0-hb919d3a_7.conda#0b8e7413559c4c892a37c35de4559969 https://conda.anaconda.org/conda-forge/linux-64/glib-tools-2.82.2-h4833e2c_0.conda#12859f91830f58b1803e32846651c6f6 https://conda.anaconda.org/conda-forge/linux-64/gxx-13.3.0-h9576a4e_1.conda#209182ca6b20aeff62f442e843961d81 -https://conda.anaconda.org/conda-forge/linux-64/gxx_linux-64-13.3.0-h6834431_6.conda#c3373b1697b90781cc3fc0be38b4bbdd +https://conda.anaconda.org/conda-forge/linux-64/gxx_linux-64-13.3.0-h6834431_7.conda#7c82ca9bda609b6f72f670e4219d3787 https://conda.anaconda.org/conda-forge/noarch/hpack-4.0.0-pyh9f0ad1d_0.tar.bz2#914d6646c4dbb1fd3ff539830a12fd71 https://conda.anaconda.org/conda-forge/noarch/hyperframe-6.0.1-pyhd8ed1ab_0.tar.bz2#9f765cbfab6870c8435b9eefecd7a1f4 https://conda.anaconda.org/conda-forge/noarch/idna-3.10-pyhd8ed1ab_0.conda#7ba2ede0e7c795ff95088daf0dc59753 @@ -172,8 +175,8 @@ https://conda.anaconda.org/conda-forge/linux-64/lcms2-2.16-hb7c19ff_0.conda#51bb https://conda.anaconda.org/conda-forge/linux-64/libcups-2.3.3-h4637d8d_4.conda#d4529f4dff3057982a7617c7ac58fde3 https://conda.anaconda.org/conda-forge/linux-64/libgl-1.7.0-ha4b6fd6_2.conda#928b8be80851f5d8ffb016f9c81dae7a https://conda.anaconda.org/conda-forge/linux-64/libhwloc-2.11.1-default_hecaa2ac_1000.conda#f54aeebefb5c5ff84eca4fb05ca8aa3a -https://conda.anaconda.org/conda-forge/linux-64/libllvm19-19.1.3-ha7bfdaf_0.conda#8bd654307c455162668cd66e36494000 -https://conda.anaconda.org/conda-forge/linux-64/libpq-16.5-h2d7952a_0.conda#3b863477ad017cfa8456a5aa0a17b950 +https://conda.anaconda.org/conda-forge/linux-64/libllvm19-19.1.4-ha7bfdaf_0.conda#5f7d7eabf470bc56903b18f169f4f784 +https://conda.anaconda.org/conda-forge/linux-64/libpq-16.6-h2d7952a_0.conda#7fa1f554b760a2d6018ecc673fb73f6c https://conda.anaconda.org/conda-forge/linux-64/libxkbcommon-1.7.0-h2c5496b_1.conda#e2eaefa4de2b7237af7c907b8bbc760a https://conda.anaconda.org/conda-forge/noarch/locket-1.0.0-pyhd8ed1ab_0.tar.bz2#91e27ef3d05cc772ce627e51cff111c4 https://conda.anaconda.org/conda-forge/linux-64/markupsafe-3.0.2-py39h9399b63_0.conda#d38773fed557834d3211e019b7cf7c2f @@ -201,7 +204,7 @@ https://conda.anaconda.org/conda-forge/noarch/tomli-2.1.0-pyhff2d567_0.conda#3fa https://conda.anaconda.org/conda-forge/noarch/toolz-1.0.0-pyhd8ed1ab_0.conda#34feccdd4177f2d3d53c73fc44fd9a37 https://conda.anaconda.org/conda-forge/linux-64/tornado-6.4.1-py39h8cd3c5a_1.conda#48d269953fcddbbcde078429d4b27afe https://conda.anaconda.org/conda-forge/noarch/typing_extensions-4.12.2-pyha770c72_0.conda#ebe6952715e1d5eb567eeebf25250fa7 -https://conda.anaconda.org/conda-forge/noarch/wheel-0.45.0-pyhd8ed1ab_0.conda#f9751d7c71df27b2d29f5cab3378982e +https://conda.anaconda.org/conda-forge/noarch/wheel-0.45.1-pyhd8ed1ab_0.conda#bdb2f437ce62fd2f1fef9119a37a12d9 https://conda.anaconda.org/conda-forge/linux-64/xorg-libxdamage-1.1.6-hb9d3cd8_0.conda#b5fcc7172d22516e1f965490e65e33a4 https://conda.anaconda.org/conda-forge/linux-64/xorg-libxxf86vm-1.1.5-hb9d3cd8_4.conda#7da9007c0582712c4bad4131f89c8372 https://conda.anaconda.org/conda-forge/noarch/zipp-3.21.0-pyhd8ed1ab_0.conda#fee389bf8a4843bd7a2248ce11b7f188 @@ -219,10 +222,9 @@ https://conda.anaconda.org/conda-forge/noarch/importlib-metadata-8.5.0-pyha770c7 https://conda.anaconda.org/conda-forge/noarch/importlib_resources-6.4.5-pyhd8ed1ab_0.conda#c808991d29b9838fb4d96ce8267ec9ec https://conda.anaconda.org/conda-forge/noarch/jinja2-3.1.4-pyhd8ed1ab_0.conda#7b86ecb7d3557821c649b3c31e3eb9f2 https://conda.anaconda.org/conda-forge/noarch/joblib-1.4.2-pyhd8ed1ab_0.conda#25df261d4523d9f9783bcdb7208d872f -https://conda.anaconda.org/conda-forge/linux-64/libclang-cpp19.1-19.1.3-default_hb5137d0_0.conda#311e6a1d041db3d6a8a8437750d4234f -https://conda.anaconda.org/conda-forge/linux-64/libclang13-19.1.3-default_h9c6a7e4_0.conda#b8a8cd77810b20754f358f2327812552 +https://conda.anaconda.org/conda-forge/linux-64/libclang-cpp19.1-19.1.4-default_hb5137d0_0.conda#e7e4a0ebe1f6eedf483f6f5d4f7d2bdd +https://conda.anaconda.org/conda-forge/linux-64/libclang13-19.1.4-default_h9c6a7e4_0.conda#6c450adae455c7d648856e8b0cfcebd6 https://conda.anaconda.org/conda-forge/linux-64/libflac-1.4.3-h59595ed_0.conda#ee48bf17cc83a00f59ca1494d5646869 -https://conda.anaconda.org/conda-forge/linux-64/libgpg-error-1.51-hbd13f7d_0.conda#a2b4a4600d432adf0ee057f63ee27b23 https://conda.anaconda.org/conda-forge/noarch/memory_profiler-0.61.0-pyhd8ed1ab_0.tar.bz2#8b45f9f2b2f7a98b0ec179c8991a4a9b https://conda.anaconda.org/conda-forge/noarch/meson-1.6.0-pyhd8ed1ab_0.conda#380ba6a3eddd8e7649bfe8e6812611aa https://conda.anaconda.org/conda-forge/noarch/partd-1.4.2-pyhd8ed1ab_0.conda#0badf9c54e24cecfb0ad2f99d680c163 @@ -231,14 +233,13 @@ https://conda.anaconda.org/conda-forge/noarch/pip-24.3.1-pyh8b19718_0.conda#5dd5 https://conda.anaconda.org/conda-forge/noarch/plotly-5.14.0-pyhd8ed1ab_0.conda#6a7bcc42ef58dd6cf3da9333ea102433 https://conda.anaconda.org/conda-forge/noarch/pyproject-metadata-0.9.0-pyh2cfa8aa_0.conda#10906a130eeb4a68645bf97c28333141 https://conda.anaconda.org/conda-forge/noarch/pytest-8.3.3-pyhd8ed1ab_0.conda#c03d61f31f38fdb9facf70c29958bf7a -https://conda.anaconda.org/conda-forge/noarch/python-dateutil-2.9.0-pyhd8ed1ab_0.conda#2cf4264fffb9e6eff6031c5b6884d61c +https://conda.anaconda.org/conda-forge/noarch/python-dateutil-2.9.0.post0-pyhff2d567_0.conda#b6dfd90a2141e573e4b6a81630b56df5 https://conda.anaconda.org/conda-forge/linux-64/sip-6.7.12-py39h3d6467e_0.conda#e667a3ab0df62c54e60e1843d2e6defb https://conda.anaconda.org/conda-forge/linux-64/tbb-2021.13.0-h84d6215_0.conda#ee6f7fd1e76061ef1fa307d41fa86a96 https://conda.anaconda.org/conda-forge/linux-64/compilers-1.8.0-ha770c72_1.conda#061e111d02f33a99548f0de07169d9fb https://conda.anaconda.org/conda-forge/linux-64/gstreamer-1.24.7-hf3bb09a_0.conda#c78bc4ef0afb3cd2365d9973c71fc876 https://conda.anaconda.org/conda-forge/noarch/importlib-resources-6.4.5-pyhd8ed1ab_0.conda#67f4772681cf86652f3e2261794cf045 https://conda.anaconda.org/conda-forge/noarch/importlib_metadata-8.5.0-hd8ed1ab_0.conda#2a92e152208121afadf85a5e1f3a5f4d -https://conda.anaconda.org/conda-forge/linux-64/libgcrypt-1.11.0-h4ab18f5_1.conda#14858a47d4cc995892e79f2b340682d7 https://conda.anaconda.org/conda-forge/linux-64/libsndfile-1.2.2-hc60ed4a_1.conda#ef1910918dd895516a769ed36b5b3a4e https://conda.anaconda.org/conda-forge/noarch/meson-python-0.17.1-pyh70fd9c4_0.conda#722b649da38842068d83b6e6770f11a1 https://conda.anaconda.org/conda-forge/linux-64/mkl-2024.2.2-ha957f24_16.conda#1459379c79dda834673426504d52b319 @@ -248,18 +249,18 @@ https://conda.anaconda.org/conda-forge/linux-64/zstandard-0.23.0-py39h08a7858_1. https://conda.anaconda.org/conda-forge/noarch/dask-core-2024.8.0-pyhd8ed1ab_0.conda#bf68bf9ff9a18f1b17aa8c817225aee0 https://conda.anaconda.org/conda-forge/linux-64/gst-plugins-base-1.24.7-h0a52356_0.conda#d368425fbd031a2f8e801a40c3415c72 https://conda.anaconda.org/conda-forge/linux-64/libblas-3.9.0-25_linux64_mkl.conda#b77ebfb548eae4d91639e2ca003662c8 -https://conda.anaconda.org/conda-forge/linux-64/libsystemd0-256.7-h2774228_1.conda#ad328c530a12a8798776e5f03942090f https://conda.anaconda.org/conda-forge/linux-64/mkl-devel-2024.2.2-ha770c72_16.conda#140891ea14285fc634353b31e9e40a95 +https://conda.anaconda.org/conda-forge/linux-64/pulseaudio-client-17.0-hb77b528_0.conda#07f45f1be1c25345faddb8db0de8039b https://conda.anaconda.org/conda-forge/noarch/towncrier-24.8.0-pyhd8ed1ab_0.conda#02190423152df62fda1cde3d9527b882 https://conda.anaconda.org/conda-forge/noarch/urllib3-2.2.3-pyhd8ed1ab_0.conda#6b55867f385dd762ed99ea687af32a69 https://conda.anaconda.org/conda-forge/linux-64/libcblas-3.9.0-25_linux64_mkl.conda#e48aeb4ab1a293f621fe995959f1d32f https://conda.anaconda.org/conda-forge/linux-64/liblapack-3.9.0-25_linux64_mkl.conda#d5afbe3777c594434e4de6481254e99c -https://conda.anaconda.org/conda-forge/linux-64/pulseaudio-client-17.0-hb77b528_0.conda#07f45f1be1c25345faddb8db0de8039b +https://conda.anaconda.org/conda-forge/linux-64/qt-main-5.15.15-h374914d_0.conda#26e8b00e73c114c9b787d36edcbf4424 https://conda.anaconda.org/conda-forge/noarch/requests-2.32.3-pyhd8ed1ab_0.conda#5ede4753180c7a550a443c430dc8ab52 https://conda.anaconda.org/conda-forge/linux-64/liblapacke-3.9.0-25_linux64_mkl.conda#cbddb4169d3d24b13b308403b45f401e https://conda.anaconda.org/conda-forge/linux-64/numpy-1.19.5-py39hd249d9e_3.tar.bz2#0cf333996ebdeeba8d1c8c1c0ee9eff9 https://conda.anaconda.org/conda-forge/noarch/pooch-1.6.0-pyhd8ed1ab_0.tar.bz2#6429e1d1091c51f626b5dcfdd38bf429 -https://conda.anaconda.org/conda-forge/linux-64/qt-main-5.15.15-h374914d_0.conda#26e8b00e73c114c9b787d36edcbf4424 +https://conda.anaconda.org/conda-forge/linux-64/pyqt-5.15.9-py39h52134e7_5.conda#e1f148e57d071b09187719df86f513c1 https://conda.anaconda.org/conda-forge/linux-64/blas-devel-3.9.0-25_linux64_mkl.conda#cb60caae3cb30988431d7107691bd587 https://conda.anaconda.org/conda-forge/linux-64/imagecodecs-2024.9.22-py39h1aa77c4_0.conda#6001ae3f85403137d61e3ef7e96dd940 https://conda.anaconda.org/conda-forge/noarch/imageio-2.36.0-pyh12aca89_1.conda#36349844ff73fcd0140ee7f30745f0bf @@ -267,7 +268,6 @@ https://conda.anaconda.org/conda-forge/linux-64/matplotlib-base-3.3.4-py39h2fa2b https://conda.anaconda.org/conda-forge/linux-64/pandas-1.1.5-py39hde0f152_0.tar.bz2#79fc4b5b3a865b90dd3701cecf1ad33c https://conda.anaconda.org/conda-forge/noarch/patsy-1.0.1-pyhff2d567_0.conda#a97b9c7586cedcf4a0a158ef3479975c https://conda.anaconda.org/conda-forge/linux-64/polars-0.20.30-py39ha963410_0.conda#322084e8890afc27fcca6df7a528df25 -https://conda.anaconda.org/conda-forge/linux-64/pyqt-5.15.9-py39h52134e7_5.conda#e1f148e57d071b09187719df86f513c1 https://conda.anaconda.org/conda-forge/linux-64/pywavelets-1.6.0-py39hd92a3bb_0.conda#32e26e16f60c568b17a82e3033a4d309 https://conda.anaconda.org/conda-forge/linux-64/scipy-1.6.0-py39hee8e79c_0.tar.bz2#3afcb78281836e61351a2924f3230060 https://conda.anaconda.org/conda-forge/linux-64/blas-2.125-mkl.conda#8a0ffaaae2bccf691cffdde83cb0f1a5 From 16ed5288c3b7da07b596d8aaaafa395eb712a5ed Mon Sep 17 00:00:00 2001 From: Omar Salman Date: Mon, 25 Nov 2024 14:23:07 +0500 Subject: [PATCH 049/159] ENH Array API support for f1_score and multilabel_confusion_matrix (#27369) Co-authored-by: Olivier Grisel --- doc/modules/array_api.rst | 3 + .../array-api/27369.feature.rst | 3 + sklearn/metrics/_classification.py | 166 +++++++++++------- sklearn/metrics/tests/test_common.py | 123 +++++++++---- sklearn/utils/_array_api.py | 51 +++++- sklearn/utils/_encode.py | 4 +- sklearn/utils/extmath.py | 22 +-- sklearn/utils/tests/test_array_api.py | 16 +- sklearn/utils/validation.py | 16 +- 9 files changed, 284 insertions(+), 120 deletions(-) create mode 100644 doc/whats_new/upcoming_changes/array-api/27369.feature.rst diff --git a/doc/modules/array_api.rst b/doc/modules/array_api.rst index 64d0485aa9c56..df66a2d8de797 100644 --- a/doc/modules/array_api.rst +++ b/doc/modules/array_api.rst @@ -94,6 +94,7 @@ Estimators - :class:`linear_model.Ridge` (with `solver="svd"`) - :class:`discriminant_analysis.LinearDiscriminantAnalysis` (with `solver="svd"`) - :class:`preprocessing.KernelCenterer` +- :class:`preprocessing.LabelEncoder` - :class:`preprocessing.MaxAbsScaler` - :class:`preprocessing.MinMaxScaler` - :class:`preprocessing.Normalizer` @@ -115,6 +116,7 @@ Metrics - :func:`sklearn.metrics.cluster.entropy` - :func:`sklearn.metrics.accuracy_score` - :func:`sklearn.metrics.d2_tweedie_score` +- :func:`sklearn.metrics.f1_score` - :func:`sklearn.metrics.max_error` - :func:`sklearn.metrics.mean_absolute_error` - :func:`sklearn.metrics.mean_absolute_percentage_error` @@ -123,6 +125,7 @@ Metrics - :func:`sklearn.metrics.mean_squared_error` - :func:`sklearn.metrics.mean_squared_log_error` - :func:`sklearn.metrics.mean_tweedie_deviance` +- :func:`sklearn.metrics.multilabel_confusion_matrix` - :func:`sklearn.metrics.pairwise.additive_chi2_kernel` - :func:`sklearn.metrics.pairwise.chi2_kernel` - :func:`sklearn.metrics.pairwise.cosine_similarity` diff --git a/doc/whats_new/upcoming_changes/array-api/27369.feature.rst b/doc/whats_new/upcoming_changes/array-api/27369.feature.rst new file mode 100644 index 0000000000000..6a32bd88e7987 --- /dev/null +++ b/doc/whats_new/upcoming_changes/array-api/27369.feature.rst @@ -0,0 +1,3 @@ +- :func:`sklearn.metrics.f1_score` now supports Array API compatible + inputs. + By :user:`Omar Salman ` diff --git a/sklearn/metrics/_classification.py b/sklearn/metrics/_classification.py index e9f90ae4fefec..dc9252c2c9fda 100644 --- a/sklearn/metrics/_classification.py +++ b/sklearn/metrics/_classification.py @@ -15,7 +15,7 @@ from numbers import Integral, Real import numpy as np -from scipy.sparse import coo_matrix, csr_matrix +from scipy.sparse import coo_matrix, csr_matrix, issparse from scipy.special import xlogy from ..exceptions import UndefinedMetricWarning @@ -28,9 +28,15 @@ ) from ..utils._array_api import ( _average, + _bincount, _count_nonzero, + _find_matching_floating_dtype, _is_numpy_namespace, + _searchsorted, + _setdiff1d, + _tolist, _union1d, + device, get_namespace, get_namespace_and_device, ) @@ -521,9 +527,11 @@ def multilabel_confusion_matrix( [1, 2]]]) """ y_true, y_pred = attach_unique(y_true, y_pred) + xp, _ = get_namespace(y_true, y_pred) + device_ = device(y_true, y_pred) y_type, y_true, y_pred = _check_targets(y_true, y_pred) if sample_weight is not None: - sample_weight = column_or_1d(sample_weight) + sample_weight = column_or_1d(sample_weight, device=device_) check_consistent_length(y_true, y_pred, sample_weight) if y_type not in ("binary", "multiclass", "multilabel-indicator"): @@ -534,9 +542,11 @@ def multilabel_confusion_matrix( labels = present_labels n_labels = None else: - n_labels = len(labels) - labels = np.hstack( - [labels, np.setdiff1d(present_labels, labels, assume_unique=True)] + labels = xp.asarray(labels, device=device_) + n_labels = labels.shape[0] + labels = xp.concat( + [labels, _setdiff1d(present_labels, labels, assume_unique=True, xp=xp)], + axis=-1, ) if y_true.ndim == 1: @@ -556,77 +566,102 @@ def multilabel_confusion_matrix( tp = y_true == y_pred tp_bins = y_true[tp] if sample_weight is not None: - tp_bins_weights = np.asarray(sample_weight)[tp] + tp_bins_weights = sample_weight[tp] else: tp_bins_weights = None - if len(tp_bins): - tp_sum = np.bincount( - tp_bins, weights=tp_bins_weights, minlength=len(labels) + if tp_bins.shape[0]: + tp_sum = _bincount( + tp_bins, weights=tp_bins_weights, minlength=labels.shape[0], xp=xp ) else: # Pathological case - true_sum = pred_sum = tp_sum = np.zeros(len(labels)) - if len(y_pred): - pred_sum = np.bincount(y_pred, weights=sample_weight, minlength=len(labels)) - if len(y_true): - true_sum = np.bincount(y_true, weights=sample_weight, minlength=len(labels)) + true_sum = pred_sum = tp_sum = xp.zeros(labels.shape[0]) + if y_pred.shape[0]: + pred_sum = _bincount( + y_pred, weights=sample_weight, minlength=labels.shape[0], xp=xp + ) + if y_true.shape[0]: + true_sum = _bincount( + y_true, weights=sample_weight, minlength=labels.shape[0], xp=xp + ) # Retain only selected labels - indices = np.searchsorted(sorted_labels, labels[:n_labels]) - tp_sum = tp_sum[indices] - true_sum = true_sum[indices] - pred_sum = pred_sum[indices] + indices = _searchsorted(sorted_labels, labels[:n_labels], xp=xp) + tp_sum = xp.take(tp_sum, indices, axis=0) + true_sum = xp.take(true_sum, indices, axis=0) + pred_sum = xp.take(pred_sum, indices, axis=0) else: sum_axis = 1 if samplewise else 0 # All labels are index integers for multilabel. # Select labels: - if not np.array_equal(labels, present_labels): - if np.max(labels) > np.max(present_labels): + if labels.shape != present_labels.shape or xp.any( + xp.not_equal(labels, present_labels) + ): + if xp.max(labels) > xp.max(present_labels): raise ValueError( "All labels must be in [0, n labels) for " "multilabel targets. " - "Got %d > %d" % (np.max(labels), np.max(present_labels)) + "Got %d > %d" % (xp.max(labels), xp.max(present_labels)) ) - if np.min(labels) < 0: + if xp.min(labels) < 0: raise ValueError( "All labels must be in [0, n labels) for " "multilabel targets. " - "Got %d < 0" % np.min(labels) + "Got %d < 0" % xp.min(labels) ) if n_labels is not None: y_true = y_true[:, labels[:n_labels]] y_pred = y_pred[:, labels[:n_labels]] + if issparse(y_true) or issparse(y_pred): + true_and_pred = y_true.multiply(y_pred) + else: + true_and_pred = xp.multiply(y_true, y_pred) + # calculate weighted counts - true_and_pred = y_true.multiply(y_pred) - tp_sum = count_nonzero( - true_and_pred, axis=sum_axis, sample_weight=sample_weight + tp_sum = _count_nonzero( + true_and_pred, + axis=sum_axis, + sample_weight=sample_weight, + xp=xp, + device=device_, + ) + pred_sum = _count_nonzero( + y_pred, + axis=sum_axis, + sample_weight=sample_weight, + xp=xp, + device=device_, + ) + true_sum = _count_nonzero( + y_true, + axis=sum_axis, + sample_weight=sample_weight, + xp=xp, + device=device_, ) - pred_sum = count_nonzero(y_pred, axis=sum_axis, sample_weight=sample_weight) - true_sum = count_nonzero(y_true, axis=sum_axis, sample_weight=sample_weight) fp = pred_sum - tp_sum fn = true_sum - tp_sum tp = tp_sum if sample_weight is not None and samplewise: - sample_weight = np.array(sample_weight) - tp = np.array(tp) - fp = np.array(fp) - fn = np.array(fn) + tp = xp.asarray(tp) + fp = xp.asarray(fp) + fn = xp.asarray(fn) tn = sample_weight * y_true.shape[1] - tp - fp - fn elif sample_weight is not None: - tn = sum(sample_weight) - tp - fp - fn + tn = xp.sum(sample_weight) - tp - fp - fn elif samplewise: tn = y_true.shape[1] - tp - fp - fn else: tn = y_true.shape[0] - tp - fp - fn - return np.array([tn, fp, fn, tp]).T.reshape(-1, 2, 2) + return xp.reshape(xp.stack([tn, fp, fn, tp]).T, (-1, 2, 2)) @validate_params( @@ -1262,11 +1297,11 @@ def f1_score( >>> y_true = [0, 1, 2, 0, 1, 2] >>> y_pred = [0, 2, 1, 0, 0, 1] >>> f1_score(y_true, y_pred, average='macro') - np.float64(0.26...) + 0.26... >>> f1_score(y_true, y_pred, average='micro') - np.float64(0.33...) + 0.33... >>> f1_score(y_true, y_pred, average='weighted') - np.float64(0.26...) + 0.26... >>> f1_score(y_true, y_pred, average=None) array([0.8, 0. , 0. ]) @@ -1274,9 +1309,9 @@ def f1_score( >>> y_true_empty = [0, 0, 0, 0, 0, 0] >>> y_pred_empty = [0, 0, 0, 0, 0, 0] >>> f1_score(y_true_empty, y_pred_empty) - np.float64(0.0...) + 0.0... >>> f1_score(y_true_empty, y_pred_empty, zero_division=1.0) - np.float64(1.0...) + 1.0... >>> f1_score(y_true_empty, y_pred_empty, zero_division=np.nan) nan... @@ -1466,17 +1501,17 @@ def fbeta_score( >>> y_true = [0, 1, 2, 0, 1, 2] >>> y_pred = [0, 2, 1, 0, 0, 1] >>> fbeta_score(y_true, y_pred, average='macro', beta=0.5) - np.float64(0.23...) + 0.23... >>> fbeta_score(y_true, y_pred, average='micro', beta=0.5) - np.float64(0.33...) + 0.33... >>> fbeta_score(y_true, y_pred, average='weighted', beta=0.5) - np.float64(0.23...) + 0.23... >>> fbeta_score(y_true, y_pred, average=None, beta=0.5) array([0.71..., 0. , 0. ]) >>> y_pred_empty = [0, 0, 0, 0, 0, 0] >>> fbeta_score(y_true, y_pred_empty, ... average="macro", zero_division=np.nan, beta=0.5) - np.float64(0.12...) + 0.12... """ _, _, f, _ = precision_recall_fscore_support( @@ -1505,12 +1540,14 @@ def _prf_divide( The metric, modifier and average arguments are used only for determining an appropriate warning. """ - mask = denominator == 0.0 - denominator = denominator.copy() + xp, _ = get_namespace(numerator, denominator) + dtype_float = _find_matching_floating_dtype(numerator, denominator, xp=xp) + mask = denominator == 0 + denominator = xp.asarray(denominator, copy=True, dtype=dtype_float) denominator[mask] = 1 # avoid infs/nans - result = numerator / denominator + result = xp.asarray(numerator, dtype=dtype_float) / denominator - if not np.any(mask): + if not xp.any(mask): return result # set those with 0 denominator to `zero_division`, and 0 when "warn" @@ -1559,7 +1596,7 @@ def _check_set_wise_labels(y_true, y_pred, average, labels, pos_label): y_type, y_true, y_pred = _check_targets(y_true, y_pred) # Convert to Python primitive type to avoid NumPy type / Python str # comparison. See https://github.com/numpy/numpy/issues/6784 - present_labels = unique_labels(y_true, y_pred).tolist() + present_labels = _tolist(unique_labels(y_true, y_pred)) if average == "binary": if y_type == "binary": if pos_label not in present_labels: @@ -1774,11 +1811,11 @@ def precision_recall_fscore_support( >>> y_true = np.array(['cat', 'dog', 'pig', 'cat', 'dog', 'pig']) >>> y_pred = np.array(['cat', 'pig', 'dog', 'cat', 'cat', 'dog']) >>> precision_recall_fscore_support(y_true, y_pred, average='macro') - (np.float64(0.22...), np.float64(0.33...), np.float64(0.26...), None) + (0.22..., 0.33..., 0.26..., None) >>> precision_recall_fscore_support(y_true, y_pred, average='micro') - (np.float64(0.33...), np.float64(0.33...), np.float64(0.33...), None) + (0.33..., 0.33..., 0.33..., None) >>> precision_recall_fscore_support(y_true, y_pred, average='weighted') - (np.float64(0.22...), np.float64(0.33...), np.float64(0.26...), None) + (0.22..., 0.33..., 0.26..., None) It is possible to compute per-label precisions, recalls, F1-scores and supports instead of averaging: @@ -1805,10 +1842,11 @@ def precision_recall_fscore_support( pred_sum = tp_sum + MCM[:, 0, 1] true_sum = tp_sum + MCM[:, 1, 0] + xp, _ = get_namespace(y_true, y_pred) if average == "micro": - tp_sum = np.array([tp_sum.sum()]) - pred_sum = np.array([pred_sum.sum()]) - true_sum = np.array([true_sum.sum()]) + tp_sum = xp.reshape(xp.sum(tp_sum), (1,)) + pred_sum = xp.reshape(xp.sum(pred_sum), (1,)) + true_sum = xp.reshape(xp.sum(true_sum), (1,)) # Finally, we have all our sufficient statistics. Divide! # beta2 = beta**2 @@ -1851,10 +1889,10 @@ def precision_recall_fscore_support( weights = None if average is not None: - assert average != "binary" or len(precision) == 1 - precision = _nanaverage(precision, weights=weights) - recall = _nanaverage(recall, weights=weights) - f_score = _nanaverage(f_score, weights=weights) + assert average != "binary" or precision.shape[0] == 1 + precision = float(_nanaverage(precision, weights=weights)) + recall = float(_nanaverage(recall, weights=weights)) + f_score = float(_nanaverage(f_score, weights=weights)) true_sum = None # return no support return precision, recall, f_score, true_sum @@ -2185,11 +2223,11 @@ def precision_score( >>> y_true = [0, 1, 2, 0, 1, 2] >>> y_pred = [0, 2, 1, 0, 0, 1] >>> precision_score(y_true, y_pred, average='macro') - np.float64(0.22...) + 0.22... >>> precision_score(y_true, y_pred, average='micro') - np.float64(0.33...) + 0.33... >>> precision_score(y_true, y_pred, average='weighted') - np.float64(0.22...) + 0.22... >>> precision_score(y_true, y_pred, average=None) array([0.66..., 0. , 0. ]) >>> y_pred = [0, 0, 0, 0, 0, 0] @@ -2367,11 +2405,11 @@ def recall_score( >>> y_true = [0, 1, 2, 0, 1, 2] >>> y_pred = [0, 2, 1, 0, 0, 1] >>> recall_score(y_true, y_pred, average='macro') - np.float64(0.33...) + 0.33... >>> recall_score(y_true, y_pred, average='micro') - np.float64(0.33...) + 0.33... >>> recall_score(y_true, y_pred, average='weighted') - np.float64(0.33...) + 0.33... >>> recall_score(y_true, y_pred, average=None) array([1., 0., 0.]) >>> y_true = [0, 0, 0, 0, 0, 0] diff --git a/sklearn/metrics/tests/test_common.py b/sklearn/metrics/tests/test_common.py index e6abc8c433013..be58928ff1def 100644 --- a/sklearn/metrics/tests/test_common.py +++ b/sklearn/metrics/tests/test_common.py @@ -1862,27 +1862,37 @@ def check_array_api_multiclass_classification_metric( y_true_np = np.array([0, 1, 2, 3]) y_pred_np = np.array([0, 1, 0, 2]) - check_array_api_metric( - metric, - array_namespace, - device, - dtype_name, - a_np=y_true_np, - b_np=y_pred_np, - sample_weight=None, + additional_params = { + "average": ("micro", "macro", "weighted"), + } + metric_kwargs_combinations = _get_metric_kwargs_for_array_api_testing( + metric=metric, + params=additional_params, ) + for metric_kwargs in metric_kwargs_combinations: + check_array_api_metric( + metric, + array_namespace, + device, + dtype_name, + a_np=y_true_np, + b_np=y_pred_np, + sample_weight=None, + **metric_kwargs, + ) - sample_weight = np.array([0.0, 0.1, 2.0, 1.0], dtype=dtype_name) + sample_weight = np.array([0.0, 0.1, 2.0, 1.0], dtype=dtype_name) - check_array_api_metric( - metric, - array_namespace, - device, - dtype_name, - a_np=y_true_np, - b_np=y_pred_np, - sample_weight=sample_weight, - ) + check_array_api_metric( + metric, + array_namespace, + device, + dtype_name, + a_np=y_true_np, + b_np=y_pred_np, + sample_weight=sample_weight, + **metric_kwargs, + ) def check_array_api_multilabel_classification_metric( @@ -1891,27 +1901,37 @@ def check_array_api_multilabel_classification_metric( y_true_np = np.array([[1, 1], [0, 1], [0, 0]], dtype=dtype_name) y_pred_np = np.array([[1, 1], [1, 1], [1, 1]], dtype=dtype_name) - check_array_api_metric( - metric, - array_namespace, - device, - dtype_name, - a_np=y_true_np, - b_np=y_pred_np, - sample_weight=None, + additional_params = { + "average": ("micro", "macro", "weighted"), + } + metric_kwargs_combinations = _get_metric_kwargs_for_array_api_testing( + metric=metric, + params=additional_params, ) + for metric_kwargs in metric_kwargs_combinations: + check_array_api_metric( + metric, + array_namespace, + device, + dtype_name, + a_np=y_true_np, + b_np=y_pred_np, + sample_weight=None, + **metric_kwargs, + ) - sample_weight = np.array([0.0, 0.1, 2.0], dtype=dtype_name) + sample_weight = np.array([0.0, 0.1, 2.0], dtype=dtype_name) - check_array_api_metric( - metric, - array_namespace, - device, - dtype_name, - a_np=y_true_np, - b_np=y_pred_np, - sample_weight=sample_weight, - ) + check_array_api_metric( + metric, + array_namespace, + device, + dtype_name, + a_np=y_true_np, + b_np=y_pred_np, + sample_weight=sample_weight, + **metric_kwargs, + ) def check_array_api_regression_metric(metric, array_namespace, device, dtype_name): @@ -2041,6 +2061,16 @@ def check_array_api_metric_pairwise(metric, array_namespace, device, dtype_name) check_array_api_multiclass_classification_metric, check_array_api_multilabel_classification_metric, ], + f1_score: [ + check_array_api_binary_classification_metric, + check_array_api_multiclass_classification_metric, + check_array_api_multilabel_classification_metric, + ], + multilabel_confusion_matrix: [ + check_array_api_binary_classification_metric, + check_array_api_multiclass_classification_metric, + check_array_api_multilabel_classification_metric, + ], zero_one_loss: [ check_array_api_binary_classification_metric, check_array_api_multiclass_classification_metric, @@ -2126,3 +2156,24 @@ def test_metrics_dataframe_series(metric_name, df_lib_name): pytest.skip(f"{metric_name} can not deal with 1d inputs") assert_allclose(metric(y_pred, y_true), expected_metric) + + +def _get_metric_kwargs_for_array_api_testing(metric, params): + """Helper function to enable specifying a variety of additional params and + their corresponding values, so that they can be passed to a metric function + when testing for array api compliance.""" + metric_kwargs_combinations = [{}] + for param, values in params.items(): + if param not in signature(metric).parameters: + continue + + new_combinations = [] + for kwargs in metric_kwargs_combinations: + for value in values: + new_kwargs = kwargs.copy() + new_kwargs[param] = value + new_combinations.append(new_kwargs) + + metric_kwargs_combinations = new_combinations + + return metric_kwargs_combinations diff --git a/sklearn/utils/_array_api.py b/sklearn/utils/_array_api.py index 98140361d055e..e380a2311355e 100644 --- a/sklearn/utils/_array_api.py +++ b/sklearn/utils/_array_api.py @@ -795,6 +795,19 @@ def _nanmax(X, axis=None, xp=None): return X +def _nanmean(X, axis=None, xp=None): + # TODO: refactor once nan-aware reductions are standardized: + # https://github.com/data-apis/array-api/issues/621 + xp, _ = get_namespace(X, xp=xp) + if _is_numpy_namespace(xp): + return xp.asarray(numpy.nanmean(X, axis=axis)) + else: + mask = xp.isnan(X) + total = xp.sum(xp.where(mask, xp.asarray(0.0, device=device(X)), X), axis=axis) + count = xp.sum(xp.astype(xp.logical_not(mask), X.dtype), axis=axis) + return total / count + + def _asarray_with_order( array, dtype=None, order=None, copy=None, *, xp=None, device=None ): @@ -914,11 +927,12 @@ def indexing_dtype(xp): return xp.asarray(0).dtype -def _searchsorted(xp, a, v, *, side="left", sorter=None): +def _searchsorted(a, v, *, side="left", sorter=None, xp=None): # Temporary workaround needed as long as searchsorted is not widely # adopted by implementers of the Array API spec. This is a quite # recent addition to the spec: # https://data-apis.org/array-api/latest/API_specification/generated/array_api.searchsorted.html # noqa + xp, _ = get_namespace(a, v, xp=xp) if hasattr(xp, "searchsorted"): return xp.searchsorted(a, v, side=side, sorter=sorter) @@ -1032,11 +1046,18 @@ def _in1d(ar1, ar2, xp, assume_unique=False, invert=False): return xp.take(ret, rev_idx, axis=0) -def _count_nonzero(X, xp, device, axis=None, sample_weight=None): +def _count_nonzero(X, axis=None, sample_weight=None, xp=None, device=None): """A variant of `sklearn.utils.sparsefuncs.count_nonzero` for the Array API. - It only supports 2D arrays. + If the array `X` is sparse, and we are using the numpy namespace then we + simply call the original function. This function only supports 2D arrays. """ + from .sparsefuncs import count_nonzero + + xp, _ = get_namespace(X, sample_weight, xp=xp) + if _is_numpy_namespace(xp) and sp.issparse(X): + return count_nonzero(X, axis=axis, sample_weight=sample_weight) + assert X.ndim == 2 weights = xp.ones_like(X, device=device) @@ -1055,3 +1076,27 @@ def _modify_in_place_if_numpy(xp, func, *args, out=None, **kwargs): else: out = func(*args, **kwargs) return out + + +def _bincount(array, weights=None, minlength=None, xp=None): + # TODO: update if bincount is ever adopted in a future version of the standard: + # https://github.com/data-apis/array-api/issues/812 + xp, _ = get_namespace(array, xp=xp) + if hasattr(xp, "bincount"): + return xp.bincount(array, weights=weights, minlength=minlength) + + array_np = _convert_to_numpy(array, xp=xp) + if weights is not None: + weights_np = _convert_to_numpy(weights, xp=xp) + else: + weights_np = None + bin_out = numpy.bincount(array_np, weights=weights_np, minlength=minlength) + return xp.asarray(bin_out, device=device(array)) + + +def _tolist(array, xp=None): + xp, _ = get_namespace(array, xp=xp) + if _is_numpy_namespace(xp): + return array.tolist() + array_np = _convert_to_numpy(array, xp=xp) + return [element.item() for element in array_np] diff --git a/sklearn/utils/_encode.py b/sklearn/utils/_encode.py index 479b11e0f59a2..045ce3e11919a 100644 --- a/sklearn/utils/_encode.py +++ b/sklearn/utils/_encode.py @@ -77,7 +77,7 @@ def _unique_np(values, return_inverse=False, return_counts=False): # np.unique will have duplicate missing values at the end of `uniques` # here we clip the nans and remove it from uniques if uniques.size and is_scalar_nan(uniques[-1]): - nan_idx = _searchsorted(xp, uniques, xp.nan) + nan_idx = _searchsorted(uniques, xp.nan, xp=xp) uniques = uniques[: nan_idx + 1] if return_inverse: inverse[inverse > nan_idx] = nan_idx @@ -240,7 +240,7 @@ def _encode(values, *, uniques, check_unknown=True): diff = _check_unknown(values, uniques) if diff: raise ValueError(f"y contains previously unseen labels: {str(diff)}") - return _searchsorted(xp, uniques, values) + return _searchsorted(uniques, values, xp=xp) def _check_unknown(values, known_values, return_mask=False): diff --git a/sklearn/utils/extmath.py b/sklearn/utils/extmath.py index 2c8fa9f0cd105..b4af090344d74 100644 --- a/sklearn/utils/extmath.py +++ b/sklearn/utils/extmath.py @@ -11,7 +11,7 @@ from scipy import linalg, sparse from ..utils._param_validation import Interval, StrOptions, validate_params -from ._array_api import _is_numpy_namespace, device, get_namespace +from ._array_api import _average, _is_numpy_namespace, _nanmean, device, get_namespace from .sparsefuncs_fast import csr_row_norms from .validation import check_array, check_random_state @@ -1228,24 +1228,24 @@ def _nanaverage(a, weights=None): that :func:`np.nan` values are ignored from the average and weights can be passed. Note that when possible, we delegate to the prime methods. """ + xp, _ = get_namespace(a) + if a.shape[0] == 0: + return xp.nan - if len(a) == 0: - return np.nan - - mask = np.isnan(a) - if mask.all(): - return np.nan + mask = xp.isnan(a) + if xp.all(mask): + return xp.nan if weights is None: - return np.nanmean(a) + return _nanmean(a, xp=xp) - weights = np.asarray(weights) + weights = xp.asarray(weights) a, weights = a[~mask], weights[~mask] try: - return np.average(a, weights=weights) + return _average(a, weights=weights) except ZeroDivisionError: # this is when all weights are zero, then ignore them - return np.average(a) + return _average(a) def safe_sqr(X, *, copy=True): diff --git a/sklearn/utils/tests/test_array_api.py b/sklearn/utils/tests/test_array_api.py index 9c61bf0322536..82b6a7df557e5 100644 --- a/sklearn/utils/tests/test_array_api.py +++ b/sklearn/utils/tests/test_array_api.py @@ -19,6 +19,7 @@ _isin, _max_precision_float_dtype, _nanmax, + _nanmean, _nanmin, _NumPyAPIWrapper, _ravel, @@ -320,6 +321,19 @@ def __init__(self, device_name): partial(_nanmax, axis=1), [3.0, numpy.nan, 6.0], ), + ([1, 2, numpy.nan], _nanmean, 1.5), + ([1, -2, -numpy.nan], _nanmean, -0.5), + ([-numpy.inf, -numpy.inf], _nanmean, -numpy.inf), + ( + [[1, 2, 3], [numpy.nan, numpy.nan, numpy.nan], [4, 5, 6.0]], + partial(_nanmean, axis=0), + [2.5, 3.5, 4.5], + ), + ( + [[1, 2, 3], [numpy.nan, numpy.nan, numpy.nan], [4, 5, 6.0]], + partial(_nanmean, axis=1), + [2.0, numpy.nan, 5.0], + ), ], ) def test_nan_reductions(library, X, reduction, expected): @@ -576,7 +590,7 @@ def test_count_nonzero( with config_context(array_api_dispatch=True): result = _count_nonzero( - array_xp, xp=xp, device=device_, axis=axis, sample_weight=sample_weight + array_xp, axis=axis, sample_weight=sample_weight, xp=xp, device=device_ ) assert_allclose(_convert_to_numpy(result, xp=xp), expected) diff --git a/sklearn/utils/validation.py b/sklearn/utils/validation.py index 48f17d515250a..ca7c968852975 100644 --- a/sklearn/utils/validation.py +++ b/sklearn/utils/validation.py @@ -1413,7 +1413,7 @@ def _check_y(y, multi_output=False, y_numeric=False, estimator=None): return y -def column_or_1d(y, *, dtype=None, warn=False): +def column_or_1d(y, *, dtype=None, warn=False, device=None): """Ravel column or 1d numpy array, else raises an error. Parameters @@ -1429,6 +1429,12 @@ def column_or_1d(y, *, dtype=None, warn=False): warn : bool, default=False To control display of warnings. + device : device, default=None + `device` object. + See the :ref:`Array API User Guide ` for more details. + + .. versionadded:: 1.6 + Returns ------- y : ndarray @@ -1457,7 +1463,9 @@ def column_or_1d(y, *, dtype=None, warn=False): shape = y.shape if len(shape) == 1: - return _asarray_with_order(xp.reshape(y, (-1,)), order="C", xp=xp) + return _asarray_with_order( + xp.reshape(y, (-1,)), order="C", xp=xp, device=device + ) if len(shape) == 2 and shape[1] == 1: if warn: warnings.warn( @@ -1469,7 +1477,9 @@ def column_or_1d(y, *, dtype=None, warn=False): DataConversionWarning, stacklevel=2, ) - return _asarray_with_order(xp.reshape(y, (-1,)), order="C", xp=xp) + return _asarray_with_order( + xp.reshape(y, (-1,)), order="C", xp=xp, device=device + ) raise ValueError( "y should be a 1d array, got an array of shape {} instead.".format(shape) From 205c5b185854acffe31f25a9fec9a26a9273b2a6 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Lo=C3=AFc=20Est=C3=A8ve?= Date: Mon, 25 Nov 2024 11:36:00 +0100 Subject: [PATCH 050/159] CI Add Windows free-threaded wheel (#30313) Co-authored-by: Olivier Grisel --- .github/workflows/wheels.yml | 4 + .../github/build_minimal_windows_image.sh | 75 +++++++++++-------- build_tools/github/test_windows_wheels.sh | 26 +++++-- 3 files changed, 68 insertions(+), 37 deletions(-) diff --git a/.github/workflows/wheels.yml b/.github/workflows/wheels.yml index c3bda80d2ca0c..a690010fce9c4 100644 --- a/.github/workflows/wheels.yml +++ b/.github/workflows/wheels.yml @@ -73,6 +73,10 @@ jobs: - os: windows-latest python: 313 platform_id: win_amd64 + - os: windows-latest + python: 313t + platform_id: win_amd64 + free_threaded_support: True # Linux 64 bit manylinux2014 - os: ubuntu-latest diff --git a/build_tools/github/build_minimal_windows_image.sh b/build_tools/github/build_minimal_windows_image.sh index 2b57124a73777..cf07538878064 100755 --- a/build_tools/github/build_minimal_windows_image.sh +++ b/build_tools/github/build_minimal_windows_image.sh @@ -5,34 +5,49 @@ set -x PYTHON_VERSION=$1 -TEMP_FOLDER="$HOME/AppData/Local/Temp" -WHEEL_PATH=$(ls -d $TEMP_FOLDER/**/*/repaired_wheel/*) -WHEEL_NAME=$(basename $WHEEL_PATH) - -cp $WHEEL_PATH $WHEEL_NAME - -# Dot the Python version for identifying the base Docker image -PYTHON_DOCKER_IMAGE_PART=$(echo ${PYTHON_VERSION:0:1}.${PYTHON_VERSION:1:2}) - -if [[ "$CIBW_PRERELEASE_PYTHONS" =~ [tT]rue ]]; then - PYTHON_DOCKER_IMAGE_PART="${PYTHON_DOCKER_IMAGE_PART}-rc" +FREE_THREADED_BUILD="$(python -c"import sysconfig; print(bool(sysconfig.get_config_var('Py_GIL_DISABLED')))")" + +if [[ $FREE_THREADED_BUILD == "False" ]]; then + # Prepare a minimal Windows environement without any developer runtime libraries + # installed to check that the scikit-learn wheel does not implicitly rely on + # external DLLs when running the tests. + TEMP_FOLDER="$HOME/AppData/Local/Temp" + WHEEL_PATH=$(ls -d $TEMP_FOLDER/**/*/repaired_wheel/*) + WHEEL_NAME=$(basename $WHEEL_PATH) + + cp $WHEEL_PATH $WHEEL_NAME + + # Dot the Python version for identifying the base Docker image + PYTHON_DOCKER_IMAGE_PART=$(echo ${PYTHON_VERSION:0:1}.${PYTHON_VERSION:1:2}) + + if [[ "$CIBW_PRERELEASE_PYTHONS" =~ [tT]rue ]]; then + PYTHON_DOCKER_IMAGE_PART="${PYTHON_DOCKER_IMAGE_PART}-rc" + fi + + # We could have all of the following logic in a Dockerfile but it's a lot + # easier to do it in bash rather than figure out how to do it in Powershell + # inside the Dockerfile ... + DOCKER_IMAGE="winamd64/python:${PYTHON_DOCKER_IMAGE_PART}-windowsservercore" + MNT_FOLDER="C:/mnt" + CONTAINER_ID=$(docker run -it -v "$(cygpath -w $PWD):$MNT_FOLDER" -d $DOCKER_IMAGE) + + function exec_inside_container() { + docker exec $CONTAINER_ID powershell -Command $1 + } + + exec_inside_container "python -m pip install $MNT_FOLDER/$WHEEL_NAME" + exec_inside_container "python -m pip install $CIBW_TEST_REQUIRES" + + # Save container state to scikit-learn/minimal-windows image. On Windows the + # container needs to be stopped first. + docker stop $CONTAINER_ID + docker commit $CONTAINER_ID scikit-learn/minimal-windows +else + # This is too cumbersome to use a Docker image in the free-threaded case + # TODO Remove the next three lines when scipy and pandas each have a release + # with a Windows free-threaded wheel. + python -m pip install numpy + dev_anaconda_url=https://pypi.anaconda.org/scientific-python-nightly-wheels/simple + python -m pip install --pre --upgrade --timeout=60 --extra-index $dev_anaconda_url scipy pandas --only-binary :all: + python -m pip install $CIBW_TEST_REQUIRES fi - -# We could have all of the following logic in a Dockerfile but it's a lot -# easier to do it in bash rather than figure out how to do it in Powershell -# inside the Dockerfile ... -DOCKER_IMAGE="winamd64/python:${PYTHON_DOCKER_IMAGE_PART}-windowsservercore" -MNT_FOLDER="C:/mnt" -CONTAINER_ID=$(docker run -it -v "$(cygpath -w $PWD):$MNT_FOLDER" -d $DOCKER_IMAGE) - -function exec_inside_container() { - docker exec $CONTAINER_ID powershell -Command $1 -} - -exec_inside_container "python -m pip install $MNT_FOLDER/$WHEEL_NAME" -exec_inside_container "python -m pip install $CIBW_TEST_REQUIRES" - -# Save container state to scikit-learn/minimal-windows image. On Windows the -# container needs to be stopped first. -docker stop $CONTAINER_ID -docker commit $CONTAINER_ID scikit-learn/minimal-windows diff --git a/build_tools/github/test_windows_wheels.sh b/build_tools/github/test_windows_wheels.sh index 5ee3f50d9506c..c96ec4ad89d3e 100755 --- a/build_tools/github/test_windows_wheels.sh +++ b/build_tools/github/test_windows_wheels.sh @@ -8,11 +8,23 @@ PROJECT_DIR=$2 python $PROJECT_DIR/build_tools/wheels/check_license.py -docker container run \ - --rm scikit-learn/minimal-windows \ - powershell -Command "python -c 'import sklearn; sklearn.show_versions()'" +FREE_THREADED_BUILD="$(python -c"import sysconfig; print(bool(sysconfig.get_config_var('Py_GIL_DISABLED')))")" -docker container run \ - -e SKLEARN_SKIP_NETWORK_TESTS=1 \ - --rm scikit-learn/minimal-windows \ - powershell -Command "pytest --pyargs sklearn" +if [[ $FREE_THREADED_BUILD == "False" ]]; then + # Run the tests for the scikit-learn wheel in a minimal Windows environment + # without any developer runtime libraries installed to ensure that it does not + # implicitly rely on the presence of the DLLs of such runtime libraries. + docker container run \ + --rm scikit-learn/minimal-windows \ + powershell -Command "python -c 'import sklearn; sklearn.show_versions()'" + + docker container run \ + -e SKLEARN_SKIP_NETWORK_TESTS=1 \ + --rm scikit-learn/minimal-windows \ + powershell -Command "pytest --pyargs sklearn" +else + # This is too cumbersome to use a Docker image in the free-threaded case + export PYTHON_GIL=0 + python -c "import sklearn; sklearn.show_versions()" + pytest --pyargs sklearn +fi From 2ed4f0a8d9cf87688eabe80b168b00311dceeaf7 Mon Sep 17 00:00:00 2001 From: Christian Lorentzen Date: Mon, 25 Nov 2024 16:00:23 +0100 Subject: [PATCH 051/159] DOC add guideline for choosing a scoring function (#11430) Co-authored-by: Christian Lorentzen Co-authored-by: Chiara Marmo --- doc/modules/model_evaluation.rst | 137 +++++++++++++++++++++++++++++++ 1 file changed, 137 insertions(+) diff --git a/doc/modules/model_evaluation.rst b/doc/modules/model_evaluation.rst index b161014f5268f..6434c6f99c7c7 100644 --- a/doc/modules/model_evaluation.rst +++ b/doc/modules/model_evaluation.rst @@ -6,6 +6,143 @@ Metrics and scoring: quantifying the quality of predictions =========================================================== +.. _which_scoring_function: + +Which scoring function should I use? +==================================== + +Before we take a closer look into the details of the many scores and +:term:`evaluation metrics`, we want to give some guidance, inspired by statistical +decision theory, on the choice of **scoring functions** for **supervised learning**, +see [Gneiting2009]_: + +- *Which scoring function should I use?* +- *Which scoring function is a good one for my task?* + +In a nutshell, if the scoring function is given, e.g. in a kaggle competition +or in a business context, use that one. +If you are free to choose, it starts by considering the ultimate goal and application +of the prediction. It is useful to distinguish two steps: + +* Predicting +* Decision making + +**Predicting:** +Usually, the response variable :math:`Y` is a random variable, in the sense that there +is *no deterministic* function :math:`Y = g(X)` of the features :math:`X`. +Instead, there is a probability distribution :math:`F` of :math:`Y`. +One can aim to predict the whole distribution, known as *probabilistic prediction*, +or---more the focus of scikit-learn---issue a *point prediction* (or point forecast) +by choosing a property or functional of that distribution :math:`F`. +Typical examples are the mean (expected value), the median or a quantile of the +response variable :math:`Y` (conditionally on :math:`X`). + +Once that is settled, use a **strictly consistent** scoring function for that +(target) functional, see [Gneiting2009]_. +This means using a scoring function that is aligned with *measuring the distance +between predictions* `y_pred` *and the true target functional using observations of* +:math:`Y`, i.e. `y_true`. +For classification **strictly proper scoring rules**, see +`Wikipedia entry for Scoring rule `_ +and [Gneiting2007]_, coincide with strictly consistent scoring functions. +The table further below provides examples. +One could say that consistent scoring functions act as *truth serum* in that +they guarantee *"that truth telling [. . .] is an optimal strategy in +expectation"* [Gneiting2014]_. + +Once a strictly consistent scoring function is chosen, it is best used for both: as +loss function for model training and as metric/score in model evaluation and model +comparison. + +Note that for regressors, the prediction is done with :term:`predict` while for +classifiers it is usually :term:`predict_proba`. + +**Decision Making:** +The most common decisions are done on binary classification tasks, where the result of +:term:`predict_proba` is turned into a single outcome, e.g., from the predicted +probability of rain a decision is made on how to act (whether to take mitigating +measures like an umbrella or not). +For classifiers, this is what :term:`predict` returns. +See also :ref:`TunedThresholdClassifierCV`. +There are many scoring functions which measure different aspects of such a +decision, most of them are covered with or derived from the +:func:`metrics.confusion_matrix`. + +**List of strictly consistent scoring functions:** +Here, we list some of the most relevant statistical functionals and corresponding +strictly consistent scoring functions for tasks in practice. Note that the list is not +complete and that there are more of them. +For further criteria on how to select a specific one, see [Fissler2022]_. + +================== =================================================== ==================== ================================= +functional scoring or loss function response `y` prediction +================== =================================================== ==================== ================================= +**Classification** +mean :ref:`Brier score ` :sup:`1` multi-class ``predict_proba`` +mean :ref:`log loss ` multi-class ``predict_proba`` +mode :ref:`zero-one loss ` :sup:`2` multi-class ``predict``, categorical +**Regression** +mean :ref:`squared error ` :sup:`3` all reals ``predict``, all reals +mean :ref:`Poisson deviance ` non-negative ``predict``, strictly positive +mean :ref:`Gamma deviance ` strictly positive ``predict``, strictly positive +mean :ref:`Tweedie deviance ` depends on ``power`` ``predict``, depends on ``power`` +median :ref:`absolute error ` all reals ``predict``, all reals +quantile :ref:`pinball loss ` all reals ``predict``, all reals +mode no consistent one exists reals +================== =================================================== ==================== ================================= + +:sup:`1` The Brier score is just a different name for the squared error in case of +classification. + +:sup:`2` The zero-one loss is only consistent but not strictly consistent for the mode. +The zero-one loss is equivalent to one minus the accuracy score, meaning it gives +different score values but the same ranking. + +:sup:`3` R² gives the same ranking as squared error. + +**Fictitious Example:** +Let's make the above arguments more tangible. Consider a setting in network reliability +engineering, such as maintaining stable internet or Wi-Fi connections. +As provider of the network, you have access to the dataset of log entries of network +connections containing network load over time and many interesting features. +Your goal is to improve the reliability of the connections. +In fact, you promise your customers that on at least 99% of all days there are no +connection discontinuities larger than 1 minute. +Therefore, you are interested in a prediction of the 99% quantile (of longest +connection interruption duration per day) in order to know in advance when to add +more bandwidth and thereby satisfy your customers. So the *target functional* is the +99% quantile. From the table above, you choose the pinball loss as scoring function +(fair enough, not much choice given), for model training (e.g. +`HistGradientBoostingRegressor(loss="quantile", quantile=0.99)`) as well as model +evaluation (`mean_pinball_loss(..., alpha=0.99)` - we apologize for the different +argument names, `quantile` and `alpha`) be it in grid search for finding +hyperparameters or in comparing to other models like +`QuantileRegressor(quantile=0.99)`. + +.. rubric:: References + +.. [Gneiting2007] T. Gneiting and A. E. Raftery. :doi:`Strictly Proper + Scoring Rules, Prediction, and Estimation <10.1198/016214506000001437>` + In: Journal of the American Statistical Association 102 (2007), + pp. 359– 378. + `link to pdf `_ + +.. [Gneiting2009] T. Gneiting. :arxiv:`Making and Evaluating Point Forecasts + <0912.0902>` + Journal of the American Statistical Association 106 (2009): 746 - 762. + +.. [Gneiting2014] T. Gneiting and M. Katzfuss. :doi:`Probabilistic Forecasting + <10.1146/annurev-st atistics-062713-085831>`. In: Annual Review of Statistics and Its Application 1.1 (2014), pp. 125–151. + +.. [Fissler2022] T. Fissler, C. Lorentzen and M. Mayer. :arxiv:`Model + Comparison and Calibration Assessment: User Guide for Consistent Scoring + Functions in Machine Learning and Actuarial Practice. <2202.12780>` + +.. _scoring_api_overview: + +Scoring API overview +==================== + There are 3 different APIs for evaluating the quality of a model's predictions: From c0d05f82cdf7d4a47770c7cb92db8632ae0bd18f Mon Sep 17 00:00:00 2001 From: Marco Maggi <124086916+m-maggi@users.noreply.github.com> Date: Mon, 25 Nov 2024 18:28:18 +0100 Subject: [PATCH 052/159] DOC attempt to fix lorenz_curve in plot tweedie regression example (#30198) --- .../linear_model/plot_tweedie_regression_insurance_claims.py | 5 +++-- 1 file changed, 3 insertions(+), 2 deletions(-) diff --git a/examples/linear_model/plot_tweedie_regression_insurance_claims.py b/examples/linear_model/plot_tweedie_regression_insurance_claims.py index 321aa68acf0a7..bb78d2d0d9973 100644 --- a/examples/linear_model/plot_tweedie_regression_insurance_claims.py +++ b/examples/linear_model/plot_tweedie_regression_insurance_claims.py @@ -655,8 +655,9 @@ def lorenz_curve(y_true, y_pred, exposure): ranked_pure_premium = y_true[ranking] cumulated_claim_amount = np.cumsum(ranked_pure_premium * ranked_exposure) cumulated_claim_amount /= cumulated_claim_amount[-1] - cumulated_samples = np.linspace(0, 1, len(cumulated_claim_amount)) - return cumulated_samples, cumulated_claim_amount + cumulated_exposure = np.cumsum(ranked_exposure) + cumulated_exposure /= cumulated_exposure[-1] + return cumulated_exposure, cumulated_claim_amount fig, ax = plt.subplots(figsize=(8, 8)) From 6f1137e6e5ff05a48467f5c243388748f2b4034f Mon Sep 17 00:00:00 2001 From: Omar Salman Date: Tue, 26 Nov 2024 21:22:22 +0500 Subject: [PATCH 053/159] DOC Include precision_recall_fscore_support in array_api (#30348) --- doc/modules/array_api.rst | 1 + 1 file changed, 1 insertion(+) diff --git a/doc/modules/array_api.rst b/doc/modules/array_api.rst index df66a2d8de797..2fb57a64118f7 100644 --- a/doc/modules/array_api.rst +++ b/doc/modules/array_api.rst @@ -137,6 +137,7 @@ Metrics - :func:`sklearn.metrics.pairwise.polynomial_kernel` - :func:`sklearn.metrics.pairwise.rbf_kernel` (see :ref:`device_support_for_float64`) - :func:`sklearn.metrics.pairwise.sigmoid_kernel` +- :func:`sklearn.metrics.precision_recall_fscore_support` - :func:`sklearn.metrics.r2_score` - :func:`sklearn.metrics.root_mean_squared_error` - :func:`sklearn.metrics.root_mean_squared_log_error` From 8df2a0e83c31503c7df968b85ec8aaf1fcbf8049 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Lo=C3=AFc=20Est=C3=A8ve?= Date: Tue, 26 Nov 2024 20:50:09 +0100 Subject: [PATCH 054/159] CI Actually use ccache in CircleCI (#30350) --- build_tools/circle/build_doc.sh | 20 ++++++++++++++++---- 1 file changed, 16 insertions(+), 4 deletions(-) diff --git a/build_tools/circle/build_doc.sh b/build_tools/circle/build_doc.sh index 30a0d3fc8a9b5..b4f7e7640be2f 100755 --- a/build_tools/circle/build_doc.sh +++ b/build_tools/circle/build_doc.sh @@ -1,5 +1,6 @@ #!/usr/bin/env bash set -e +set -x # Decide what kind of documentation build to run, and run it. # @@ -174,16 +175,27 @@ bash ./miniconda.sh -b -p $MINIFORGE_PATH source $MINIFORGE_PATH/etc/profile.d/conda.sh conda activate -export PATH="/usr/lib/ccache:$PATH" -ccache -M 512M -export CCACHE_COMPRESS=1 create_conda_environment_from_lock_file $CONDA_ENV_NAME $LOCK_FILE conda activate $CONDA_ENV_NAME +# Sets up ccache when using system compiler +export PATH="/usr/lib/ccache:$PATH" +# Sets up ccache when using conda-forge compilers (needs to be after conda +# activate which sets CC and CXX) +export CC="ccache $CC" +export CXX="ccache $CXX" +ccache -M 512M +export CCACHE_COMPRESS=1 +# Zeroing statistics so that ccache statistics are shown only for this build +ccache -z + show_installed_libraries -pip install -e . --no-build-isolation --config-settings=compile-args="-j4" +# Specify explictly ninja -j argument because ninja does not handle cgroups v2 and +# use the same default rule as ninja (-j3 since we have 2 cores on CircleCI), see +# https://github.com/scikit-learn/scikit-learn/pull/30333 +pip install -e . --no-build-isolation --config-settings=compile-args="-j 3" echo "ccache build summary:" ccache -s From d6f4275cceb50de02719277fe1816894d746c15a Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Lo=C3=AFc=20Est=C3=A8ve?= Date: Wed, 27 Nov 2024 07:49:37 +0100 Subject: [PATCH 055/159] DOC Use text label instead of emoticon in ML map (#30347) Co-authored-by: Thomas J. Fan --- doc/images/ml_map.README.rst | 14 +++++++++----- doc/images/ml_map.svg | 2 +- doc/machine_learning_map.rst | 8 ++++---- 3 files changed, 14 insertions(+), 10 deletions(-) diff --git a/doc/images/ml_map.README.rst b/doc/images/ml_map.README.rst index 8d82c175dad58..645d2980591c2 100644 --- a/doc/images/ml_map.README.rst +++ b/doc/images/ml_map.README.rst @@ -13,8 +13,12 @@ for exporting the chart are: - Transparent Background: False - Appearance: Light -Each node in the chart that contains an estimator should have a link, where the root -directory is at `../../`. Note that after updating or re-exporting the SVG, the links -may be prefixed with e.g. `https://app.diagrams.net/`. Remember to check and remove -them, for instance by replacing all occurrences of `https://app.diagrams.net/../../` -with `../../`. +Note that estimators nodes are clickable and should go to the estimator +documentation. After updating or re-exporting the SVG with draw.io, the links +may be prefixed with e.g. `https://app.diagrams.net/`. Remember to check and +remove them, for instance by replacing all occurrences of +`https://app.diagrams.net/./` with `./` with the following command: + +.. prompt:: bash + + perl -pi -e 's@https://app.diagrams.net/\./@./@g' doc/images/ml_map.svg diff --git a/doc/images/ml_map.svg b/doc/images/ml_map.svg index 2dedc6cf054df..c329e0fcce24b 100644 --- a/doc/images/ml_map.svg +++ b/doc/images/ml_map.svg @@ -1,4 +1,4 @@ -
    START
    START
    >50
    samples
    >50...
    get
    more
    data
    get...
    NO
    NO
    predicting a
    category
    predicting...
    YES
    YES
    do you have
    labeled
    data
    do you hav...
    YES
    YES
    predicting a
    quantity
    predicting...
    NO
    NO
    just
    looking
    just...
    NO
    NO
    predicting
    structure
    predicting...
    NO
    NO
    tough
    luck
    tough...
    <100K
    samples
    <100K...
    YES
    YES
    SGD
    Classifier
    SGD...
    NO
    NO
    Linear
    SVC
    Linear...
    YES
    YES
    text
    data
    text...
    😭
    😭
    Kernel
    Approximation
    Kernel...
    😭
    😭
    KNeighbors
    Classifier
    KNeighbors...
    NO
    NO
    SVC
    SVC
    Ensemble
    Classifiers
    Ensemble...
    😭
    😭
    Naive
    Bayes
    Naive...
    YES
    YES
    classification
    classification
    number of
    categories
    known
    number of...
    NO
    NO
    <10K
    samples
    <10K...
    <10K
    samples
    <10K...
    NO
    NO
    NO
    NO
    YES
    YES
    MeanShift
    MeanShift
    VBGMM
    VBGMM
    YES
    YES
    MiniBatch
    KMeans
    MiniBatch...
    NO
    NO
    clustering
    clustering
    KMeans
    KMeans
    YES
    YES
    Spectral
    Clustering
    Spectral...
    GMM
    GMM
    😭
    😭
    <100K
    samples
    <100K...
    YES
    YES
    few features
    should be
    important
    few features...
    YES
    YES
    SGD
    Regressor
    SGD...
    NO
    NO
    Lasso
    Lasso
    ElasticNet
    ElasticNet
    YES
    YES
    RidgeRegression
    RidgeRegression
    SVR(kernel="linear")
    SVR(kernel="linea...
    NO
    NO
    SVR(kernel="rbf")
    SVR(kernel="rbf...
    Ensemble
    Regressors
    Ensemble...
    😭
    😭
    regression
    regression
    Ramdomized
    PCA
    Ramdomized...
    YES
    YES
    <10K
    samples
    <10K...
    😭
    😭
    Kernel
    Approximation
    Kernel...
    NO
    NO
    IsoMap
    IsoMap
    Spectral
    Embedding
    Spectral...
    YES
    YES
    LLE
    LLE
    😭
    😭
    dimensionality
    reduction
    dimensionality...
    scikit-learn
    algorithm cheat sheet
    scikit-learn...
    Text is not SVG - cannot display
    +
    START
    START
    >50
    samples
    >50...
    get
    more
    data
    get...
    NO
    NO
    predicting a
    category
    predicting...
    YES
    YES
    do you have
    labeled
    data
    do you hav...
    YES
    YES
    predicting a
    quantity
    predicting...
    NO
    NO
    just
    looking
    just...
    NO
    NO
    predicting
    structure
    predicting...
    NO
    NO
    tough
    luck
    tough...
    <100K
    samples
    <100K...
    YES
    YES
    SGD
    Classifier
    SGD...
    NO
    NO
    Linear
    SVC
    Linear...
    YES
    YES
    text
    data
    text...
    Kernel
    Approximation
    Kernel...
    KNeighbors
    Classifier
    KNeighbors...
    NO
    NO
    SVC
    SVC
    Ensemble
    Classifiers
    Ensemble...
    Naive
    Bayes
    Naive...
    YES
    YES
    classification
    classification
    number of
    categories
    known
    number of...
    NO
    NO
    <10K
    samples
    <10K...
    <10K
    samples
    <10K...
    NO
    NO
    NO
    NO
    YES
    YES
    MeanShift
    MeanShift
    VBGMM
    VBGMM
    YES
    YES
    MiniBatch
    KMeans
    MiniBatch...
    NO
    NO
    clustering
    clustering
    KMeans
    KMeans
    YES
    YES
    Spectral
    Clustering
    Spectral...
    GMM
    GMM
    <100K
    samples
    <100K...
    YES
    YES
    few features
    should be
    important
    few features...
    YES
    YES
    SGD
    Regressor
    SGD...
    NO
    NO
    Lasso
    Lasso
    ElasticNet
    ElasticNet
    YES
    YES
    RidgeRegression
    RidgeRegression
    SVR(kernel="linear")
    SVR(kernel="linea...
    NO
    NO
    SVR(kernel="rbf")
    SVR(kernel="rbf...
    Ensemble
    Regressors
    Ensemble...
    regression
    regression
    Ramdomized
    PCA
    Ramdomized...
    YES
    YES
    <10K
    samples
    <10K...
    Kernel
    Approximation
    Kernel...
    NO
    NO
    IsoMap
    IsoMap
    Spectral
    Embedding
    Spectral...
    YES
    YES
    LLE
    LLE
    dimensionality
    reduction
    dimensionality...
    scikit-learn
    algorithm cheat sheet
    scikit-learn...
    TRY
    NEXT
    TRY...
    TRY
    NEXT
    TRY...
    TRY
    NEXT
    TRY...
    TRY
    NEXT
    TRY...
    TRY
    NEXT
    TRY...
    TRY
    NEXT
    TRY...
    TRY
    NEXT
    TRY...
    Text is not SVG - cannot display
    diff --git a/doc/machine_learning_map.rst b/doc/machine_learning_map.rst index a03bb963cb046..e63ab1b1ddce6 100644 --- a/doc/machine_learning_map.rst +++ b/doc/machine_learning_map.rst @@ -11,10 +11,10 @@ data and different problems. The flowchart below is designed to give users a bit of a rough guide on how to approach problems with regard to which estimators to try on your data. Click on any estimator in -the chart below to see its documentation. The 😭 emoji is to be read as "if this -estimator does not achieve the desired outcome, then follow the arrow and try the next -one". Use scroll wheel to zoom in and out, and click and drag to pan around. You can -also download the chart: :download:`ml_map.svg `. +the chart below to see its documentation. The **Try next** orange arrows are to be read as +"if this estimator does not achieve the desired outcome, then follow the arrow and try +the next one". Use scroll wheel to zoom in and out, and click and drag to pan around. +You can also download the chart: :download:`ml_map.svg `. .. raw:: html From 6f25e645c01e808e9c79c73834777810892b024c Mon Sep 17 00:00:00 2001 From: Lucy Liu Date: Thu, 28 Nov 2024 19:03:02 +1100 Subject: [PATCH 056/159] DOC Fix typo in `_process_decision_function` (#30358) --- sklearn/utils/_response.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/sklearn/utils/_response.py b/sklearn/utils/_response.py index 86c430dbd23f2..12cbff2230b17 100644 --- a/sklearn/utils/_response.py +++ b/sklearn/utils/_response.py @@ -84,7 +84,7 @@ def _process_decision_function(*, y_pred, target_type, classes, pos_label): Parameters ---------- y_pred : ndarray - Output of `estimator.predict_proba`. The shape depends on the target type: + Output of `estimator.decision_function`. The shape depends on the target type: - for binary classification, it is a 1d array of shape `(n_samples,)` where the sign is assuming that `classes[1]` is the positive class; From a7be9b7ccfcafa33317e754b43e6258a91d7870e Mon Sep 17 00:00:00 2001 From: Stefanie Senger <91849487+StefanieSenger@users.noreply.github.com> Date: Thu, 28 Nov 2024 20:11:40 +0100 Subject: [PATCH 057/159] MNT improve error message in `_num_samples` (#30355) MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit Co-authored-by: Loïc Estève --- sklearn/tree/tests/test_tree.py | 9 ++++++++- sklearn/utils/tests/test_validation.py | 7 ++++++- sklearn/utils/validation.py | 3 ++- 3 files changed, 16 insertions(+), 3 deletions(-) diff --git a/sklearn/tree/tests/test_tree.py b/sklearn/tree/tests/test_tree.py index 28ae86bc73f05..cb13cf83cc782 100644 --- a/sklearn/tree/tests/test_tree.py +++ b/sklearn/tree/tests/test_tree.py @@ -6,6 +6,7 @@ import copyreg import io import pickle +import re import struct from itertools import chain, product @@ -1137,7 +1138,13 @@ def test_sample_weight_invalid(): clf.fit(X, y, sample_weight=sample_weight) sample_weight = np.array(0) - expected_err = r"Singleton.* cannot be considered a valid collection" + + expected_err = re.escape( + ( + "Input should have at least 1 dimension i.e. satisfy " + "`len(x.shape) > 0`, got scalar `array(0.)` instead." + ) + ) with pytest.raises(TypeError, match=expected_err): clf.fit(X, y, sample_weight=sample_weight) diff --git a/sklearn/utils/tests/test_validation.py b/sklearn/utils/tests/test_validation.py index 669e40e137e17..8d6069631db6a 100644 --- a/sklearn/utils/tests/test_validation.py +++ b/sklearn/utils/tests/test_validation.py @@ -743,7 +743,12 @@ def test_check_array_min_samples_and_features_messages(): check_array([], ensure_2d=False) # Invalid edge case when checking the default minimum sample of a scalar - msg = r"Singleton array array\(42\) cannot be considered a valid" " collection." + msg = re.escape( + ( + "Input should have at least 1 dimension i.e. satisfy " + "`len(x.shape) > 0`, got scalar `array(42)` instead." + ) + ) with pytest.raises(TypeError, match=msg): check_array(42, ensure_2d=False) diff --git a/sklearn/utils/validation.py b/sklearn/utils/validation.py index ca7c968852975..7b227be44b77d 100644 --- a/sklearn/utils/validation.py +++ b/sklearn/utils/validation.py @@ -397,7 +397,8 @@ def _num_samples(x): if hasattr(x, "shape") and x.shape is not None: if len(x.shape) == 0: raise TypeError( - "Singleton array %r cannot be considered a valid collection." % x + "Input should have at least 1 dimension i.e. satisfy " + f"`len(x.shape) > 0`, got scalar `{x!r}` instead." ) # Check that shape is returning an integer or default to len # Dask dataframes may not return numeric shape[0] value From 30b79e133464c4bab959ae1951306cbdbd79f90e Mon Sep 17 00:00:00 2001 From: Reshama Shaikh Date: Fri, 29 Nov 2024 01:18:26 -0500 Subject: [PATCH 058/159] DOC Add link to Bluesky in social media sections (#30365) --- README.rst | 1 + doc/developers/maintainer.rst.template | 2 +- doc/templates/index.html | 3 ++- 3 files changed, 4 insertions(+), 2 deletions(-) diff --git a/README.rst b/README.rst index 4ac297063c26e..40bce7399701a 100644 --- a/README.rst +++ b/README.rst @@ -192,6 +192,7 @@ Communication - GitHub Discussions: https://github.com/scikit-learn/scikit-learn/discussions - Website: https://scikit-learn.org - LinkedIn: https://www.linkedin.com/company/scikit-learn +- Bluesky: https://bsky.app/profile/scikit-learn.org - YouTube: https://www.youtube.com/channel/UCJosFjYm0ZYVUARxuOZqnnw/playlists - Facebook: https://www.facebook.com/scikitlearnofficial/ - Instagram: https://www.instagram.com/scikitlearnofficial/ diff --git a/doc/developers/maintainer.rst.template b/doc/developers/maintainer.rst.template index 73a4572bab645..a9877f7dd8c47 100644 --- a/doc/developers/maintainer.rst.template +++ b/doc/developers/maintainer.rst.template @@ -133,7 +133,7 @@ Reference Steps {%- if key != "rc" %} * [ ] Publish to https://github.com/scikit-learn/scikit-learn/releases {%- endif %} - * [ ] Announce on mailing list and on Twitter, and LinkedIn + * [ ] Announce on mailing list and on LinkedIn, Bluesky, Twitter {%- if key != "rc" %} * [ ] Update SECURITY.md in main branch {%- endif %} diff --git a/doc/templates/index.html b/doc/templates/index.html index 6225ad514f174..8a31d6b9a6464 100644 --- a/doc/templates/index.html +++ b/doc/templates/index.html @@ -230,8 +230,9 @@

    Community

  • Blog: blog.scikit-learn.org
  • Logos & Branding: logos and branding
  • Calendar: calendar
  • -
  • Twitter: @scikit_learn
  • LinkedIn: linkedin/scikit-learn
  • +
  • Bluesky: bluesky/scikit-learn.org
  • +
  • Twitter: @scikit_learn
  • YouTube: youtube.com/scikit-learn
  • Facebook: @scikitlearnofficial
  • Instagram: @scikitlearnofficial
  • From 5f7d66ca90633193b4711e8f1f7dfd27d17f26a7 Mon Sep 17 00:00:00 2001 From: Lucy Liu Date: Fri, 29 Nov 2024 19:30:02 +1100 Subject: [PATCH 059/159] DOC Improve user guide on scoring parameter (#30316) --- doc/modules/classification_threshold.rst | 2 +- doc/modules/model_evaluation.rst | 145 +++++++++++------- sklearn/feature_selection/_sequential.py | 2 +- sklearn/inspection/_permutation_importance.py | 2 +- sklearn/metrics/_scorer.py | 4 +- sklearn/model_selection/_plot.py | 4 +- sklearn/model_selection/_search.py | 4 +- .../_search_successive_halving.py | 4 +- sklearn/model_selection/_validation.py | 7 +- 9 files changed, 102 insertions(+), 72 deletions(-) diff --git a/doc/modules/classification_threshold.rst b/doc/modules/classification_threshold.rst index 8b3e6e3a68438..9adf846e75cba 100644 --- a/doc/modules/classification_threshold.rst +++ b/doc/modules/classification_threshold.rst @@ -97,7 +97,7 @@ a meaningful metric for their use case. the label of the class of interest (i.e. `pos_label`). Thus, if this label is not the right one for your application, you need to define a scorer and pass the right `pos_label` (and additional parameters) using the - :func:`~sklearn.metrics.make_scorer`. Refer to :ref:`scoring` to get + :func:`~sklearn.metrics.make_scorer`. Refer to :ref:`scoring_callable` to get information to define your own scoring function. For instance, we show how to pass the information to the scorer that the label of interest is `0` when maximizing the :func:`~sklearn.metrics.f1_score`:: diff --git a/doc/modules/model_evaluation.rst b/doc/modules/model_evaluation.rst index 6434c6f99c7c7..dacdb19a0111c 100644 --- a/doc/modules/model_evaluation.rst +++ b/doc/modules/model_evaluation.rst @@ -148,13 +148,16 @@ predictions: * **Estimator score method**: Estimators have a ``score`` method providing a default evaluation criterion for the problem they are designed to solve. - This is not discussed on this page, but in each estimator's documentation. + Most commonly this is :ref:`accuracy ` for classifiers and the + :ref:`coefficient of determination ` (:math:`R^2`) for regressors. + Details for each estimator can be found in its documentation. -* **Scoring parameter**: Model-evaluation tools using +* **Scoring parameter**: Model-evaluation tools that use :ref:`cross-validation ` (such as - :func:`model_selection.cross_val_score` and - :class:`model_selection.GridSearchCV`) rely on an internal *scoring* strategy. - This is discussed in the section :ref:`scoring_parameter`. + :class:`model_selection.GridSearchCV`, :func:`model_selection.validation_curve` and + :class:`linear_model.LogisticRegressionCV`) rely on an internal *scoring* strategy. + This can be specified using the `scoring` parameter of that tool and is discussed + in the section :ref:`scoring_parameter`. * **Metric functions**: The :mod:`sklearn.metrics` module implements functions assessing prediction error for specific purposes. These metrics are detailed @@ -175,24 +178,39 @@ value of those metrics for random predictions. The ``scoring`` parameter: defining model evaluation rules ========================================================== -Model selection and evaluation using tools, such as -:class:`model_selection.GridSearchCV` and -:func:`model_selection.cross_val_score`, take a ``scoring`` parameter that +Model selection and evaluation tools that internally use +:ref:`cross-validation ` (such as +:class:`model_selection.GridSearchCV`, :func:`model_selection.validation_curve` and +:class:`linear_model.LogisticRegressionCV`) take a ``scoring`` parameter that controls what metric they apply to the estimators evaluated. -Common cases: predefined values -------------------------------- +They can be specified in several ways: + +* `None`: the estimator's default evaluation criterion (i.e., the metric used in the + estimator's `score` method) is used. +* :ref:`String name `: common metrics can be passed via a string + name. +* :ref:`Callable `: more complex metrics can be passed via a custom + metric callable (e.g., function). + +Some tools do also accept multiple metric evaluation. See :ref:`multimetric_scoring` +for details. + +.. _scoring_string_names: + +String name scorers +------------------- For the most common use cases, you can designate a scorer object with the -``scoring`` parameter; the table below shows all possible values. +``scoring`` parameter via a string name; the table below shows all possible values. All scorer objects follow the convention that **higher return values are better -than lower return values**. Thus metrics which measure the distance between +than lower return values**. Thus metrics which measure the distance between the model and the data, like :func:`metrics.mean_squared_error`, are -available as neg_mean_squared_error which return the negated value +available as 'neg_mean_squared_error' which return the negated value of the metric. ==================================== ============================================== ================================== -Scoring Function Comment +Scoring string name Function Comment ==================================== ============================================== ================================== **Classification** 'accuracy' :func:`metrics.accuracy_score` @@ -260,12 +278,23 @@ Usage examples: .. currentmodule:: sklearn.metrics -.. _scoring: +.. _scoring_callable: + +Callable scorers +---------------- + +For more complex use cases and more flexibility, you can pass a callable to +the `scoring` parameter. This can be done by: -Defining your scoring strategy from metric functions ------------------------------------------------------ +* :ref:`scoring_adapt_metric` +* :ref:`scoring_custom` (most flexible) -The following metrics functions are not implemented as named scorers, +.. _scoring_adapt_metric: + +Adapting predefined metrics via `make_scorer` +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ + +The following metric functions are not implemented as named scorers, sometimes because they require additional parameters, such as :func:`fbeta_score`. They cannot be passed to the ``scoring`` parameters; instead their callable needs to be passed to @@ -303,15 +332,22 @@ measuring a prediction error given ground truth and prediction: maximize, the higher the better. - functions ending with ``_error``, ``_loss``, or ``_deviance`` return a - value to minimize, the lower the better. When converting + value to minimize, the lower the better. When converting into a scorer object using :func:`make_scorer`, set the ``greater_is_better`` parameter to ``False`` (``True`` by default; see the parameter description below). +.. _scoring_custom: + +Creating a custom scorer object +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ + +You can create your own custom scorer object using +:func:`make_scorer` or for the most flexibility, from scratch. See below for details. -.. dropdown:: Custom scorer objects +.. dropdown:: Custom scorer objects using `make_scorer` - The second use case is to build a completely custom scorer object + You can build a completely custom scorer object from a simple python function using :func:`make_scorer`, which can take several parameters: @@ -319,21 +355,21 @@ measuring a prediction error given ground truth and prediction: in the example below) * whether the python function returns a score (``greater_is_better=True``, - the default) or a loss (``greater_is_better=False``). If a loss, the output + the default) or a loss (``greater_is_better=False``). If a loss, the output of the python function is negated by the scorer object, conforming to the cross validation convention that scorers return higher values for better models. * for classification metrics only: whether the python function you provided requires continuous decision certainties. If the scoring function only accepts probability - estimates (e.g. :func:`metrics.log_loss`) then one needs to set the parameter - `response_method`, thus in this case `response_method="predict_proba"`. Some scoring - function do not necessarily require probability estimates but rather non-thresholded - decision values (e.g. :func:`metrics.roc_auc_score`). In this case, one provides a - list such as `response_method=["decision_function", "predict_proba"]`. In this case, - the scorer will use the first available method, in the order given in the list, + estimates (e.g. :func:`metrics.log_loss`), then one needs to set the parameter + `response_method="predict_proba"`. Some scoring + functions do not necessarily require probability estimates but rather non-thresholded + decision values (e.g. :func:`metrics.roc_auc_score`). In this case, one can provide a + list (e.g., `response_method=["decision_function", "predict_proba"]`), + and scorer will use the first available method, in the order given in the list, to compute the scores. - * any additional parameters, such as ``beta`` or ``labels`` in :func:`f1_score`. + * any additional parameters of the scoring function, such as ``beta`` or ``labels``. Here is an example of building custom scorers, and of using the ``greater_is_better`` parameter:: @@ -357,16 +393,10 @@ measuring a prediction error given ground truth and prediction: >>> score(clf, X, y) -0.69... -.. _diy_scoring: +.. dropdown:: Custom scorer objects from scratch -Implementing your own scoring object ------------------------------------- - -You can generate even more flexible model scorers by constructing your own -scoring object from scratch, without using the :func:`make_scorer` factory. - - -.. dropdown:: How to build a scorer from scratch + You can generate even more flexible model scorers by constructing your own + scoring object from scratch, without using the :func:`make_scorer` factory. For a callable to be a scorer, it needs to meet the protocol specified by the following two rules: @@ -389,24 +419,24 @@ scoring object from scratch, without using the :func:`make_scorer` factory. more details. - .. note:: **Using custom scorers in functions where n_jobs > 1** +.. dropdown:: Using custom scorers in functions where n_jobs > 1 - While defining the custom scoring function alongside the calling function - should work out of the box with the default joblib backend (loky), - importing it from another module will be a more robust approach and work - independently of the joblib backend. + While defining the custom scoring function alongside the calling function + should work out of the box with the default joblib backend (loky), + importing it from another module will be a more robust approach and work + independently of the joblib backend. - For example, to use ``n_jobs`` greater than 1 in the example below, - ``custom_scoring_function`` function is saved in a user-created module - (``custom_scorer_module.py``) and imported:: + For example, to use ``n_jobs`` greater than 1 in the example below, + ``custom_scoring_function`` function is saved in a user-created module + (``custom_scorer_module.py``) and imported:: - >>> from custom_scorer_module import custom_scoring_function # doctest: +SKIP - >>> cross_val_score(model, - ... X_train, - ... y_train, - ... scoring=make_scorer(custom_scoring_function, greater_is_better=False), - ... cv=5, - ... n_jobs=-1) # doctest: +SKIP + >>> from custom_scorer_module import custom_scoring_function # doctest: +SKIP + >>> cross_val_score(model, + ... X_train, + ... y_train, + ... scoring=make_scorer(custom_scoring_function, greater_is_better=False), + ... cv=5, + ... n_jobs=-1) # doctest: +SKIP .. _multimetric_scoring: @@ -3066,15 +3096,14 @@ display. .. _clustering_metrics: Clustering metrics -====================== +================== .. currentmodule:: sklearn.metrics The :mod:`sklearn.metrics` module implements several loss, score, and utility -functions. For more information see the :ref:`clustering_evaluation` -section for instance clustering, and :ref:`biclustering_evaluation` for -biclustering. - +functions to measure clustering performance. For more information see the +:ref:`clustering_evaluation` section for instance clustering, and +:ref:`biclustering_evaluation` for biclustering. .. _dummy_estimators: diff --git a/sklearn/feature_selection/_sequential.py b/sklearn/feature_selection/_sequential.py index ac5f13fd00e7d..bd1e27efef60b 100644 --- a/sklearn/feature_selection/_sequential.py +++ b/sklearn/feature_selection/_sequential.py @@ -78,7 +78,7 @@ class SequentialFeatureSelector(SelectorMixin, MetaEstimatorMixin, BaseEstimator scoring : str or callable, default=None A single str (see :ref:`scoring_parameter`) or a callable - (see :ref:`scoring`) to evaluate the predictions on the test set. + (see :ref:`scoring_callable`) to evaluate the predictions on the test set. NOTE that when using a custom scorer, it should return a single value. diff --git a/sklearn/inspection/_permutation_importance.py b/sklearn/inspection/_permutation_importance.py index fb3c646a271a6..74000aa9e8556 100644 --- a/sklearn/inspection/_permutation_importance.py +++ b/sklearn/inspection/_permutation_importance.py @@ -177,7 +177,7 @@ def permutation_importance( If `scoring` represents a single score, one can use: - a single string (see :ref:`scoring_parameter`); - - a callable (see :ref:`scoring`) that returns a single value. + - a callable (see :ref:`scoring_callable`) that returns a single value. If `scoring` represents multiple scores, one can use: diff --git a/sklearn/metrics/_scorer.py b/sklearn/metrics/_scorer.py index bc8c3a09a320c..fb173cd096a43 100644 --- a/sklearn/metrics/_scorer.py +++ b/sklearn/metrics/_scorer.py @@ -640,7 +640,7 @@ def make_scorer( The parameter `response_method` allows to specify which method of the estimator should be used to feed the scoring/loss function. - Read more in the :ref:`User Guide `. + Read more in the :ref:`User Guide `. Parameters ---------- @@ -933,7 +933,7 @@ def check_scoring(estimator=None, scoring=None, *, allow_none=False, raise_exc=T Scorer to use. If `scoring` represents a single score, one can use: - a single string (see :ref:`scoring_parameter`); - - a callable (see :ref:`scoring`) that returns a single value. + - a callable (see :ref:`scoring_callable`) that returns a single value. If `scoring` represents multiple scores, one can use: diff --git a/sklearn/model_selection/_plot.py b/sklearn/model_selection/_plot.py index b16e0f4c1019a..8cae3dc97d2c5 100644 --- a/sklearn/model_selection/_plot.py +++ b/sklearn/model_selection/_plot.py @@ -369,7 +369,7 @@ def from_estimator( scoring : str or callable, default=None A string (see :ref:`scoring_parameter`) or a scorer callable object / function with signature - `scorer(estimator, X, y)` (see :ref:`scoring`). + `scorer(estimator, X, y)` (see :ref:`scoring_callable`). exploit_incremental_learning : bool, default=False If the estimator supports incremental learning, this will be @@ -752,7 +752,7 @@ def from_estimator( scoring : str or callable, default=None A string (see :ref:`scoring_parameter`) or a scorer callable object / function with signature - `scorer(estimator, X, y)` (see :ref:`scoring`). + `scorer(estimator, X, y)` (see :ref:`scoring_callable`). n_jobs : int, default=None Number of jobs to run in parallel. Training the estimator and diff --git a/sklearn/model_selection/_search.py b/sklearn/model_selection/_search.py index d37ece5df7249..39161e51bacc5 100644 --- a/sklearn/model_selection/_search.py +++ b/sklearn/model_selection/_search.py @@ -1247,7 +1247,7 @@ class GridSearchCV(BaseSearchCV): If `scoring` represents a single score, one can use: - a single string (see :ref:`scoring_parameter`); - - a callable (see :ref:`scoring`) that returns a single value. + - a callable (see :ref:`scoring_callable`) that returns a single value. If `scoring` represents multiple scores, one can use: @@ -1623,7 +1623,7 @@ class RandomizedSearchCV(BaseSearchCV): If `scoring` represents a single score, one can use: - a single string (see :ref:`scoring_parameter`); - - a callable (see :ref:`scoring`) that returns a single value. + - a callable (see :ref:`scoring_callable`) that returns a single value. If `scoring` represents multiple scores, one can use: diff --git a/sklearn/model_selection/_search_successive_halving.py b/sklearn/model_selection/_search_successive_halving.py index 5ff5f1198121a..55073df14bfc1 100644 --- a/sklearn/model_selection/_search_successive_halving.py +++ b/sklearn/model_selection/_search_successive_halving.py @@ -480,7 +480,7 @@ class HalvingGridSearchCV(BaseSuccessiveHalving): scoring : str, callable, or None, default=None A single string (see :ref:`scoring_parameter`) or a callable - (see :ref:`scoring`) to evaluate the predictions on the test set. + (see :ref:`scoring_callable`) to evaluate the predictions on the test set. If None, the estimator's score method is used. refit : bool, default=True @@ -821,7 +821,7 @@ class HalvingRandomSearchCV(BaseSuccessiveHalving): scoring : str, callable, or None, default=None A single string (see :ref:`scoring_parameter`) or a callable - (see :ref:`scoring`) to evaluate the predictions on the test set. + (see :ref:`scoring_callable`) to evaluate the predictions on the test set. If None, the estimator's score method is used. refit : bool, default=True diff --git a/sklearn/model_selection/_validation.py b/sklearn/model_selection/_validation.py index dddc0cce795af..7d38182911fb8 100644 --- a/sklearn/model_selection/_validation.py +++ b/sklearn/model_selection/_validation.py @@ -170,12 +170,13 @@ def cross_validate( scoring : str, callable, list, tuple, or dict, default=None Strategy to evaluate the performance of the cross-validated model on the test set. If `None`, the - :ref:`default evaluation criterion ` of the estimator is used. + :ref:`default evaluation criterion ` of the estimator + is used. If `scoring` represents a single score, one can use: - a single string (see :ref:`scoring_parameter`); - - a callable (see :ref:`scoring`) that returns a single value. + - a callable (see :ref:`scoring_callable`) that returns a single value. If `scoring` represents multiple scores, one can use: @@ -1562,7 +1563,7 @@ def permutation_test_score( scoring : str or callable, default=None A single str (see :ref:`scoring_parameter`) or a callable - (see :ref:`scoring`) to evaluate the predictions on the test set. + (see :ref:`scoring_callable`) to evaluate the predictions on the test set. If `None` the estimator's score method is used. From 26384be3485c26a112e198aeb889b7a47405665c Mon Sep 17 00:00:00 2001 From: Adrin Jalali Date: Fri, 29 Nov 2024 14:00:13 +0300 Subject: [PATCH 060/159] MNT add __reduce__ to loss objects (#30356) --- sklearn/_loss/_loss.pyx.tp | 8 ++++++++ 1 file changed, 8 insertions(+) diff --git a/sklearn/_loss/_loss.pyx.tp b/sklearn/_loss/_loss.pyx.tp index 56d3aebb6c6f1..6054d4c9472ca 100644 --- a/sklearn/_loss/_loss.pyx.tp +++ b/sklearn/_loss/_loss.pyx.tp @@ -818,6 +818,9 @@ cdef inline double_pair cgrad_hess_exponential( cdef class CyLossFunction: """Base class for convex loss functions.""" + def __reduce__(self): + return (self.__class__, ()) + cdef double cy_loss(self, double y_true, double raw_prediction) noexcept nogil: """Compute the loss for a single sample. @@ -1013,6 +1016,11 @@ cdef class {{name}}(CyLossFunction): self.{{param}} = {{param}} {{endif}} + {{if param is not None}} + def __reduce__(self): + return (self.__class__, (self.{{param}},)) + {{endif}} + cdef inline double cy_loss(self, double y_true, double raw_prediction) noexcept nogil: return {{closs}}(y_true, raw_prediction{{with_param}}) From b6281e3c18e98f3b0540fc12829a408b767576e0 Mon Sep 17 00:00:00 2001 From: antoinebaker Date: Fri, 29 Nov 2024 15:05:19 +0100 Subject: [PATCH 061/159] DOC fix xlabel in Tweedie regression on insurance claims (#30362) MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit Co-authored-by: Jérémie du Boisberranger --- ...lot_tweedie_regression_insurance_claims.py | 39 ++++++++++--------- 1 file changed, 21 insertions(+), 18 deletions(-) diff --git a/examples/linear_model/plot_tweedie_regression_insurance_claims.py b/examples/linear_model/plot_tweedie_regression_insurance_claims.py index bb78d2d0d9973..e479e78ba37b7 100644 --- a/examples/linear_model/plot_tweedie_regression_insurance_claims.py +++ b/examples/linear_model/plot_tweedie_regression_insurance_claims.py @@ -613,11 +613,11 @@ def score_estimator( # %% # -# Finally, we can compare the two models using a plot of cumulated claims: for +# Finally, we can compare the two models using a plot of cumulative claims: for # each model, the policyholders are ranked from safest to riskiest based on the -# model predictions and the fraction of observed total cumulated claims is -# plotted on the y axis. This plot is often called the ordered Lorenz curve of -# the model. +# model predictions and the cumulative proportion of claim amounts is plotted +# against the cumulative proportion of exposure. This plot is often called +# the ordered Lorenz curve of the model. # # The Gini coefficient (based on the area between the curve and the diagonal) # can be used as a model selection metric to quantify the ability of the model @@ -627,7 +627,7 @@ def score_estimator( # Gini coefficient is upper bounded by 1.0 but even an oracle model that ranks # the policyholders by the observed claim amounts cannot reach a score of 1.0. # -# We observe that both models are able to rank policyholders by risky-ness +# We observe that both models are able to rank policyholders by riskiness # significantly better than chance although they are also both far from the # oracle model due to the natural difficulty of the prediction problem from a # few features: most accidents are not predictable and can be caused by @@ -653,11 +653,11 @@ def lorenz_curve(y_true, y_pred, exposure): ranking = np.argsort(y_pred) ranked_exposure = exposure[ranking] ranked_pure_premium = y_true[ranking] - cumulated_claim_amount = np.cumsum(ranked_pure_premium * ranked_exposure) - cumulated_claim_amount /= cumulated_claim_amount[-1] - cumulated_exposure = np.cumsum(ranked_exposure) - cumulated_exposure /= cumulated_exposure[-1] - return cumulated_exposure, cumulated_claim_amount + cumulative_claim_amount = np.cumsum(ranked_pure_premium * ranked_exposure) + cumulative_claim_amount /= cumulative_claim_amount[-1] + cumulative_exposure = np.cumsum(ranked_exposure) + cumulative_exposure /= cumulative_exposure[-1] + return cumulative_exposure, cumulative_claim_amount fig, ax = plt.subplots(figsize=(8, 8)) @@ -669,27 +669,30 @@ def lorenz_curve(y_true, y_pred, exposure): ("Frequency * Severity model", y_pred_product), ("Compound Poisson Gamma", y_pred_total), ]: - ordered_samples, cum_claims = lorenz_curve( + cum_exposure, cum_claims = lorenz_curve( df_test["PurePremium"], y_pred, df_test["Exposure"] ) - gini = 1 - 2 * auc(ordered_samples, cum_claims) + gini = 1 - 2 * auc(cum_exposure, cum_claims) label += " (Gini index: {:.3f})".format(gini) - ax.plot(ordered_samples, cum_claims, linestyle="-", label=label) + ax.plot(cum_exposure, cum_claims, linestyle="-", label=label) # Oracle model: y_pred == y_test -ordered_samples, cum_claims = lorenz_curve( +cum_exposure, cum_claims = lorenz_curve( df_test["PurePremium"], df_test["PurePremium"], df_test["Exposure"] ) -gini = 1 - 2 * auc(ordered_samples, cum_claims) +gini = 1 - 2 * auc(cum_exposure, cum_claims) label = "Oracle (Gini index: {:.3f})".format(gini) -ax.plot(ordered_samples, cum_claims, linestyle="-.", color="gray", label=label) +ax.plot(cum_exposure, cum_claims, linestyle="-.", color="gray", label=label) # Random baseline ax.plot([0, 1], [0, 1], linestyle="--", color="black", label="Random baseline") ax.set( title="Lorenz Curves", - xlabel="Fraction of policyholders\n(ordered by model from safest to riskiest)", - ylabel="Fraction of total claim amount", + xlabel=( + "Cumulative proportion of exposure\n" + "(ordered by model from safest to riskiest)" + ), + ylabel="Cumulative proportion of claim amounts", ) ax.legend(loc="upper left") plt.plot() From 0ad96c3113f3f9c2b22a764bec132c3591d4ca6e Mon Sep 17 00:00:00 2001 From: Olivier Grisel Date: Fri, 29 Nov 2024 17:57:28 +0100 Subject: [PATCH 062/159] API drop Tags.regressor_tags.multi_label (#30373) --- sklearn/ensemble/_forest.py | 5 ----- sklearn/utils/_tags.py | 22 +++++++++++----------- sklearn/utils/estimator_checks.py | 1 - sklearn/utils/tests/test_tags.py | 3 +-- 4 files changed, 12 insertions(+), 19 deletions(-) diff --git a/sklearn/ensemble/_forest.py b/sklearn/ensemble/_forest.py index a5475eb0e6e62..c396f9344d1d5 100644 --- a/sklearn/ensemble/_forest.py +++ b/sklearn/ensemble/_forest.py @@ -1165,11 +1165,6 @@ def _compute_partial_dependence_recursion(self, grid, target_features): return averaged_predictions - def __sklearn_tags__(self): - tags = super().__sklearn_tags__() - tags.regressor_tags.multi_label = True - return tags - class RandomForestClassifier(ForestClassifier): """ diff --git a/sklearn/utils/_tags.py b/sklearn/utils/_tags.py index 1ba1913c37234..9fc6e66f9b0fc 100644 --- a/sklearn/utils/_tags.py +++ b/sklearn/utils/_tags.py @@ -98,6 +98,8 @@ class TargetTags: Whether a regressor supports multi-target outputs or a classifier supports multi-class multi-output. + See :term:`multi-output` in the glossary. + single_output : bool, default=True Whether the target can be single-output. This can be ``False`` if the estimator supports only multi-output cases. @@ -150,8 +152,13 @@ class ClassifierTags: classification. Therefore this flag indicates whether the classifier is a binary-classifier-only or not. + See :term:`multi-class` in the glossary. + multi_label : bool, default=False - Whether the classifier supports multi-label output. + Whether the classifier supports multi-label output: a data point can + be predicted to belong to a variable number of classes. + + See :term:`multi-label` in the glossary. """ poor_score: bool = False @@ -172,13 +179,9 @@ class RegressorTags: n_informative=1, bias=5.0, noise=20, random_state=42)``. The dataset and values are based on current estimators in scikit-learn and might be replaced by something more systematic. - - multi_label : bool, default=False - Whether the regressor supports multilabel output. """ poor_score: bool = False - multi_label: bool = False @dataclass(**_dataclass_args()) @@ -496,7 +499,6 @@ def _to_new_tags(old_tags, estimator=None): if estimator_type == "regressor": regressor_tags = RegressorTags( poor_score=old_tags["poor_score"], - multi_label=old_tags["multilabel"], ) else: regressor_tags = None @@ -520,18 +522,16 @@ def _to_old_tags(new_tags): """Utility function convert old tags (dictionary) to new tags (dataclass).""" if new_tags.classifier_tags: binary_only = not new_tags.classifier_tags.multi_class - multilabel_clf = new_tags.classifier_tags.multi_label + multilabel = new_tags.classifier_tags.multi_label poor_score_clf = new_tags.classifier_tags.poor_score else: binary_only = False - multilabel_clf = False + multilabel = False poor_score_clf = False if new_tags.regressor_tags: - multilabel_reg = new_tags.regressor_tags.multi_label poor_score_reg = new_tags.regressor_tags.poor_score else: - multilabel_reg = False poor_score_reg = False if new_tags.transformer_tags: @@ -543,7 +543,7 @@ def _to_old_tags(new_tags): "allow_nan": new_tags.input_tags.allow_nan, "array_api_support": new_tags.array_api_support, "binary_only": binary_only, - "multilabel": multilabel_clf or multilabel_reg, + "multilabel": multilabel, "multioutput": new_tags.target_tags.multi_output, "multioutput_only": ( not new_tags.target_tags.single_output and new_tags.target_tags.multi_output diff --git a/sklearn/utils/estimator_checks.py b/sklearn/utils/estimator_checks.py index 6bb6524974a3a..77fb974a96ef1 100644 --- a/sklearn/utils/estimator_checks.py +++ b/sklearn/utils/estimator_checks.py @@ -4438,7 +4438,6 @@ def check_valid_tag_types(name, estimator): if tags.regressor_tags is not None: assert isinstance(tags.regressor_tags.poor_score, bool), err_msg - assert isinstance(tags.regressor_tags.multi_label, bool), err_msg if tags.transformer_tags is not None: assert isinstance(tags.transformer_tags.preserves_dtype, list), err_msg diff --git a/sklearn/utils/tests/test_tags.py b/sklearn/utils/tests/test_tags.py index 86e4e2d7c431e..2ff6878d974fb 100644 --- a/sklearn/utils/tests/test_tags.py +++ b/sklearn/utils/tests/test_tags.py @@ -434,7 +434,6 @@ def __sklearn_tags__(self): classifier_tags = None regressor_tags = RegressorTags( poor_score=True, - multi_label=True, ) return Tags( estimator_type=self._estimator_type, @@ -452,7 +451,7 @@ def __sklearn_tags__(self): "allow_nan": True, "array_api_support": False, "binary_only": False, - "multilabel": True, + "multilabel": False, "multioutput": True, "multioutput_only": True, "no_validation": False, From a03b3241fd483f1bd0ef805d330aada8f2e0fd7c Mon Sep 17 00:00:00 2001 From: "Thomas J. Fan" Date: Fri, 29 Nov 2024 13:42:16 -0500 Subject: [PATCH 063/159] Remove reference to is_transformer (#30374) --- doc/api_reference.py | 1 - doc/whats_new/upcoming_changes/sklearn.base/30122.api.rst | 2 +- 2 files changed, 1 insertion(+), 2 deletions(-) diff --git a/doc/api_reference.py b/doc/api_reference.py index 8952078881122..b7bbeb3d3643f 100644 --- a/doc/api_reference.py +++ b/doc/api_reference.py @@ -123,7 +123,6 @@ def _get_submodule(module_name, submodule_name): "is_classifier", "is_clusterer", "is_regressor", - "is_transformer", "is_outlier_detector", ], } diff --git a/doc/whats_new/upcoming_changes/sklearn.base/30122.api.rst b/doc/whats_new/upcoming_changes/sklearn.base/30122.api.rst index 1ca6052340930..1acfce3aeda5c 100644 --- a/doc/whats_new/upcoming_changes/sklearn.base/30122.api.rst +++ b/doc/whats_new/upcoming_changes/sklearn.base/30122.api.rst @@ -1,5 +1,5 @@ - Passing a class object to :func:`~sklearn.base.is_classifier`, - :func:`~sklearn.base.is_regressor`, :func:`~sklearn.base.is_transformer`, and + :func:`~sklearn.base.is_regressor`, and :func:`~sklearn.base.is_outlier_detector` is now deprecated. Pass an instance instead. By `Adrin Jalali`_ From a7c4502d4d0749400bae641e281dd63ae4be9b7c Mon Sep 17 00:00:00 2001 From: scikit-learn-bot Date: Mon, 2 Dec 2024 10:02:09 +0100 Subject: [PATCH 064/159] :lock: :robot: CI Update lock files for main CI build(s) :lock: :robot: (#30388) Co-authored-by: Lock file bot --- build_tools/azure/debian_32bit_lock.txt | 2 +- ...latest_conda_forge_mkl_linux-64_conda.lock | 50 +++++++++---------- ...pylatest_conda_forge_mkl_osx-64_conda.lock | 22 ++++---- ...test_conda_mkl_no_openmp_osx-64_conda.lock | 14 +++--- ...st_pip_openblas_pandas_linux-64_conda.lock | 8 +-- .../pymin_conda_forge_mkl_win-64_conda.lock | 33 ++++++------ ...nblas_min_dependencies_linux-64_conda.lock | 15 +++--- ...e_openblas_ubuntu_2204_linux-64_conda.lock | 14 +++--- build_tools/azure/ubuntu_atlas_lock.txt | 4 +- build_tools/circle/doc_linux-64_conda.lock | 28 +++++------ .../doc_min_dependencies_linux-64_conda.lock | 27 +++++----- 11 files changed, 112 insertions(+), 105 deletions(-) diff --git a/build_tools/azure/debian_32bit_lock.txt b/build_tools/azure/debian_32bit_lock.txt index 1a62ee5235896..addcc04343a62 100644 --- a/build_tools/azure/debian_32bit_lock.txt +++ b/build_tools/azure/debian_32bit_lock.txt @@ -27,7 +27,7 @@ pluggy==1.5.0 # via pytest pyproject-metadata==0.9.0 # via meson-python -pytest==8.3.3 +pytest==8.3.4 # via # -r build_tools/azure/debian_32bit_requirements.txt # pytest-cov diff --git a/build_tools/azure/pylatest_conda_forge_mkl_linux-64_conda.lock b/build_tools/azure/pylatest_conda_forge_mkl_linux-64_conda.lock index 8fcb4bef263f0..1ec87c281a72c 100644 --- a/build_tools/azure/pylatest_conda_forge_mkl_linux-64_conda.lock +++ b/build_tools/azure/pylatest_conda_forge_mkl_linux-64_conda.lock @@ -29,6 +29,7 @@ https://conda.anaconda.org/conda-forge/linux-64/libexpat-2.6.4-h5888daf_0.conda# https://conda.anaconda.org/conda-forge/linux-64/libgcc-ng-14.2.0-h69a702a_1.conda#e39480b9ca41323497b05492a63bc35b https://conda.anaconda.org/conda-forge/linux-64/libgfortran5-14.2.0-hd5240d6_1.conda#9822b874ea29af082e5d36098d25427d https://conda.anaconda.org/conda-forge/linux-64/libstdcxx-14.2.0-hc0a3c3a_1.conda#234a5554c53625688d51062645337328 +https://conda.anaconda.org/conda-forge/linux-64/libutf8proc-2.8.0-hf23e847_1.conda#b1aa0faa95017bca11369bd080487ec4 https://conda.anaconda.org/conda-forge/linux-64/libuv-1.49.2-hb9d3cd8_0.conda#070e3c9ddab77e38799d5c30b109c633 https://conda.anaconda.org/conda-forge/linux-64/libzlib-1.3.1-hb9d3cd8_2.conda#edb0dca6bc32e4f4789199455a1dbeb8 https://conda.anaconda.org/conda-forge/linux-64/openssl-3.4.0-hb9d3cd8_0.conda#23cc74f77eb99315c0360ec3533147a9 @@ -61,7 +62,6 @@ https://conda.anaconda.org/conda-forge/linux-64/libpng-1.6.44-hadc24fc_0.conda#f https://conda.anaconda.org/conda-forge/linux-64/libsqlite-3.47.0-hadc24fc_1.conda#b6f02b52a174e612e89548f4663ce56a https://conda.anaconda.org/conda-forge/linux-64/libssh2-1.11.1-hf672d98_0.conda#be2de152d8073ef1c01b7728475f2fe7 https://conda.anaconda.org/conda-forge/linux-64/libstdcxx-ng-14.2.0-h4852527_1.conda#8371ac6457591af2cf6159439c1fd051 -https://conda.anaconda.org/conda-forge/linux-64/libutf8proc-2.8.0-h166bdaf_0.tar.bz2#ede4266dc02e875fe1ea77b25dd43747 https://conda.anaconda.org/conda-forge/linux-64/libuuid-2.38.1-h0b41bf4_0.conda#40b61aab5c7ba9ff276c41cfffe6b80b https://conda.anaconda.org/conda-forge/linux-64/libwebp-base-1.4.0-hd590300_0.conda#b26e8aa824079e1be0294e7152ca4559 https://conda.anaconda.org/conda-forge/linux-64/libxcb-1.17.0-h8a09558_0.conda#92ed62436b625154323d40d5f2f11dd7 @@ -117,7 +117,7 @@ https://conda.anaconda.org/conda-forge/linux-64/libxml2-2.13.5-hb346dea_0.conda# https://conda.anaconda.org/conda-forge/linux-64/mpfr-4.2.1-h90cbb55_3.conda#2eeb50cab6652538eee8fc0bc3340c81 https://conda.anaconda.org/conda-forge/linux-64/mysql-libs-9.0.1-he0572af_2.conda#57a9e7ee3c0840d3c8c9012473978629 https://conda.anaconda.org/conda-forge/linux-64/orc-2.0.3-he039a57_0.conda#052499acd6d6b79952197a13b23e2600 -https://conda.anaconda.org/conda-forge/linux-64/python-3.13.0-h9ebbce0_100_cp313.conda#08e9aef080f33daeb192b2ddc7e4721f +https://conda.anaconda.org/conda-forge/linux-64/python-3.13.0-h9ebbce0_101_cp313.conda#f4fea9d5bb3f2e61a39950a7ab70ee4e https://conda.anaconda.org/conda-forge/linux-64/re2-2024.07.02-h77b4e00_1.conda#01093ff37c1b5e6bf9f17c0116747d11 https://conda.anaconda.org/conda-forge/linux-64/xcb-util-image-0.4.0-hb711507_2.conda#a0901183f08b6c7107aab109733a3c91 https://conda.anaconda.org/conda-forge/linux-64/xkeyboard-config-2.43-hb9d3cd8_0.conda#f725c7425d6d7c15e31f3b99a88ea02f @@ -131,7 +131,7 @@ https://conda.anaconda.org/conda-forge/linux-64/cairo-1.18.0-hebfffa5_3.conda#fc https://conda.anaconda.org/conda-forge/linux-64/ccache-4.10.1-h065aff2_0.conda#d6b48c138e0c8170a6fe9c136e063540 https://conda.anaconda.org/conda-forge/noarch/certifi-2024.8.30-pyhd8ed1ab_0.conda#12f7d00853807b0531775e9be891cb11 https://conda.anaconda.org/conda-forge/noarch/colorama-0.4.6-pyhd8ed1ab_0.tar.bz2#3faab06a954c2a04039983f2c4a50d99 -https://conda.anaconda.org/conda-forge/noarch/cpython-3.13.0-py313hd8ed1ab_100.conda#150059fe488fb313446030b75672e5db +https://conda.anaconda.org/conda-forge/noarch/cpython-3.13.0-py313hd8ed1ab_101.conda#cf35258c45ef74c804a6768e178f5c62 https://conda.anaconda.org/conda-forge/noarch/cycler-0.12.1-pyhd8ed1ab_0.conda#5cd86562580f274031ede6aa6aa24441 https://conda.anaconda.org/conda-forge/linux-64/cyrus-sasl-2.1.27-h54b06d7_7.conda#dce22f70b4e5a407ce88f2be046f4ceb https://conda.anaconda.org/conda-forge/linux-64/cython-3.0.11-py313hc66aa0d_3.conda#1778443eb12b2da98428fa69152a2a2e @@ -147,8 +147,8 @@ https://conda.anaconda.org/conda-forge/linux-64/libcups-2.3.3-h4637d8d_4.conda#d https://conda.anaconda.org/conda-forge/linux-64/libcurl-8.10.1-hbbe4b11_0.conda#6e801c50a40301f6978c53976917b277 https://conda.anaconda.org/conda-forge/linux-64/libgl-1.7.0-ha4b6fd6_2.conda#928b8be80851f5d8ffb016f9c81dae7a https://conda.anaconda.org/conda-forge/linux-64/libgrpc-1.67.1-hc2c308b_0.conda#4606a4647bfe857e3cfe21ca12ac3afb -https://conda.anaconda.org/conda-forge/linux-64/libhwloc-2.11.1-default_hecaa2ac_1000.conda#f54aeebefb5c5ff84eca4fb05ca8aa3a -https://conda.anaconda.org/conda-forge/linux-64/libllvm19-19.1.4-ha7bfdaf_0.conda#5f7d7eabf470bc56903b18f169f4f784 +https://conda.anaconda.org/conda-forge/linux-64/libhwloc-2.11.2-default_h0d58e46_1001.conda#804ca9e91bcaea0824a341d55b1684f2 +https://conda.anaconda.org/conda-forge/linux-64/libllvm19-19.1.4-ha7bfdaf_1.conda#886acc67bcba28a5c6b429aad2f057ce https://conda.anaconda.org/conda-forge/linux-64/libxkbcommon-1.7.0-h2c5496b_1.conda#e2eaefa4de2b7237af7c907b8bbc760a https://conda.anaconda.org/conda-forge/linux-64/libxslt-1.1.39-h76b75d6_0.conda#e71f31f8cfb0a91439f2086fc8aa0461 https://conda.anaconda.org/conda-forge/linux-64/markupsafe-3.0.2-py313h8060acc_0.conda#ab825f8b676368beb91350c6a2da6e11 @@ -163,12 +163,12 @@ https://conda.anaconda.org/conda-forge/noarch/pluggy-1.5.0-pyhd8ed1ab_0.conda#d3 https://conda.anaconda.org/conda-forge/noarch/pyparsing-3.2.0-pyhd8ed1ab_1.conda#035c17fbf099f50ff60bf2eb303b0a83 https://conda.anaconda.org/conda-forge/noarch/python-tzdata-2024.2-pyhd8ed1ab_0.conda#986287f89929b2d629bd6ef6497dc307 https://conda.anaconda.org/conda-forge/noarch/pytz-2024.1-pyhd8ed1ab_0.conda#3eeeeb9e4827ace8c0c1419c85d590ad -https://conda.anaconda.org/conda-forge/noarch/setuptools-75.6.0-pyhff2d567_0.conda#68d7d406366926b09a6a023e3d0f71d7 +https://conda.anaconda.org/conda-forge/noarch/setuptools-75.6.0-pyhff2d567_1.conda#fc80f7995e396cbaeabd23cf46c413dc https://conda.anaconda.org/conda-forge/noarch/six-1.16.0-pyh6c4a22f_0.tar.bz2#e5f25f8dbc060e9a8d912e432202afc2 https://conda.anaconda.org/conda-forge/noarch/threadpoolctl-3.5.0-pyhc1e730c_0.conda#df68d78237980a159bd7149f33c0e8fd https://conda.anaconda.org/conda-forge/noarch/toml-0.10.2-pyhd8ed1ab_0.tar.bz2#f832c45a477c78bebd107098db465095 -https://conda.anaconda.org/conda-forge/noarch/tomli-2.1.0-pyhff2d567_0.conda#3fa1089b4722df3a900135925f4519d9 -https://conda.anaconda.org/conda-forge/linux-64/tornado-6.4.1-py313h536fd9c_1.conda#70b5b6dfd7d1760cd59849e2271d937b +https://conda.anaconda.org/conda-forge/noarch/tomli-2.2.1-pyhd8ed1ab_0.conda#ee8ab0fe4c8dfc5a6319f7f8246022fc +https://conda.anaconda.org/conda-forge/linux-64/tornado-6.4.2-py313h536fd9c_0.conda#5f5cbdd527d2e74e270d8b6255ba714f https://conda.anaconda.org/conda-forge/noarch/typing_extensions-4.12.2-pyha770c72_0.conda#ebe6952715e1d5eb567eeebf25250fa7 https://conda.anaconda.org/conda-forge/linux-64/xcb-util-cursor-0.1.5-hb9d3cd8_0.conda#eb44b3b6deb1cab08d72cb61686fe64c https://conda.anaconda.org/conda-forge/linux-64/xorg-libxcomposite-0.4.6-hb9d3cd8_2.conda#d3c295b50f092ab525ffe3c2aa4b7413 @@ -177,7 +177,7 @@ https://conda.anaconda.org/conda-forge/linux-64/xorg-libxdamage-1.1.6-hb9d3cd8_0 https://conda.anaconda.org/conda-forge/linux-64/xorg-libxi-1.8.2-hb9d3cd8_0.conda#17dcc85db3c7886650b8908b183d6876 https://conda.anaconda.org/conda-forge/linux-64/xorg-libxrandr-1.5.4-hb9d3cd8_0.conda#2de7f99d6581a4a7adbff607b5c278ca https://conda.anaconda.org/conda-forge/linux-64/xorg-libxxf86vm-1.1.5-hb9d3cd8_4.conda#7da9007c0582712c4bad4131f89c8372 -https://conda.anaconda.org/conda-forge/linux-64/aws-c-s3-0.7.1-h3a84f74_3.conda#e7a54821aaa774cfd64efcd45114a4d7 +https://conda.anaconda.org/conda-forge/linux-64/aws-c-s3-0.7.2-h3a84f74_0.conda#a5f883ce16928e898856b5bd8d1bee57 https://conda.anaconda.org/conda-forge/linux-64/azure-core-cpp-1.14.0-h5cfcd09_0.conda#0a8838771cc2e985cd295e01ae83baf1 https://conda.anaconda.org/conda-forge/linux-64/coverage-7.6.8-py313h8060acc_0.conda#cf7681f6c2dc94ff8577430e4c280dc6 https://conda.anaconda.org/conda-forge/linux-64/fonttools-4.55.0-py313h8060acc_0.conda#0ff3a44b54d02157f6e99074432b7396 @@ -189,14 +189,14 @@ https://conda.anaconda.org/conda-forge/linux-64/libclang-cpp19.1-19.1.4-default_ https://conda.anaconda.org/conda-forge/linux-64/libclang13-19.1.4-default_h9c6a7e4_0.conda#6c450adae455c7d648856e8b0cfcebd6 https://conda.anaconda.org/conda-forge/linux-64/libgoogle-cloud-2.31.0-h804f50b_0.conda#35ab838423b60f233391eb86d324a830 https://conda.anaconda.org/conda-forge/noarch/meson-1.6.0-pyhd8ed1ab_0.conda#380ba6a3eddd8e7649bfe8e6812611aa -https://conda.anaconda.org/conda-forge/linux-64/openldap-2.6.8-hedd0468_0.conda#dcd0ed5147d8876b0848a552b416ce76 +https://conda.anaconda.org/conda-forge/linux-64/openldap-2.6.9-he970967_0.conda#ca2de8bbdc871bce41dbf59e51324165 https://conda.anaconda.org/conda-forge/linux-64/pillow-11.0.0-py313h2d7ed13_0.conda#0d95e1cda6bf9ce501e751c02561204e https://conda.anaconda.org/conda-forge/noarch/pyproject-metadata-0.9.0-pyh2cfa8aa_0.conda#10906a130eeb4a68645bf97c28333141 -https://conda.anaconda.org/conda-forge/noarch/pytest-8.3.3-pyhd8ed1ab_0.conda#c03d61f31f38fdb9facf70c29958bf7a +https://conda.anaconda.org/conda-forge/noarch/pytest-8.3.4-pyhd8ed1ab_0.conda#ff8f2ef7f2636906b3781d0cf92388d0 https://conda.anaconda.org/conda-forge/noarch/python-dateutil-2.9.0.post0-pyhff2d567_0.conda#b6dfd90a2141e573e4b6a81630b56df5 -https://conda.anaconda.org/conda-forge/linux-64/tbb-2021.13.0-h84d6215_0.conda#ee6f7fd1e76061ef1fa307d41fa86a96 +https://conda.anaconda.org/conda-forge/linux-64/tbb-2021.13.0-hceb3a55_1.conda#ba7726b8df7b9d34ea80e82b097a4893 https://conda.anaconda.org/conda-forge/linux-64/xorg-libxtst-1.2.5-hb9d3cd8_3.conda#7bbe9a0cc0df0ac5f5a8ad6d6a11af2f -https://conda.anaconda.org/conda-forge/linux-64/aws-crt-cpp-0.29.5-h21d7256_0.conda#b2468de19999ee8452757f12f15a9b34 +https://conda.anaconda.org/conda-forge/linux-64/aws-crt-cpp-0.29.6-h0e61686_0.conda#651a6500e5fded51bb7572f4eebcfd7b https://conda.anaconda.org/conda-forge/linux-64/azure-identity-cpp-1.10.0-h113e628_0.conda#73f73f60854f325a55f1d31459f2ab73 https://conda.anaconda.org/conda-forge/linux-64/azure-storage-common-cpp-12.8.0-h736e048_1.conda#13de36be8de3ae3f05ba127631599213 https://conda.anaconda.org/conda-forge/linux-64/libgoogle-cloud-storage-2.31.0-h0121fbd_0.conda#568d6a09a6ed76337a7b97c84ae7c0f8 @@ -206,7 +206,7 @@ https://conda.anaconda.org/conda-forge/linux-64/mkl-2024.2.2-ha957f24_16.conda#1 https://conda.anaconda.org/conda-forge/noarch/pytest-cov-6.0.0-pyhd8ed1ab_0.conda#cb8a11b6d209e3d85e5094bdbd9ebd9c https://conda.anaconda.org/conda-forge/noarch/pytest-xdist-3.6.1-pyhd8ed1ab_0.conda#b39568655c127a9c4a44d178ac99b6d0 https://conda.anaconda.org/conda-forge/noarch/sympy-1.13.3-pyh2585a3b_104.conda#68085d736d2b2f54498832b65059875d -https://conda.anaconda.org/conda-forge/linux-64/aws-sdk-cpp-1.11.449-hdaa582e_3.conda#0dca4b37cf80312f8ef84b649e6ad3a3 +https://conda.anaconda.org/conda-forge/linux-64/aws-sdk-cpp-1.11.449-h5558e3c_4.conda#ba7abdc93b0ade11d774b47aaab84737 https://conda.anaconda.org/conda-forge/linux-64/azure-storage-blobs-cpp-12.13.0-h3cf044e_1.conda#7eb66060455c7a47d9dcdbfa9f46579b https://conda.anaconda.org/conda-forge/linux-64/libblas-3.9.0-25_linux64_mkl.conda#b77ebfb548eae4d91639e2ca003662c8 https://conda.anaconda.org/conda-forge/linux-64/mkl-devel-2024.2.2-ha770c72_16.conda#140891ea14285fc634353b31e9e40a95 @@ -215,25 +215,25 @@ https://conda.anaconda.org/conda-forge/linux-64/azure-storage-files-datalake-cpp https://conda.anaconda.org/conda-forge/linux-64/libcblas-3.9.0-25_linux64_mkl.conda#e48aeb4ab1a293f621fe995959f1d32f https://conda.anaconda.org/conda-forge/linux-64/liblapack-3.9.0-25_linux64_mkl.conda#d5afbe3777c594434e4de6481254e99c https://conda.anaconda.org/conda-forge/linux-64/pyside6-6.8.0.2-py313h5f61773_0.conda#eb4dd1755647ad183e70c8668f5eb97b -https://conda.anaconda.org/conda-forge/linux-64/libarrow-18.0.0-h94eee4b_9_cpu.conda#fe2841c29f3753146d4e89217d22d043 +https://conda.anaconda.org/conda-forge/linux-64/libarrow-18.1.0-he15abb1_1_cpu.conda#bd3e35a6f3f869b4777488452f315008 https://conda.anaconda.org/conda-forge/linux-64/liblapacke-3.9.0-25_linux64_mkl.conda#cbddb4169d3d24b13b308403b45f401e -https://conda.anaconda.org/conda-forge/linux-64/libtorch-2.5.1-cpu_mkl_hb9d73ce_103.conda#5b17e90804ffc01546025c643d14fd6e +https://conda.anaconda.org/conda-forge/linux-64/libtorch-2.5.1-cpu_mkl_h298519e_104.conda#40338c6dcd13f9936353ff16735cf512 https://conda.anaconda.org/conda-forge/linux-64/numpy-2.1.3-py313h4bf6692_0.conda#17bcf851cceab793dad11ab8089d4bc4 https://conda.anaconda.org/conda-forge/noarch/array-api-strict-2.2-pyhd8ed1ab_0.conda#5f8d3e0f6b42318772d0f1cdddfe3025 https://conda.anaconda.org/conda-forge/linux-64/blas-devel-3.9.0-25_linux64_mkl.conda#cb60caae3cb30988431d7107691bd587 https://conda.anaconda.org/conda-forge/linux-64/contourpy-1.3.1-py313h33d0bda_0.conda#6b6768e7c585d7029f79a04cbc4cbff0 -https://conda.anaconda.org/conda-forge/linux-64/libarrow-acero-18.0.0-h5888daf_9_cpu.conda#b36def03eb1624ad1ca6cd5866104096 -https://conda.anaconda.org/conda-forge/linux-64/libparquet-18.0.0-h6bd9018_9_cpu.conda#79817c62827b836349adf32b218edd95 +https://conda.anaconda.org/conda-forge/linux-64/libarrow-acero-18.1.0-h5888daf_1_cpu.conda#6197dcb930f6254e9b2fdc416be56b71 +https://conda.anaconda.org/conda-forge/linux-64/libparquet-18.1.0-h6bd9018_1_cpu.conda#1054909202f86e38bbbb7ca1131b8471 https://conda.anaconda.org/conda-forge/linux-64/pandas-2.2.3-py313ha87cce1_1.conda#c5d63dd501db554b84a30dea33824164 -https://conda.anaconda.org/conda-forge/linux-64/polars-1.14.0-py313ha816797_1.conda#c12f731895f1c520f50b283aa91dfe5c -https://conda.anaconda.org/conda-forge/linux-64/pyarrow-core-18.0.0-py313he5f92c8_2_cpu.conda#605b4c37d021bed2b765849bec9d3eda -https://conda.anaconda.org/conda-forge/linux-64/pytorch-2.5.1-cpu_mkl_py313h9aca207_103.conda#293c38d523b10254475b97c973864b48 +https://conda.anaconda.org/conda-forge/linux-64/polars-1.16.0-py313ha816797_0.conda#76b55dab38a5669124e2c6b73f54a35b +https://conda.anaconda.org/conda-forge/linux-64/pyarrow-core-18.1.0-py313he5f92c8_0_cpu.conda#5380e12f4468e891911dbbd4248b521a +https://conda.anaconda.org/conda-forge/linux-64/pytorch-2.5.1-cpu_mkl_py313h433ac60_104.conda#afaa0d574d1703459a183f2b347083c3 https://conda.anaconda.org/conda-forge/linux-64/scipy-1.14.1-py313h27c5614_1.conda#c5c52b95724a6d4adb72499912eea085 https://conda.anaconda.org/conda-forge/linux-64/blas-2.125-mkl.conda#8a0ffaaae2bccf691cffdde83cb0f1a5 -https://conda.anaconda.org/conda-forge/linux-64/libarrow-dataset-18.0.0-h5888daf_9_cpu.conda#07a60ef65486d08c96f324594dc2b5a1 +https://conda.anaconda.org/conda-forge/linux-64/libarrow-dataset-18.1.0-h5888daf_1_cpu.conda#77501831a2aabbaabac55e8cb3b6900a https://conda.anaconda.org/conda-forge/linux-64/matplotlib-base-3.9.2-py313h129903b_2.conda#71d8f34a558d7e4d6656679c609b65d5 https://conda.anaconda.org/conda-forge/linux-64/pyamg-5.2.1-py313hf0ab243_1.conda#4c769bf3858f424cb2ecf952175ec600 -https://conda.anaconda.org/conda-forge/linux-64/pytorch-cpu-2.5.1-cpu_mkl_h74a56ca_103.conda#8c195d4079bb69030cb6c883e8981ff0 -https://conda.anaconda.org/conda-forge/linux-64/libarrow-substrait-18.0.0-h5c8f2c3_9_cpu.conda#a8fcd78ee422057362d928e2dd63ed8e +https://conda.anaconda.org/conda-forge/linux-64/pytorch-cpu-2.5.1-cpu_mkl_h74a56ca_104.conda#0e6c728b7790e3764d95a6803326cc3b +https://conda.anaconda.org/conda-forge/linux-64/libarrow-substrait-18.1.0-h5c8f2c3_1_cpu.conda#5d47bd2674afd104dbe2f2f3534594b0 https://conda.anaconda.org/conda-forge/linux-64/matplotlib-3.9.2-py313h78bf25f_2.conda#1aa3c80617fecbf4614a7c5c21ec0897 -https://conda.anaconda.org/conda-forge/linux-64/pyarrow-18.0.0-py313h78bf25f_2.conda#bf35cb06f78888facd234bd09f7e88eb +https://conda.anaconda.org/conda-forge/linux-64/pyarrow-18.1.0-py313h78bf25f_0.conda#a11d880ceedc33993c6f5c14a80ea9d3 diff --git a/build_tools/azure/pylatest_conda_forge_mkl_osx-64_conda.lock b/build_tools/azure/pylatest_conda_forge_mkl_osx-64_conda.lock index 54fc1ddd92832..2d0b0aa5f8ddf 100644 --- a/build_tools/azure/pylatest_conda_forge_mkl_osx-64_conda.lock +++ b/build_tools/azure/pylatest_conda_forge_mkl_osx-64_conda.lock @@ -48,11 +48,11 @@ https://conda.anaconda.org/conda-forge/osx-64/zstd-1.5.6-h915ae27_0.conda#4cb2cd https://conda.anaconda.org/conda-forge/osx-64/brotli-bin-1.1.0-h00291cd_2.conda#049933ecbf552479a12c7917f0a4ce59 https://conda.anaconda.org/conda-forge/osx-64/freetype-2.12.1-h60636b9_2.conda#25152fce119320c980e5470e64834b50 https://conda.anaconda.org/conda-forge/osx-64/libgfortran-5.0.0-13_2_0_h97931a8_3.conda#0b6e23a012ee7a9a5f6b244f5a92c1d5 -https://conda.anaconda.org/conda-forge/osx-64/libhwloc-2.11.1-default_h456cccd_1000.conda#a14989f6bbea46e6ec4521a403f63ff2 +https://conda.anaconda.org/conda-forge/osx-64/libhwloc-2.11.2-default_h4cdd727_1001.conda#52bbb10ac083c563d00df035c94f9a63 https://conda.anaconda.org/conda-forge/osx-64/libllvm17-17.0.6-hbedff68_1.conda#fcd38f0553a99fa279fb66a5bfc2fb28 https://conda.anaconda.org/conda-forge/osx-64/libtiff-4.7.0-h583c2ba_1.conda#4b78bcdcc8780cede8b3d090deba874d https://conda.anaconda.org/conda-forge/osx-64/mpfr-4.2.1-haed47dc_3.conda#d511e58aaaabfc23136880d9956fa7a6 -https://conda.anaconda.org/conda-forge/osx-64/python-3.13.0-h0608dab_100_cp313.conda#9603103619775a3f99fe4b58d278775e +https://conda.anaconda.org/conda-forge/osx-64/python-3.13.0-h3a8ca6c_101_cp313.conda#0acea4c3eee2454fd642d1a4eafa2943 https://conda.anaconda.org/conda-forge/osx-64/brotli-1.1.0-h00291cd_2.conda#2db0c38a7f2321c5bdaf32b181e832c7 https://conda.anaconda.org/conda-forge/noarch/certifi-2024.8.30-pyhd8ed1ab_0.conda#12f7d00853807b0531775e9be891cb11 https://conda.anaconda.org/conda-forge/noarch/colorama-0.4.6-pyhd8ed1ab_0.tar.bz2#3faab06a954c2a04039983f2c4a50d99 @@ -63,7 +63,7 @@ https://conda.anaconda.org/conda-forge/noarch/execnet-2.1.1-pyhd8ed1ab_0.conda#1 https://conda.anaconda.org/conda-forge/noarch/iniconfig-2.0.0-pyhd8ed1ab_0.conda#f800d2da156d08e289b14e87e43c1ae5 https://conda.anaconda.org/conda-forge/osx-64/kiwisolver-1.4.7-py313h0c4e38b_0.conda#c37fceab459e104e77bb5456e219fc37 https://conda.anaconda.org/conda-forge/osx-64/lcms2-2.16-ha2f27b4_0.conda#1442db8f03517834843666c422238c9b -https://conda.anaconda.org/conda-forge/osx-64/ld64_osx-64-951.9-h38c89e5_1.conda#423183fc4729ed4b8e167a980aad83ce +https://conda.anaconda.org/conda-forge/osx-64/ld64_osx-64-951.9-h5ffbe8e_2.conda#8cd0234328c8e9dcc2db757ff8a2ad22 https://conda.anaconda.org/conda-forge/osx-64/libclang-cpp17-17.0.6-default_hb173f14_7.conda#9fb4dfe8b2c3ba1b68b79fcd9a71cb76 https://conda.anaconda.org/conda-forge/osx-64/libhiredis-1.0.2-h2beb688_0.tar.bz2#524282b2c46c9dedf051b3bc2ae05494 https://conda.anaconda.org/conda-forge/osx-64/llvm-tools-17.0.6-hbedff68_1.conda#4260f86b3dd201ad7ea758d783cd5613 @@ -76,28 +76,28 @@ https://conda.anaconda.org/conda-forge/noarch/pluggy-1.5.0-pyhd8ed1ab_0.conda#d3 https://conda.anaconda.org/conda-forge/noarch/pyparsing-3.2.0-pyhd8ed1ab_1.conda#035c17fbf099f50ff60bf2eb303b0a83 https://conda.anaconda.org/conda-forge/noarch/python-tzdata-2024.2-pyhd8ed1ab_0.conda#986287f89929b2d629bd6ef6497dc307 https://conda.anaconda.org/conda-forge/noarch/pytz-2024.1-pyhd8ed1ab_0.conda#3eeeeb9e4827ace8c0c1419c85d590ad -https://conda.anaconda.org/conda-forge/noarch/setuptools-75.6.0-pyhff2d567_0.conda#68d7d406366926b09a6a023e3d0f71d7 +https://conda.anaconda.org/conda-forge/noarch/setuptools-75.6.0-pyhff2d567_1.conda#fc80f7995e396cbaeabd23cf46c413dc https://conda.anaconda.org/conda-forge/noarch/six-1.16.0-pyh6c4a22f_0.tar.bz2#e5f25f8dbc060e9a8d912e432202afc2 -https://conda.anaconda.org/conda-forge/osx-64/tbb-2021.13.0-h37c8870_0.conda#89742f5ac7aeb5c44ec2b4c3c6692c3c +https://conda.anaconda.org/conda-forge/osx-64/tbb-2021.13.0-hb890de9_1.conda#284892942cdddfded53d090050b639a5 https://conda.anaconda.org/conda-forge/noarch/threadpoolctl-3.5.0-pyhc1e730c_0.conda#df68d78237980a159bd7149f33c0e8fd https://conda.anaconda.org/conda-forge/noarch/toml-0.10.2-pyhd8ed1ab_0.tar.bz2#f832c45a477c78bebd107098db465095 -https://conda.anaconda.org/conda-forge/noarch/tomli-2.1.0-pyhff2d567_0.conda#3fa1089b4722df3a900135925f4519d9 -https://conda.anaconda.org/conda-forge/osx-64/tornado-6.4.1-py313ha37c0e0_1.conda#97e88d20d94ad24b7bf0d7b67b14fa90 +https://conda.anaconda.org/conda-forge/noarch/tomli-2.2.1-pyhd8ed1ab_0.conda#ee8ab0fe4c8dfc5a6319f7f8246022fc +https://conda.anaconda.org/conda-forge/osx-64/tornado-6.4.2-py313h63b0ddb_0.conda#74a3a14f82dc65fa19f4fd4e2eb8da93 https://conda.anaconda.org/conda-forge/osx-64/ccache-4.10.1-hee5fd93_0.conda#09898bb80e196695cea9e07402cff215 -https://conda.anaconda.org/conda-forge/osx-64/cctools_osx-64-1010.6-h98e843e_1.conda#ed757b98aaa22a9e38c5a76191fb477c +https://conda.anaconda.org/conda-forge/osx-64/cctools_osx-64-1010.6-hea4301f_2.conda#70260b63386f080de1aa175dea5d57ac https://conda.anaconda.org/conda-forge/osx-64/clang-17-17.0.6-default_hb173f14_7.conda#809e36447b1bfb87ed1b7fb46339561a https://conda.anaconda.org/conda-forge/osx-64/coverage-7.6.8-py313h717bdf5_0.conda#1f858c8c3b1dee85e64ce68fdaa0b6e7 https://conda.anaconda.org/conda-forge/osx-64/fonttools-4.55.0-py313h717bdf5_0.conda#8652d2398f4c9e160d022844800f6be3 https://conda.anaconda.org/conda-forge/osx-64/gfortran_impl_osx-64-13.2.0-h2bc304d_3.conda#57aa4cb95277a27aa0a1834ed97be45b https://conda.anaconda.org/conda-forge/noarch/joblib-1.4.2-pyhd8ed1ab_0.conda#25df261d4523d9f9783bcdb7208d872f -https://conda.anaconda.org/conda-forge/osx-64/ld64-951.9-h0a3eb4e_1.conda#8b8e1a4bd8384bf4b884c9e41636038f +https://conda.anaconda.org/conda-forge/osx-64/ld64-951.9-h0a3eb4e_2.conda#c198062cf84f2e797996ac156daffa9e https://conda.anaconda.org/conda-forge/noarch/meson-1.6.0-pyhd8ed1ab_0.conda#380ba6a3eddd8e7649bfe8e6812611aa https://conda.anaconda.org/conda-forge/osx-64/mkl-2023.2.0-h54c2260_50500.conda#0a342ccdc79e4fcd359245ac51941e7b https://conda.anaconda.org/conda-forge/osx-64/pillow-11.0.0-py313h4d44d4f_0.conda#d5a3e556600840a77c61394c48ee52d9 https://conda.anaconda.org/conda-forge/noarch/pyproject-metadata-0.9.0-pyh2cfa8aa_0.conda#10906a130eeb4a68645bf97c28333141 -https://conda.anaconda.org/conda-forge/noarch/pytest-8.3.3-pyhd8ed1ab_0.conda#c03d61f31f38fdb9facf70c29958bf7a +https://conda.anaconda.org/conda-forge/noarch/pytest-8.3.4-pyhd8ed1ab_0.conda#ff8f2ef7f2636906b3781d0cf92388d0 https://conda.anaconda.org/conda-forge/noarch/python-dateutil-2.9.0.post0-pyhff2d567_0.conda#b6dfd90a2141e573e4b6a81630b56df5 -https://conda.anaconda.org/conda-forge/osx-64/cctools-1010.6-h5b2de21_1.conda#5a08ae55869b0b1eb7fbee910aa30d19 +https://conda.anaconda.org/conda-forge/osx-64/cctools-1010.6-h5b2de21_2.conda#97f24eeeb3509883a6988894fd7c9bbf https://conda.anaconda.org/conda-forge/osx-64/clang-17.0.6-default_he371ed4_7.conda#fd6888f26c44ddb10c9954a2df5765c7 https://conda.anaconda.org/conda-forge/osx-64/libblas-3.9.0-20_osx64_mkl.conda#160fdc97a51d66d51dc782fb67d35205 https://conda.anaconda.org/conda-forge/noarch/meson-python-0.17.1-pyh70fd9c4_0.conda#722b649da38842068d83b6e6770f11a1 diff --git a/build_tools/azure/pylatest_conda_mkl_no_openmp_osx-64_conda.lock b/build_tools/azure/pylatest_conda_mkl_no_openmp_osx-64_conda.lock index 55c991abb9cb0..7161a8b9ff14b 100644 --- a/build_tools/azure/pylatest_conda_mkl_no_openmp_osx-64_conda.lock +++ b/build_tools/azure/pylatest_conda_mkl_no_openmp_osx-64_conda.lock @@ -4,7 +4,7 @@ @EXPLICIT https://repo.anaconda.com/pkgs/main/osx-64/blas-1.0-mkl.conda#cb2c87e85ac8e0ceae776d26d4214c8a https://repo.anaconda.com/pkgs/main/osx-64/bzip2-1.0.8-h6c40b1e_6.conda#96224786021d0765ce05818fa3c59bdb -https://repo.anaconda.com/pkgs/main/osx-64/ca-certificates-2024.9.24-hecd8cb5_0.conda#12955a02cf8b8955d60a42140c507c87 +https://repo.anaconda.com/pkgs/main/osx-64/ca-certificates-2024.11.26-hecd8cb5_0.conda#c1b6397899ce957abf8d1e3428cd3bba https://repo.anaconda.com/pkgs/main/osx-64/jpeg-9e-h46256e1_3.conda#b1d9769eac428e11f5f922531a1da2e0 https://repo.anaconda.com/pkgs/main/osx-64/libbrotlicommon-1.0.9-h6c40b1e_8.conda#8e86dfa34b08bc664b19e1499e5465b8 https://repo.anaconda.com/pkgs/main/osx-64/libcxx-14.0.6-h9765a3e_0.conda#387757bb354ae9042370452cd0fb5627 @@ -66,18 +66,18 @@ https://repo.anaconda.com/pkgs/main/osx-64/pillow-11.0.0-py312h9c91434_0.conda#2 https://repo.anaconda.com/pkgs/main/osx-64/pip-24.2-py312hecd8cb5_0.conda#35119ef238299ccf29b25889fd466139 https://repo.anaconda.com/pkgs/main/osx-64/pytest-7.4.4-py312hecd8cb5_0.conda#d4dda983900b045cd27ae836cad670de https://repo.anaconda.com/pkgs/main/osx-64/python-dateutil-2.9.0post0-py312hecd8cb5_2.conda#1047dde28f78127dd9f6121e882926dd -https://repo.anaconda.com/pkgs/main/osx-64/pytest-cov-4.1.0-py312hecd8cb5_1.conda#a33a24eb20359f464938e75b2f57e23a -https://repo.anaconda.com/pkgs/main/osx-64/pytest-xdist-3.5.0-py312hecd8cb5_0.conda#d1ecfb3691cceecb1f16bcfdf0b67bb5 +https://repo.anaconda.com/pkgs/main/osx-64/pytest-cov-6.0.0-py312hecd8cb5_0.conda#db697e319a4d1145363246a51eef0352 +https://repo.anaconda.com/pkgs/main/osx-64/pytest-xdist-3.6.1-py312hecd8cb5_0.conda#38df9520774ee82bf143218f1271f936 https://repo.anaconda.com/pkgs/main/osx-64/bottleneck-1.4.2-py312ha2b695f_0.conda#7efb63b6a5b33829a3b2c7a3efcf53ce -https://repo.anaconda.com/pkgs/main/osx-64/contourpy-1.2.0-py312ha357a0b_0.conda#57d384ad07152375b40a6293f79e3f0c -https://repo.anaconda.com/pkgs/main/osx-64/matplotlib-3.9.2-py312hecd8cb5_0.conda#4a0c6fbe79aefa058fddc09690772afa -https://repo.anaconda.com/pkgs/main/osx-64/matplotlib-base-3.9.2-py312ha7ebc0d_0.conda#a5396c401f535238325577ab702ac32a +https://repo.anaconda.com/pkgs/main/osx-64/contourpy-1.3.1-py312h1962661_0.conda#41499d3a415721b0514f0cccb8288cb1 +https://repo.anaconda.com/pkgs/main/osx-64/matplotlib-3.9.2-py312hecd8cb5_1.conda#7a945072ef95437bc65ca5fb5666c45f +https://repo.anaconda.com/pkgs/main/osx-64/matplotlib-base-3.9.2-py312h919b35b_1.conda#263180911eb374703ebbbae0cf828d77 https://repo.anaconda.com/pkgs/main/osx-64/mkl_fft-1.3.8-py312h6c40b1e_0.conda#d59d01b940493f2b6a84aac922fd0c76 https://repo.anaconda.com/pkgs/main/osx-64/mkl_random-1.2.4-py312ha357a0b_0.conda#c1ea9c8eee79a5af3399f3c31be0e9c6 https://repo.anaconda.com/pkgs/main/osx-64/numpy-1.26.4-py312hac873b0_0.conda#3150bac1e382156f82a153229e1ebd06 https://repo.anaconda.com/pkgs/main/osx-64/numexpr-2.8.7-py312hac873b0_0.conda#6303ba071636ef57fddf69eb6f440ec1 https://repo.anaconda.com/pkgs/main/osx-64/scipy-1.11.4-py312h81688c2_0.conda#7d57b4c21a9261f97fa511e0940c5d93 -https://repo.anaconda.com/pkgs/main/osx-64/pandas-2.2.2-py312h77d3abe_0.conda#463868c40d8ff98bec263f1fd57a8d97 +https://repo.anaconda.com/pkgs/main/osx-64/pandas-2.2.3-py312h6d0c2b6_0.conda#84ce5b8ec4a986d13a5df17811f556a2 https://repo.anaconda.com/pkgs/main/osx-64/pyamg-4.2.3-py312h44cbcf4_0.conda#3bdc7be74087b3a5a83c520a74e1e8eb # pip cython @ https://files.pythonhosted.org/packages/58/50/fbb23239efe2183e4eaf76689270d6f5b3bbcf9be9ad1eb97cc34349e6fc/Cython-3.0.11-cp312-cp312-macosx_10_9_x86_64.whl#sha256=11996c40c32abf843ba652a6d53cb15944c88d91f91fc4e6f0028f5df8a8f8a1 # pip meson @ https://files.pythonhosted.org/packages/76/73/3dc4edc855c9988ff05ea5590f5c7bda72b6e0d138b2ddc1fab92a1f242f/meson-1.6.0-py3-none-any.whl#sha256=234a45f9206c6ee33b473ec1baaef359d20c0b89a71871d58c65a6db6d98fe74 diff --git a/build_tools/azure/pylatest_pip_openblas_pandas_linux-64_conda.lock b/build_tools/azure/pylatest_pip_openblas_pandas_linux-64_conda.lock index 48e52ea831ffd..2a92c51911ff7 100644 --- a/build_tools/azure/pylatest_pip_openblas_pandas_linux-64_conda.lock +++ b/build_tools/azure/pylatest_pip_openblas_pandas_linux-64_conda.lock @@ -3,7 +3,7 @@ # input_hash: 893e5f90e655d6606d6b7e308c1099125012b25c3444b5a4240d44b184531e00 @EXPLICIT https://repo.anaconda.com/pkgs/main/linux-64/_libgcc_mutex-0.1-main.conda#c3473ff8bdb3d124ed5ff11ec380d6f9 -https://repo.anaconda.com/pkgs/main/linux-64/ca-certificates-2024.9.24-h06a4308_0.conda#e4369d7b4b0707ee0765794d14710e2e +https://repo.anaconda.com/pkgs/main/linux-64/ca-certificates-2024.11.26-h06a4308_0.conda#cebd61e6520159a1315d679321620f6c https://repo.anaconda.com/pkgs/main/linux-64/ld_impl_linux-64-2.40-h12ee557_0.conda#ee672b5f635340734f58d618b7bca024 https://repo.anaconda.com/pkgs/main/noarch/tzdata-2024b-h04d1e81_0.conda#9be694715c6a65f9631bb1b242125e9d https://repo.anaconda.com/pkgs/main/linux-64/libgomp-11.2.0-h1234567_1.conda#b372c0eea9b60732fdae4b817a63c8cd @@ -66,17 +66,17 @@ https://repo.anaconda.com/pkgs/main/linux-64/pip-24.2-py311h06a4308_0.conda#eff3 # pip urllib3 @ https://files.pythonhosted.org/packages/ce/d9/5f4c13cecde62396b0d3fe530a50ccea91e7dfc1ccf0e09c228841bb5ba8/urllib3-2.2.3-py3-none-any.whl#sha256=ca899ca043dcb1bafa3e262d73aa25c465bfb49e0bd9dd5d59f1d0acba2f8fac # pip array-api-strict @ https://files.pythonhosted.org/packages/9a/c2/a202399e3aa2e62aa15669fc95fdd7a5d63240cbf8695962c747f915a083/array_api_strict-2.2-py3-none-any.whl#sha256=577cfce66bf69701cefea85bc14b9e49e418df767b6b178bd93d22f1c1962d59 # pip contourpy @ https://files.pythonhosted.org/packages/85/fc/7fa5d17daf77306840a4e84668a48ddff09e6bc09ba4e37e85ffc8e4faa3/contourpy-1.3.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl#sha256=3a04ecd68acbd77fa2d39723ceca4c3197cb2969633836ced1bea14e219d077c -# pip imageio @ https://files.pythonhosted.org/packages/4e/e7/26045404a30c8a200e960fb54fbaf4b73d12e58cd28e03b306b084253f4f/imageio-2.36.0-py3-none-any.whl#sha256=471f1eda55618ee44a3c9960911c35e647d9284c68f077e868df633398f137f0 +# pip imageio @ https://files.pythonhosted.org/packages/5c/f9/f78e7f5ac8077c481bf6b43b8bc736605363034b3d5eb3ce8eb79f53f5f1/imageio-2.36.1-py3-none-any.whl#sha256=20abd2cae58e55ca1af8a8dcf43293336a59adf0391f1917bf8518633cfc2cdf # pip jinja2 @ https://files.pythonhosted.org/packages/31/80/3a54838c3fb461f6fec263ebf3a3a41771bd05190238de3486aae8540c36/jinja2-3.1.4-py3-none-any.whl#sha256=bc5dd2abb727a5319567b7a813e6a2e7318c39f4f487cfe6c89c6f9c7d25197d # pip lazy-loader @ https://files.pythonhosted.org/packages/83/60/d497a310bde3f01cb805196ac61b7ad6dc5dcf8dce66634dc34364b20b4f/lazy_loader-0.4-py3-none-any.whl#sha256=342aa8e14d543a154047afb4ba8ef17f5563baad3fc610d7b15b213b0f119efc # pip pyproject-metadata @ https://files.pythonhosted.org/packages/e8/61/9dd3e68d2b6aa40a5fc678662919be3c3a7bf22cba5a6b4437619b77e156/pyproject_metadata-0.9.0-py3-none-any.whl#sha256=fc862aab066a2e87734333293b0af5845fe8ac6cb69c451a41551001e923be0b -# pip pytest @ https://files.pythonhosted.org/packages/6b/77/7440a06a8ead44c7757a64362dd22df5760f9b12dc5f11b6188cd2fc27a0/pytest-8.3.3-py3-none-any.whl#sha256=a6853c7375b2663155079443d2e45de913a911a11d669df02a50814944db57b2 +# pip pytest @ https://files.pythonhosted.org/packages/11/92/76a1c94d3afee238333bc0a42b82935dd8f9cf8ce9e336ff87ee14d9e1cf/pytest-8.3.4-py3-none-any.whl#sha256=50e16d954148559c9a74109af1eaf0c945ba2d8f30f0a3d3335edde19788b6f6 # pip python-dateutil @ https://files.pythonhosted.org/packages/ec/57/56b9bcc3c9c6a792fcbaf139543cee77261f3651ca9da0c93f5c1221264b/python_dateutil-2.9.0.post0-py2.py3-none-any.whl#sha256=a8b2bc7bffae282281c8140a97d3aa9c14da0b136dfe83f850eea9a5f7470427 # pip requests @ https://files.pythonhosted.org/packages/f9/9b/335f9764261e915ed497fcdeb11df5dfd6f7bf257d4a6a2a686d80da4d54/requests-2.32.3-py3-none-any.whl#sha256=70761cfe03c773ceb22aa2f671b4757976145175cdfca038c02654d061d6dcc6 # pip scipy @ https://files.pythonhosted.org/packages/93/6b/701776d4bd6bdd9b629c387b5140f006185bd8ddea16788a44434376b98f/scipy-1.14.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl#sha256=fef8c87f8abfb884dac04e97824b61299880c43f4ce675dd2cbeadd3c9b466d2 # pip tifffile @ https://files.pythonhosted.org/packages/50/0a/435d5d7ec64d1c8b422ac9ebe42d2f3b2ac0b3f8a56f5c04dd0f3b7ba83c/tifffile-2024.9.20-py3-none-any.whl#sha256=c54dc85bc1065d972cb8a6ffb3181389d597876aa80177933459733e4ed243dd # pip lightgbm @ https://files.pythonhosted.org/packages/4e/19/1b928cad70a4e1a3e2c37d5417ca2182510f2451eaadb6c91cd9ec692cae/lightgbm-4.5.0-py3-none-manylinux_2_28_x86_64.whl#sha256=960a0e7c077de0ca3053f1325d3edfc92ea815acf5176adcacdea0f635aeef9b -# pip matplotlib @ https://files.pythonhosted.org/packages/01/75/6c7ce560e95714a10fcbb3367d1304975a1a3e620f72af28921b796403f3/matplotlib-3.9.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl#sha256=8912ef7c2362f7193b5819d17dae8629b34a95c58603d781329712ada83f9447 +# pip matplotlib @ https://files.pythonhosted.org/packages/13/53/b178d51478109f7a700edc94757dd07112e9a0c7a158653b99434b74f9fb/matplotlib-3.9.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl#sha256=d3c93796b44fa111049b88a24105e947f03c01966b5c0cc782e2ee3887b790a3 # pip meson-python @ https://files.pythonhosted.org/packages/7d/ec/40c0ddd29ef4daa6689a2b9c5ced47d5b58fa54ae149b19e9a97f4979c8c/meson_python-0.17.1-py3-none-any.whl#sha256=30a75c52578ef14aff8392677b09c39346e0a24d2b2c6204b8ed30583c11269c # pip pandas @ https://files.pythonhosted.org/packages/cd/5f/4dba1d39bb9c38d574a9a22548c540177f78ea47b32f99c0ff2ec499fac5/pandas-2.2.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl#sha256=c124333816c3a9b03fbeef3a9f230ba9a737e9e5bb4060aa2107a86cc0a497fc # pip pyamg @ https://files.pythonhosted.org/packages/d3/e8/6898b3b791f369605012e896ed903b6626f3bd1208c6a647d7219c070209/pyamg-5.2.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl#sha256=679a5904eac3a4880288c8c0e6a29f110a2627ea15a443a4e9d5997c7dc5fab6 diff --git a/build_tools/azure/pymin_conda_forge_mkl_win-64_conda.lock b/build_tools/azure/pymin_conda_forge_mkl_win-64_conda.lock index ed7dc04952413..b076814e47afa 100644 --- a/build_tools/azure/pymin_conda_forge_mkl_win-64_conda.lock +++ b/build_tools/azure/pymin_conda_forge_mkl_win-64_conda.lock @@ -38,7 +38,6 @@ https://conda.anaconda.org/conda-forge/win-64/ninja-1.12.1-hc790b64_0.conda#a557 https://conda.anaconda.org/conda-forge/win-64/openssl-3.4.0-h2466b09_0.conda#d0d805d9b5524a14efb51b3bff965e83 https://conda.anaconda.org/conda-forge/win-64/pixman-0.43.4-h63175ca_0.conda#b98135614135d5f458b75ab9ebb9558c https://conda.anaconda.org/conda-forge/win-64/qhull-2020.2-hc790b64_5.conda#854fbdff64b572b5c0b470f334d34c11 -https://conda.anaconda.org/conda-forge/win-64/tbb-2021.7.0-h91493d7_0.tar.bz2#f57be598137919e4f7e7d159960d66a1 https://conda.anaconda.org/conda-forge/win-64/tk-8.6.13-h5226925_1.conda#fc048363eb8f03cd1737600a5d08aafe https://conda.anaconda.org/conda-forge/win-64/xz-5.2.6-h8d14728_0.tar.bz2#515d77642eaa3639413c6b1bc3f94219 https://conda.anaconda.org/conda-forge/win-64/krb5-1.21.3-hdf4eb48_0.conda#31aec030344e962fbd7dbbbbd68e60a9 @@ -48,7 +47,6 @@ https://conda.anaconda.org/conda-forge/win-64/libgcc-14.2.0-h1383e82_1.conda#75f https://conda.anaconda.org/conda-forge/win-64/libintl-0.22.5-h5728263_3.conda#2cf0cf76cc15d360dfa2f17fd6cf9772 https://conda.anaconda.org/conda-forge/win-64/libpng-1.6.44-h3ca93ac_0.conda#639ac6b55a40aa5de7b8c1b4d78f9e81 https://conda.anaconda.org/conda-forge/win-64/libxml2-2.13.5-h442d1da_0.conda#1fbabbec60a3c7c519a5973b06c3b2f4 -https://conda.anaconda.org/conda-forge/win-64/mkl-2024.2.2-h66d3029_14.conda#f011e7cc21918dc9d1efe0209e27fa16 https://conda.anaconda.org/conda-forge/win-64/pcre2-10.44-h3d7b363_2.conda#a3a3baddcfb8c80db84bec3cb7746fb8 https://conda.anaconda.org/conda-forge/win-64/python-3.9.20-hfaddaf0_1_cpython.conda#445389d1d311435a90def248c814ddd6 https://conda.anaconda.org/conda-forge/win-64/zlib-1.3.1-h2466b09_2.conda#be60c4e8efa55fddc17b4131aa47acbd @@ -63,60 +61,63 @@ https://conda.anaconda.org/conda-forge/noarch/execnet-2.1.1-pyhd8ed1ab_0.conda#1 https://conda.anaconda.org/conda-forge/win-64/freetype-2.12.1-hdaf720e_2.conda#3761b23693f768dc75a8fd0a73ca053f https://conda.anaconda.org/conda-forge/noarch/iniconfig-2.0.0-pyhd8ed1ab_0.conda#f800d2da156d08e289b14e87e43c1ae5 https://conda.anaconda.org/conda-forge/win-64/kiwisolver-1.4.7-py39h2b77a98_0.conda#c116c25e2e36f770f065559ad2a1da73 -https://conda.anaconda.org/conda-forge/win-64/libblas-3.9.0-25_win64_mkl.conda#499208e81242efb6e5abc7366c91c816 https://conda.anaconda.org/conda-forge/win-64/libclang13-19.1.4-default_ha5278ca_0.conda#6acaf8464e71abf0713a030e0eba8317 https://conda.anaconda.org/conda-forge/win-64/libgfortran5-14.2.0-hf020157_1.conda#294a5033b744648a2ba816b34ffd810a https://conda.anaconda.org/conda-forge/win-64/libglib-2.82.2-h7025463_0.conda#3e379c1b908a7101ecbc503def24613f +https://conda.anaconda.org/conda-forge/win-64/libhwloc-2.11.2-default_ha69328c_1001.conda#b87a0ac5ab6495d8225db5dc72dd21cd https://conda.anaconda.org/conda-forge/win-64/libtiff-4.7.0-hfc51747_1.conda#eac317ed1cc6b9c0af0c27297e364665 https://conda.anaconda.org/conda-forge/win-64/libxslt-1.1.39-h3df6e99_0.conda#279ee338c9b34871d578cb3c7aa68f70 -https://conda.anaconda.org/conda-forge/win-64/mkl-devel-2024.2.2-h57928b3_14.conda#ecc2c244eff5cb6289b6db5e0401c0aa https://conda.anaconda.org/conda-forge/noarch/munkres-1.1.4-pyh9f0ad1d_0.tar.bz2#2ba8498c1018c1e9c61eb99b973dfe19 https://conda.anaconda.org/conda-forge/noarch/packaging-24.2-pyhff2d567_1.conda#8508b703977f4c4ada34d657d051972c https://conda.anaconda.org/conda-forge/noarch/pluggy-1.5.0-pyhd8ed1ab_0.conda#d3483c8fc2dc2cc3f5cf43e26d60cabf https://conda.anaconda.org/conda-forge/win-64/pthread-stubs-0.4-h0e40799_1002.conda#3c8f2573569bb816483e5cf57efbbe29 https://conda.anaconda.org/conda-forge/noarch/pyparsing-3.2.0-pyhd8ed1ab_1.conda#035c17fbf099f50ff60bf2eb303b0a83 -https://conda.anaconda.org/conda-forge/noarch/setuptools-75.6.0-pyhff2d567_0.conda#68d7d406366926b09a6a023e3d0f71d7 +https://conda.anaconda.org/conda-forge/noarch/setuptools-75.6.0-pyhff2d567_1.conda#fc80f7995e396cbaeabd23cf46c413dc https://conda.anaconda.org/conda-forge/noarch/six-1.16.0-pyh6c4a22f_0.tar.bz2#e5f25f8dbc060e9a8d912e432202afc2 https://conda.anaconda.org/conda-forge/noarch/threadpoolctl-3.5.0-pyhc1e730c_0.conda#df68d78237980a159bd7149f33c0e8fd https://conda.anaconda.org/conda-forge/noarch/toml-0.10.2-pyhd8ed1ab_0.tar.bz2#f832c45a477c78bebd107098db465095 -https://conda.anaconda.org/conda-forge/noarch/tomli-2.1.0-pyhff2d567_0.conda#3fa1089b4722df3a900135925f4519d9 -https://conda.anaconda.org/conda-forge/win-64/tornado-6.4.1-py39ha55e580_1.conda#4a93d22ed5b2cede80fbee7f7f775a9d +https://conda.anaconda.org/conda-forge/noarch/tomli-2.2.1-pyhd8ed1ab_0.conda#ee8ab0fe4c8dfc5a6319f7f8246022fc +https://conda.anaconda.org/conda-forge/win-64/tornado-6.4.2-py39ha55e580_0.conda#96e4fc4c6aaaa23d99bf1ed008e7b1e1 https://conda.anaconda.org/conda-forge/win-64/unicodedata2-15.1.0-py39ha55e580_1.conda#7b7e5732092b9a635440ec939e45651d https://conda.anaconda.org/conda-forge/noarch/wheel-0.45.1-pyhd8ed1ab_0.conda#bdb2f437ce62fd2f1fef9119a37a12d9 https://conda.anaconda.org/conda-forge/win-64/xorg-libxau-1.0.11-h0e40799_1.conda#ca66d6f8fe86dd53664e8de5087ef6b1 https://conda.anaconda.org/conda-forge/win-64/xorg-libxdmcp-1.1.5-h0e40799_0.conda#8393c0f7e7870b4eb45553326f81f0ff -https://conda.anaconda.org/conda-forge/noarch/zipp-3.21.0-pyhd8ed1ab_0.conda#fee389bf8a4843bd7a2248ce11b7f188 +https://conda.anaconda.org/conda-forge/noarch/zipp-3.21.0-pyhd8ed1ab_1.conda#0c3cc595284c5e8f0f9900a9b228a332 https://conda.anaconda.org/conda-forge/win-64/brotli-1.1.0-h2466b09_2.conda#378f1c9421775dfe644731cb121c8979 https://conda.anaconda.org/conda-forge/win-64/coverage-7.6.8-py39hf73967f_0.conda#99c682c1bde1e5661ad0af5c32710330 https://conda.anaconda.org/conda-forge/win-64/fontconfig-2.15.0-h765892d_1.conda#9bb0026a2131b09404c59c4290c697cd https://conda.anaconda.org/conda-forge/noarch/importlib_resources-6.4.5-pyhd8ed1ab_0.conda#c808991d29b9838fb4d96ce8267ec9ec https://conda.anaconda.org/conda-forge/noarch/joblib-1.4.2-pyhd8ed1ab_0.conda#25df261d4523d9f9783bcdb7208d872f https://conda.anaconda.org/conda-forge/win-64/lcms2-2.16-h67d730c_0.conda#d3592435917b62a8becff3a60db674f6 -https://conda.anaconda.org/conda-forge/win-64/libcblas-3.9.0-25_win64_mkl.conda#3ed189ba03a9888a8013aaee0d67c49d https://conda.anaconda.org/conda-forge/win-64/libgfortran-14.2.0-h719f0c7_1.conda#bd709ec903eeb030208c78e4c35691d6 -https://conda.anaconda.org/conda-forge/win-64/liblapack-3.9.0-25_win64_mkl.conda#f716ef84564c574e8e74ae725f5d5f93 https://conda.anaconda.org/conda-forge/win-64/libxcb-1.17.0-h0e4246c_0.conda#a69bbf778a462da324489976c84cfc8c https://conda.anaconda.org/conda-forge/noarch/meson-1.6.0-pyhd8ed1ab_0.conda#380ba6a3eddd8e7649bfe8e6812611aa https://conda.anaconda.org/conda-forge/win-64/openjpeg-2.5.2-h3d672ee_0.conda#7e7099ad94ac3b599808950cec30ad4e https://conda.anaconda.org/conda-forge/noarch/pip-24.3.1-pyh8b19718_0.conda#5dd546fe99b44fda83963d15f84263b7 https://conda.anaconda.org/conda-forge/noarch/pyproject-metadata-0.9.0-pyh2cfa8aa_0.conda#10906a130eeb4a68645bf97c28333141 -https://conda.anaconda.org/conda-forge/noarch/pytest-8.3.3-pyhd8ed1ab_0.conda#c03d61f31f38fdb9facf70c29958bf7a +https://conda.anaconda.org/conda-forge/noarch/pytest-8.3.4-pyhd8ed1ab_0.conda#ff8f2ef7f2636906b3781d0cf92388d0 https://conda.anaconda.org/conda-forge/noarch/python-dateutil-2.9.0.post0-pyhff2d567_0.conda#b6dfd90a2141e573e4b6a81630b56df5 +https://conda.anaconda.org/conda-forge/win-64/tbb-2021.13.0-h62715c5_1.conda#9190dd0a23d925f7602f9628b3aed511 https://conda.anaconda.org/conda-forge/win-64/cairo-1.18.0-h32b962e_3.conda#8f43723a4925c51e55c2d81725a97db4 https://conda.anaconda.org/conda-forge/win-64/fonttools-4.55.0-py39hf73967f_0.conda#ec6d6a149d4e18a07f4bb959f68c4961 https://conda.anaconda.org/conda-forge/noarch/importlib-resources-6.4.5-pyhd8ed1ab_0.conda#67f4772681cf86652f3e2261794cf045 -https://conda.anaconda.org/conda-forge/win-64/liblapacke-3.9.0-25_win64_mkl.conda#d59fc46f1e1c2f3cf38a08a0a76ffee5 https://conda.anaconda.org/conda-forge/noarch/meson-python-0.17.1-pyh70fd9c4_0.conda#722b649da38842068d83b6e6770f11a1 -https://conda.anaconda.org/conda-forge/win-64/numpy-2.0.2-py39h60232e0_1.conda#d8801e13476c0ae89e410307fbc5a612 +https://conda.anaconda.org/conda-forge/win-64/mkl-2024.2.2-h66d3029_14.conda#f011e7cc21918dc9d1efe0209e27fa16 https://conda.anaconda.org/conda-forge/win-64/pillow-11.0.0-py39h5ee314c_0.conda#0c57206c5215a7e56414ce0332805226 https://conda.anaconda.org/conda-forge/noarch/pytest-cov-6.0.0-pyhd8ed1ab_0.conda#cb8a11b6d209e3d85e5094bdbd9ebd9c https://conda.anaconda.org/conda-forge/noarch/pytest-xdist-3.6.1-pyhd8ed1ab_0.conda#b39568655c127a9c4a44d178ac99b6d0 +https://conda.anaconda.org/conda-forge/win-64/harfbuzz-9.0.0-h2bedf89_1.conda#254f119aaed2c0be271c1114ae18d09b +https://conda.anaconda.org/conda-forge/win-64/libblas-3.9.0-25_win64_mkl.conda#499208e81242efb6e5abc7366c91c816 +https://conda.anaconda.org/conda-forge/win-64/mkl-devel-2024.2.2-h57928b3_14.conda#ecc2c244eff5cb6289b6db5e0401c0aa +https://conda.anaconda.org/conda-forge/win-64/libcblas-3.9.0-25_win64_mkl.conda#3ed189ba03a9888a8013aaee0d67c49d +https://conda.anaconda.org/conda-forge/win-64/liblapack-3.9.0-25_win64_mkl.conda#f716ef84564c574e8e74ae725f5d5f93 +https://conda.anaconda.org/conda-forge/win-64/qt6-main-6.8.0-hfb098fa_0.conda#053046ca73b71bbcc81c6dc114264d24 +https://conda.anaconda.org/conda-forge/win-64/liblapacke-3.9.0-25_win64_mkl.conda#d59fc46f1e1c2f3cf38a08a0a76ffee5 +https://conda.anaconda.org/conda-forge/win-64/numpy-2.0.2-py39h60232e0_1.conda#d8801e13476c0ae89e410307fbc5a612 +https://conda.anaconda.org/conda-forge/win-64/pyside6-6.8.0.2-py39h0285922_0.conda#07b75557409b6bdbaf723b1bc020afb5 https://conda.anaconda.org/conda-forge/win-64/blas-devel-3.9.0-25_win64_mkl.conda#b3c40599e865dac087085b596fbbf4ad https://conda.anaconda.org/conda-forge/win-64/contourpy-1.3.0-py39h2b77a98_2.conda#37f8619ee96710220ead6bb386b9b24b -https://conda.anaconda.org/conda-forge/win-64/harfbuzz-9.0.0-h2bedf89_1.conda#254f119aaed2c0be271c1114ae18d09b https://conda.anaconda.org/conda-forge/win-64/scipy-1.13.1-py39h1a10956_0.conda#9f8e571406af04d2f5fdcbecec704505 https://conda.anaconda.org/conda-forge/win-64/blas-2.125-mkl.conda#186eeb4e8ba0a5944775e04f241fc02a https://conda.anaconda.org/conda-forge/win-64/matplotlib-base-3.9.2-py39h5376392_2.conda#2b323077fcb629f959cc42ad95b08030 -https://conda.anaconda.org/conda-forge/win-64/qt6-main-6.8.0-hfb098fa_0.conda#053046ca73b71bbcc81c6dc114264d24 -https://conda.anaconda.org/conda-forge/win-64/pyside6-6.8.0.2-py39h0285922_0.conda#07b75557409b6bdbaf723b1bc020afb5 https://conda.anaconda.org/conda-forge/win-64/matplotlib-3.9.2-py39hcbf5309_2.conda#669eb0180a4fa05503738dc02f9e3228 diff --git a/build_tools/azure/pymin_conda_forge_openblas_min_dependencies_linux-64_conda.lock b/build_tools/azure/pymin_conda_forge_openblas_min_dependencies_linux-64_conda.lock index 6abdc8c5b72fe..f398c6d3f61f5 100644 --- a/build_tools/azure/pymin_conda_forge_openblas_min_dependencies_linux-64_conda.lock +++ b/build_tools/azure/pymin_conda_forge_openblas_min_dependencies_linux-64_conda.lock @@ -71,7 +71,7 @@ https://conda.anaconda.org/conda-forge/linux-64/libasprintf-0.22.5-he8f35ee_3.co https://conda.anaconda.org/conda-forge/linux-64/libcap-2.69-h0f662aa_0.conda#25cb5999faa414e5ccb2c1388f62d3d5 https://conda.anaconda.org/conda-forge/linux-64/libdrm-2.4.123-hb9d3cd8_0.conda#ee605e794bdc14e2b7f84c4faa0d8c2c https://conda.anaconda.org/conda-forge/linux-64/libedit-3.1.20191231-he28a2e2_2.tar.bz2#4d331e44109e3f0e19b4cb8f9b82f3e1 -https://conda.anaconda.org/conda-forge/linux-64/libgcrypt-1.11.0-h4ab18f5_1.conda#14858a47d4cc995892e79f2b340682d7 +https://conda.anaconda.org/conda-forge/linux-64/libgcrypt-lib-1.11.0-hb9d3cd8_2.conda#e55712ff40a054134d51b89afca57dbc https://conda.anaconda.org/conda-forge/linux-64/libgettextpo-devel-0.22.5-he02047a_3.conda#9aba7960731e6b4547b3a52f812ed801 https://conda.anaconda.org/conda-forge/linux-64/libgfortran-ng-14.2.0-h69a702a_1.conda#0a7f4cd238267c88e5d69f7826a407eb https://conda.anaconda.org/conda-forge/linux-64/libvorbis-1.3.7-h9c3ff4c_0.tar.bz2#309dec04b70a3cc0f1e84a4013683bc0 @@ -91,11 +91,12 @@ https://conda.anaconda.org/conda-forge/linux-64/zstd-1.5.6-ha6fb4c9_0.conda#4d05 https://conda.anaconda.org/conda-forge/linux-64/fontconfig-2.15.0-h7e30c49_1.conda#8f5b0b297b59e1ac160ad4beec99dbee https://conda.anaconda.org/conda-forge/linux-64/krb5-1.21.3-h659f571_0.conda#3f43953b7d3fb3aaa1d0d0723d91e368 https://conda.anaconda.org/conda-forge/linux-64/libasprintf-devel-0.22.5-he8f35ee_3.conda#1091193789bb830127ed067a9e01ac57 +https://conda.anaconda.org/conda-forge/linux-64/libgcrypt-devel-1.11.0-hb9d3cd8_2.conda#bf888b6a37286e9ae3749a114f878a6e +https://conda.anaconda.org/conda-forge/linux-64/libgcrypt-tools-1.11.0-hb9d3cd8_2.conda#342389a8c9eef45fd8bb144b7522e28d https://conda.anaconda.org/conda-forge/linux-64/libglib-2.82.2-h2ff4ddf_0.conda#13e8e54035ddd2b91875ba399f0f7c04 https://conda.anaconda.org/conda-forge/linux-64/libglx-1.7.0-ha4b6fd6_2.conda#c8013e438185f33b13814c5c488acd5c https://conda.anaconda.org/conda-forge/linux-64/libhiredis-1.0.2-h2cc385e_0.tar.bz2#b34907d3a81a3cd8095ee83d174c074a https://conda.anaconda.org/conda-forge/linux-64/libopenblas-0.3.25-pthreads_h413a1c8_0.conda#d172b34a443b95f86089e8229ddc9a17 -https://conda.anaconda.org/conda-forge/linux-64/libsystemd0-256.7-h2774228_1.conda#ad328c530a12a8798776e5f03942090f https://conda.anaconda.org/conda-forge/linux-64/libtiff-4.7.0-he137b08_1.conda#63872517c98aa305da58a757c443698e https://conda.anaconda.org/conda-forge/linux-64/libxml2-2.13.5-hb346dea_0.conda#c81a9f1118541aaa418ccb22190c817e https://conda.anaconda.org/conda-forge/linux-64/mysql-libs-9.0.1-he0572af_2.conda#57a9e7ee3c0840d3c8c9012473978629 @@ -121,8 +122,9 @@ https://conda.anaconda.org/conda-forge/linux-64/kiwisolver-1.4.7-py39h74842e3_0. https://conda.anaconda.org/conda-forge/linux-64/lcms2-2.16-hb7c19ff_0.conda#51bb7010fc86f70eee639b4bb7a894f5 https://conda.anaconda.org/conda-forge/linux-64/libblas-3.9.0-20_linux64_openblas.conda#2b7bb4f7562c8cf334fc2e20c2d28abc https://conda.anaconda.org/conda-forge/linux-64/libcups-2.3.3-h4637d8d_4.conda#d4529f4dff3057982a7617c7ac58fde3 +https://conda.anaconda.org/conda-forge/linux-64/libgcrypt-1.11.0-ha770c72_2.conda#92aaf7c067a5e63ac7f035bbd8864415 https://conda.anaconda.org/conda-forge/linux-64/libgl-1.7.0-ha4b6fd6_2.conda#928b8be80851f5d8ffb016f9c81dae7a -https://conda.anaconda.org/conda-forge/linux-64/libllvm19-19.1.4-ha7bfdaf_0.conda#5f7d7eabf470bc56903b18f169f4f784 +https://conda.anaconda.org/conda-forge/linux-64/libllvm19-19.1.4-ha7bfdaf_1.conda#886acc67bcba28a5c6b429aad2f057ce https://conda.anaconda.org/conda-forge/linux-64/libpq-16.6-h2d7952a_0.conda#7fa1f554b760a2d6018ecc673fb73f6c https://conda.anaconda.org/conda-forge/linux-64/libxkbcommon-1.7.0-h2c5496b_1.conda#e2eaefa4de2b7237af7c907b8bbc760a https://conda.anaconda.org/conda-forge/linux-64/openblas-0.3.25-pthreads_h7a3da1a_0.conda#87661673941b5e702275fdf0fc095ad0 @@ -136,8 +138,8 @@ https://conda.anaconda.org/conda-forge/linux-64/setuptools-59.8.0-py39hf3d152e_1 https://conda.anaconda.org/conda-forge/noarch/six-1.16.0-pyh6c4a22f_0.tar.bz2#e5f25f8dbc060e9a8d912e432202afc2 https://conda.anaconda.org/conda-forge/noarch/threadpoolctl-3.1.0-pyh8a188c0_0.tar.bz2#a2995ee828f65687ac5b1e71a2ab1e0c https://conda.anaconda.org/conda-forge/noarch/toml-0.10.2-pyhd8ed1ab_0.tar.bz2#f832c45a477c78bebd107098db465095 -https://conda.anaconda.org/conda-forge/noarch/tomli-2.1.0-pyhff2d567_0.conda#3fa1089b4722df3a900135925f4519d9 -https://conda.anaconda.org/conda-forge/linux-64/tornado-6.4.1-py39h8cd3c5a_1.conda#48d269953fcddbbcde078429d4b27afe +https://conda.anaconda.org/conda-forge/noarch/tomli-2.2.1-pyhd8ed1ab_0.conda#ee8ab0fe4c8dfc5a6319f7f8246022fc +https://conda.anaconda.org/conda-forge/linux-64/tornado-6.4.2-py39h8cd3c5a_0.conda#ebfd05ae1501660e995a8b6bbe02a391 https://conda.anaconda.org/conda-forge/noarch/typing_extensions-4.12.2-pyha770c72_0.conda#ebe6952715e1d5eb567eeebf25250fa7 https://conda.anaconda.org/conda-forge/noarch/wheel-0.45.1-pyhd8ed1ab_0.conda#bdb2f437ce62fd2f1fef9119a37a12d9 https://conda.anaconda.org/conda-forge/linux-64/xorg-libxdamage-1.1.6-hb9d3cd8_0.conda#b5fcc7172d22516e1f965490e65e33a4 @@ -151,11 +153,12 @@ https://conda.anaconda.org/conda-forge/linux-64/libclang-cpp19.1-19.1.4-default_ https://conda.anaconda.org/conda-forge/linux-64/libclang13-19.1.4-default_h9c6a7e4_0.conda#6c450adae455c7d648856e8b0cfcebd6 https://conda.anaconda.org/conda-forge/linux-64/libflac-1.4.3-h59595ed_0.conda#ee48bf17cc83a00f59ca1494d5646869 https://conda.anaconda.org/conda-forge/linux-64/liblapack-3.9.0-20_linux64_openblas.conda#6fabc51f5e647d09cc010c40061557e0 +https://conda.anaconda.org/conda-forge/linux-64/libsystemd0-256.7-h2774228_1.conda#ad328c530a12a8798776e5f03942090f https://conda.anaconda.org/conda-forge/noarch/meson-1.6.0-pyhd8ed1ab_0.conda#380ba6a3eddd8e7649bfe8e6812611aa https://conda.anaconda.org/conda-forge/linux-64/pillow-11.0.0-py39h538c539_0.conda#a2bafdf8ae51c9eb6e5be684cfcedd60 https://conda.anaconda.org/conda-forge/noarch/pip-24.3.1-pyh8b19718_0.conda#5dd546fe99b44fda83963d15f84263b7 https://conda.anaconda.org/conda-forge/noarch/pyproject-metadata-0.9.0-pyh2cfa8aa_0.conda#10906a130eeb4a68645bf97c28333141 -https://conda.anaconda.org/conda-forge/noarch/pytest-8.3.3-pyhd8ed1ab_0.conda#c03d61f31f38fdb9facf70c29958bf7a +https://conda.anaconda.org/conda-forge/noarch/pytest-8.3.4-pyhd8ed1ab_0.conda#ff8f2ef7f2636906b3781d0cf92388d0 https://conda.anaconda.org/conda-forge/noarch/python-dateutil-2.9.0.post0-pyhff2d567_0.conda#b6dfd90a2141e573e4b6a81630b56df5 https://conda.anaconda.org/conda-forge/linux-64/sip-6.7.12-py39h3d6467e_0.conda#e667a3ab0df62c54e60e1843d2e6defb https://conda.anaconda.org/conda-forge/linux-64/gstreamer-1.24.7-hf3bb09a_0.conda#c78bc4ef0afb3cd2365d9973c71fc876 diff --git a/build_tools/azure/pymin_conda_forge_openblas_ubuntu_2204_linux-64_conda.lock b/build_tools/azure/pymin_conda_forge_openblas_ubuntu_2204_linux-64_conda.lock index 62c33e1ea96b9..b5de914ff76db 100644 --- a/build_tools/azure/pymin_conda_forge_openblas_ubuntu_2204_linux-64_conda.lock +++ b/build_tools/azure/pymin_conda_forge_openblas_ubuntu_2204_linux-64_conda.lock @@ -122,7 +122,7 @@ https://conda.anaconda.org/conda-forge/linux-64/libcblas-3.9.0-25_linux64_openbl https://conda.anaconda.org/conda-forge/linux-64/libcups-2.3.3-h4637d8d_4.conda#d4529f4dff3057982a7617c7ac58fde3 https://conda.anaconda.org/conda-forge/linux-64/libgl-1.7.0-ha4b6fd6_2.conda#928b8be80851f5d8ffb016f9c81dae7a https://conda.anaconda.org/conda-forge/linux-64/liblapack-3.9.0-25_linux64_openblas.conda#4dc03a53fc69371a6158d0ed37214cd3 -https://conda.anaconda.org/conda-forge/linux-64/libllvm19-19.1.4-ha7bfdaf_0.conda#5f7d7eabf470bc56903b18f169f4f784 +https://conda.anaconda.org/conda-forge/linux-64/libllvm19-19.1.4-ha7bfdaf_1.conda#886acc67bcba28a5c6b429aad2f057ce https://conda.anaconda.org/conda-forge/linux-64/libxkbcommon-1.7.0-h2c5496b_1.conda#e2eaefa4de2b7237af7c907b8bbc760a https://conda.anaconda.org/conda-forge/linux-64/libxslt-1.1.39-h76b75d6_0.conda#e71f31f8cfb0a91439f2086fc8aa0461 https://conda.anaconda.org/conda-forge/linux-64/markupsafe-3.0.2-py39h9399b63_0.conda#d38773fed557834d3211e019b7cf7c2f @@ -136,14 +136,14 @@ https://conda.anaconda.org/conda-forge/noarch/pyparsing-3.2.0-pyhd8ed1ab_1.conda https://conda.anaconda.org/conda-forge/noarch/pysocks-1.7.1-pyha2e5f31_6.tar.bz2#2a7de29fb590ca14b5243c4c812c8025 https://conda.anaconda.org/conda-forge/noarch/python-tzdata-2024.2-pyhd8ed1ab_0.conda#986287f89929b2d629bd6ef6497dc307 https://conda.anaconda.org/conda-forge/noarch/pytz-2024.1-pyhd8ed1ab_0.conda#3eeeeb9e4827ace8c0c1419c85d590ad -https://conda.anaconda.org/conda-forge/noarch/setuptools-75.6.0-pyhff2d567_0.conda#68d7d406366926b09a6a023e3d0f71d7 +https://conda.anaconda.org/conda-forge/noarch/setuptools-75.6.0-pyhff2d567_1.conda#fc80f7995e396cbaeabd23cf46c413dc https://conda.anaconda.org/conda-forge/noarch/six-1.16.0-pyh6c4a22f_0.tar.bz2#e5f25f8dbc060e9a8d912e432202afc2 https://conda.anaconda.org/conda-forge/noarch/snowballstemmer-2.2.0-pyhd8ed1ab_0.tar.bz2#4d22a9315e78c6827f806065957d566e https://conda.anaconda.org/conda-forge/noarch/sphinxcontrib-jsmath-1.0.1-pyhd8ed1ab_0.conda#da1d979339e2714c30a8e806a33ec087 https://conda.anaconda.org/conda-forge/noarch/tabulate-0.9.0-pyhd8ed1ab_1.tar.bz2#4759805cce2d914c38472f70bf4d8bcb https://conda.anaconda.org/conda-forge/noarch/threadpoolctl-3.5.0-pyhc1e730c_0.conda#df68d78237980a159bd7149f33c0e8fd -https://conda.anaconda.org/conda-forge/noarch/tomli-2.1.0-pyhff2d567_0.conda#3fa1089b4722df3a900135925f4519d9 -https://conda.anaconda.org/conda-forge/linux-64/tornado-6.4.1-py39h8cd3c5a_1.conda#48d269953fcddbbcde078429d4b27afe +https://conda.anaconda.org/conda-forge/noarch/tomli-2.2.1-pyhd8ed1ab_0.conda#ee8ab0fe4c8dfc5a6319f7f8246022fc +https://conda.anaconda.org/conda-forge/linux-64/tornado-6.4.2-py39h8cd3c5a_0.conda#ebfd05ae1501660e995a8b6bbe02a391 https://conda.anaconda.org/conda-forge/linux-64/unicodedata2-15.1.0-py39h8cd3c5a_1.conda#6346898044e4387631c614290789a434 https://conda.anaconda.org/conda-forge/noarch/wheel-0.45.1-pyhd8ed1ab_0.conda#bdb2f437ce62fd2f1fef9119a37a12d9 https://conda.anaconda.org/conda-forge/linux-64/xcb-util-cursor-0.1.5-hb9d3cd8_0.conda#eb44b3b6deb1cab08d72cb61686fe64c @@ -153,7 +153,7 @@ https://conda.anaconda.org/conda-forge/linux-64/xorg-libxdamage-1.1.6-hb9d3cd8_0 https://conda.anaconda.org/conda-forge/linux-64/xorg-libxi-1.8.2-hb9d3cd8_0.conda#17dcc85db3c7886650b8908b183d6876 https://conda.anaconda.org/conda-forge/linux-64/xorg-libxrandr-1.5.4-hb9d3cd8_0.conda#2de7f99d6581a4a7adbff607b5c278ca https://conda.anaconda.org/conda-forge/linux-64/xorg-libxxf86vm-1.1.5-hb9d3cd8_4.conda#7da9007c0582712c4bad4131f89c8372 -https://conda.anaconda.org/conda-forge/noarch/zipp-3.21.0-pyhd8ed1ab_0.conda#fee389bf8a4843bd7a2248ce11b7f188 +https://conda.anaconda.org/conda-forge/noarch/zipp-3.21.0-pyhd8ed1ab_1.conda#0c3cc595284c5e8f0f9900a9b228a332 https://conda.anaconda.org/conda-forge/noarch/babel-2.16.0-pyhd8ed1ab_0.conda#6d4e9ecca8d88977147e109fc7053184 https://conda.anaconda.org/conda-forge/linux-64/cffi-1.17.1-py39h15c3d72_0.conda#7e61b8777f42e00b08ff059f9e8ebc44 https://conda.anaconda.org/conda-forge/linux-64/fonttools-4.55.0-py39h9399b63_0.conda#61762136d872c6d2de2de7742a0c60ef @@ -168,11 +168,11 @@ https://conda.anaconda.org/conda-forge/linux-64/libclang13-19.1.4-default_h9c6a7 https://conda.anaconda.org/conda-forge/linux-64/liblapacke-3.9.0-25_linux64_openblas.conda#8f5ead31b3a168aedd488b8a87736c41 https://conda.anaconda.org/conda-forge/noarch/meson-1.6.0-pyhd8ed1ab_0.conda#380ba6a3eddd8e7649bfe8e6812611aa https://conda.anaconda.org/conda-forge/linux-64/numpy-2.0.2-py39h9cb892a_1.conda#be95cf76ebd05d08be67e50e88d3cd49 -https://conda.anaconda.org/conda-forge/linux-64/openldap-2.6.8-hedd0468_0.conda#dcd0ed5147d8876b0848a552b416ce76 +https://conda.anaconda.org/conda-forge/linux-64/openldap-2.6.9-he970967_0.conda#ca2de8bbdc871bce41dbf59e51324165 https://conda.anaconda.org/conda-forge/linux-64/pillow-11.0.0-py39h538c539_0.conda#a2bafdf8ae51c9eb6e5be684cfcedd60 https://conda.anaconda.org/conda-forge/noarch/pip-24.3.1-pyh8b19718_0.conda#5dd546fe99b44fda83963d15f84263b7 https://conda.anaconda.org/conda-forge/noarch/pyproject-metadata-0.9.0-pyh2cfa8aa_0.conda#10906a130eeb4a68645bf97c28333141 -https://conda.anaconda.org/conda-forge/noarch/pytest-8.3.3-pyhd8ed1ab_0.conda#c03d61f31f38fdb9facf70c29958bf7a +https://conda.anaconda.org/conda-forge/noarch/pytest-8.3.4-pyhd8ed1ab_0.conda#ff8f2ef7f2636906b3781d0cf92388d0 https://conda.anaconda.org/conda-forge/noarch/python-dateutil-2.9.0.post0-pyhff2d567_0.conda#b6dfd90a2141e573e4b6a81630b56df5 https://conda.anaconda.org/conda-forge/linux-64/xorg-libxtst-1.2.5-hb9d3cd8_3.conda#7bbe9a0cc0df0ac5f5a8ad6d6a11af2f https://conda.anaconda.org/conda-forge/linux-64/blas-devel-3.9.0-25_linux64_openblas.conda#02c516384c77f5a7b4d03ed6c0412c57 diff --git a/build_tools/azure/ubuntu_atlas_lock.txt b/build_tools/azure/ubuntu_atlas_lock.txt index f3423be743d58..93bc5cafc691f 100644 --- a/build_tools/azure/ubuntu_atlas_lock.txt +++ b/build_tools/azure/ubuntu_atlas_lock.txt @@ -29,7 +29,7 @@ pluggy==1.5.0 # via pytest pyproject-metadata==0.9.0 # via meson-python -pytest==8.3.3 +pytest==8.3.4 # via # -r build_tools/azure/ubuntu_atlas_requirements.txt # pytest-xdist @@ -37,7 +37,7 @@ pytest-xdist==3.6.1 # via -r build_tools/azure/ubuntu_atlas_requirements.txt threadpoolctl==3.1.0 # via -r build_tools/azure/ubuntu_atlas_requirements.txt -tomli==2.1.0 +tomli==2.2.1 # via # meson-python # pytest diff --git a/build_tools/circle/doc_linux-64_conda.lock b/build_tools/circle/doc_linux-64_conda.lock index ea6b71666ade1..36c408f556151 100644 --- a/build_tools/circle/doc_linux-64_conda.lock +++ b/build_tools/circle/doc_linux-64_conda.lock @@ -106,7 +106,7 @@ https://conda.anaconda.org/conda-forge/linux-64/xorg-libx11-1.8.10-h4f16b4b_0.co https://conda.anaconda.org/conda-forge/linux-64/zstd-1.5.6-ha6fb4c9_0.conda#4d056880988120e29d75bfff282e0f45 https://conda.anaconda.org/conda-forge/linux-64/blosc-1.21.6-hef167b5_0.conda#54fe76ab3d0189acaef95156874db7f9 https://conda.anaconda.org/conda-forge/linux-64/brotli-1.1.0-hb9d3cd8_2.conda#98514fe74548d768907ce7a13f680e8f -https://conda.anaconda.org/conda-forge/linux-64/c-blosc2-2.15.1-hc57e6cf_0.conda#5f84961d86d0ef78851cb34f9d5e31fe +https://conda.anaconda.org/conda-forge/linux-64/c-blosc2-2.15.2-h68e2383_0.conda#e7b11b508252ddc35c4b51dedef17b01 https://conda.anaconda.org/conda-forge/linux-64/fontconfig-2.15.0-h7e30c49_1.conda#8f5b0b297b59e1ac160ad4beec99dbee https://conda.anaconda.org/conda-forge/linux-64/gcc-13.3.0-h9576a4e_1.conda#606924335b5bcdf90e9aed9a2f5d22ed https://conda.anaconda.org/conda-forge/linux-64/gcc_linux-64-13.3.0-hc28eda2_7.conda#ac23afbf5805389eb771e2ad3b476f75 @@ -117,7 +117,7 @@ https://conda.anaconda.org/conda-forge/linux-64/libavif16-1.1.1-h1909e37_2.conda https://conda.anaconda.org/conda-forge/linux-64/libblas-3.9.0-25_linux64_openblas.conda#8ea26d42ca88ec5258802715fe1ee10b https://conda.anaconda.org/conda-forge/linux-64/libglib-2.82.2-h2ff4ddf_0.conda#13e8e54035ddd2b91875ba399f0f7c04 https://conda.anaconda.org/conda-forge/linux-64/libglx-1.7.0-ha4b6fd6_2.conda#c8013e438185f33b13814c5c488acd5c -https://conda.anaconda.org/conda-forge/linux-64/libjxl-0.11.0-hdb8da77_2.conda#9c4554fafc94db681543804037e65de2 +https://conda.anaconda.org/conda-forge/linux-64/libjxl-0.11.1-hdb8da77_0.conda#32b23f3487beae7e81495fbc1099ae9e https://conda.anaconda.org/conda-forge/linux-64/libtiff-4.7.0-he137b08_1.conda#63872517c98aa305da58a757c443698e https://conda.anaconda.org/conda-forge/linux-64/libxml2-2.13.5-hb346dea_0.conda#c81a9f1118541aaa418ccb22190c817e https://conda.anaconda.org/conda-forge/linux-64/mysql-libs-9.0.1-he0572af_2.conda#57a9e7ee3c0840d3c8c9012473978629 @@ -159,7 +159,7 @@ https://conda.anaconda.org/conda-forge/linux-64/libcblas-3.9.0-25_linux64_openbl https://conda.anaconda.org/conda-forge/linux-64/libcups-2.3.3-h4637d8d_4.conda#d4529f4dff3057982a7617c7ac58fde3 https://conda.anaconda.org/conda-forge/linux-64/libgl-1.7.0-ha4b6fd6_2.conda#928b8be80851f5d8ffb016f9c81dae7a https://conda.anaconda.org/conda-forge/linux-64/liblapack-3.9.0-25_linux64_openblas.conda#4dc03a53fc69371a6158d0ed37214cd3 -https://conda.anaconda.org/conda-forge/linux-64/libllvm19-19.1.4-ha7bfdaf_0.conda#5f7d7eabf470bc56903b18f169f4f784 +https://conda.anaconda.org/conda-forge/linux-64/libllvm19-19.1.4-ha7bfdaf_1.conda#886acc67bcba28a5c6b429aad2f057ce https://conda.anaconda.org/conda-forge/linux-64/libxkbcommon-1.7.0-h2c5496b_1.conda#e2eaefa4de2b7237af7c907b8bbc760a https://conda.anaconda.org/conda-forge/linux-64/libxslt-1.1.39-h76b75d6_0.conda#e71f31f8cfb0a91439f2086fc8aa0461 https://conda.anaconda.org/conda-forge/linux-64/markupsafe-3.0.2-py39h9399b63_0.conda#d38773fed557834d3211e019b7cf7c2f @@ -176,7 +176,7 @@ https://conda.anaconda.org/conda-forge/noarch/pyparsing-3.2.0-pyhd8ed1ab_1.conda https://conda.anaconda.org/conda-forge/noarch/pysocks-1.7.1-pyha2e5f31_6.tar.bz2#2a7de29fb590ca14b5243c4c812c8025 https://conda.anaconda.org/conda-forge/noarch/python-tzdata-2024.2-pyhd8ed1ab_0.conda#986287f89929b2d629bd6ef6497dc307 https://conda.anaconda.org/conda-forge/noarch/pytz-2024.1-pyhd8ed1ab_0.conda#3eeeeb9e4827ace8c0c1419c85d590ad -https://conda.anaconda.org/conda-forge/noarch/setuptools-75.6.0-pyhff2d567_0.conda#68d7d406366926b09a6a023e3d0f71d7 +https://conda.anaconda.org/conda-forge/noarch/setuptools-75.6.0-pyhff2d567_1.conda#fc80f7995e396cbaeabd23cf46c413dc https://conda.anaconda.org/conda-forge/noarch/six-1.16.0-pyh6c4a22f_0.tar.bz2#e5f25f8dbc060e9a8d912e432202afc2 https://conda.anaconda.org/conda-forge/noarch/snowballstemmer-2.2.0-pyhd8ed1ab_0.tar.bz2#4d22a9315e78c6827f806065957d566e https://conda.anaconda.org/conda-forge/noarch/soupsieve-2.5-pyhd8ed1ab_1.conda#3f144b2c34f8cb5a9abd9ed23a39c561 @@ -184,8 +184,8 @@ https://conda.anaconda.org/conda-forge/noarch/sphinxcontrib-jsmath-1.0.1-pyhd8ed https://conda.anaconda.org/conda-forge/noarch/tabulate-0.9.0-pyhd8ed1ab_1.tar.bz2#4759805cce2d914c38472f70bf4d8bcb https://conda.anaconda.org/conda-forge/noarch/tenacity-9.0.0-pyhd8ed1ab_0.conda#42af51ad3b654ece73572628ad2882ae https://conda.anaconda.org/conda-forge/noarch/threadpoolctl-3.5.0-pyhc1e730c_0.conda#df68d78237980a159bd7149f33c0e8fd -https://conda.anaconda.org/conda-forge/noarch/tomli-2.1.0-pyhff2d567_0.conda#3fa1089b4722df3a900135925f4519d9 -https://conda.anaconda.org/conda-forge/linux-64/tornado-6.4.1-py39h8cd3c5a_1.conda#48d269953fcddbbcde078429d4b27afe +https://conda.anaconda.org/conda-forge/noarch/tomli-2.2.1-pyhd8ed1ab_0.conda#ee8ab0fe4c8dfc5a6319f7f8246022fc +https://conda.anaconda.org/conda-forge/linux-64/tornado-6.4.2-py39h8cd3c5a_0.conda#ebfd05ae1501660e995a8b6bbe02a391 https://conda.anaconda.org/conda-forge/noarch/typing_extensions-4.12.2-pyha770c72_0.conda#ebe6952715e1d5eb567eeebf25250fa7 https://conda.anaconda.org/conda-forge/linux-64/unicodedata2-15.1.0-py39h8cd3c5a_1.conda#6346898044e4387631c614290789a434 https://conda.anaconda.org/conda-forge/noarch/wheel-0.45.1-pyhd8ed1ab_0.conda#bdb2f437ce62fd2f1fef9119a37a12d9 @@ -196,7 +196,7 @@ https://conda.anaconda.org/conda-forge/linux-64/xorg-libxdamage-1.1.6-hb9d3cd8_0 https://conda.anaconda.org/conda-forge/linux-64/xorg-libxi-1.8.2-hb9d3cd8_0.conda#17dcc85db3c7886650b8908b183d6876 https://conda.anaconda.org/conda-forge/linux-64/xorg-libxrandr-1.5.4-hb9d3cd8_0.conda#2de7f99d6581a4a7adbff607b5c278ca https://conda.anaconda.org/conda-forge/linux-64/xorg-libxxf86vm-1.1.5-hb9d3cd8_4.conda#7da9007c0582712c4bad4131f89c8372 -https://conda.anaconda.org/conda-forge/noarch/zipp-3.21.0-pyhd8ed1ab_0.conda#fee389bf8a4843bd7a2248ce11b7f188 +https://conda.anaconda.org/conda-forge/noarch/zipp-3.21.0-pyhd8ed1ab_1.conda#0c3cc595284c5e8f0f9900a9b228a332 https://conda.anaconda.org/conda-forge/noarch/accessible-pygments-0.0.5-pyhd8ed1ab_0.conda#1bb1ef9806a9a20872434f58b3e7fc1a https://conda.anaconda.org/conda-forge/noarch/babel-2.16.0-pyhd8ed1ab_0.conda#6d4e9ecca8d88977147e109fc7053184 https://conda.anaconda.org/conda-forge/noarch/beautifulsoup4-4.12.3-pyha770c72_0.conda#332493000404d8411859539a5a630865 @@ -216,26 +216,26 @@ https://conda.anaconda.org/conda-forge/linux-64/liblapacke-3.9.0-25_linux64_open https://conda.anaconda.org/conda-forge/noarch/memory_profiler-0.61.0-pyhd8ed1ab_0.tar.bz2#8b45f9f2b2f7a98b0ec179c8991a4a9b https://conda.anaconda.org/conda-forge/noarch/meson-1.6.0-pyhd8ed1ab_0.conda#380ba6a3eddd8e7649bfe8e6812611aa https://conda.anaconda.org/conda-forge/linux-64/numpy-2.0.2-py39h9cb892a_1.conda#be95cf76ebd05d08be67e50e88d3cd49 -https://conda.anaconda.org/conda-forge/linux-64/openldap-2.6.8-hedd0468_0.conda#dcd0ed5147d8876b0848a552b416ce76 +https://conda.anaconda.org/conda-forge/linux-64/openldap-2.6.9-he970967_0.conda#ca2de8bbdc871bce41dbf59e51324165 https://conda.anaconda.org/conda-forge/linux-64/pillow-11.0.0-py39h538c539_0.conda#a2bafdf8ae51c9eb6e5be684cfcedd60 https://conda.anaconda.org/conda-forge/noarch/pip-24.3.1-pyh8b19718_0.conda#5dd546fe99b44fda83963d15f84263b7 https://conda.anaconda.org/conda-forge/noarch/plotly-5.24.1-pyhd8ed1ab_0.conda#81bb643d6c3ab4cbeaf724e9d68d0a6a https://conda.anaconda.org/conda-forge/noarch/pyproject-metadata-0.9.0-pyh2cfa8aa_0.conda#10906a130eeb4a68645bf97c28333141 -https://conda.anaconda.org/conda-forge/noarch/pytest-8.3.3-pyhd8ed1ab_0.conda#c03d61f31f38fdb9facf70c29958bf7a +https://conda.anaconda.org/conda-forge/noarch/pytest-8.3.4-pyhd8ed1ab_0.conda#ff8f2ef7f2636906b3781d0cf92388d0 https://conda.anaconda.org/conda-forge/noarch/python-dateutil-2.9.0.post0-pyhff2d567_0.conda#b6dfd90a2141e573e4b6a81630b56df5 https://conda.anaconda.org/conda-forge/linux-64/xorg-libxtst-1.2.5-hb9d3cd8_3.conda#7bbe9a0cc0df0ac5f5a8ad6d6a11af2f https://conda.anaconda.org/conda-forge/linux-64/blas-devel-3.9.0-25_linux64_openblas.conda#02c516384c77f5a7b4d03ed6c0412c57 https://conda.anaconda.org/conda-forge/linux-64/compilers-1.8.0-ha770c72_1.conda#061e111d02f33a99548f0de07169d9fb https://conda.anaconda.org/conda-forge/linux-64/contourpy-1.3.0-py39h74842e3_2.conda#5645190ef7f6d3aebee71e298dc9677b https://conda.anaconda.org/conda-forge/linux-64/imagecodecs-2024.9.22-py39h1aa77c4_0.conda#6001ae3f85403137d61e3ef7e96dd940 -https://conda.anaconda.org/conda-forge/noarch/imageio-2.36.0-pyh12aca89_1.conda#36349844ff73fcd0140ee7f30745f0bf +https://conda.anaconda.org/conda-forge/noarch/imageio-2.36.1-pyh12aca89_1.conda#84d5a2f075c861a8f98afd2842f7eb6e https://conda.anaconda.org/conda-forge/noarch/importlib-resources-6.4.5-pyhd8ed1ab_0.conda#67f4772681cf86652f3e2261794cf045 https://conda.anaconda.org/conda-forge/noarch/lazy-loader-0.4-pyhd8ed1ab_1.conda#4809b9f4c6ce106d443c3f90b8e10db2 https://conda.anaconda.org/conda-forge/linux-64/libpq-17.2-h04577a9_0.conda#52dd46162c6fb2765b49e6fd06adf8d5 https://conda.anaconda.org/conda-forge/noarch/meson-python-0.17.1-pyh70fd9c4_0.conda#722b649da38842068d83b6e6770f11a1 https://conda.anaconda.org/conda-forge/linux-64/pandas-2.2.3-py39h3b40f6f_1.conda#d07f482720066758dad87cf90b3de111 https://conda.anaconda.org/conda-forge/noarch/patsy-1.0.1-pyhff2d567_0.conda#a97b9c7586cedcf4a0a158ef3479975c -https://conda.anaconda.org/conda-forge/linux-64/polars-1.14.0-py39h74f158a_1.conda#e97a6ff57c37ac0a6f967d74dd73b464 +https://conda.anaconda.org/conda-forge/linux-64/polars-1.16.0-py39h74f158a_0.conda#4794afe0c773e554c795eed445064161 https://conda.anaconda.org/conda-forge/noarch/pytest-xdist-3.6.1-pyhd8ed1ab_0.conda#b39568655c127a9c4a44d178ac99b6d0 https://conda.anaconda.org/conda-forge/linux-64/pywavelets-1.6.0-py39hd92a3bb_0.conda#32e26e16f60c568b17a82e3033a4d309 https://conda.anaconda.org/conda-forge/linux-64/scipy-1.13.1-py39haf93ffa_0.conda#492a2cd65862d16a4aaf535ae9ccb761 @@ -273,9 +273,9 @@ https://conda.anaconda.org/conda-forge/noarch/sphinxext-opengraph-0.9.1-pyhd8ed1 # pip attrs @ https://files.pythonhosted.org/packages/6a/21/5b6702a7f963e95456c0de2d495f67bf5fd62840ac655dc451586d23d39a/attrs-24.2.0-py3-none-any.whl#sha256=81921eb96de3191c8258c199618104dd27ac608d9366f5e35d011eae1867ede2 # pip cloudpickle @ https://files.pythonhosted.org/packages/48/41/e1d85ca3cab0b674e277c8c4f678cf66a91cd2cecf93df94353a606fe0db/cloudpickle-3.1.0-py3-none-any.whl#sha256=fe11acda67f61aaaec473e3afe030feb131d78a43461b718185363384f1ba12e # pip defusedxml @ https://files.pythonhosted.org/packages/07/6c/aa3f2f849e01cb6a001cd8554a88d4c77c5c1a31c95bdf1cf9301e6d9ef4/defusedxml-0.7.1-py2.py3-none-any.whl#sha256=a352e7e428770286cc899e2542b6cdaedb2b4953ff269a210103ec58f6198a61 -# pip fastjsonschema @ https://files.pythonhosted.org/packages/6d/ca/086311cdfc017ec964b2436fe0c98c1f4efcb7e4c328956a22456e497655/fastjsonschema-2.20.0-py3-none-any.whl#sha256=5875f0b0fa7a0043a91e93a9b8f793bcbbba9691e7fd83dca95c28ba26d21f0a +# pip fastjsonschema @ https://files.pythonhosted.org/packages/3f/3a/404a60bb9789ce4daecbb4ec780bee1c46d2ea5258cf689b7ab63acefd6f/fastjsonschema-2.21.0-py3-none-any.whl#sha256=5b23b8e7c9c6adc0ecb91c03a0768cb48cd154d9159378a69c8318532e0b5cbf # pip fqdn @ https://files.pythonhosted.org/packages/cf/58/8acf1b3e91c58313ce5cb67df61001fc9dcd21be4fadb76c1a2d540e09ed/fqdn-1.5.1-py3-none-any.whl#sha256=3a179af3761e4df6eb2e026ff9e1a3033d3587bf980a0b1b2e1e5d08d7358014 -# pip json5 @ https://files.pythonhosted.org/packages/2b/ea/ef9cd2423087fe726f3f24b2e747ca915004e66215e36b0580c912199752/json5-0.9.28-py3-none-any.whl#sha256=29c56f1accdd8bc2e037321237662034a7e07921e2b7223281a5ce2c46f0c4df +# pip json5 @ https://files.pythonhosted.org/packages/aa/42/797895b952b682c3dafe23b1834507ee7f02f4d6299b65aaa61425763278/json5-0.10.0-py3-none-any.whl#sha256=19b23410220a7271e8377f81ba8aacba2fdd56947fbb137ee5977cbe1f5e8dfa # pip jsonpointer @ https://files.pythonhosted.org/packages/71/92/5e77f98553e9e75130c78900d000368476aed74276eb8ae8796f65f00918/jsonpointer-3.0.0-py2.py3-none-any.whl#sha256=13e088adc14fca8b6aa8177c044e12701e6ad4b28ff10e65f2267a90109c9942 # pip jupyterlab-pygments @ https://files.pythonhosted.org/packages/b1/dd/ead9d8ea85bf202d90cc513b533f9c363121c7792674f78e0d8a854b63b4/jupyterlab_pygments-0.3.0-py3-none-any.whl#sha256=841a89020971da1d8693f1a99997aefc5dc424bb1b251fd6322462a1b8842780 # pip libsass @ https://files.pythonhosted.org/packages/fd/5a/eb5b62641df0459a3291fc206cf5bd669c0feed7814dded8edef4ade8512/libsass-0.23.0-cp38-abi3-manylinux_2_5_x86_64.manylinux1_x86_64.whl#sha256=4a218406d605f325d234e4678bd57126a66a88841cb95bee2caeafdc6f138306 @@ -319,7 +319,7 @@ https://conda.anaconda.org/conda-forge/noarch/sphinxext-opengraph-0.9.1-pyhd8ed1 # pip jupyterlite-pyodide-kernel @ https://files.pythonhosted.org/packages/ca/4c/42bb232529ad3b11db6d87de6accb3a9daeafc0fdf5892ff047ee842e0a8/jupyterlite_pyodide_kernel-0.4.4-py3-none-any.whl#sha256=5569843bad0d1d4e5f2a61b093d325cd9113a6e5ac761395a28cfd483a370290 # pip jupyter-events @ https://files.pythonhosted.org/packages/a5/94/059180ea70a9a326e1815176b2370da56376da347a796f8c4f0b830208ef/jupyter_events-0.10.0-py3-none-any.whl#sha256=4b72130875e59d57716d327ea70d3ebc3af1944d3717e5a498b8a06c6c159960 # pip nbformat @ https://files.pythonhosted.org/packages/a9/82/0340caa499416c78e5d8f5f05947ae4bc3cba53c9f038ab6e9ed964e22f1/nbformat-5.10.4-py3-none-any.whl#sha256=3b48d6c8fbca4b299bf3982ea7db1af21580e4fec269ad087b9e81588891200b -# pip nbclient @ https://files.pythonhosted.org/packages/66/e8/00517a23d3eeaed0513e718fbc94aab26eaa1758f5690fc8578839791c79/nbclient-0.10.0-py3-none-any.whl#sha256=f13e3529332a1f1f81d82a53210322476a168bb7090a0289c795fe9cc11c9d3f +# pip nbclient @ https://files.pythonhosted.org/packages/26/1a/ed6d1299b1a00c1af4a033fdee565f533926d819e084caf0d2832f6f87c6/nbclient-0.10.1-py3-none-any.whl#sha256=949019b9240d66897e442888cfb618f69ef23dc71c01cb5fced8499c2cfc084d # pip nbconvert @ https://files.pythonhosted.org/packages/b8/bb/bb5b6a515d1584aa2fd89965b11db6632e4bdc69495a52374bcc36e56cfa/nbconvert-7.16.4-py3-none-any.whl#sha256=05873c620fe520b6322bf8a5ad562692343fe3452abda5765c7a34b7d1aa3eb3 # pip jupyter-server @ https://files.pythonhosted.org/packages/57/e1/085edea6187a127ca8ea053eb01f4e1792d778b4d192c74d32eb6730fed6/jupyter_server-2.14.2-py3-none-any.whl#sha256=47ff506127c2f7851a17bf4713434208fc490955d0e8632e95014a9a9afbeefd # pip jupyterlab-server @ https://files.pythonhosted.org/packages/54/09/2032e7d15c544a0e3cd831c51d77a8ca57f7555b2e1b2922142eddb02a84/jupyterlab_server-2.27.3-py3-none-any.whl#sha256=e697488f66c3db49df675158a77b3b017520d772c6e1548c7d9bcc5df7944ee4 diff --git a/build_tools/circle/doc_min_dependencies_linux-64_conda.lock b/build_tools/circle/doc_min_dependencies_linux-64_conda.lock index 959276fbf9e68..8d9c5687da99e 100644 --- a/build_tools/circle/doc_min_dependencies_linux-64_conda.lock +++ b/build_tools/circle/doc_min_dependencies_linux-64_conda.lock @@ -97,7 +97,7 @@ https://conda.anaconda.org/conda-forge/linux-64/libasprintf-0.22.5-he8f35ee_3.co https://conda.anaconda.org/conda-forge/linux-64/libcap-2.69-h0f662aa_0.conda#25cb5999faa414e5ccb2c1388f62d3d5 https://conda.anaconda.org/conda-forge/linux-64/libdrm-2.4.123-hb9d3cd8_0.conda#ee605e794bdc14e2b7f84c4faa0d8c2c https://conda.anaconda.org/conda-forge/linux-64/libedit-3.1.20191231-he28a2e2_2.tar.bz2#4d331e44109e3f0e19b4cb8f9b82f3e1 -https://conda.anaconda.org/conda-forge/linux-64/libgcrypt-1.11.0-h4ab18f5_1.conda#14858a47d4cc995892e79f2b340682d7 +https://conda.anaconda.org/conda-forge/linux-64/libgcrypt-lib-1.11.0-hb9d3cd8_2.conda#e55712ff40a054134d51b89afca57dbc https://conda.anaconda.org/conda-forge/linux-64/libgettextpo-devel-0.22.5-he02047a_3.conda#9aba7960731e6b4547b3a52f812ed801 https://conda.anaconda.org/conda-forge/linux-64/libgfortran-ng-14.2.0-h69a702a_1.conda#0a7f4cd238267c88e5d69f7826a407eb https://conda.anaconda.org/conda-forge/linux-64/libhwy-1.1.0-h00ab1b0_0.conda#88928158ccfe797eac29ef5e03f7d23d @@ -119,7 +119,7 @@ https://conda.anaconda.org/conda-forge/linux-64/xorg-libx11-1.8.10-h4f16b4b_0.co https://conda.anaconda.org/conda-forge/linux-64/zstd-1.5.6-ha6fb4c9_0.conda#4d056880988120e29d75bfff282e0f45 https://conda.anaconda.org/conda-forge/linux-64/blosc-1.21.6-hef167b5_0.conda#54fe76ab3d0189acaef95156874db7f9 https://conda.anaconda.org/conda-forge/linux-64/brotli-1.1.0-hb9d3cd8_2.conda#98514fe74548d768907ce7a13f680e8f -https://conda.anaconda.org/conda-forge/linux-64/c-blosc2-2.15.1-hc57e6cf_0.conda#5f84961d86d0ef78851cb34f9d5e31fe +https://conda.anaconda.org/conda-forge/linux-64/c-blosc2-2.15.2-h68e2383_0.conda#e7b11b508252ddc35c4b51dedef17b01 https://conda.anaconda.org/conda-forge/linux-64/fontconfig-2.15.0-h7e30c49_1.conda#8f5b0b297b59e1ac160ad4beec99dbee https://conda.anaconda.org/conda-forge/linux-64/gcc-13.3.0-h9576a4e_1.conda#606924335b5bcdf90e9aed9a2f5d22ed https://conda.anaconda.org/conda-forge/linux-64/gcc_linux-64-13.3.0-hc28eda2_7.conda#ac23afbf5805389eb771e2ad3b476f75 @@ -128,10 +128,11 @@ https://conda.anaconda.org/conda-forge/linux-64/gxx_impl_linux-64-13.3.0-hdbfa83 https://conda.anaconda.org/conda-forge/linux-64/krb5-1.21.3-h659f571_0.conda#3f43953b7d3fb3aaa1d0d0723d91e368 https://conda.anaconda.org/conda-forge/linux-64/libasprintf-devel-0.22.5-he8f35ee_3.conda#1091193789bb830127ed067a9e01ac57 https://conda.anaconda.org/conda-forge/linux-64/libavif16-1.1.1-h1909e37_2.conda#21e468ed3786ebcb2124b123aa2484b7 +https://conda.anaconda.org/conda-forge/linux-64/libgcrypt-devel-1.11.0-hb9d3cd8_2.conda#bf888b6a37286e9ae3749a114f878a6e +https://conda.anaconda.org/conda-forge/linux-64/libgcrypt-tools-1.11.0-hb9d3cd8_2.conda#342389a8c9eef45fd8bb144b7522e28d https://conda.anaconda.org/conda-forge/linux-64/libglib-2.82.2-h2ff4ddf_0.conda#13e8e54035ddd2b91875ba399f0f7c04 https://conda.anaconda.org/conda-forge/linux-64/libglx-1.7.0-ha4b6fd6_2.conda#c8013e438185f33b13814c5c488acd5c -https://conda.anaconda.org/conda-forge/linux-64/libjxl-0.11.0-hdb8da77_2.conda#9c4554fafc94db681543804037e65de2 -https://conda.anaconda.org/conda-forge/linux-64/libsystemd0-256.7-h2774228_1.conda#ad328c530a12a8798776e5f03942090f +https://conda.anaconda.org/conda-forge/linux-64/libjxl-0.11.1-hdb8da77_0.conda#32b23f3487beae7e81495fbc1099ae9e https://conda.anaconda.org/conda-forge/linux-64/libtiff-4.7.0-he137b08_1.conda#63872517c98aa305da58a757c443698e https://conda.anaconda.org/conda-forge/linux-64/libxml2-2.13.5-hb346dea_0.conda#c81a9f1118541aaa418ccb22190c817e https://conda.anaconda.org/conda-forge/linux-64/mysql-libs-9.0.1-he0572af_2.conda#57a9e7ee3c0840d3c8c9012473978629 @@ -173,9 +174,10 @@ https://conda.anaconda.org/conda-forge/noarch/iniconfig-2.0.0-pyhd8ed1ab_0.conda https://conda.anaconda.org/conda-forge/linux-64/kiwisolver-1.4.7-py39h74842e3_0.conda#1bf77976372ff6de02af7b75cf034ce5 https://conda.anaconda.org/conda-forge/linux-64/lcms2-2.16-hb7c19ff_0.conda#51bb7010fc86f70eee639b4bb7a894f5 https://conda.anaconda.org/conda-forge/linux-64/libcups-2.3.3-h4637d8d_4.conda#d4529f4dff3057982a7617c7ac58fde3 +https://conda.anaconda.org/conda-forge/linux-64/libgcrypt-1.11.0-ha770c72_2.conda#92aaf7c067a5e63ac7f035bbd8864415 https://conda.anaconda.org/conda-forge/linux-64/libgl-1.7.0-ha4b6fd6_2.conda#928b8be80851f5d8ffb016f9c81dae7a -https://conda.anaconda.org/conda-forge/linux-64/libhwloc-2.11.1-default_hecaa2ac_1000.conda#f54aeebefb5c5ff84eca4fb05ca8aa3a -https://conda.anaconda.org/conda-forge/linux-64/libllvm19-19.1.4-ha7bfdaf_0.conda#5f7d7eabf470bc56903b18f169f4f784 +https://conda.anaconda.org/conda-forge/linux-64/libhwloc-2.11.2-default_h0d58e46_1001.conda#804ca9e91bcaea0824a341d55b1684f2 +https://conda.anaconda.org/conda-forge/linux-64/libllvm19-19.1.4-ha7bfdaf_1.conda#886acc67bcba28a5c6b429aad2f057ce https://conda.anaconda.org/conda-forge/linux-64/libpq-16.6-h2d7952a_0.conda#7fa1f554b760a2d6018ecc673fb73f6c https://conda.anaconda.org/conda-forge/linux-64/libxkbcommon-1.7.0-h2c5496b_1.conda#e2eaefa4de2b7237af7c907b8bbc760a https://conda.anaconda.org/conda-forge/noarch/locket-1.0.0-pyhd8ed1ab_0.tar.bz2#91e27ef3d05cc772ce627e51cff111c4 @@ -200,14 +202,14 @@ https://conda.anaconda.org/conda-forge/noarch/sphinxcontrib-jsmath-1.0.1-pyhd8ed https://conda.anaconda.org/conda-forge/noarch/tenacity-9.0.0-pyhd8ed1ab_0.conda#42af51ad3b654ece73572628ad2882ae https://conda.anaconda.org/conda-forge/noarch/threadpoolctl-3.5.0-pyhc1e730c_0.conda#df68d78237980a159bd7149f33c0e8fd https://conda.anaconda.org/conda-forge/noarch/toml-0.10.2-pyhd8ed1ab_0.tar.bz2#f832c45a477c78bebd107098db465095 -https://conda.anaconda.org/conda-forge/noarch/tomli-2.1.0-pyhff2d567_0.conda#3fa1089b4722df3a900135925f4519d9 +https://conda.anaconda.org/conda-forge/noarch/tomli-2.2.1-pyhd8ed1ab_0.conda#ee8ab0fe4c8dfc5a6319f7f8246022fc https://conda.anaconda.org/conda-forge/noarch/toolz-1.0.0-pyhd8ed1ab_0.conda#34feccdd4177f2d3d53c73fc44fd9a37 -https://conda.anaconda.org/conda-forge/linux-64/tornado-6.4.1-py39h8cd3c5a_1.conda#48d269953fcddbbcde078429d4b27afe +https://conda.anaconda.org/conda-forge/linux-64/tornado-6.4.2-py39h8cd3c5a_0.conda#ebfd05ae1501660e995a8b6bbe02a391 https://conda.anaconda.org/conda-forge/noarch/typing_extensions-4.12.2-pyha770c72_0.conda#ebe6952715e1d5eb567eeebf25250fa7 https://conda.anaconda.org/conda-forge/noarch/wheel-0.45.1-pyhd8ed1ab_0.conda#bdb2f437ce62fd2f1fef9119a37a12d9 https://conda.anaconda.org/conda-forge/linux-64/xorg-libxdamage-1.1.6-hb9d3cd8_0.conda#b5fcc7172d22516e1f965490e65e33a4 https://conda.anaconda.org/conda-forge/linux-64/xorg-libxxf86vm-1.1.5-hb9d3cd8_4.conda#7da9007c0582712c4bad4131f89c8372 -https://conda.anaconda.org/conda-forge/noarch/zipp-3.21.0-pyhd8ed1ab_0.conda#fee389bf8a4843bd7a2248ce11b7f188 +https://conda.anaconda.org/conda-forge/noarch/zipp-3.21.0-pyhd8ed1ab_1.conda#0c3cc595284c5e8f0f9900a9b228a332 https://conda.anaconda.org/conda-forge/noarch/accessible-pygments-0.0.5-pyhd8ed1ab_0.conda#1bb1ef9806a9a20872434f58b3e7fc1a https://conda.anaconda.org/conda-forge/noarch/babel-2.16.0-pyhd8ed1ab_0.conda#6d4e9ecca8d88977147e109fc7053184 https://conda.anaconda.org/conda-forge/noarch/beautifulsoup4-4.12.3-pyha770c72_0.conda#332493000404d8411859539a5a630865 @@ -225,6 +227,7 @@ https://conda.anaconda.org/conda-forge/noarch/joblib-1.4.2-pyhd8ed1ab_0.conda#25 https://conda.anaconda.org/conda-forge/linux-64/libclang-cpp19.1-19.1.4-default_hb5137d0_0.conda#e7e4a0ebe1f6eedf483f6f5d4f7d2bdd https://conda.anaconda.org/conda-forge/linux-64/libclang13-19.1.4-default_h9c6a7e4_0.conda#6c450adae455c7d648856e8b0cfcebd6 https://conda.anaconda.org/conda-forge/linux-64/libflac-1.4.3-h59595ed_0.conda#ee48bf17cc83a00f59ca1494d5646869 +https://conda.anaconda.org/conda-forge/linux-64/libsystemd0-256.7-h2774228_1.conda#ad328c530a12a8798776e5f03942090f https://conda.anaconda.org/conda-forge/noarch/memory_profiler-0.61.0-pyhd8ed1ab_0.tar.bz2#8b45f9f2b2f7a98b0ec179c8991a4a9b https://conda.anaconda.org/conda-forge/noarch/meson-1.6.0-pyhd8ed1ab_0.conda#380ba6a3eddd8e7649bfe8e6812611aa https://conda.anaconda.org/conda-forge/noarch/partd-1.4.2-pyhd8ed1ab_0.conda#0badf9c54e24cecfb0ad2f99d680c163 @@ -232,10 +235,10 @@ https://conda.anaconda.org/conda-forge/linux-64/pillow-11.0.0-py39h538c539_0.con https://conda.anaconda.org/conda-forge/noarch/pip-24.3.1-pyh8b19718_0.conda#5dd546fe99b44fda83963d15f84263b7 https://conda.anaconda.org/conda-forge/noarch/plotly-5.14.0-pyhd8ed1ab_0.conda#6a7bcc42ef58dd6cf3da9333ea102433 https://conda.anaconda.org/conda-forge/noarch/pyproject-metadata-0.9.0-pyh2cfa8aa_0.conda#10906a130eeb4a68645bf97c28333141 -https://conda.anaconda.org/conda-forge/noarch/pytest-8.3.3-pyhd8ed1ab_0.conda#c03d61f31f38fdb9facf70c29958bf7a +https://conda.anaconda.org/conda-forge/noarch/pytest-8.3.4-pyhd8ed1ab_0.conda#ff8f2ef7f2636906b3781d0cf92388d0 https://conda.anaconda.org/conda-forge/noarch/python-dateutil-2.9.0.post0-pyhff2d567_0.conda#b6dfd90a2141e573e4b6a81630b56df5 https://conda.anaconda.org/conda-forge/linux-64/sip-6.7.12-py39h3d6467e_0.conda#e667a3ab0df62c54e60e1843d2e6defb -https://conda.anaconda.org/conda-forge/linux-64/tbb-2021.13.0-h84d6215_0.conda#ee6f7fd1e76061ef1fa307d41fa86a96 +https://conda.anaconda.org/conda-forge/linux-64/tbb-2021.13.0-hceb3a55_1.conda#ba7726b8df7b9d34ea80e82b097a4893 https://conda.anaconda.org/conda-forge/linux-64/compilers-1.8.0-ha770c72_1.conda#061e111d02f33a99548f0de07169d9fb https://conda.anaconda.org/conda-forge/linux-64/gstreamer-1.24.7-hf3bb09a_0.conda#c78bc4ef0afb3cd2365d9973c71fc876 https://conda.anaconda.org/conda-forge/noarch/importlib-resources-6.4.5-pyhd8ed1ab_0.conda#67f4772681cf86652f3e2261794cf045 @@ -263,7 +266,7 @@ https://conda.anaconda.org/conda-forge/noarch/pooch-1.6.0-pyhd8ed1ab_0.tar.bz2#6 https://conda.anaconda.org/conda-forge/linux-64/pyqt-5.15.9-py39h52134e7_5.conda#e1f148e57d071b09187719df86f513c1 https://conda.anaconda.org/conda-forge/linux-64/blas-devel-3.9.0-25_linux64_mkl.conda#cb60caae3cb30988431d7107691bd587 https://conda.anaconda.org/conda-forge/linux-64/imagecodecs-2024.9.22-py39h1aa77c4_0.conda#6001ae3f85403137d61e3ef7e96dd940 -https://conda.anaconda.org/conda-forge/noarch/imageio-2.36.0-pyh12aca89_1.conda#36349844ff73fcd0140ee7f30745f0bf +https://conda.anaconda.org/conda-forge/noarch/imageio-2.36.1-pyh12aca89_1.conda#84d5a2f075c861a8f98afd2842f7eb6e https://conda.anaconda.org/conda-forge/linux-64/matplotlib-base-3.3.4-py39h2fa2bec_0.tar.bz2#9ec0b2186fab9121c54f4844f93ee5b7 https://conda.anaconda.org/conda-forge/linux-64/pandas-1.1.5-py39hde0f152_0.tar.bz2#79fc4b5b3a865b90dd3701cecf1ad33c https://conda.anaconda.org/conda-forge/noarch/patsy-1.0.1-pyhff2d567_0.conda#a97b9c7586cedcf4a0a158ef3479975c From f3d6e8df959f4ff952994388f1894a3628eae1e0 Mon Sep 17 00:00:00 2001 From: scikit-learn-bot Date: Mon, 2 Dec 2024 10:03:00 +0100 Subject: [PATCH 065/159] :lock: :robot: CI Update lock files for array-api CI build(s) :lock: :robot: (#30387) Co-authored-by: Lock file bot --- ...a_forge_cuda_array-api_linux-64_conda.lock | 45 ++++++++++--------- 1 file changed, 23 insertions(+), 22 deletions(-) diff --git a/build_tools/github/pylatest_conda_forge_cuda_array-api_linux-64_conda.lock b/build_tools/github/pylatest_conda_forge_cuda_array-api_linux-64_conda.lock index c0f5aa13cecef..cf5dff03c4561 100644 --- a/build_tools/github/pylatest_conda_forge_cuda_array-api_linux-64_conda.lock +++ b/build_tools/github/pylatest_conda_forge_cuda_array-api_linux-64_conda.lock @@ -34,6 +34,7 @@ https://conda.anaconda.org/conda-forge/linux-64/libexpat-2.6.4-h5888daf_0.conda# https://conda.anaconda.org/conda-forge/linux-64/libgcc-ng-14.2.0-h69a702a_1.conda#e39480b9ca41323497b05492a63bc35b https://conda.anaconda.org/conda-forge/linux-64/libgfortran5-14.2.0-hd5240d6_1.conda#9822b874ea29af082e5d36098d25427d https://conda.anaconda.org/conda-forge/linux-64/libstdcxx-14.2.0-hc0a3c3a_1.conda#234a5554c53625688d51062645337328 +https://conda.anaconda.org/conda-forge/linux-64/libutf8proc-2.8.0-hf23e847_1.conda#b1aa0faa95017bca11369bd080487ec4 https://conda.anaconda.org/conda-forge/linux-64/libzlib-1.3.1-hb9d3cd8_2.conda#edb0dca6bc32e4f4789199455a1dbeb8 https://conda.anaconda.org/conda-forge/linux-64/openssl-3.4.0-hb9d3cd8_0.conda#23cc74f77eb99315c0360ec3533147a9 https://conda.anaconda.org/conda-forge/linux-64/pthread-stubs-0.4-hb9d3cd8_1002.conda#b3c17d95b5a10c6e64a21fa17573e70e @@ -65,7 +66,6 @@ https://conda.anaconda.org/conda-forge/linux-64/libpng-1.6.44-hadc24fc_0.conda#f https://conda.anaconda.org/conda-forge/linux-64/libsqlite-3.47.0-hadc24fc_1.conda#b6f02b52a174e612e89548f4663ce56a https://conda.anaconda.org/conda-forge/linux-64/libssh2-1.11.1-hf672d98_0.conda#be2de152d8073ef1c01b7728475f2fe7 https://conda.anaconda.org/conda-forge/linux-64/libstdcxx-ng-14.2.0-h4852527_1.conda#8371ac6457591af2cf6159439c1fd051 -https://conda.anaconda.org/conda-forge/linux-64/libutf8proc-2.8.0-h166bdaf_0.tar.bz2#ede4266dc02e875fe1ea77b25dd43747 https://conda.anaconda.org/conda-forge/linux-64/libuuid-2.38.1-h0b41bf4_0.conda#40b61aab5c7ba9ff276c41cfffe6b80b https://conda.anaconda.org/conda-forge/linux-64/libwebp-base-1.4.0-hd590300_0.conda#b26e8aa824079e1be0294e7152ca4559 https://conda.anaconda.org/conda-forge/linux-64/libxcb-1.17.0-h8a09558_0.conda#92ed62436b625154323d40d5f2f11dd7 @@ -73,7 +73,7 @@ https://conda.anaconda.org/conda-forge/linux-64/libxcrypt-4.4.36-hd590300_1.cond https://conda.anaconda.org/conda-forge/linux-64/llvm-openmp-15.0.7-h0cdce71_0.conda#589c9a3575a050b583241c3d688ad9aa https://conda.anaconda.org/conda-forge/linux-64/mysql-common-9.0.1-h266115a_2.conda#85c0dc0bcd110c998b01856975486ee7 https://conda.anaconda.org/conda-forge/linux-64/ncurses-6.5-he02047a_1.conda#70caf8bb6cf39a0b6b7efc885f51c0fe -https://conda.anaconda.org/conda-forge/linux-64/ocl-icd-2.3.2-hd590300_1.conda#c66f837ac65e4d1cdeb80e2a1d5fcc3d +https://conda.anaconda.org/conda-forge/linux-64/opencl-headers-2024.10.24-h5888daf_0.conda#3ba02cce423fdac1a8582bd6bb189359 https://conda.anaconda.org/conda-forge/linux-64/s2n-1.5.9-h0fd0ee4_0.conda#f472432f3753c5ca763d2497e2ea30bf https://conda.anaconda.org/conda-forge/linux-64/tk-8.6.13-noxft_h4845f30_101.conda#d453b98d9c83e71da0741bb0ff4d76bc https://conda.anaconda.org/conda-forge/linux-64/xz-5.2.6-h166bdaf_0.tar.bz2#2161070d867d1b1204ea749c8eec4ef0 @@ -85,7 +85,6 @@ https://conda.anaconda.org/conda-forge/linux-64/cuda-cudart-12.4.127-he02047a_2. https://conda.anaconda.org/conda-forge/linux-64/cuda-cupti-12.4.127-he02047a_2.conda#46422ef1b1161fb180027e50c598ecd0 https://conda.anaconda.org/conda-forge/linux-64/cuda-nvrtc-12.4.127-he02047a_2.conda#80baf6262f4a1a0dde42d85aaa393402 https://conda.anaconda.org/conda-forge/linux-64/cuda-nvtx-12.4.127-he02047a_2.conda#656a004b6e44f50ce71c65cab0d429b4 -https://conda.anaconda.org/conda-forge/linux-64/cuda-opencl-12.4.127-he02047a_1.conda#1e98deda07c14d26c80d124cf0eb011a https://conda.anaconda.org/conda-forge/linux-64/double-conversion-3.3.0-h59595ed_0.conda#c2f83a5ddadadcdb08fe05863295ee97 https://conda.anaconda.org/conda-forge/linux-64/freetype-2.12.1-h267a509_2.conda#9ae35c3d96db2c94ce0cef86efdfa2cb https://conda.anaconda.org/conda-forge/linux-64/glog-0.7.1-hbabe93e_0.conda#ff862eebdfeb2fd048ae9dc92510baca @@ -110,6 +109,7 @@ https://conda.anaconda.org/conda-forge/linux-64/libre2-11-2024.07.02-hbbce691_1. https://conda.anaconda.org/conda-forge/linux-64/libthrift-0.21.0-h0e7cc3e_0.conda#dcb95c0a98ba9ff737f7ae482aef7833 https://conda.anaconda.org/conda-forge/linux-64/lz4-c-1.9.4-hcb278e6_0.conda#318b08df404f9c9be5712aaa5a6f0bb0 https://conda.anaconda.org/conda-forge/linux-64/ninja-1.12.1-h297d8ca_0.conda#3aa1c7e292afeff25a0091ddd7c69b72 +https://conda.anaconda.org/conda-forge/linux-64/ocl-icd-2.3.2-hb9d3cd8_2.conda#2e8d2b469559d6b2cb6fd4b34f9c8d7f https://conda.anaconda.org/conda-forge/linux-64/pcre2-10.44-hba22ea6_2.conda#df359c09c41cd186fffb93a2d87aa6f5 https://conda.anaconda.org/conda-forge/linux-64/pixman-0.43.2-h59595ed_0.conda#71004cbf7924e19c02746ccde9fd7123 https://conda.anaconda.org/conda-forge/linux-64/qhull-2020.2-h434a139_5.conda#353823361b1d27eb3960efb076dfcaf6 @@ -126,6 +126,7 @@ https://conda.anaconda.org/conda-forge/linux-64/zstd-1.5.6-ha6fb4c9_0.conda#4d05 https://conda.anaconda.org/conda-forge/linux-64/aws-c-event-stream-0.5.0-h1ffe551_7.conda#7cce4dfab184f4bbdfc160789251b3c5 https://conda.anaconda.org/conda-forge/linux-64/aws-c-http-0.9.1-hab05fe4_2.conda#fb409f7053fa3dbbdf6eb41045a87795 https://conda.anaconda.org/conda-forge/linux-64/brotli-1.1.0-hb9d3cd8_2.conda#98514fe74548d768907ce7a13f680e8f +https://conda.anaconda.org/conda-forge/linux-64/cuda-opencl-12.4.127-he02047a_1.conda#1e98deda07c14d26c80d124cf0eb011a https://conda.anaconda.org/conda-forge/linux-64/fontconfig-2.15.0-h7e30c49_1.conda#8f5b0b297b59e1ac160ad4beec99dbee https://conda.anaconda.org/conda-forge/linux-64/krb5-1.21.3-h659f571_0.conda#3f43953b7d3fb3aaa1d0d0723d91e368 https://conda.anaconda.org/conda-forge/linux-64/libcublas-12.4.5.8-he02047a_2.conda#d446adae085aa1ff37c44b69988a6f06 @@ -169,8 +170,8 @@ https://conda.anaconda.org/conda-forge/linux-64/libcurl-8.10.1-hbbe4b11_0.conda# https://conda.anaconda.org/conda-forge/linux-64/libcusolver-11.6.1.9-he02047a_2.conda#9f6877f8936be962f598db5e9b8efc51 https://conda.anaconda.org/conda-forge/linux-64/libgl-1.7.0-ha4b6fd6_2.conda#928b8be80851f5d8ffb016f9c81dae7a https://conda.anaconda.org/conda-forge/linux-64/libgrpc-1.67.1-hc2c308b_0.conda#4606a4647bfe857e3cfe21ca12ac3afb -https://conda.anaconda.org/conda-forge/linux-64/libhwloc-2.11.1-default_hecaa2ac_1000.conda#f54aeebefb5c5ff84eca4fb05ca8aa3a -https://conda.anaconda.org/conda-forge/linux-64/libllvm19-19.1.4-ha7bfdaf_0.conda#5f7d7eabf470bc56903b18f169f4f784 +https://conda.anaconda.org/conda-forge/linux-64/libhwloc-2.11.2-default_h0d58e46_1001.conda#804ca9e91bcaea0824a341d55b1684f2 +https://conda.anaconda.org/conda-forge/linux-64/libllvm19-19.1.4-ha7bfdaf_1.conda#886acc67bcba28a5c6b429aad2f057ce https://conda.anaconda.org/conda-forge/linux-64/libxkbcommon-1.7.0-h2c5496b_1.conda#e2eaefa4de2b7237af7c907b8bbc760a https://conda.anaconda.org/conda-forge/linux-64/libxslt-1.1.39-h76b75d6_0.conda#e71f31f8cfb0a91439f2086fc8aa0461 https://conda.anaconda.org/conda-forge/linux-64/markupsafe-3.0.2-py312h178313f_0.conda#a755704ea0e2503f8c227d84829a8e81 @@ -185,12 +186,12 @@ https://conda.anaconda.org/conda-forge/noarch/pyparsing-3.2.0-pyhd8ed1ab_1.conda https://conda.anaconda.org/conda-forge/noarch/python-tzdata-2024.2-pyhd8ed1ab_0.conda#986287f89929b2d629bd6ef6497dc307 https://conda.anaconda.org/conda-forge/noarch/pytz-2024.1-pyhd8ed1ab_0.conda#3eeeeb9e4827ace8c0c1419c85d590ad https://conda.anaconda.org/conda-forge/linux-64/pyyaml-6.0.2-py312h66e93f0_1.conda#549e5930e768548a89c23f595dac5a95 -https://conda.anaconda.org/conda-forge/noarch/setuptools-75.6.0-pyhff2d567_0.conda#68d7d406366926b09a6a023e3d0f71d7 +https://conda.anaconda.org/conda-forge/noarch/setuptools-75.6.0-pyhff2d567_1.conda#fc80f7995e396cbaeabd23cf46c413dc https://conda.anaconda.org/conda-forge/noarch/six-1.16.0-pyh6c4a22f_0.tar.bz2#e5f25f8dbc060e9a8d912e432202afc2 https://conda.anaconda.org/conda-forge/noarch/threadpoolctl-3.5.0-pyhc1e730c_0.conda#df68d78237980a159bd7149f33c0e8fd https://conda.anaconda.org/conda-forge/noarch/toml-0.10.2-pyhd8ed1ab_0.tar.bz2#f832c45a477c78bebd107098db465095 -https://conda.anaconda.org/conda-forge/noarch/tomli-2.1.0-pyhff2d567_0.conda#3fa1089b4722df3a900135925f4519d9 -https://conda.anaconda.org/conda-forge/linux-64/tornado-6.4.1-py312h66e93f0_1.conda#af648b62462794649066366af4ecd5b0 +https://conda.anaconda.org/conda-forge/noarch/tomli-2.2.1-pyhd8ed1ab_0.conda#ee8ab0fe4c8dfc5a6319f7f8246022fc +https://conda.anaconda.org/conda-forge/linux-64/tornado-6.4.2-py312h66e93f0_0.conda#e417822cb989e80a0d2b1b576fdd1657 https://conda.anaconda.org/conda-forge/noarch/typing_extensions-4.12.2-pyha770c72_0.conda#ebe6952715e1d5eb567eeebf25250fa7 https://conda.anaconda.org/conda-forge/linux-64/unicodedata2-15.1.0-py312h66e93f0_1.conda#588486a61153f94c7c13816f7069e440 https://conda.anaconda.org/conda-forge/noarch/wheel-0.45.1-pyhd8ed1ab_0.conda#bdb2f437ce62fd2f1fef9119a37a12d9 @@ -201,7 +202,7 @@ https://conda.anaconda.org/conda-forge/linux-64/xorg-libxdamage-1.1.6-hb9d3cd8_0 https://conda.anaconda.org/conda-forge/linux-64/xorg-libxi-1.8.2-hb9d3cd8_0.conda#17dcc85db3c7886650b8908b183d6876 https://conda.anaconda.org/conda-forge/linux-64/xorg-libxrandr-1.5.4-hb9d3cd8_0.conda#2de7f99d6581a4a7adbff607b5c278ca https://conda.anaconda.org/conda-forge/linux-64/xorg-libxxf86vm-1.1.5-hb9d3cd8_4.conda#7da9007c0582712c4bad4131f89c8372 -https://conda.anaconda.org/conda-forge/linux-64/aws-c-s3-0.7.1-h3a84f74_3.conda#e7a54821aaa774cfd64efcd45114a4d7 +https://conda.anaconda.org/conda-forge/linux-64/aws-c-s3-0.7.2-h3a84f74_0.conda#a5f883ce16928e898856b5bd8d1bee57 https://conda.anaconda.org/conda-forge/linux-64/azure-core-cpp-1.14.0-h5cfcd09_0.conda#0a8838771cc2e985cd295e01ae83baf1 https://conda.anaconda.org/conda-forge/linux-64/coverage-7.6.8-py312h178313f_0.conda#fe8c93f4c75908fe2a1cc45ed0c47edf https://conda.anaconda.org/conda-forge/linux-64/cuda-libraries-12.4.1-ha770c72_1.conda#6bb3f998485d4344a7539e0b218b3fc1 @@ -214,15 +215,15 @@ https://conda.anaconda.org/conda-forge/linux-64/libclang-cpp19.1-19.1.4-default_ https://conda.anaconda.org/conda-forge/linux-64/libclang13-19.1.4-default_h9c6a7e4_0.conda#6c450adae455c7d648856e8b0cfcebd6 https://conda.anaconda.org/conda-forge/linux-64/libgoogle-cloud-2.31.0-h804f50b_0.conda#35ab838423b60f233391eb86d324a830 https://conda.anaconda.org/conda-forge/noarch/meson-1.6.0-pyhd8ed1ab_0.conda#380ba6a3eddd8e7649bfe8e6812611aa -https://conda.anaconda.org/conda-forge/linux-64/openldap-2.6.8-hedd0468_0.conda#dcd0ed5147d8876b0848a552b416ce76 +https://conda.anaconda.org/conda-forge/linux-64/openldap-2.6.9-he970967_0.conda#ca2de8bbdc871bce41dbf59e51324165 https://conda.anaconda.org/conda-forge/linux-64/pillow-11.0.0-py312h7b63e92_0.conda#385f46a4df6f97892503a841121a9acf https://conda.anaconda.org/conda-forge/noarch/pip-24.3.1-pyh8b19718_0.conda#5dd546fe99b44fda83963d15f84263b7 https://conda.anaconda.org/conda-forge/noarch/pyproject-metadata-0.9.0-pyh2cfa8aa_0.conda#10906a130eeb4a68645bf97c28333141 -https://conda.anaconda.org/conda-forge/noarch/pytest-8.3.3-pyhd8ed1ab_0.conda#c03d61f31f38fdb9facf70c29958bf7a +https://conda.anaconda.org/conda-forge/noarch/pytest-8.3.4-pyhd8ed1ab_0.conda#ff8f2ef7f2636906b3781d0cf92388d0 https://conda.anaconda.org/conda-forge/noarch/python-dateutil-2.9.0.post0-pyhff2d567_0.conda#b6dfd90a2141e573e4b6a81630b56df5 -https://conda.anaconda.org/conda-forge/linux-64/tbb-2021.13.0-h84d6215_0.conda#ee6f7fd1e76061ef1fa307d41fa86a96 +https://conda.anaconda.org/conda-forge/linux-64/tbb-2021.13.0-hceb3a55_1.conda#ba7726b8df7b9d34ea80e82b097a4893 https://conda.anaconda.org/conda-forge/linux-64/xorg-libxtst-1.2.5-hb9d3cd8_3.conda#7bbe9a0cc0df0ac5f5a8ad6d6a11af2f -https://conda.anaconda.org/conda-forge/linux-64/aws-crt-cpp-0.29.5-h21d7256_0.conda#b2468de19999ee8452757f12f15a9b34 +https://conda.anaconda.org/conda-forge/linux-64/aws-crt-cpp-0.29.6-h0e61686_0.conda#651a6500e5fded51bb7572f4eebcfd7b https://conda.anaconda.org/conda-forge/linux-64/azure-identity-cpp-1.10.0-h113e628_0.conda#73f73f60854f325a55f1d31459f2ab73 https://conda.anaconda.org/conda-forge/linux-64/azure-storage-common-cpp-12.8.0-h736e048_1.conda#13de36be8de3ae3f05ba127631599213 https://conda.anaconda.org/conda-forge/noarch/cuda-runtime-12.4.1-ha804496_0.conda#48829f4ef6005ae8d4867b99168ff2b8 @@ -233,7 +234,7 @@ https://conda.anaconda.org/conda-forge/linux-64/mkl-2022.1.0-h84fe81f_915.tar.bz https://conda.anaconda.org/conda-forge/noarch/pytest-cov-6.0.0-pyhd8ed1ab_0.conda#cb8a11b6d209e3d85e5094bdbd9ebd9c https://conda.anaconda.org/conda-forge/noarch/pytest-xdist-3.6.1-pyhd8ed1ab_0.conda#b39568655c127a9c4a44d178ac99b6d0 https://conda.anaconda.org/conda-forge/noarch/sympy-1.13.3-pyh2585a3b_104.conda#68085d736d2b2f54498832b65059875d -https://conda.anaconda.org/conda-forge/linux-64/aws-sdk-cpp-1.11.449-hdaa582e_3.conda#0dca4b37cf80312f8ef84b649e6ad3a3 +https://conda.anaconda.org/conda-forge/linux-64/aws-sdk-cpp-1.11.449-h5558e3c_4.conda#ba7abdc93b0ade11d774b47aaab84737 https://conda.anaconda.org/conda-forge/linux-64/azure-storage-blobs-cpp-12.13.0-h3cf044e_1.conda#7eb66060455c7a47d9dcdbfa9f46579b https://conda.anaconda.org/conda-forge/linux-64/libblas-3.9.0-16_linux64_mkl.tar.bz2#85f61af03fd291dae33150ffe89dc09a https://conda.anaconda.org/conda-forge/linux-64/mkl-devel-2022.1.0-ha770c72_916.tar.bz2#69ba49e445f87aea2cba343a71a35ca2 @@ -243,26 +244,26 @@ https://conda.anaconda.org/conda-forge/linux-64/azure-storage-files-datalake-cpp https://conda.anaconda.org/conda-forge/linux-64/libcblas-3.9.0-16_linux64_mkl.tar.bz2#361bf757b95488de76c4f123805742d3 https://conda.anaconda.org/conda-forge/linux-64/liblapack-3.9.0-16_linux64_mkl.tar.bz2#a2f166748917d6d6e4707841ca1f519e https://conda.anaconda.org/conda-forge/linux-64/pyside6-6.8.0.2-py312h91f0f75_0.conda#ec3da81d5f9d3612b227e09a650f7bf2 -https://conda.anaconda.org/conda-forge/linux-64/libarrow-18.0.0-h94eee4b_9_cpu.conda#fe2841c29f3753146d4e89217d22d043 +https://conda.anaconda.org/conda-forge/linux-64/libarrow-18.1.0-he15abb1_1_cpu.conda#bd3e35a6f3f869b4777488452f315008 https://conda.anaconda.org/conda-forge/linux-64/liblapacke-3.9.0-16_linux64_mkl.tar.bz2#44ccc4d4dca6a8d57fa17442bc64b5a1 https://conda.anaconda.org/conda-forge/linux-64/numpy-2.1.3-py312h58c1407_0.conda#dfdbc12e6d81889ba4c494a23f23eba8 https://conda.anaconda.org/conda-forge/noarch/array-api-strict-2.2-pyhd8ed1ab_0.conda#5f8d3e0f6b42318772d0f1cdddfe3025 https://conda.anaconda.org/conda-forge/linux-64/blas-devel-3.9.0-16_linux64_mkl.tar.bz2#3f92c1c9e1c0e183462c5071aa02cae1 https://conda.anaconda.org/conda-forge/linux-64/contourpy-1.3.1-py312h68727a3_0.conda#f5fbba0394ee45e9a64a73c2a994126a https://conda.anaconda.org/conda-forge/linux-64/cupy-core-13.3.0-py312h1acd1a8_2.conda#15e9530e87664584a6b409ecdf5c9264 -https://conda.anaconda.org/conda-forge/linux-64/libarrow-acero-18.0.0-h5888daf_9_cpu.conda#b36def03eb1624ad1ca6cd5866104096 -https://conda.anaconda.org/conda-forge/linux-64/libparquet-18.0.0-h6bd9018_9_cpu.conda#79817c62827b836349adf32b218edd95 +https://conda.anaconda.org/conda-forge/linux-64/libarrow-acero-18.1.0-h5888daf_1_cpu.conda#6197dcb930f6254e9b2fdc416be56b71 +https://conda.anaconda.org/conda-forge/linux-64/libparquet-18.1.0-h6bd9018_1_cpu.conda#1054909202f86e38bbbb7ca1131b8471 https://conda.anaconda.org/conda-forge/linux-64/pandas-2.2.3-py312hf9745cd_1.conda#8bce4f6caaf8c5448c7ac86d87e26b4b -https://conda.anaconda.org/conda-forge/linux-64/polars-1.14.0-py312hfe7c9be_1.conda#2fe02335a7c7e5412e4433b712d695ff -https://conda.anaconda.org/conda-forge/linux-64/pyarrow-core-18.0.0-py312h01725c0_2_cpu.conda#190d4fccaa0d28d9f3a7489add69294e +https://conda.anaconda.org/conda-forge/linux-64/polars-1.16.0-py312hfe7c9be_0.conda#d772cdf6b9b7ba0bfd73f506af0d0bd9 +https://conda.anaconda.org/conda-forge/linux-64/pyarrow-core-18.1.0-py312h01725c0_0_cpu.conda#ee80934a6c280ff8635f8db5dec11e04 https://conda.anaconda.org/conda-forge/linux-64/scipy-1.14.1-py312h62794b6_1.conda#b43233a9e2f62fb94affe5607ea79473 https://conda.anaconda.org/conda-forge/linux-64/blas-2.116-mkl.tar.bz2#c196a26abf6b4f132c88828ab7c2231c https://conda.anaconda.org/conda-forge/linux-64/cupy-13.3.0-py312h7d319b9_2.conda#009ef049020fef7d1541183d52fab5a9 -https://conda.anaconda.org/conda-forge/linux-64/libarrow-dataset-18.0.0-h5888daf_9_cpu.conda#07a60ef65486d08c96f324594dc2b5a1 +https://conda.anaconda.org/conda-forge/linux-64/libarrow-dataset-18.1.0-h5888daf_1_cpu.conda#77501831a2aabbaabac55e8cb3b6900a https://conda.anaconda.org/conda-forge/linux-64/matplotlib-base-3.9.2-py312hd3ec401_2.conda#2380c9ba933ffaac9ad16d8eac8e3318 https://conda.anaconda.org/conda-forge/linux-64/pyamg-5.2.1-py312hc39e661_1.conda#372efc32220f0dfb603e5b31ffaefa23 -https://conda.anaconda.org/conda-forge/linux-64/libarrow-substrait-18.0.0-h5c8f2c3_9_cpu.conda#a8fcd78ee422057362d928e2dd63ed8e +https://conda.anaconda.org/conda-forge/linux-64/libarrow-substrait-18.1.0-h5c8f2c3_1_cpu.conda#5d47bd2674afd104dbe2f2f3534594b0 https://conda.anaconda.org/conda-forge/linux-64/matplotlib-3.9.2-py312h7900ff3_2.conda#266d9ad348e2151d07ad9e4dc716eea5 -https://conda.anaconda.org/conda-forge/linux-64/pyarrow-18.0.0-py312h7900ff3_2.conda#3d91e33cf1a2274d52b9a1ca95bd34a0 +https://conda.anaconda.org/conda-forge/linux-64/pyarrow-18.1.0-py312h7900ff3_0.conda#ac65b70df28687c6af4270923c020bdd https://conda.anaconda.org/pytorch/linux-64/pytorch-2.5.1-py3.12_cuda12.4_cudnn9.1.0_0.tar.bz2#42164c6ce8e563c20a542686a8b9b964 https://conda.anaconda.org/pytorch/linux-64/torchtriton-3.1.0-py312.tar.bz2#bb4b2d07cb6b9b476e78740c08ba69fe From 889660674fc7bcdbb218e10ef758bd4e0407e926 Mon Sep 17 00:00:00 2001 From: scikit-learn-bot Date: Mon, 2 Dec 2024 10:04:13 +0100 Subject: [PATCH 066/159] :lock: :robot: CI Update lock files for cirrus-arm CI build(s) :lock: :robot: (#30386) Co-authored-by: Lock file bot --- .../pymin_conda_forge_linux-aarch64_conda.lock | 14 +++++++------- 1 file changed, 7 insertions(+), 7 deletions(-) diff --git a/build_tools/cirrus/pymin_conda_forge_linux-aarch64_conda.lock b/build_tools/cirrus/pymin_conda_forge_linux-aarch64_conda.lock index ff250fdc0044f..25cbd36592de2 100644 --- a/build_tools/cirrus/pymin_conda_forge_linux-aarch64_conda.lock +++ b/build_tools/cirrus/pymin_conda_forge_linux-aarch64_conda.lock @@ -113,7 +113,7 @@ https://conda.anaconda.org/conda-forge/linux-aarch64/libcblas-3.9.0-25_linuxaarc https://conda.anaconda.org/conda-forge/linux-aarch64/libcups-2.3.3-h405e4a8_4.conda#d42c670b0c96c1795fd859d5e0275a55 https://conda.anaconda.org/conda-forge/linux-aarch64/libgl-1.7.0-hd24410f_2.conda#0d00176464ebb25af83d40736a2cd3bb https://conda.anaconda.org/conda-forge/linux-aarch64/liblapack-3.9.0-25_linuxaarch64_openblas.conda#0eb74e81de46454960bde9e44e7ee378 -https://conda.anaconda.org/conda-forge/linux-aarch64/libllvm19-19.1.4-h2edbd07_0.conda#81e165b3003383652447640a21f3db07 +https://conda.anaconda.org/conda-forge/linux-aarch64/libllvm19-19.1.4-h2edbd07_1.conda#9d2f8214e95ad15bd0da345a65c5f67f https://conda.anaconda.org/conda-forge/linux-aarch64/libxkbcommon-1.7.0-h46f2afe_1.conda#78a24e611ab9c09c518f519be49c2e46 https://conda.anaconda.org/conda-forge/linux-aarch64/libxslt-1.1.39-h1cc9640_0.conda#13e1d3f9188e85c6d59a98651aced002 https://conda.anaconda.org/conda-forge/noarch/munkres-1.1.4-pyh9f0ad1d_0.tar.bz2#2ba8498c1018c1e9c61eb99b973dfe19 @@ -121,11 +121,11 @@ https://conda.anaconda.org/conda-forge/linux-aarch64/openjpeg-2.5.2-h0d9d63b_0.c https://conda.anaconda.org/conda-forge/noarch/packaging-24.2-pyhff2d567_1.conda#8508b703977f4c4ada34d657d051972c https://conda.anaconda.org/conda-forge/noarch/pluggy-1.5.0-pyhd8ed1ab_0.conda#d3483c8fc2dc2cc3f5cf43e26d60cabf https://conda.anaconda.org/conda-forge/noarch/pyparsing-3.2.0-pyhd8ed1ab_1.conda#035c17fbf099f50ff60bf2eb303b0a83 -https://conda.anaconda.org/conda-forge/noarch/setuptools-75.6.0-pyhff2d567_0.conda#68d7d406366926b09a6a023e3d0f71d7 +https://conda.anaconda.org/conda-forge/noarch/setuptools-75.6.0-pyhff2d567_1.conda#fc80f7995e396cbaeabd23cf46c413dc https://conda.anaconda.org/conda-forge/noarch/six-1.16.0-pyh6c4a22f_0.tar.bz2#e5f25f8dbc060e9a8d912e432202afc2 https://conda.anaconda.org/conda-forge/noarch/threadpoolctl-3.5.0-pyhc1e730c_0.conda#df68d78237980a159bd7149f33c0e8fd -https://conda.anaconda.org/conda-forge/noarch/tomli-2.1.0-pyhff2d567_0.conda#3fa1089b4722df3a900135925f4519d9 -https://conda.anaconda.org/conda-forge/linux-aarch64/tornado-6.4.1-py39h3e3acee_1.conda#a4d4b0a58bf2fadfa1285f4710b72f99 +https://conda.anaconda.org/conda-forge/noarch/tomli-2.2.1-pyhd8ed1ab_0.conda#ee8ab0fe4c8dfc5a6319f7f8246022fc +https://conda.anaconda.org/conda-forge/linux-aarch64/tornado-6.4.2-py39h3e3acee_0.conda#fdf7a3dc0d7e6ca4cc792f1731d282c4 https://conda.anaconda.org/conda-forge/linux-aarch64/unicodedata2-15.1.0-py39h060674a_1.conda#22a119d3f80e6d91b28fbc49a3cc08b2 https://conda.anaconda.org/conda-forge/noarch/wheel-0.45.1-pyhd8ed1ab_0.conda#bdb2f437ce62fd2f1fef9119a37a12d9 https://conda.anaconda.org/conda-forge/linux-aarch64/xcb-util-cursor-0.1.5-h86ecc28_0.conda#d6bb2038d26fa118d5cbc2761116f3e5 @@ -135,7 +135,7 @@ https://conda.anaconda.org/conda-forge/linux-aarch64/xorg-libxdamage-1.1.6-h86ec https://conda.anaconda.org/conda-forge/linux-aarch64/xorg-libxi-1.8.2-h57736b2_0.conda#eeee3bdb31c6acde2b81ad1b8c287087 https://conda.anaconda.org/conda-forge/linux-aarch64/xorg-libxrandr-1.5.4-h86ecc28_0.conda#dd3e74283a082381aa3860312e3c721e https://conda.anaconda.org/conda-forge/linux-aarch64/xorg-libxxf86vm-1.1.5-h57736b2_4.conda#82fa1f5642ef7ac7172e295327ce20e2 -https://conda.anaconda.org/conda-forge/noarch/zipp-3.21.0-pyhd8ed1ab_0.conda#fee389bf8a4843bd7a2248ce11b7f188 +https://conda.anaconda.org/conda-forge/noarch/zipp-3.21.0-pyhd8ed1ab_1.conda#0c3cc595284c5e8f0f9900a9b228a332 https://conda.anaconda.org/conda-forge/linux-aarch64/fonttools-4.55.0-py39hbebea31_0.conda#bc7a7c58b3502d757efcc276e3ba7f0b https://conda.anaconda.org/conda-forge/linux-aarch64/harfbuzz-9.0.0-hbf49d6b_1.conda#ceb458f664cab8550fcd74fff26451db https://conda.anaconda.org/conda-forge/noarch/importlib_resources-6.4.5-pyhd8ed1ab_0.conda#c808991d29b9838fb4d96ce8267ec9ec @@ -145,11 +145,11 @@ https://conda.anaconda.org/conda-forge/linux-aarch64/libclang13-19.1.4-default_h https://conda.anaconda.org/conda-forge/linux-aarch64/liblapacke-3.9.0-25_linuxaarch64_openblas.conda#1e68063075954830f707b41dab6c7fd8 https://conda.anaconda.org/conda-forge/noarch/meson-1.6.0-pyhd8ed1ab_0.conda#380ba6a3eddd8e7649bfe8e6812611aa https://conda.anaconda.org/conda-forge/linux-aarch64/numpy-2.0.2-py39h4a34e27_1.conda#fe586ddf9512644add97b0526129ed95 -https://conda.anaconda.org/conda-forge/linux-aarch64/openldap-2.6.8-h50f9a67_0.conda#6f6627099ae614fe176e162e6eeae240 +https://conda.anaconda.org/conda-forge/linux-aarch64/openldap-2.6.9-h30c48ee_0.conda#c07822a5de65ce9797b9afa257faa917 https://conda.anaconda.org/conda-forge/linux-aarch64/pillow-11.0.0-py39hb20fde8_0.conda#78cdfe29a452feee8c5bd689c2c871bd https://conda.anaconda.org/conda-forge/noarch/pip-24.3.1-pyh8b19718_0.conda#5dd546fe99b44fda83963d15f84263b7 https://conda.anaconda.org/conda-forge/noarch/pyproject-metadata-0.9.0-pyh2cfa8aa_0.conda#10906a130eeb4a68645bf97c28333141 -https://conda.anaconda.org/conda-forge/noarch/pytest-8.3.3-pyhd8ed1ab_0.conda#c03d61f31f38fdb9facf70c29958bf7a +https://conda.anaconda.org/conda-forge/noarch/pytest-8.3.4-pyhd8ed1ab_0.conda#ff8f2ef7f2636906b3781d0cf92388d0 https://conda.anaconda.org/conda-forge/noarch/python-dateutil-2.9.0.post0-pyhff2d567_0.conda#b6dfd90a2141e573e4b6a81630b56df5 https://conda.anaconda.org/conda-forge/linux-aarch64/xorg-libxtst-1.2.5-h57736b2_3.conda#c05698071b5c8e0da82a282085845860 https://conda.anaconda.org/conda-forge/linux-aarch64/blas-devel-3.9.0-25_linuxaarch64_openblas.conda#32539a9b9e09140a83e987edf3c09926 From a62499152d45ad682f679ca2028b57685a6ddb6b Mon Sep 17 00:00:00 2001 From: Virgil Chan Date: Mon, 2 Dec 2024 18:11:07 +0800 Subject: [PATCH 067/159] ENH Reduce redundancy in floating type checks for Array API support in `_regression.py` (#30128) Co-authored-by: Adrin Jalali Co-authored-by: Olivier Grisel --- sklearn/metrics/_regression.py | 142 ++++++++++++++++++++------- sklearn/metrics/tests/test_common.py | 4 +- 2 files changed, 106 insertions(+), 40 deletions(-) diff --git a/sklearn/metrics/_regression.py b/sklearn/metrics/_regression.py index 62251f9b96188..c5ebe67e34a2e 100644 --- a/sklearn/metrics/_regression.py +++ b/sklearn/metrics/_regression.py @@ -58,11 +58,16 @@ def _check_reg_targets(y_true, y_pred, multioutput, dtype="numeric", xp=None): """Check that y_true and y_pred belong to the same regression task. + To reduce redundancy when calling `_find_matching_floating_dtype`, + please use `_check_reg_targets_with_floating_dtype` instead. + Parameters ---------- - y_true : array-like + y_true : array-like of shape (n_samples,) or (n_samples, n_outputs) + Ground truth (correct) target values. - y_pred : array-like + y_pred : array-like of shape (n_samples,) or (n_samples, n_outputs) + Estimated target values. multioutput : array-like or string in ['raw_values', uniform_average', 'variance_weighted'] or None @@ -137,6 +142,71 @@ def _check_reg_targets(y_true, y_pred, multioutput, dtype="numeric", xp=None): return y_type, y_true, y_pred, multioutput +def _check_reg_targets_with_floating_dtype( + y_true, y_pred, sample_weight, multioutput, xp=None +): + """Ensures that y_true, y_pred, and sample_weight correspond to the same + regression task. + + Extends `_check_reg_targets` by automatically selecting a suitable floating-point + data type for inputs using `_find_matching_floating_dtype`. + + Use this private method only when converting inputs to array API-compatibles. + + Parameters + ---------- + y_true : array-like of shape (n_samples,) or (n_samples, n_outputs) + Ground truth (correct) target values. + + y_pred : array-like of shape (n_samples,) or (n_samples, n_outputs) + Estimated target values. + + sample_weight : array-like of shape (n_samples,) + + multioutput : array-like or string in ['raw_values', 'uniform_average', \ + 'variance_weighted'] or None + None is accepted due to backward compatibility of r2_score(). + + xp : module, default=None + Precomputed array namespace module. When passed, typically from a caller + that has already performed inspection of its own inputs, skips array + namespace inspection. + + Returns + ------- + type_true : one of {'continuous', 'continuous-multioutput'} + The type of the true target data, as output by + 'utils.multiclass.type_of_target'. + + y_true : array-like of shape (n_samples, n_outputs) + Ground truth (correct) target values. + + y_pred : array-like of shape (n_samples, n_outputs) + Estimated target values. + + sample_weight : array-like of shape (n_samples,), default=None + Sample weights. + + multioutput : array-like of shape (n_outputs) or string in ['raw_values', \ + 'uniform_average', 'variance_weighted'] or None + Custom output weights if ``multioutput`` is array-like or + just the corresponding argument if ``multioutput`` is a + correct keyword. + """ + dtype_name = _find_matching_floating_dtype(y_true, y_pred, sample_weight, xp=xp) + + y_type, y_true, y_pred, multioutput = _check_reg_targets( + y_true, y_pred, multioutput, dtype=dtype_name, xp=xp + ) + + # _check_reg_targets does not accept sample_weight as input. + # Convert sample_weight's data type separately to match dtype_name. + if sample_weight is not None: + sample_weight = xp.asarray(sample_weight, dtype=dtype_name) + + return y_type, y_true, y_pred, sample_weight, multioutput + + @validate_params( { "y_true": ["array-like"], @@ -201,14 +271,14 @@ def mean_absolute_error( >>> mean_absolute_error(y_true, y_pred, multioutput=[0.3, 0.7]) 0.85... """ - input_arrays = [y_true, y_pred, sample_weight, multioutput] - xp, _ = get_namespace(*input_arrays) - - dtype = _find_matching_floating_dtype(y_true, y_pred, sample_weight, xp=xp) + xp, _ = get_namespace(y_true, y_pred, sample_weight, multioutput) - _, y_true, y_pred, multioutput = _check_reg_targets( - y_true, y_pred, multioutput, dtype=dtype, xp=xp + _, y_true, y_pred, sample_weight, multioutput = ( + _check_reg_targets_with_floating_dtype( + y_true, y_pred, sample_weight, multioutput, xp=xp + ) ) + check_consistent_length(y_true, y_pred, sample_weight) output_errors = _average( @@ -398,19 +468,16 @@ def mean_absolute_percentage_error( >>> mean_absolute_percentage_error(y_true, y_pred) 112589990684262.48 """ - input_arrays = [y_true, y_pred, sample_weight, multioutput] - xp, _ = get_namespace(*input_arrays) - dtype = _find_matching_floating_dtype(y_true, y_pred, sample_weight, xp=xp) - - y_type, y_true, y_pred, multioutput = _check_reg_targets( - y_true, y_pred, multioutput, dtype=dtype, xp=xp + xp, _ = get_namespace(y_true, y_pred, sample_weight, multioutput) + _, y_true, y_pred, sample_weight, multioutput = ( + _check_reg_targets_with_floating_dtype( + y_true, y_pred, sample_weight, multioutput, xp=xp + ) ) check_consistent_length(y_true, y_pred, sample_weight) - epsilon = xp.asarray(xp.finfo(xp.float64).eps, dtype=dtype) - y_true_abs = xp.asarray(xp.abs(y_true), dtype=dtype) - mape = xp.asarray(xp.abs(y_pred - y_true), dtype=dtype) / xp.maximum( - y_true_abs, epsilon - ) + epsilon = xp.asarray(xp.finfo(xp.float64).eps, dtype=y_true.dtype) + y_true_abs = xp.abs(y_true) + mape = xp.abs(y_pred - y_true) / xp.maximum(y_true_abs, epsilon) output_errors = _average(mape, weights=sample_weight, axis=0) if isinstance(multioutput, str): if multioutput == "raw_values": @@ -494,10 +561,10 @@ def mean_squared_error( 0.825... """ xp, _ = get_namespace(y_true, y_pred, sample_weight, multioutput) - dtype = _find_matching_floating_dtype(y_true, y_pred, xp=xp) - - _, y_true, y_pred, multioutput = _check_reg_targets( - y_true, y_pred, multioutput, dtype=dtype, xp=xp + _, y_true, y_pred, sample_weight, multioutput = ( + _check_reg_targets_with_floating_dtype( + y_true, y_pred, sample_weight, multioutput, xp=xp + ) ) check_consistent_length(y_true, y_pred, sample_weight) output_errors = _average((y_true - y_pred) ** 2, axis=0, weights=sample_weight) @@ -670,10 +737,9 @@ def mean_squared_log_error( 0.060... """ xp, _ = get_namespace(y_true, y_pred) - dtype = _find_matching_floating_dtype(y_true, y_pred, xp=xp) - _, y_true, y_pred, _ = _check_reg_targets( - y_true, y_pred, multioutput, dtype=dtype, xp=xp + _, y_true, y_pred, _, _ = _check_reg_targets_with_floating_dtype( + y_true, y_pred, sample_weight, multioutput, xp=xp ) if xp.any(y_true <= -1) or xp.any(y_pred <= -1): @@ -747,10 +813,9 @@ def root_mean_squared_log_error( 0.199... """ xp, _ = get_namespace(y_true, y_pred) - dtype = _find_matching_floating_dtype(y_true, y_pred, xp=xp) - _, y_true, y_pred, multioutput = _check_reg_targets( - y_true, y_pred, multioutput, dtype=dtype, xp=xp + _, y_true, y_pred, _, _ = _check_reg_targets_with_floating_dtype( + y_true, y_pred, sample_weight, multioutput, xp=xp ) if xp.any(y_true <= -1) or xp.any(y_pred <= -1): @@ -1188,11 +1253,12 @@ def r2_score( y_true, y_pred, sample_weight, multioutput ) - dtype = _find_matching_floating_dtype(y_true, y_pred, sample_weight, xp=xp) - - _, y_true, y_pred, multioutput = _check_reg_targets( - y_true, y_pred, multioutput, dtype=dtype, xp=xp + _, y_true, y_pred, sample_weight, multioutput = ( + _check_reg_targets_with_floating_dtype( + y_true, y_pred, sample_weight, multioutput, xp=xp + ) ) + check_consistent_length(y_true, y_pred, sample_weight) if _num_samples(y_pred) < 2: @@ -1201,7 +1267,7 @@ def r2_score( return float("nan") if sample_weight is not None: - sample_weight = column_or_1d(sample_weight, dtype=dtype) + sample_weight = column_or_1d(sample_weight) weight = sample_weight[:, None] else: weight = 1.0 @@ -1356,8 +1422,8 @@ def mean_tweedie_deviance(y_true, y_pred, *, sample_weight=None, power=0): 1.4260... """ xp, _ = get_namespace(y_true, y_pred) - y_type, y_true, y_pred, _ = _check_reg_targets( - y_true, y_pred, None, dtype=[xp.float64, xp.float32], xp=xp + y_type, y_true, y_pred, sample_weight, _ = _check_reg_targets_with_floating_dtype( + y_true, y_pred, sample_weight, multioutput=None, xp=xp ) if y_type == "continuous-multioutput": raise ValueError("Multioutput not supported in mean_tweedie_deviance") @@ -1570,8 +1636,8 @@ def d2_tweedie_score(y_true, y_pred, *, sample_weight=None, power=0): """ xp, _ = get_namespace(y_true, y_pred) - y_type, y_true, y_pred, _ = _check_reg_targets( - y_true, y_pred, None, dtype=[xp.float64, xp.float32], xp=xp + y_type, y_true, y_pred, sample_weight, _ = _check_reg_targets_with_floating_dtype( + y_true, y_pred, sample_weight, multioutput=None, xp=xp ) if y_type == "continuous-multioutput": raise ValueError("Multioutput not supported in d2_tweedie_score") diff --git a/sklearn/metrics/tests/test_common.py b/sklearn/metrics/tests/test_common.py index be58928ff1def..fa13426c7a68a 100644 --- a/sklearn/metrics/tests/test_common.py +++ b/sklearn/metrics/tests/test_common.py @@ -583,8 +583,8 @@ def _require_positive_targets(y1, y2): def _require_log1p_targets(y1, y2): """Make targets strictly larger than -1""" offset = abs(min(y1.min(), y2.min())) - 0.99 - y1 = y1.astype(float) - y2 = y2.astype(float) + y1 = y1.astype(np.float64) + y2 = y2.astype(np.float64) y1 += offset y2 += offset return y1, y2 From 07a2f8a68e188953ba92909529e1ffb0a3e4d597 Mon Sep 17 00:00:00 2001 From: scikit-learn-bot Date: Mon, 2 Dec 2024 13:40:13 +0100 Subject: [PATCH 068/159] :lock: :robot: CI Update lock files for free-threaded CI build(s) :lock: :robot: (#30385) Co-authored-by: Lock file bot --- .../azure/pylatest_free_threaded_linux-64_conda.lock | 12 ++++++------ 1 file changed, 6 insertions(+), 6 deletions(-) diff --git a/build_tools/azure/pylatest_free_threaded_linux-64_conda.lock b/build_tools/azure/pylatest_free_threaded_linux-64_conda.lock index 88c8d17345bcd..e7206c93913c8 100644 --- a/build_tools/azure/pylatest_free_threaded_linux-64_conda.lock +++ b/build_tools/azure/pylatest_free_threaded_linux-64_conda.lock @@ -33,10 +33,10 @@ https://conda.anaconda.org/conda-forge/linux-64/readline-8.2-h8228510_1.conda#47 https://conda.anaconda.org/conda-forge/linux-64/zstd-1.5.6-ha6fb4c9_0.conda#4d056880988120e29d75bfff282e0f45 https://conda.anaconda.org/conda-forge/linux-64/libblas-3.9.0-25_linux64_openblas.conda#8ea26d42ca88ec5258802715fe1ee10b https://conda.anaconda.org/conda-forge/linux-64/libhiredis-1.0.2-h2cc385e_0.tar.bz2#b34907d3a81a3cd8095ee83d174c074a -https://conda.anaconda.org/conda-forge/linux-64/python-3.13.0-h6355ac2_0_cp313t.conda#10b52576e09161c4e744cbd95d35e648 +https://conda.anaconda.org/conda-forge/linux-64/python-3.13.0-h6355ac2_1_cp313t.conda#7642e52774e72aa98c2eb1211e2978fd https://conda.anaconda.org/conda-forge/linux-64/ccache-4.10.1-h065aff2_0.conda#d6b48c138e0c8170a6fe9c136e063540 https://conda.anaconda.org/conda-forge/noarch/colorama-0.4.6-pyhd8ed1ab_0.tar.bz2#3faab06a954c2a04039983f2c4a50d99 -https://conda.anaconda.org/conda-forge/noarch/cpython-3.13.0-py313hd8ed1ab_0.conda#efdede3c85221d80346fadb903a97bf6 +https://conda.anaconda.org/conda-forge/noarch/cpython-3.13.0-py313hd8ed1ab_1.conda#eaacf5e3c829acb1430c524f473a97ec https://conda.anaconda.org/conda-forge/noarch/exceptiongroup-1.2.2-pyhd8ed1ab_0.conda#d02ae936e42063ca46af6cdad2dbd1e0 https://conda.anaconda.org/conda-forge/noarch/execnet-2.1.1-pyhd8ed1ab_0.conda#15dda3cdbf330abfe9f555d22f66db46 https://conda.anaconda.org/conda-forge/noarch/iniconfig-2.0.0-pyhd8ed1ab_0.conda#f800d2da156d08e289b14e87e43c1ae5 @@ -45,14 +45,14 @@ https://conda.anaconda.org/conda-forge/linux-64/liblapack-3.9.0-25_linux64_openb https://conda.anaconda.org/conda-forge/noarch/packaging-24.2-pyhff2d567_1.conda#8508b703977f4c4ada34d657d051972c https://conda.anaconda.org/conda-forge/noarch/pip-24.3.1-pyh145f28c_0.conda#ca3afe2d7b893a8c8cdf489d30a2b1a3 https://conda.anaconda.org/conda-forge/noarch/pluggy-1.5.0-pyhd8ed1ab_0.conda#d3483c8fc2dc2cc3f5cf43e26d60cabf -https://conda.anaconda.org/conda-forge/noarch/setuptools-75.6.0-pyhff2d567_0.conda#68d7d406366926b09a6a023e3d0f71d7 +https://conda.anaconda.org/conda-forge/noarch/setuptools-75.6.0-pyhff2d567_1.conda#fc80f7995e396cbaeabd23cf46c413dc https://conda.anaconda.org/conda-forge/noarch/threadpoolctl-3.5.0-pyhc1e730c_0.conda#df68d78237980a159bd7149f33c0e8fd -https://conda.anaconda.org/conda-forge/noarch/tomli-2.1.0-pyhff2d567_0.conda#3fa1089b4722df3a900135925f4519d9 +https://conda.anaconda.org/conda-forge/noarch/tomli-2.2.1-pyhd8ed1ab_0.conda#ee8ab0fe4c8dfc5a6319f7f8246022fc https://conda.anaconda.org/conda-forge/noarch/joblib-1.4.2-pyhd8ed1ab_0.conda#25df261d4523d9f9783bcdb7208d872f https://conda.anaconda.org/conda-forge/noarch/meson-1.6.0-pyhd8ed1ab_0.conda#380ba6a3eddd8e7649bfe8e6812611aa https://conda.anaconda.org/conda-forge/linux-64/numpy-2.1.3-py313hb01392b_0.conda#edd0335b8d3c81f0a91aa68cb8749929 https://conda.anaconda.org/conda-forge/noarch/pyproject-metadata-0.9.0-pyh2cfa8aa_0.conda#10906a130eeb4a68645bf97c28333141 -https://conda.anaconda.org/conda-forge/noarch/pytest-8.3.3-pyhd8ed1ab_0.conda#c03d61f31f38fdb9facf70c29958bf7a -https://conda.anaconda.org/conda-forge/noarch/python-freethreading-3.13.0-h92d6c8b_0.conda#4c3f45e4597606f5b0e2770743bbcd7e +https://conda.anaconda.org/conda-forge/noarch/pytest-8.3.4-pyhd8ed1ab_0.conda#ff8f2ef7f2636906b3781d0cf92388d0 +https://conda.anaconda.org/conda-forge/noarch/python-freethreading-3.13.0-h92d6c8b_1.conda#19807e8cf2ac52aa2fa1984e76f42989 https://conda.anaconda.org/conda-forge/noarch/meson-python-0.17.1-pyh70fd9c4_0.conda#722b649da38842068d83b6e6770f11a1 https://conda.anaconda.org/conda-forge/noarch/pytest-xdist-3.6.1-pyhd8ed1ab_0.conda#b39568655c127a9c4a44d178ac99b6d0 From e099cd1df9324007b757b74c59adde430e42b1e5 Mon Sep 17 00:00:00 2001 From: scikit-learn-bot Date: Mon, 2 Dec 2024 13:40:52 +0100 Subject: [PATCH 069/159] :lock: :robot: CI Update lock files for scipy-dev CI build(s) :lock: :robot: (#30384) Co-authored-by: Lock file bot --- build_tools/azure/pylatest_pip_scipy_dev_linux-64_conda.lock | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/build_tools/azure/pylatest_pip_scipy_dev_linux-64_conda.lock b/build_tools/azure/pylatest_pip_scipy_dev_linux-64_conda.lock index 4125df2840fdb..523454a0be726 100644 --- a/build_tools/azure/pylatest_pip_scipy_dev_linux-64_conda.lock +++ b/build_tools/azure/pylatest_pip_scipy_dev_linux-64_conda.lock @@ -3,7 +3,7 @@ # input_hash: 8a4a203136d97ff3b2c8657fce2dd2228215bfbf9c1cfbe271e401f934bdf1a7 @EXPLICIT https://repo.anaconda.com/pkgs/main/linux-64/_libgcc_mutex-0.1-main.conda#c3473ff8bdb3d124ed5ff11ec380d6f9 -https://repo.anaconda.com/pkgs/main/linux-64/ca-certificates-2024.9.24-h06a4308_0.conda#e4369d7b4b0707ee0765794d14710e2e +https://repo.anaconda.com/pkgs/main/linux-64/ca-certificates-2024.11.26-h06a4308_0.conda#cebd61e6520159a1315d679321620f6c https://repo.anaconda.com/pkgs/main/linux-64/ld_impl_linux-64-2.40-h12ee557_0.conda#ee672b5f635340734f58d618b7bca024 https://repo.anaconda.com/pkgs/main/linux-64/python_abi-3.13-0_cp313.conda#d4009c49dd2b54ffded7f1365b5f6505 https://repo.anaconda.com/pkgs/main/noarch/tzdata-2024b-h04d1e81_0.conda#9be694715c6a65f9631bb1b242125e9d @@ -58,7 +58,7 @@ https://repo.anaconda.com/pkgs/main/linux-64/pip-24.2-py313h06a4308_0.conda#59f8 # pip urllib3 @ https://files.pythonhosted.org/packages/ce/d9/5f4c13cecde62396b0d3fe530a50ccea91e7dfc1ccf0e09c228841bb5ba8/urllib3-2.2.3-py3-none-any.whl#sha256=ca899ca043dcb1bafa3e262d73aa25c465bfb49e0bd9dd5d59f1d0acba2f8fac # pip jinja2 @ https://files.pythonhosted.org/packages/31/80/3a54838c3fb461f6fec263ebf3a3a41771bd05190238de3486aae8540c36/jinja2-3.1.4-py3-none-any.whl#sha256=bc5dd2abb727a5319567b7a813e6a2e7318c39f4f487cfe6c89c6f9c7d25197d # pip pyproject-metadata @ https://files.pythonhosted.org/packages/e8/61/9dd3e68d2b6aa40a5fc678662919be3c3a7bf22cba5a6b4437619b77e156/pyproject_metadata-0.9.0-py3-none-any.whl#sha256=fc862aab066a2e87734333293b0af5845fe8ac6cb69c451a41551001e923be0b -# pip pytest @ https://files.pythonhosted.org/packages/6b/77/7440a06a8ead44c7757a64362dd22df5760f9b12dc5f11b6188cd2fc27a0/pytest-8.3.3-py3-none-any.whl#sha256=a6853c7375b2663155079443d2e45de913a911a11d669df02a50814944db57b2 +# pip pytest @ https://files.pythonhosted.org/packages/11/92/76a1c94d3afee238333bc0a42b82935dd8f9cf8ce9e336ff87ee14d9e1cf/pytest-8.3.4-py3-none-any.whl#sha256=50e16d954148559c9a74109af1eaf0c945ba2d8f30f0a3d3335edde19788b6f6 # pip python-dateutil @ https://files.pythonhosted.org/packages/ec/57/56b9bcc3c9c6a792fcbaf139543cee77261f3651ca9da0c93f5c1221264b/python_dateutil-2.9.0.post0-py2.py3-none-any.whl#sha256=a8b2bc7bffae282281c8140a97d3aa9c14da0b136dfe83f850eea9a5f7470427 # pip requests @ https://files.pythonhosted.org/packages/f9/9b/335f9764261e915ed497fcdeb11df5dfd6f7bf257d4a6a2a686d80da4d54/requests-2.32.3-py3-none-any.whl#sha256=70761cfe03c773ceb22aa2f671b4757976145175cdfca038c02654d061d6dcc6 # pip meson-python @ https://files.pythonhosted.org/packages/7d/ec/40c0ddd29ef4daa6689a2b9c5ced47d5b58fa54ae149b19e9a97f4979c8c/meson_python-0.17.1-py3-none-any.whl#sha256=30a75c52578ef14aff8392677b09c39346e0a24d2b2c6204b8ed30583c11269c From bf6c6d915202b605603027bad6a4e5a07222d44e Mon Sep 17 00:00:00 2001 From: "dependabot[bot]" <49699333+dependabot[bot]@users.noreply.github.com> Date: Mon, 2 Dec 2024 16:28:22 +0100 Subject: [PATCH 070/159] Bump the actions group with 2 updates (#30379) Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com> --- .github/workflows/cuda-ci.yml | 2 +- .github/workflows/publish_pypi.yml | 4 ++-- 2 files changed, 3 insertions(+), 3 deletions(-) diff --git a/.github/workflows/cuda-ci.yml b/.github/workflows/cuda-ci.yml index 80bebf1437ffc..ad00e0717a1bf 100644 --- a/.github/workflows/cuda-ci.yml +++ b/.github/workflows/cuda-ci.yml @@ -16,7 +16,7 @@ jobs: - uses: actions/checkout@v4 - name: Build wheels - uses: pypa/cibuildwheel@v2.21.3 + uses: pypa/cibuildwheel@v2.22.0 env: CIBW_BUILD: cp312-manylinux_x86_64 CIBW_MANYLINUX_X86_64_IMAGE: manylinux2014 diff --git a/.github/workflows/publish_pypi.yml b/.github/workflows/publish_pypi.yml index 584a3dabf9886..5677c7766ad3f 100644 --- a/.github/workflows/publish_pypi.yml +++ b/.github/workflows/publish_pypi.yml @@ -39,13 +39,13 @@ jobs: run: | python build_tools/github/check_wheels.py - name: Publish package to TestPyPI - uses: pypa/gh-action-pypi-publish@fb13cb306901256ace3dab689990e13a5550ffaa # v1.11.0 + uses: pypa/gh-action-pypi-publish@15c56dba361d8335944d31a2ecd17d700fc7bcbc # v1.12.2 with: repository-url: https://test.pypi.org/legacy/ print-hash: true if: ${{ github.event.inputs.pypi_repo == 'testpypi' }} - name: Publish package to PyPI - uses: pypa/gh-action-pypi-publish@fb13cb306901256ace3dab689990e13a5550ffaa # v1.11.0 + uses: pypa/gh-action-pypi-publish@15c56dba361d8335944d31a2ecd17d700fc7bcbc # v1.12.2 if: ${{ github.event.inputs.pypi_repo == 'pypi' }} with: print-hash: true From 9bc7682de740600755621f102c10ab9f76f24e96 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Lo=C3=AFc=20Est=C3=A8ve?= Date: Mon, 2 Dec 2024 18:07:40 +0100 Subject: [PATCH 071/159] CI Use sys.monitoring with coverage to speed-up Python >= 3.12 builds (#29473) --- .coveragerc | 5 ++- ...latest_pip_openblas_pandas_environment.yml | 2 +- ...st_pip_openblas_pandas_linux-64_conda.lock | 41 ++++++++++--------- build_tools/azure/test_script.sh | 6 +++ .../update_environments_and_lock_files.py | 6 --- 5 files changed, 33 insertions(+), 27 deletions(-) diff --git a/.coveragerc b/.coveragerc index 31f9fa1b4ceae..0d5f02b3edafc 100644 --- a/.coveragerc +++ b/.coveragerc @@ -1,5 +1,8 @@ [run] -branch = True +# Use statement coverage rather than branch coverage because +# COVERAGE_CORE=sysmon can make branch coverage slower rather than faster. See +# https://github.com/nedbat/coveragepy/issues/1812 for more details. +branch = False source = sklearn parallel = True omit = diff --git a/build_tools/azure/pylatest_pip_openblas_pandas_environment.yml b/build_tools/azure/pylatest_pip_openblas_pandas_environment.yml index 2d9ca394a6ac9..177d28555f712 100644 --- a/build_tools/azure/pylatest_pip_openblas_pandas_environment.yml +++ b/build_tools/azure/pylatest_pip_openblas_pandas_environment.yml @@ -4,7 +4,7 @@ channels: - defaults dependencies: - - python=3.11 + - python - ccache - pip - pip: diff --git a/build_tools/azure/pylatest_pip_openblas_pandas_linux-64_conda.lock b/build_tools/azure/pylatest_pip_openblas_pandas_linux-64_conda.lock index 2a92c51911ff7..a1c2a62d63155 100644 --- a/build_tools/azure/pylatest_pip_openblas_pandas_linux-64_conda.lock +++ b/build_tools/azure/pylatest_pip_openblas_pandas_linux-64_conda.lock @@ -1,17 +1,20 @@ # Generated by conda-lock. # platform: linux-64 -# input_hash: 893e5f90e655d6606d6b7e308c1099125012b25c3444b5a4240d44b184531e00 +# input_hash: 38d3951742eb4e3d26c6768f2c329b12d5418fed96f94c97da19b776b04ee767 @EXPLICIT https://repo.anaconda.com/pkgs/main/linux-64/_libgcc_mutex-0.1-main.conda#c3473ff8bdb3d124ed5ff11ec380d6f9 https://repo.anaconda.com/pkgs/main/linux-64/ca-certificates-2024.11.26-h06a4308_0.conda#cebd61e6520159a1315d679321620f6c https://repo.anaconda.com/pkgs/main/linux-64/ld_impl_linux-64-2.40-h12ee557_0.conda#ee672b5f635340734f58d618b7bca024 +https://repo.anaconda.com/pkgs/main/linux-64/python_abi-3.13-0_cp313.conda#d4009c49dd2b54ffded7f1365b5f6505 https://repo.anaconda.com/pkgs/main/noarch/tzdata-2024b-h04d1e81_0.conda#9be694715c6a65f9631bb1b242125e9d https://repo.anaconda.com/pkgs/main/linux-64/libgomp-11.2.0-h1234567_1.conda#b372c0eea9b60732fdae4b817a63c8cd https://repo.anaconda.com/pkgs/main/linux-64/libstdcxx-ng-11.2.0-h1234567_1.conda#57623d10a70e09e1d048c2b2b6f4e2dd https://repo.anaconda.com/pkgs/main/linux-64/_openmp_mutex-5.1-1_gnu.conda#71d281e9c2192cb3fa425655a8defb85 https://repo.anaconda.com/pkgs/main/linux-64/libgcc-ng-11.2.0-h1234567_1.conda#a87728dabf3151fb9cfa990bd2eb0464 https://repo.anaconda.com/pkgs/main/linux-64/bzip2-1.0.8-h5eee18b_6.conda#f21a3ff51c1b271977f53ce956a69297 +https://repo.anaconda.com/pkgs/main/linux-64/expat-2.6.3-h6a678d5_0.conda#5e184279ccb8b85331093305cb548f5c https://repo.anaconda.com/pkgs/main/linux-64/libffi-3.4.4-h6a678d5_1.conda#70646cc713f0c43926cfdcfe9b695fe0 +https://repo.anaconda.com/pkgs/main/linux-64/libmpdec-4.0.0-h5eee18b_0.conda#feb10f42b1a7b523acbf85461be41a3e https://repo.anaconda.com/pkgs/main/linux-64/libuuid-1.41.5-h5eee18b_0.conda#4a6a2354414c9080327274aa514e5299 https://repo.anaconda.com/pkgs/main/linux-64/ncurses-6.4-h6a678d5_0.conda#5558eec6e2191741a92f832ea826251c https://repo.anaconda.com/pkgs/main/linux-64/openssl-3.0.15-h5eee18b_0.conda#019e501b69841c6d4aeaef3b8619a678 @@ -21,33 +24,33 @@ https://repo.anaconda.com/pkgs/main/linux-64/ccache-3.7.9-hfe4627d_0.conda#bef6f https://repo.anaconda.com/pkgs/main/linux-64/readline-8.2-h5eee18b_0.conda#be42180685cce6e6b0329201d9f48efb https://repo.anaconda.com/pkgs/main/linux-64/tk-8.6.14-h39e8969_0.conda#78dbc5e3c69143ebc037fc5d5b22e597 https://repo.anaconda.com/pkgs/main/linux-64/sqlite-3.45.3-h5eee18b_0.conda#acf93d6aceb74d6110e20b44cc45939e -https://repo.anaconda.com/pkgs/main/linux-64/python-3.11.10-he870216_0.conda#ebcea7b39a97d2023bf233d3c46df7cd -https://repo.anaconda.com/pkgs/main/linux-64/setuptools-75.1.0-py311h06a4308_0.conda#7cbefa0320ebd04c6cc060be9c39789a -https://repo.anaconda.com/pkgs/main/linux-64/wheel-0.44.0-py311h06a4308_0.conda#1fb091aa98b4fc5ca036b2086dac1db5 -https://repo.anaconda.com/pkgs/main/linux-64/pip-24.2-py311h06a4308_0.conda#eff3ec695130b6912d64997edbc0db16 +https://repo.anaconda.com/pkgs/main/linux-64/python-3.13.0-hf623796_100_cp313.conda#39dace58d617c330efddfd8c27b6da04 +https://repo.anaconda.com/pkgs/main/linux-64/setuptools-75.1.0-py313h06a4308_0.conda#93277f023374c43e49b1081438de1798 +https://repo.anaconda.com/pkgs/main/linux-64/wheel-0.44.0-py313h06a4308_0.conda#0d8e57ed81bb23b971817beeb3d49606 +https://repo.anaconda.com/pkgs/main/linux-64/pip-24.2-py313h06a4308_0.conda#59f806485e89cb8721847b5857f6df2b # pip alabaster @ https://files.pythonhosted.org/packages/7e/b3/6b4067be973ae96ba0d615946e314c5ae35f9f993eca561b356540bb0c2b/alabaster-1.0.0-py3-none-any.whl#sha256=fc6786402dc3fcb2de3cabd5fe455a2db534b371124f1f21de8731783dec828b # pip array-api-compat @ https://files.pythonhosted.org/packages/13/1d/2b2d33635de5dbf5e703114c11f1129394e68be16cc4dc5ccc2021a17f7b/array_api_compat-1.9.1-py3-none-any.whl#sha256=41a2703a662832d21619359ddddc5c0449876871f6c01e108c335f2a9432df94 # pip babel @ https://files.pythonhosted.org/packages/ed/20/bc79bc575ba2e2a7f70e8a1155618bb1301eaa5132a8271373a6903f73f8/babel-2.16.0-py3-none-any.whl#sha256=368b5b98b37c06b7daf6696391c3240c938b37767d4584413e8438c5c435fa8b # pip certifi @ https://files.pythonhosted.org/packages/12/90/3c9ff0512038035f59d279fddeb79f5f1eccd8859f06d6163c58798b9487/certifi-2024.8.30-py3-none-any.whl#sha256=922820b53db7a7257ffbda3f597266d435245903d80737e34f8a45ff3e3230d8 -# pip charset-normalizer @ https://files.pythonhosted.org/packages/eb/5b/6f10bad0f6461fa272bfbbdf5d0023b5fb9bc6217c92bf068fa5a99820f5/charset_normalizer-3.4.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl#sha256=3710a9751938947e6327ea9f3ea6332a09bf0ba0c09cae9cb1f250bd1f1549bc -# pip coverage @ https://files.pythonhosted.org/packages/43/23/c79e497bf4d8fcacd316bebe1d559c765485b8ec23ac4e23025be6bfce09/coverage-7.6.8-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl#sha256=44e6c85bbdc809383b509d732b06419fb4544dca29ebe18480379633623baafb +# pip charset-normalizer @ https://files.pythonhosted.org/packages/2b/c9/1c8fe3ce05d30c87eff498592c89015b19fade13df42850aafae09e94f35/charset_normalizer-3.4.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl#sha256=4796efc4faf6b53a18e3d46343535caed491776a22af773f366534056c4e1fbc +# pip coverage @ https://files.pythonhosted.org/packages/d4/e4/a91e9bb46809c8b63e68fc5db5c4d567d3423b6691d049a4f950e38fbe9d/coverage-7.6.8-cp313-cp313-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl#sha256=3b4b4299dd0d2c67caaaf286d58aef5e75b125b95615dda4542561a5a566a1e3 # pip cycler @ https://files.pythonhosted.org/packages/e7/05/c19819d5e3d95294a6f5947fb9b9629efb316b96de511b418c53d245aae6/cycler-0.12.1-py3-none-any.whl#sha256=85cef7cff222d8644161529808465972e51340599459b8ac3ccbac5a854e0d30 -# pip cython @ https://files.pythonhosted.org/packages/93/03/e330b241ad8aa12bb9d98b58fb76d4eb7dcbe747479aab5c29fce937b9e7/Cython-3.0.11-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl#sha256=3999fb52d3328a6a5e8c63122b0a8bd110dfcdb98dda585a3def1426b991cba7 +# pip cython @ https://files.pythonhosted.org/packages/1c/ae/d520f3cd94a8926bc47275a968e51bbc669a28f27a058cdfc5c3081fbbf7/Cython-3.0.11-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl#sha256=9c02361af9bfa10ff1ccf967fc75159e56b1c8093caf565739ed77a559c1f29f # pip docutils @ https://files.pythonhosted.org/packages/8f/d7/9322c609343d929e75e7e5e6255e614fcc67572cfd083959cdef3b7aad79/docutils-0.21.2-py3-none-any.whl#sha256=dafca5b9e384f0e419294eb4d2ff9fa826435bf15f15b7bd45723e8ad76811b2 # pip execnet @ https://files.pythonhosted.org/packages/43/09/2aea36ff60d16dd8879bdb2f5b3ee0ba8d08cbbdcdfe870e695ce3784385/execnet-2.1.1-py3-none-any.whl#sha256=26dee51f1b80cebd6d0ca8e74dd8745419761d3bef34163928cbebbdc4749fdc -# pip fonttools @ https://files.pythonhosted.org/packages/47/2b/9bf7527260d265281dd812951aa22f3d1c331bcc91e86e7038dc6b9737cb/fonttools-4.55.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl#sha256=f307f6b5bf9e86891213b293e538d292cd1677e06d9faaa4bf9c086ad5f132f6 +# pip fonttools @ https://files.pythonhosted.org/packages/31/cf/c51ea1348f9fba9c627439afad9dee0090040809ab431f4422b5bfdda34c/fonttools-4.55.0-cp313-cp313-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl#sha256=5435e5f1eb893c35c2bc2b9cd3c9596b0fcb0a59e7a14121562986dd4c47b8dd # pip idna @ https://files.pythonhosted.org/packages/76/c6/c88e154df9c4e1a2a66ccf0005a88dfb2650c1dffb6f5ce603dfbd452ce3/idna-3.10-py3-none-any.whl#sha256=946d195a0d259cbba61165e88e65941f16e9b36ea6ddb97f00452bae8b1287d3 # pip imagesize @ https://files.pythonhosted.org/packages/ff/62/85c4c919272577931d407be5ba5d71c20f0b616d31a0befe0ae45bb79abd/imagesize-1.4.1-py2.py3-none-any.whl#sha256=0d8d18d08f840c19d0ee7ca1fd82490fdc3729b7ac93f49870406ddde8ef8d8b # pip iniconfig @ https://files.pythonhosted.org/packages/ef/a6/62565a6e1cf69e10f5727360368e451d4b7f58beeac6173dc9db836a5b46/iniconfig-2.0.0-py3-none-any.whl#sha256=b6a85871a79d2e3b22d2d1b94ac2824226a63c6b741c88f7ae975f18b6778374 # pip joblib @ https://files.pythonhosted.org/packages/91/29/df4b9b42f2be0b623cbd5e2140cafcaa2bef0759a00b7b70104dcfe2fb51/joblib-1.4.2-py3-none-any.whl#sha256=06d478d5674cbc267e7496a410ee875abd68e4340feff4490bcb7afb88060ae6 -# pip kiwisolver @ https://files.pythonhosted.org/packages/a7/4b/2db7af3ed3af7c35f388d5f53c28e155cd402a55432d800c543dc6deb731/kiwisolver-1.4.7-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl#sha256=18077b53dc3bb490e330669a99920c5e6a496889ae8c63b58fbc57c3d7f33a18 -# pip markupsafe @ https://files.pythonhosted.org/packages/f1/a4/aefb044a2cd8d7334c8a47d3fb2c9f328ac48cb349468cc31c20b539305f/MarkupSafe-3.0.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl#sha256=a123e330ef0853c6e822384873bef7507557d8e4a082961e1defa947aa59ba84 +# pip kiwisolver @ https://files.pythonhosted.org/packages/39/fa/cdc0b6105d90eadc3bee525fecc9179e2b41e1ce0293caaf49cb631a6aaf/kiwisolver-1.4.7-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl#sha256=913983ad2deb14e66d83c28b632fd35ba2b825031f2fa4ca29675e665dfecbe1 +# pip markupsafe @ https://files.pythonhosted.org/packages/0c/91/96cf928db8236f1bfab6ce15ad070dfdd02ed88261c2afafd4b43575e9e9/MarkupSafe-3.0.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl#sha256=15ab75ef81add55874e7ab7055e9c397312385bd9ced94920f2802310c930396 # pip meson @ https://files.pythonhosted.org/packages/76/73/3dc4edc855c9988ff05ea5590f5c7bda72b6e0d138b2ddc1fab92a1f242f/meson-1.6.0-py3-none-any.whl#sha256=234a45f9206c6ee33b473ec1baaef359d20c0b89a71871d58c65a6db6d98fe74 # pip networkx @ https://files.pythonhosted.org/packages/b9/54/dd730b32ea14ea797530a4479b2ed46a6fb250f682a9cfb997e968bf0261/networkx-3.4.2-py3-none-any.whl#sha256=df5d4365b724cf81b8c6a7312509d0c22386097011ad1abe274afd5e9d3bbc5f # pip ninja @ https://files.pythonhosted.org/packages/62/54/787bb70e6af2f1b1853af9bab62a5e7cb35b957d72daf253b7f3c653c005/ninja-1.11.1.2-py3-none-manylinux_2_12_x86_64.manylinux2010_x86_64.whl#sha256=33d258809c8eda81f9d80e18a081a6eef3215e5fd1ba8902400d786641994e89 -# pip numpy @ https://files.pythonhosted.org/packages/7a/f0/80811e836484262b236c684a75dfc4ba0424bc670e765afaa911468d9f39/numpy-2.1.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl#sha256=bc6f24b3d1ecc1eebfbf5d6051faa49af40b03be1aaa781ebdadcbc090b4539b +# pip numpy @ https://files.pythonhosted.org/packages/70/50/73f9a5aa0810cdccda9c1d20be3cbe4a4d6ea6bfd6931464a44c95eef731/numpy-2.1.3-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl#sha256=5641516794ca9e5f8a4d17bb45446998c6554704d888f86df9b200e66bdcce56 # pip packaging @ https://files.pythonhosted.org/packages/88/ef/eb23f262cca3c0c4eb7ab1933c3b1f03d021f2c48f54763065b6f0e321be/packaging-24.2-py3-none-any.whl#sha256=09abb1bccd265c01f4a3aa3f7a7db064b36514d2cba19a2f694fe6150451a759 -# pip pillow @ https://files.pythonhosted.org/packages/39/63/b3fc299528d7df1f678b0666002b37affe6b8751225c3d9c12cf530e73ed/pillow-11.0.0-cp311-cp311-manylinux_2_28_x86_64.whl#sha256=45c566eb10b8967d71bf1ab8e4a525e5a93519e29ea071459ce517f6b903d7fa +# pip pillow @ https://files.pythonhosted.org/packages/44/ae/7e4f6662a9b1cb5f92b9cc9cab8321c381ffbee309210940e57432a4063a/pillow-11.0.0-cp313-cp313-manylinux_2_28_x86_64.whl#sha256=c6a660307ca9d4867caa8d9ca2c2658ab685de83792d1876274991adec7b93fa # pip pluggy @ https://files.pythonhosted.org/packages/88/5f/e351af9a41f866ac3f1fac4ca0613908d9a41741cfcf2228f4ad853b697d/pluggy-1.5.0-py3-none-any.whl#sha256=44e1ad92c8ca002de6377e165f3e0f1be63266ab4d554740532335b9d75ea669 # pip pygments @ https://files.pythonhosted.org/packages/f7/3f/01c8b82017c199075f8f788d0d906b9ffbbc5a47dc9918a945e13d5a2bda/pygments-2.18.0-py3-none-any.whl#sha256=b8e6aca0523f3ab76fee51799c488e38782ac06eafcf95e7ba832985c8e7b13a # pip pyparsing @ https://files.pythonhosted.org/packages/be/ec/2eb3cd785efd67806c46c13a17339708ddc346cbb684eade7a6e6f79536a/pyparsing-3.2.0-py3-none-any.whl#sha256=93d9577b88da0bbea8cc8334ee8b918ed014968fd2ec383e868fb8afb1ccef84 @@ -65,7 +68,7 @@ https://repo.anaconda.com/pkgs/main/linux-64/pip-24.2-py311h06a4308_0.conda#eff3 # pip tzdata @ https://files.pythonhosted.org/packages/a6/ab/7e5f53c3b9d14972843a647d8d7a853969a58aecc7559cb3267302c94774/tzdata-2024.2-py2.py3-none-any.whl#sha256=a48093786cdcde33cad18c2555e8532f34422074448fbc874186f0abd79565cd # pip urllib3 @ https://files.pythonhosted.org/packages/ce/d9/5f4c13cecde62396b0d3fe530a50ccea91e7dfc1ccf0e09c228841bb5ba8/urllib3-2.2.3-py3-none-any.whl#sha256=ca899ca043dcb1bafa3e262d73aa25c465bfb49e0bd9dd5d59f1d0acba2f8fac # pip array-api-strict @ https://files.pythonhosted.org/packages/9a/c2/a202399e3aa2e62aa15669fc95fdd7a5d63240cbf8695962c747f915a083/array_api_strict-2.2-py3-none-any.whl#sha256=577cfce66bf69701cefea85bc14b9e49e418df767b6b178bd93d22f1c1962d59 -# pip contourpy @ https://files.pythonhosted.org/packages/85/fc/7fa5d17daf77306840a4e84668a48ddff09e6bc09ba4e37e85ffc8e4faa3/contourpy-1.3.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl#sha256=3a04ecd68acbd77fa2d39723ceca4c3197cb2969633836ced1bea14e219d077c +# pip contourpy @ https://files.pythonhosted.org/packages/9a/e2/30ca086c692691129849198659bf0556d72a757fe2769eb9620a27169296/contourpy-1.3.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl#sha256=3ea9924d28fc5586bf0b42d15f590b10c224117e74409dd7a0be3b62b74a501c # pip imageio @ https://files.pythonhosted.org/packages/5c/f9/f78e7f5ac8077c481bf6b43b8bc736605363034b3d5eb3ce8eb79f53f5f1/imageio-2.36.1-py3-none-any.whl#sha256=20abd2cae58e55ca1af8a8dcf43293336a59adf0391f1917bf8518633cfc2cdf # pip jinja2 @ https://files.pythonhosted.org/packages/31/80/3a54838c3fb461f6fec263ebf3a3a41771bd05190238de3486aae8540c36/jinja2-3.1.4-py3-none-any.whl#sha256=bc5dd2abb727a5319567b7a813e6a2e7318c39f4f487cfe6c89c6f9c7d25197d # pip lazy-loader @ https://files.pythonhosted.org/packages/83/60/d497a310bde3f01cb805196ac61b7ad6dc5dcf8dce66634dc34364b20b4f/lazy_loader-0.4-py3-none-any.whl#sha256=342aa8e14d543a154047afb4ba8ef17f5563baad3fc610d7b15b213b0f119efc @@ -73,15 +76,15 @@ https://repo.anaconda.com/pkgs/main/linux-64/pip-24.2-py311h06a4308_0.conda#eff3 # pip pytest @ https://files.pythonhosted.org/packages/11/92/76a1c94d3afee238333bc0a42b82935dd8f9cf8ce9e336ff87ee14d9e1cf/pytest-8.3.4-py3-none-any.whl#sha256=50e16d954148559c9a74109af1eaf0c945ba2d8f30f0a3d3335edde19788b6f6 # pip python-dateutil @ https://files.pythonhosted.org/packages/ec/57/56b9bcc3c9c6a792fcbaf139543cee77261f3651ca9da0c93f5c1221264b/python_dateutil-2.9.0.post0-py2.py3-none-any.whl#sha256=a8b2bc7bffae282281c8140a97d3aa9c14da0b136dfe83f850eea9a5f7470427 # pip requests @ https://files.pythonhosted.org/packages/f9/9b/335f9764261e915ed497fcdeb11df5dfd6f7bf257d4a6a2a686d80da4d54/requests-2.32.3-py3-none-any.whl#sha256=70761cfe03c773ceb22aa2f671b4757976145175cdfca038c02654d061d6dcc6 -# pip scipy @ https://files.pythonhosted.org/packages/93/6b/701776d4bd6bdd9b629c387b5140f006185bd8ddea16788a44434376b98f/scipy-1.14.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl#sha256=fef8c87f8abfb884dac04e97824b61299880c43f4ce675dd2cbeadd3c9b466d2 +# pip scipy @ https://files.pythonhosted.org/packages/56/46/2449e6e51e0d7c3575f289f6acb7f828938eaab8874dbccfeb0cd2b71a27/scipy-1.14.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl#sha256=5149e3fd2d686e42144a093b206aef01932a0059c2a33ddfa67f5f035bdfe13e # pip tifffile @ https://files.pythonhosted.org/packages/50/0a/435d5d7ec64d1c8b422ac9ebe42d2f3b2ac0b3f8a56f5c04dd0f3b7ba83c/tifffile-2024.9.20-py3-none-any.whl#sha256=c54dc85bc1065d972cb8a6ffb3181389d597876aa80177933459733e4ed243dd # pip lightgbm @ https://files.pythonhosted.org/packages/4e/19/1b928cad70a4e1a3e2c37d5417ca2182510f2451eaadb6c91cd9ec692cae/lightgbm-4.5.0-py3-none-manylinux_2_28_x86_64.whl#sha256=960a0e7c077de0ca3053f1325d3edfc92ea815acf5176adcacdea0f635aeef9b -# pip matplotlib @ https://files.pythonhosted.org/packages/13/53/b178d51478109f7a700edc94757dd07112e9a0c7a158653b99434b74f9fb/matplotlib-3.9.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl#sha256=d3c93796b44fa111049b88a24105e947f03c01966b5c0cc782e2ee3887b790a3 +# pip matplotlib @ https://files.pythonhosted.org/packages/29/09/146a17d37e32313507f11ac984e65311f2d5805d731eb981d4f70eb928dc/matplotlib-3.9.3-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl#sha256=6be0ba61f6ff2e6b68e4270fb63b6813c9e7dec3d15fc3a93f47480444fd72f0 # pip meson-python @ https://files.pythonhosted.org/packages/7d/ec/40c0ddd29ef4daa6689a2b9c5ced47d5b58fa54ae149b19e9a97f4979c8c/meson_python-0.17.1-py3-none-any.whl#sha256=30a75c52578ef14aff8392677b09c39346e0a24d2b2c6204b8ed30583c11269c -# pip pandas @ https://files.pythonhosted.org/packages/cd/5f/4dba1d39bb9c38d574a9a22548c540177f78ea47b32f99c0ff2ec499fac5/pandas-2.2.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl#sha256=c124333816c3a9b03fbeef3a9f230ba9a737e9e5bb4060aa2107a86cc0a497fc -# pip pyamg @ https://files.pythonhosted.org/packages/d3/e8/6898b3b791f369605012e896ed903b6626f3bd1208c6a647d7219c070209/pyamg-5.2.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl#sha256=679a5904eac3a4880288c8c0e6a29f110a2627ea15a443a4e9d5997c7dc5fab6 +# pip pandas @ https://files.pythonhosted.org/packages/e8/31/aa8da88ca0eadbabd0a639788a6da13bb2ff6edbbb9f29aa786450a30a91/pandas-2.2.3-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl#sha256=f3a255b2c19987fbbe62a9dfd6cff7ff2aa9ccab3fc75218fd4b7530f01efa24 +# pip pyamg @ https://files.pythonhosted.org/packages/72/10/aee094f1ab76d07d7c5c3ff7e4c411d720f0d4461e0fdea74a4393058863/pyamg-5.2.1.tar.gz#sha256=f449d934224e503401ee72cd2eece1a29d893b7abe35f62a44d52ba831198efa # pip pytest-cov @ https://files.pythonhosted.org/packages/36/3b/48e79f2cd6a61dbbd4807b4ed46cb564b4fd50a76166b1c4ea5c1d9e2371/pytest_cov-6.0.0-py3-none-any.whl#sha256=eee6f1b9e61008bd34975a4d5bab25801eb31898b032dd55addc93e96fcaaa35 # pip pytest-xdist @ https://files.pythonhosted.org/packages/6d/82/1d96bf03ee4c0fdc3c0cbe61470070e659ca78dc0086fb88b66c185e2449/pytest_xdist-3.6.1-py3-none-any.whl#sha256=9ed4adfb68a016610848639bb7e02c9352d5d9f03d04809919e2dafc3be4cca7 -# pip scikit-image @ https://files.pythonhosted.org/packages/ad/96/138484302b8ec9a69cdf65e8d4ab47a640a3b1a8ea3c437e1da3e1a5a6b8/scikit_image-0.24.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl#sha256=fa27b3a0dbad807b966b8db2d78da734cb812ca4787f7fbb143764800ce2fa9c +# pip scikit-image @ https://files.pythonhosted.org/packages/5d/c5/bcd66bf5aae5587d3b4b69c74bee30889c46c9778e858942ce93a030e1f3/scikit_image-0.24.0.tar.gz#sha256=5d16efe95da8edbeb363e0c4157b99becbd650a60b77f6e3af5768b66cf007ab # pip sphinx @ https://files.pythonhosted.org/packages/26/60/1ddff83a56d33aaf6f10ec8ce84b4c007d9368b21008876fceda7e7381ef/sphinx-8.1.3-py3-none-any.whl#sha256=09719015511837b76bf6e03e42eb7595ac8c2e41eeb9c29c5b755c6b677992a2 # pip numpydoc @ https://files.pythonhosted.org/packages/6c/45/56d99ba9366476cd8548527667f01869279cedb9e66b28eb4dfb27701679/numpydoc-1.8.0-py3-none-any.whl#sha256=72024c7fd5e17375dec3608a27c03303e8ad00c81292667955c6fea7a3ccf541 diff --git a/build_tools/azure/test_script.sh b/build_tools/azure/test_script.sh index 48e5d1041da56..48d018d40c7e1 100755 --- a/build_tools/azure/test_script.sh +++ b/build_tools/azure/test_script.sh @@ -48,6 +48,12 @@ if [[ "$COVERAGE" == "true" ]]; then # report that otherwise hides the test failures and forces long scrolls in # the CI logs. export COVERAGE_PROCESS_START="$BUILD_SOURCESDIRECTORY/.coveragerc" + + # Use sys.monitoring to make coverage faster for Python >= 3.12 + HAS_SYSMON=$(python -c 'import sys; print(sys.version_info >= (3, 12))') + if [[ "$HAS_SYSMON" == "True" ]]; then + export COVERAGE_CORE=sysmon + fi TEST_CMD="$TEST_CMD --cov-config='$COVERAGE_PROCESS_START' --cov sklearn --cov-report=" fi diff --git a/build_tools/update_environments_and_lock_files.py b/build_tools/update_environments_and_lock_files.py index 97ac445e0e425..1c9869cc6be0a 100644 --- a/build_tools/update_environments_and_lock_files.py +++ b/build_tools/update_environments_and_lock_files.py @@ -225,12 +225,6 @@ def remove_from(alist, to_remove): # Test array API on CPU without PyTorch + ["array-api-compat", "array-api-strict"] ), - "package_constraints": { - # XXX: we would like to use the latest Python version, but for now using - # Python 3.12 makes the CI much slower so we use Python 3.11. See - # https://github.com/scikit-learn/scikit-learn/pull/29444#issuecomment-2219550662. - "python": "3.11", - }, }, { "name": "pylatest_pip_scipy_dev", From 21d61bdc33c7a521aafa34d7bbc5ec0c27f7008c Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Lo=C3=AFc=20Est=C3=A8ve?= Date: Tue, 3 Dec 2024 16:35:36 +0100 Subject: [PATCH 072/159] CI Fix rendered doc affected paths for towncrier fragments (#30361) --- build_tools/circle/build_doc.sh | 9 ++++++++- 1 file changed, 8 insertions(+), 1 deletion(-) diff --git a/build_tools/circle/build_doc.sh b/build_tools/circle/build_doc.sh index b4f7e7640be2f..1b161beecd507 100755 --- a/build_tools/circle/build_doc.sh +++ b/build_tools/circle/build_doc.sh @@ -221,9 +221,16 @@ cd - set +o pipefail affected_doc_paths() { + scikit_learn_version=$(python -c 'import re; import sklearn; print(re.sub(r"(\d+\.\d+).+", r"\1", sklearn.__version__))') files=$(git diff --name-only origin/main...$CIRCLE_SHA1) # use sed to replace files ending by .rst or .rst.template by .html - echo "$files" | grep ^doc/.*\.rst | sed 's/^doc\/\(.*\)\.rst$/\1.html/; s/^doc\/\(.*\)\.rst\.template$/\1.html/' + echo "$files" | grep -vP 'upcoming_changes/.*/\d+.*\.rst' | grep ^doc/.*\.rst | \ + sed 's/^doc\/\(.*\)\.rst$/\1.html/; s/^doc\/\(.*\)\.rst\.template$/\1.html/' + # replace towncrier fragment files by link to changelog. uniq is used + # because in some edge cases multiple fragments can be added and we want a + # single link to the changelog. + echo "$files" | grep -P 'upcoming_changes/.*/\d+.*\.rst' | sed "s@.*@whats_new/v${scikit_learn_version}.html@" | uniq + echo "$files" | grep ^examples/.*.py | sed 's/^\(.*\)\.py$/auto_\1.html/' sklearn_files=$(echo "$files" | grep '^sklearn/') if [ -n "$sklearn_files" ] From 6c6f7db7956842a113c19df524c975f9f3cad9d9 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Lo=C3=AFc=20Est=C3=A8ve?= Date: Tue, 3 Dec 2024 17:30:32 +0100 Subject: [PATCH 073/159] DOC Add changelog for free-threaded support (#30360) --- .../custom-top-level/30360.other.rst | 19 +++++++++++++++++++ 1 file changed, 19 insertions(+) create mode 100644 doc/whats_new/upcoming_changes/custom-top-level/30360.other.rst diff --git a/doc/whats_new/upcoming_changes/custom-top-level/30360.other.rst b/doc/whats_new/upcoming_changes/custom-top-level/30360.other.rst new file mode 100644 index 0000000000000..11c2205c4bc2c --- /dev/null +++ b/doc/whats_new/upcoming_changes/custom-top-level/30360.other.rst @@ -0,0 +1,19 @@ +Free-threaded CPython 3.13 support +---------------------------------- + +scikit-learn has preliminary support for free-threaded CPython, in particular +free-threaded wheels are available for all of our supported platforms. + +Free-threaded (also known as nogil) CPython 3.13 is an experimental version of +CPython 3.13 who aims at enabling efficient multi-threaded use cases by +removing the Global Interpreter Lock (GIL). + +For more details about free-threaded CPython see `py-free-threading doc `_, +in particular `how to install a free-threaded CPython `_ +and `Ecosystem compatibility tracking `_. + +Feel free to try free-threaded on your use case and report any issues! + +By :user:`Loïc Estève ` and many other people in the wider Scientific +Python and CPython ecosystem, for example :user:`Nathan Goldbaum `, +:user:`Ralf Gommers `, :user:`Edgar Andrés Margffoy Tuay `. From 03d90f3278c96c3769fa8d6a66f38e23fe7c5c3b Mon Sep 17 00:00:00 2001 From: Olivier Grisel Date: Wed, 4 Dec 2024 14:23:31 +0100 Subject: [PATCH 074/159] FIX test_csr_polynomial_expansion_index_overflow on [scipy-dev] (#30393) MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit Co-authored-by: Loïc Estève --- sklearn/preprocessing/tests/test_polynomial.py | 6 ++++-- 1 file changed, 4 insertions(+), 2 deletions(-) diff --git a/sklearn/preprocessing/tests/test_polynomial.py b/sklearn/preprocessing/tests/test_polynomial.py index b97500d43ef73..9a98ba25e9d8b 100644 --- a/sklearn/preprocessing/tests/test_polynomial.py +++ b/sklearn/preprocessing/tests/test_polynomial.py @@ -1050,8 +1050,10 @@ def test_csr_polynomial_expansion_index_overflow( `scipy.sparse.hstack`. """ data = [1.0] - row = [0] - col = [n_features - 1] + # Use int32 indices as much as we can + indices_dtype = np.int32 if n_features - 1 <= np.iinfo(np.int32).max else np.int64 + row = np.array([0], dtype=indices_dtype) + col = np.array([n_features - 1], dtype=indices_dtype) # First degree index expected_indices = [ From ba83d1620dd666aab17453eed9a926a863087809 Mon Sep 17 00:00:00 2001 From: Adrin Jalali Date: Wed, 4 Dec 2024 14:40:34 +0100 Subject: [PATCH 075/159] FIX KNeighbor classes correctly set positive_only tag (#30372) MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit Co-authored-by: Jérémie du Boisberranger --- sklearn/neighbors/_base.py | 2 ++ sklearn/utils/_tags.py | 4 +++ sklearn/utils/estimator_checks.py | 34 ++++++++++++++++++++ sklearn/utils/tests/test_estimator_checks.py | 18 ++++++++++- 4 files changed, 57 insertions(+), 1 deletion(-) diff --git a/sklearn/neighbors/_base.py b/sklearn/neighbors/_base.py index cdcd8929da6ca..876fb9906b9e2 100644 --- a/sklearn/neighbors/_base.py +++ b/sklearn/neighbors/_base.py @@ -709,6 +709,8 @@ def __sklearn_tags__(self): tags = super().__sklearn_tags__() # For cross-validation routines to split data correctly tags.input_tags.pairwise = self.metric == "precomputed" + # when input is precomputed metric values, all those values need to be positive + tags.input_tags.positive_only = tags.input_tags.pairwise tags.input_tags.allow_nan = self.metric == "nan_euclidean" return tags diff --git a/sklearn/utils/_tags.py b/sklearn/utils/_tags.py index 9fc6e66f9b0fc..d4f211eb52152 100644 --- a/sklearn/utils/_tags.py +++ b/sklearn/utils/_tags.py @@ -58,6 +58,10 @@ class InputTags: Specifically, this tag is used by `sklearn.utils.metaestimators._safe_split` to slice rows and columns. + + Note that if setting this tag to ``True`` means the estimator can take only + positive values, the `positive_only` tag must reflect it and also be set to + ``True``. """ one_d_array: bool = False diff --git a/sklearn/utils/estimator_checks.py b/sklearn/utils/estimator_checks.py index 77fb974a96ef1..7416216dda520 100644 --- a/sklearn/utils/estimator_checks.py +++ b/sklearn/utils/estimator_checks.py @@ -148,6 +148,7 @@ def _yield_api_checks(estimator): yield check_do_not_raise_errors_in_init_or_set_params yield check_n_features_in_after_fitting yield check_mixin_order + yield check_positive_only_tag_during_fit def _yield_checks(estimator): @@ -3899,6 +3900,39 @@ def _enforce_estimator_tags_X(estimator, X, X_test=None, kernel=linear_kernel): return X_res +@ignore_warnings(category=FutureWarning) +def check_positive_only_tag_during_fit(name, estimator_orig): + """Test that the estimator correctly sets the tags.input_tags.positive_only + + If the tag is False, the estimator should accept negative input regardless of the + tags.input_tags.pairwise flag. + """ + estimator = clone(estimator_orig) + tags = get_tags(estimator) + + X, y = load_iris(return_X_y=True) + y = _enforce_estimator_tags_y(estimator, y) + set_random_state(estimator, 0) + X = _enforce_estimator_tags_X(estimator, X) + X -= X.mean() + + if tags.input_tags.positive_only: + with raises(ValueError, match="Negative values in data"): + estimator.fit(X, y) + else: + # This should pass + try: + estimator.fit(X, y) + except Exception as e: + err_msg = ( + f"Estimator {repr(name)} raised {e.__class__.__name__} unexpectedly." + " This happens when passing negative input values as X." + " If negative values are not supported for this estimator instance," + " then the tags.input_tags.positive_only tag needs to be set to True." + ) + raise AssertionError(err_msg) from e + + @ignore_warnings(category=FutureWarning) def check_non_transformer_estimators_n_iter(name, estimator_orig): # Test that estimators that are not transformers with a parameter diff --git a/sklearn/utils/tests/test_estimator_checks.py b/sklearn/utils/tests/test_estimator_checks.py index d09b3e7f366ec..7caf05f3d327f 100644 --- a/sklearn/utils/tests/test_estimator_checks.py +++ b/sklearn/utils/tests/test_estimator_checks.py @@ -85,6 +85,7 @@ check_outlier_contamination, check_outlier_corruption, check_parameters_default_constructible, + check_positive_only_tag_during_fit, check_regressor_data_not_an_array, check_requires_y_none, check_sample_weights_pandas_series, @@ -509,7 +510,7 @@ class RequiresPositiveXRegressor(LinearRegression): def fit(self, X, y): X, y = validate_data(self, X, y, multi_output=True) if (X < 0).any(): - raise ValueError("negative X values not supported!") + raise ValueError("Negative values in data passed to X.") return super().fit(X, y) def __sklearn_tags__(self): @@ -1600,3 +1601,18 @@ def fit(self, X, y=None): msg = "TransformerMixin comes before/left side of BaseEstimator" with raises(AssertionError, match=re.escape(msg)): check_mixin_order("BadEstimator", BadEstimator()) + + +def test_check_positive_only_tag_during_fit(): + class RequiresPositiveXBadTag(RequiresPositiveXRegressor): + def __sklearn_tags__(self): + tags = super().__sklearn_tags__() + tags.input_tags.positive_only = False + return tags + + with raises( + AssertionError, match="This happens when passing negative input values as X." + ): + check_positive_only_tag_during_fit( + "RequiresPositiveXBadTag", RequiresPositiveXBadTag() + ) From ea2510c880c4fef33c040c0f8d6ad3031dfc8b4f Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?J=C3=A9r=C3=A9mie=20du=20Boisberranger?= Date: Wed, 4 Dec 2024 15:05:17 +0100 Subject: [PATCH 076/159] bump version --- sklearn/__init__.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/sklearn/__init__.py b/sklearn/__init__.py index d3c62ac5fad24..5371519202313 100644 --- a/sklearn/__init__.py +++ b/sklearn/__init__.py @@ -42,7 +42,7 @@ # Dev branch marker is: 'X.Y.dev' or 'X.Y.devN' where N is an integer. # 'X.Y.dev0' is the canonical version of 'X.Y.dev' # -__version__ = "1.6.0rc1" +__version__ = "1.6.0" # On OSX, we can get a runtime error due to multiple OpenMP libraries loaded From 384aeba121c00538436431e54ffae9608386c860 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?J=C3=A9r=C3=A9mie=20du=20Boisberranger?= Date: Wed, 4 Dec 2024 15:08:44 +0100 Subject: [PATCH 077/159] generate changelog --- doc/whats_new/v1.6.rst | 86 +++++++++++++++++++++++++++++++++--------- 1 file changed, 69 insertions(+), 17 deletions(-) diff --git a/doc/whats_new/v1.6.rst b/doc/whats_new/v1.6.rst index c3392006bba09..3b0975b86bdef 100644 --- a/doc/whats_new/v1.6.rst +++ b/doc/whats_new/v1.6.rst @@ -13,15 +13,6 @@ Version 1.6 For a short description of the main highlights of the release, please refer to :ref:`sphx_glr_auto_examples_release_highlights_plot_release_highlights_1_6_0.py`. - -.. - DELETE WHEN 1.6.0 IS RELEASED - Since October 2024, DO NOT add your changelog entry in this file. -.. - Instead, create a file named `..rst` in the relevant sub-folder in - `doc/whats_new/upcoming_changes/`. For full details, see: - https://github.com/scikit-learn/scikit-learn/blob/main/doc/whats_new/upcoming_changes/README.md - .. include:: changelog_legend.inc .. towncrier release notes start @@ -31,7 +22,7 @@ Version 1.6 Version 1.6.0 ============= -**November 2024** +**December 2024** Changes impacting many modules ------------------------------ @@ -72,6 +63,10 @@ See :ref:`array_api` for more details. compatible inputs when their base estimators do. By :user:`Tim Head ` and :user:`Olivier Grisel ` :pr:`27096` +- |Feature| :func:`sklearn.metrics.f1_score` now supports Array API compatible + inputs. + By :user:`Omar Salman ` :pr:`27369` + - |Feature| :class:`preprocessing.LabelEncoder` now supports Array API compatible inputs. By :user:`Omar Salman ` :pr:`27381` @@ -236,6 +231,26 @@ removed. Meson is the only supported way to build scikit-learn, see :ref:`Building from source ` for more details. By :user:`Loïc Estève ` :pr:`29400` +Free-threaded CPython 3.13 support +---------------------------------- + +scikit-learn has preliminary support for free-threaded CPython, in particular +free-threaded wheels are available for all of our supported platforms. + +Free-threaded (also known as nogil) CPython 3.13 is an experimental version of +CPython 3.13 who aims at enabling efficient multi-threaded use cases by +removing the Global Interpreter Lock (GIL). + +For more details about free-threaded CPython see `py-free-threading doc `_, +in particular `how to install a free-threaded CPython `_ +and `Ecosystem compatibility tracking `_. + +Feel free to try free-threaded on your use case and report any issues! + +By :user:`Loïc Estève ` and many other people in the wider Scientific +Python and CPython ecosystem, for example :user:`Nathan Goldbaum `, +:user:`Ralf Gommers `, :user:`Edgar Andrés Margffoy Tuay `. :pr:`30360` + :mod:`sklearn.base` ------------------- @@ -244,7 +259,7 @@ By :user:`Loïc Estève ` :pr:`29400` By :user:`Christian Veenhuis ` :pr:`28936` - |API| Passing a class object to :func:`~sklearn.base.is_classifier`, - :func:`~sklearn.base.is_regressor`, :func:`~sklearn.base.is_transformer`, and + :func:`~sklearn.base.is_regressor`, and :func:`~sklearn.base.is_outlier_detector` is now deprecated. Pass an instance instead. By `Adrin Jalali`_ :pr:`30122` @@ -560,6 +575,10 @@ By :user:`Loïc Estève ` :pr:`29400` :mod:`sklearn.pipeline` ----------------------- +- |MajorFeature| :class:`pipeline.Pipeline` can now transform metadata up to the step requiring the + metadata, which can be set using the `transform_input` parameter. + By `Adrin Jalali`_ :pr:`28901` + - |Enhancement| :class:`pipeline.Pipeline` now warns about not being fitted before calling methods that require the pipeline to be fitted. This warning will become an error in 1.8. By `Adrin Jalali`_ :pr:`29868` @@ -598,7 +617,7 @@ By :user:`Loïc Estève ` :pr:`29400` support missing-values in the data matrix ``X``. Missing-values are handled by randomly moving all of the samples to the left, or right child node as the tree is traversed. - By :user:`Adam Li ` :pr:`27966` + By :user:`Adam Li ` and :user:`Loïc Estève ` :pr:`27966`, :pr:`30318` - |Fix| Escape double quotes for labels and feature names when exporting trees to Graphviz format. @@ -657,10 +676,13 @@ By :user:`Loïc Estève ` :pr:`29400` `ensure_all_finite`. `force_all_finite` will be removed in 1.8. By :user:`Jérémie du Boisberranger ` :pr:`29404` -- |API| :func:`check_estimators.check_sample_weights_invariance` replaced by - :func:`check_estimators.check_sample_weight_equivalence` which uses - integer (including zero) weights. - By :user:`Antoine Baker ` :pr:`29818` +- |API| `utils.estimator_checks.check_sample_weights_invariance` + replaced by + `utils.estimator_checks.check_sample_weight_equivalence_on_dense_data` + which uses integer (including zero) weights and + `utils.estimator_checks.check_sample_weight_equivalence_on_sparse_data` + which does the same on sparse data. + By :user:`Antoine Baker ` :pr:`29818`, :pr:`30137` - |API| Using `_estimator_type` to set the estimator type is deprecated. Inherit from :class:`~sklearn.base.ClassifierMixin`, :class:`~sklearn.base.RegressorMixin`, @@ -674,4 +696,34 @@ By :user:`Loïc Estève ` :pr:`29400` Thanks to everyone who has contributed to the maintenance and improvement of the project since version 1.5, including: -TODO: update at the time of the release. +Aaron Schumacher, Abdulaziz Aloqeely, abhi-jha, Acciaro Gennaro Daniele, Adam +J. Stewart, Adam Li, Adeel Hassan, Adeyemi Biola, Aditi Juneja, Adrin Jalali, +Aisha, Akanksha Mhadolkar, Akihiro Kuno, Alberto Torres, alexqiao, Alihan +Zihna, antoinebaker, Antony Lee, Anurag Varma, Arif Qodari, Arthur Courselle, +Arturo Amor, Aswathavicky, Audrey Flanders, aurelienmorgan, Austin, awwwyan, +AyGeeEm, a.zy.lee, baggiponte, BlazeStorm001, bme-git, brdav, Brigitta Sipőcz, +Cailean Carter, Carlo Lemos, Christian Lorentzen, Christian Veenhuis, claudio, +Conrad Stevens, datarollhexasphericon, Davide Chicco, David Matthew Cherney, +Dea María Léon, Deepak Saldanha, Deepyaman Datta, dependabot[bot], dinga92, +Dmitry Kobak, Drew Craeton, dymil, Edoardo Abati, EmilyXinyi, Eric Larson, +Evelyn, fabianhenning, Farid "Freddie" Taba, Gael Varoquaux, Giorgio Angelotti, +Gleb Levitski, Guillaume Lemaitre, Guntitat Sawadwuthikul, Henrique Caroço, +hhchen1105, Ilya Komarov, Inessa Pawson, Ivan Pan, Ivan Wiryadi, Jaimin +Chauhan, Jakob Bull, James Lamb, Janez Demšar, Jérémie du Boisberranger, +Jérôme Dockès, Jirair Aroyan, João Morais, Joe Cainey, John Enblom, +JorgeCardenas, Joseph Barbier, jpienaar-tuks, Julian Chan, K.Bharat Reddy, +Kevin Doshi, Lars, Loic Esteve, Lucy Liu, lunovian, Marc Bresson, Marco Edward +Gorelli, Marco Maggi, Marco Wolsza, Maren Westermann, MarieS-WiMLDS, Martin +Helm, Mathew Shen, mathurinm, Matthew Feickert, Maxwell Liu, Meekail Zain, +Michael Dawson, Miguel Cárdenas, m-maggi, mrastgoo, Natalia Mokeeva, Nathan +Goldbaum, Nathan Orgera, nbrown-ScottLogic, Nikita Chistyakov, Nithish +Bolleddula, Noam Keidar, NoPenguinsLand, Norbert Preining, notPlancha, Olivier +Grisel, Omar Salman, ParsifalXu, Piotr, Priyank Shroff, Priyansh Gupta, Quentin +Barthélemy, Rachit23110261, Rahil Parikh, raisadz, Rajath, renaissance0ne, +Reshama Shaikh, Roberto Rosati, Robert Pollak, rwelsch427, Santiago M. Mola, +scikit-learn-bot, sean moiselle, SHREEKANT VITTHAL NANDIYAWAR, Shruti Nath, +Søren Bredlund Caspersen, Stefanie Senger, Steffen Schneider, Štěpán +Sršeň, Sylvain Combettes, Tamara, Thomas, Thomas Gessey-Jones, Thomas J. Fan, +Thomas Li, Tialo, Tim Head, Tuhin Sharma, Tushar Parimi, vedpawar2254, Victoria +Shevchenko, viktor765, Vince Carey, Virgil Chan, Wang Jiayi, Xiao Yuan, Xuefeng +Xu, Yao Xiao, yareyaredesuyo, Zachary Vealey, Ziad Amerr From 034b0d190dc8b07785b4d14046ccbf7ab2c3a16c Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?J=C3=A9r=C3=A9mie=20du=20Boisberranger?= Date: Wed, 4 Dec 2024 17:33:18 +0100 Subject: [PATCH 078/159] DOC Fix broken ref (#30407) --- sklearn/ensemble/_hist_gradient_boosting/gradient_boosting.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/sklearn/ensemble/_hist_gradient_boosting/gradient_boosting.py b/sklearn/ensemble/_hist_gradient_boosting/gradient_boosting.py index 24d8a55df4f7d..38ff9a7ba3ba2 100644 --- a/sklearn/ensemble/_hist_gradient_boosting/gradient_boosting.py +++ b/sklearn/ensemble/_hist_gradient_boosting/gradient_boosting.py @@ -1579,7 +1579,7 @@ class HistGradientBoostingRegressor(RegressorMixin, BaseHistGradientBoosting): scoring : str or callable or None, default='loss' Scoring parameter to use for early stopping. It can be a single string (see :ref:`scoring_parameter`) or a callable (see - :ref:`scoring`). If None, the estimator's default scorer is used. If + :ref:`scoring_callable`). If None, the estimator's default scorer is used. If ``scoring='loss'``, early stopping is checked w.r.t the loss value. Only used if early stopping is performed. validation_fraction : int or float or None, default=0.1 @@ -1961,7 +1961,7 @@ class HistGradientBoostingClassifier(ClassifierMixin, BaseHistGradientBoosting): scoring : str or callable or None, default='loss' Scoring parameter to use for early stopping. It can be a single string (see :ref:`scoring_parameter`) or a callable (see - :ref:`scoring`). If None, the estimator's default scorer + :ref:`scoring_callable`). If None, the estimator's default scorer is used. If ``scoring='loss'``, early stopping is checked w.r.t the loss value. Only used if early stopping is performed. validation_fraction : int or float or None, default=0.1 From 4142775215ae927060762ad11fcfdc284cdac4b8 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Lo=C3=AFc=20Est=C3=A8ve?= Date: Thu, 5 Dec 2024 13:39:43 +0100 Subject: [PATCH 079/159] DOC Fix example comment being rendered as text (#30412) --- examples/inspection/plot_partial_dependence.py | 1 + 1 file changed, 1 insertion(+) diff --git a/examples/inspection/plot_partial_dependence.py b/examples/inspection/plot_partial_dependence.py index eace8afeb96a0..b5acc4f85952d 100644 --- a/examples/inspection/plot_partial_dependence.py +++ b/examples/inspection/plot_partial_dependence.py @@ -539,6 +539,7 @@ # # Let's make the same partial dependence plot for the 2 features interaction, # this time in 3 dimensions. + # unused but required import for doing 3d projections with matplotlib < 3.2 import mpl_toolkits.mplot3d # noqa: F401 import numpy as np From 09c5c00eb3567c21683629d59d5fec2328dbd5fd Mon Sep 17 00:00:00 2001 From: Santiago Castro Date: Thu, 5 Dec 2024 10:28:36 -0300 Subject: [PATCH 080/159] DOC Update `DummyRegressor.fit` docstring to be more precise (#30410) Co-authored-by: Virgil Chan --- sklearn/dummy.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/sklearn/dummy.py b/sklearn/dummy.py index 571c6e068099a..28c7a956b9243 100644 --- a/sklearn/dummy.py +++ b/sklearn/dummy.py @@ -540,7 +540,7 @@ def __init__(self, *, strategy="mean", constant=None, quantile=None): @_fit_context(prefer_skip_nested_validation=True) def fit(self, X, y, sample_weight=None): - """Fit the random regressor. + """Fit the baseline regressor. Parameters ---------- From 7015ee60dc5e5c9447bb31c7263a7c97f63a36c7 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?J=C3=A9r=C3=A9mie=20du=20Boisberranger?= Date: Fri, 6 Dec 2024 17:29:05 +0100 Subject: [PATCH 081/159] DOC Release Highlights for version 1.6 (#30392) MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit Co-authored-by: adrinjalali Co-authored-by: Loïc Estève Co-authored-by: Olivier Grisel --- examples/frozen/README.txt | 7 + .../plot_release_highlights_1_6_0.py | 212 ++++++++++++++++++ 2 files changed, 219 insertions(+) create mode 100644 examples/frozen/README.txt create mode 100644 examples/release_highlights/plot_release_highlights_1_6_0.py diff --git a/examples/frozen/README.txt b/examples/frozen/README.txt new file mode 100644 index 0000000000000..3218ebe7c750a --- /dev/null +++ b/examples/frozen/README.txt @@ -0,0 +1,7 @@ +.. _frozen_examples: + +Frozen Estimators +----------------- + +Examples concerning the :mod:`sklearn.frozen` module. + diff --git a/examples/release_highlights/plot_release_highlights_1_6_0.py b/examples/release_highlights/plot_release_highlights_1_6_0.py new file mode 100644 index 0000000000000..7dabcde00e769 --- /dev/null +++ b/examples/release_highlights/plot_release_highlights_1_6_0.py @@ -0,0 +1,212 @@ +# ruff: noqa +""" +======================================= +Release Highlights for scikit-learn 1.6 +======================================= + +.. currentmodule:: sklearn + +We are pleased to announce the release of scikit-learn 1.6! Many bug fixes +and improvements were added, as well as some key new features. Below we +detail the highlights of this release. **For an exhaustive list of +all the changes**, please refer to the :ref:`release notes `. + +To install the latest version (with pip):: + + pip install --upgrade scikit-learn + +or with conda:: + + conda install -c conda-forge scikit-learn + +""" + +# %% +# FrozenEstimator: Freezing an estimator +# -------------------------------------- +# +# This meta-estimator allows you to take an estimator and freeze its fit method, meaning +# that calling `fit` does not perform any operations; also, `fit_predict` and +# `fit_transform` call `predict` and `transform` respectively without calling `fit`. The +# original estimator's other methods and properties are left unchanged. An interesting +# use case for this is to use a pre-fitted model as a transformer step in a pipeline +# or to pass a pre-fitted model to some of the meta-estimators. Here's a short example: + +import time +from sklearn.datasets import make_classification +from sklearn.frozen import FrozenEstimator +from sklearn.linear_model import SGDClassifier +from sklearn.model_selection import FixedThresholdClassifier + +X, y = make_classification(n_samples=1000, random_state=0) + +start = time.time() +classifier = SGDClassifier().fit(X, y) +print(f"Fitting the classifier took {(time.time() - start) * 1_000:.2f} milliseconds") + +start = time.time() +threshold_classifier = FixedThresholdClassifier( + estimator=FrozenEstimator(classifier), threshold=0.9 +).fit(X, y) +print( + f"Fitting the threshold classifier took {(time.time() - start) * 1_000:.2f} " + "milliseconds" +) + +# %% +# Fitting the threshold classifier skipped fitting the inner `SGDClassifier`. For more +# details refer to the example :ref:`sphx_glr_auto_examples_frozen_plot_frozen_examples.py`. + +# %% +# Transforming data other than X in a Pipeline +# -------------------------------------------- +# +# The :class:`~pipeline.Pipeline` now supports transforming passed data other than `X` +# if necessary. This can be done by setting the new `transform_input` parameter. This +# is particularly useful when passing a validation set through the pipeline. +# +# As an example, imagine `EstimatorWithValidationSet` is an estimator which accepts +# a validation set. We can now have a pipeline which will transform the validation set +# and pass it to the estimator:: +# +# sklearn.set_config(enable_metadata_routing=True) +# est_gs = GridSearchCV( +# Pipeline( +# ( +# StandardScaler(), +# EstimatorWithValidationSet(...).set_fit_request(X_val=True, y_val=True), +# ), +# # telling pipeline to transform these inputs up to the step which is +# # requesting them. +# transform_input=["X_val"], +# ), +# param_grid={"estimatorwithvalidationset__param_to_optimize": list(range(5))}, +# cv=5, +# ).fit(X, y, X_val, y_val) +# +# In the above code, the key parts are the call to `set_fit_request` to specify that +# `X_val` and `y_val` are required by the `EstimatorWithValidationSet.fit` method, and +# the `transform_input` parameter to tell the pipeline to transform `X_val` before +# passing it to `EstimatorWithValidationSet.fit`. +# +# Note that at this time scikit-learn estimators have not yet been extended to accept +# user specified validation sets. This feature is released early to collect feedback +# from third-party libraries who might benefit from it. + +# %% +# Multiclass support for `LogisticRegression(solver="newton-cholesky")` +# --------------------------------------------------------------------- +# +# The `"newton-cholesky"` solver (originally introduced in scikit-learn version +# 1.2) was previously limited to binary +# :class:`~linear_model.LogisticRegression` and some other generalized linear +# regression estimators (namely :class:`~linear_model.PoissonRegressor`, +# :class:`~linear_model.GammaRegressor` and +# :class:`~linear_model.TweedieRegressor`). +# +# This new release includes support for multiclass (multinomial) +# :class:`~linear_model.LogisticRegression`. +# +# This solver is particularly useful when the number of features is small to +# medium. It has been empirically shown to converge more reliably and faster +# than other solvers on some medium sized datasets with one-hot encoded +# categorical features as can be seen in the `benchmark results of the +# pull-request +# `_. + +# %% +# Missing value support for Extra Trees +# ------------------------------------- +# +# The classes :class:`ensemble.ExtraTreesClassifier` and +# :class:`ensemble.ExtraTreesRegressor` now support missing values. More details in the +# :ref:`User Guide `. +import numpy as np +from sklearn.ensemble import ExtraTreesClassifier + +X = np.array([0, 1, 6, np.nan]).reshape(-1, 1) +y = [0, 0, 1, 1] + +forest = ExtraTreesClassifier(random_state=0).fit(X, y) +forest.predict(X) + +# %% +# Download any dataset from the web +# --------------------------------- +# +# The function :func:`datasets.fetch_file` allows downloading a file from any given URL. +# This convenience function provides built-in local disk caching, sha256 digest +# integrity check and an automated retry mechanism on network error. +# +# The goal is to provide the same convenience and reliability as dataset fetchers while +# giving the flexibility to work with data from arbitrary online sources and file +# formats. +# +# The dowloaded file can then be loaded with generic or domain specific functions such +# as `pandas.read_csv`, `pandas.read_parquet`, etc. + +# %% +# Array API support +# ----------------- +# +# Many more estimators and functions have been updated to support array API compatible +# inputs since version 1.5, in particular the meta-estimators for hyperparameter tuning +# from the :mod:`sklearn.model_selection` module and the metrics from the +# :mod:`sklearn.metrics` module. +# +# Please refer to the :ref:`array API support` page for instructions to use +# scikit-learn with array API compatible libraries such as PyTorch or CuPy. + +# %% +# Almost complete Metadata Routing support +# ---------------------------------------- +# +# Support for routing metadata has been added to all remaining estimators and +# functions except AdaBoost. See :ref:`Metadata Routing User Guide ` +# for more details. + +# %% +# Free-threaded CPython 3.13 support +# ---------------------------------- +# +# scikit-learn has preliminary support for free-threaded CPython, in particular +# free-threaded wheels are available for all of our supported platforms. +# +# Free-threaded (also known as nogil) CPython 3.13 is an experimental version of +# CPython 3.13 which aims at enabling efficient multi-threaded use cases by +# removing the Global Interpreter Lock (GIL). +# +# For more details about free-threaded CPython see `py-free-threading doc `_, +# in particular `how to install a free-threaded CPython `_ +# and `Ecosystem compatibility tracking `_. +# +# Feel free to try free-threaded CPython on your use case and report any issues! + +# %% +# Improvements to the developer API for third party libraries +# ----------------------------------------------------------- +# +# We have been working on improving the developer API for third party libraries. +# This is still a work in progress, but a fair amount of work has been done in this +# release. This release includes: +# +# - :func:`sklearn.utils.validation.validate_data` is introduced and replaces the +# previously private `BaseEstimator._validate_data` method. This function extends +# :func:`~sklearn.utils.validation.check_array` and adds support for remembering +# input feature counts and names. +# - Estimator tags are now revamped and a part of the public API via +# :class:`sklearn.utils.Tags`. Estimators should now override the +# :meth:`BaseEstimator.__sklearn_tags__` method instead of implementing a `_more_tags` +# method. If you'd like to support multiple scikit-learn versions, you can implement +# both methods in your class. +# - As a consequence of developing a public tag API, we've removed the `_xfail_checks` +# tag and tests which are expected to fail are directly passed to +# :func:`~sklearn.utils.estimator_checks.check_estimator` and +# :func:`~sklearn.utils.estimator_checks.parametrize_with_checks`. See their +# corresponding API docs for more details. +# - Many tests in the common test suite are updated and raise more helpful error +# messages. We've also added some new tests, which should help you more easily fix +# potential issues with your estimators. +# +# An updated version of our :ref:`develop` is also available, which we recommend you +# check out. From dcce20044f6cb3d68a547df861bfa4485707e790 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?J=C3=A9r=C3=A9mie=20du=20Boisberranger?= Date: Fri, 6 Dec 2024 18:25:00 +0100 Subject: [PATCH 082/159] link release highlights from the changelog --- doc/whats_new/v1.6.rst | 6 ++---- 1 file changed, 2 insertions(+), 4 deletions(-) diff --git a/doc/whats_new/v1.6.rst b/doc/whats_new/v1.6.rst index 3b0975b86bdef..56b09f2d97931 100644 --- a/doc/whats_new/v1.6.rst +++ b/doc/whats_new/v1.6.rst @@ -8,10 +8,8 @@ Version 1.6 =========== -.. - -- UNCOMMENT WHEN 1.6.0 IS RELEASED -- - For a short description of the main highlights of the release, please refer to - :ref:`sphx_glr_auto_examples_release_highlights_plot_release_highlights_1_6_0.py`. +For a short description of the main highlights of the release, please refer to +:ref:`sphx_glr_auto_examples_release_highlights_plot_release_highlights_1_6_0.py`. .. include:: changelog_legend.inc From 1fecc100315d2849df114b101d4ea6d5c0977eb5 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?J=C3=A9r=C3=A9mie=20du=20Boisberranger?= Date: Fri, 6 Dec 2024 22:25:02 +0100 Subject: [PATCH 083/159] trigger wheel builder [cd build] From 7aa9092343ae264e93d3699afc300eb1abce26d5 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?J=C3=A9r=C3=A9mie=20du=20Boisberranger?= Date: Mon, 9 Dec 2024 18:09:09 +0100 Subject: [PATCH 084/159] REL Update news for 1.6.0 (#30441) --- doc/templates/index.html | 6 ++---- 1 file changed, 2 insertions(+), 4 deletions(-) diff --git a/doc/templates/index.html b/doc/templates/index.html index 8a31d6b9a6464..890bd2da00855 100644 --- a/doc/templates/index.html +++ b/doc/templates/index.html @@ -206,16 +206,14 @@

    News

      -
    • On-going development: scikit-learn 1.6 (Changelog).
    • +
    • On-going development: scikit-learn 1.7 (Changelog).
    • +
    • December 2024. scikit-learn 1.6.0 is available for download (Changelog).
    • September 2024. scikit-learn 1.5.2 is available for download (Changelog).
    • July 2024. scikit-learn 1.5.1 is available for download (Changelog).
    • May 2024. scikit-learn 1.5.0 is available for download (Changelog).
    • April 2024. scikit-learn 1.4.2 is available for download (Changelog).
    • February 2024. scikit-learn 1.4.1.post1 is available for download (Changelog).
    • January 2024. scikit-learn 1.4.0 is available for download (Changelog).
    • -
    • October 2023. scikit-learn 1.3.2 is available for download (Changelog).
    • -
    • September 2023. scikit-learn 1.3.1 is available for download (Changelog).
    • -
    • June 2023. scikit-learn 1.3.0 is available for download (Changelog).
    • All releases: What's new (Changelog).
    From 92c990e275eaf681bfb9e891a889b217632028b2 Mon Sep 17 00:00:00 2001 From: Joel Nothman Date: Wed, 11 Dec 2024 22:58:39 +1100 Subject: [PATCH 085/159] DOC Pass routed params by name in transform_input example (#30458) --- examples/release_highlights/plot_release_highlights_1_6_0.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/examples/release_highlights/plot_release_highlights_1_6_0.py b/examples/release_highlights/plot_release_highlights_1_6_0.py index 7dabcde00e769..c450d4b42905c 100644 --- a/examples/release_highlights/plot_release_highlights_1_6_0.py +++ b/examples/release_highlights/plot_release_highlights_1_6_0.py @@ -82,7 +82,7 @@ # ), # param_grid={"estimatorwithvalidationset__param_to_optimize": list(range(5))}, # cv=5, -# ).fit(X, y, X_val, y_val) +# ).fit(X, y, X_val=X_val, y_val=y_val) # # In the above code, the key parts are the call to `set_fit_request` to specify that # `X_val` and `y_val` are required by the `EstimatorWithValidationSet.fit` method, and From 15eb9f30c77ec8166a0135ca14b8de7fdfe15b91 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?J=C3=A9r=C3=A9mie=20du=20Boisberranger?= Date: Wed, 11 Dec 2024 15:31:31 +0100 Subject: [PATCH 086/159] MAINT Delete fragments for 1.6 (#30456) --- .../array-api/27096.feature.rst | 6 ----- .../array-api/27369.feature.rst | 3 --- .../array-api/27381.feature.rst | 2 -- .../array-api/27736.feature.rst | 3 --- .../array-api/28106.feature.rst | 3 --- .../array-api/29014.feature.rst | 3 --- .../array-api/29112.feature.rst | 3 --- .../array-api/29141.feature.rst | 3 --- .../array-api/29142.feature.rst | 3 --- .../array-api/29144.feature.rst | 3 --- .../array-api/29207.feature.rst | 3 --- .../array-api/29212.feature.rst | 2 -- .../array-api/29227.feature.rst | 3 --- .../array-api/29239.feature.rst | 3 --- .../array-api/29265.feature.rst | 3 --- .../array-api/29267.feature.rst | 3 --- .../array-api/29300.feature.rst | 3 --- .../array-api/29389.feature.rst | 3 --- .../array-api/29433.feature.rst | 4 ---- .../array-api/29475.feature.rst | 5 ---- .../array-api/29639.other.rst | 4 ---- .../array-api/29709.feature.rst | 4 ---- .../array-api/29751.feature.rst | 3 --- .../custom-top-level/29128.other.rst | 7 ------ .../custom-top-level/29400.other.rst | 7 ------ .../custom-top-level/30360.other.rst | 19 --------------- .../many-modules/29677.enhancement.rst | 3 --- .../many-modules/29696.api.rst | 5 ---- .../many-modules/29793.enhancement.rst | 3 --- .../many-modules/30023.fix.rst | 6 ----- .../metadata-routing/28494.feature.rst | 12 ---------- .../metadata-routing/28701.feature.rst | 4 ---- .../metadata-routing/28975.feature.rst | 3 --- .../metadata-routing/29136.feature.rst | 5 ---- .../metadata-routing/29260.feature.rst | 4 ---- .../metadata-routing/29266.feature.rst | 3 --- .../metadata-routing/29312.feature.rst | 3 --- .../metadata-routing/29329.feature.rst | 3 --- .../metadata-routing/29634.fix.rst | 5 ---- .../metadata-routing/29920.fix.rst | 3 --- .../sklearn.base/28936.enhancement.rst | 3 --- .../sklearn.base/30122.api.rst | 5 ---- .../sklearn.calibration/30171.api.rst | 4 ---- .../sklearn.cluster/29124.api.rst | 4 ---- .../sklearn.compose/28934.enhancement.rst | 3 --- .../sklearn.covariance/29835.efficiency.rst | 2 -- .../sklearn.cross_decomposition/29710.fix.rst | 3 --- .../sklearn.datasets/29354.feature.rst | 4 ---- .../30097.enhancement.rst | 6 ----- .../sklearn.decomposition/30224.fix.rst | 6 ----- .../19731.fix.rst | 4 ---- .../sklearn.ensemble/28064.efficiency.rst | 5 ---- .../sklearn.ensemble/28179.enhancement.rst | 5 ---- .../sklearn.ensemble/28268.feature.rst | 5 ---- .../sklearn.ensemble/28622.efficiency.rst | 4 ---- .../sklearn.ensemble/29997.api.rst | 3 --- .../sklearn.feature_extraction/30022.fix.rst | 3 --- .../sklearn.frozen/29705.major-feature.rst | 4 ---- .../sklearn.impute/29135.fix.rst | 3 --- .../sklearn.impute/29451.fix.rst | 4 ---- .../sklearn.impute/29779.fix.rst | 3 --- .../sklearn.impute/29950.api.rst | 4 ---- .../sklearn.linear_model/19746.fix.rst | 3 --- .../28840.enhancement.rst | 5 ---- .../sklearn.linear_model/29105.api.rst | 3 --- .../sklearn.linear_model/29419.fix.rst | 3 --- .../sklearn.linear_model/29442.fix.rst | 4 ---- .../sklearn.linear_model/29818.fix.rst | 5 ---- .../sklearn.linear_model/29842.fix.rst | 8 ------- .../sklearn.linear_model/29884.fix.rst | 4 ---- .../sklearn.linear_model/30040.fix.rst | 6 ----- .../sklearn.linear_model/30100.fix.rst | 5 ---- .../sklearn.linear_model/30227.fix.rst | 3 --- .../sklearn.manifold/28096.efficiency.rst | 4 ---- .../sklearn.metrics/26367.enhancement.rst | 6 ----- .../sklearn.metrics/27412.fix.rst | 3 --- .../sklearn.metrics/28992.enhancement.rst | 4 ---- .../sklearn.metrics/29404.api.rst | 4 ---- .../sklearn.metrics/29462.api.rst | 3 --- .../sklearn.metrics/29709.fix.rst | 8 ------- .../sklearn.metrics/29738.efficiency.rst | 3 --- .../sklearn.metrics/30001.api.rst | 4 ---- .../sklearn.metrics/30013.fix.rst | 3 --- .../28519.enhancement.rst | 3 --- .../sklearn.model_selection/29402.fix.rst | 3 --- .../30172.enhancement.rst | 4 ---- .../sklearn.neighbors/25330.enhancement.rst | 10 -------- .../sklearn.neighbors/26689.enhancement.rst | 7 ------ .../sklearn.neighbors/28773.fix.rst | 3 --- .../sklearn.neighbors/30047.enhancement.rst | 6 ----- .../sklearn.neural_network/29773.fix.rst | 3 --- .../sklearn.pipeline/28901.major-feature.rst | 3 --- .../sklearn.pipeline/29868.enhancement.rst | 4 ---- .../sklearn.pipeline/30203.fix.rst | 4 ---- .../sklearn.preprocessing/27875.fix.rst | 3 --- .../28637.enhancement.rst | 3 --- .../29158.enhancement.rst | 3 --- .../sklearn.semi_supervised/28494.api.rst | 3 --- .../sklearn.tree/17575.fix.rst | 3 --- .../sklearn.tree/27966.feature.rst | 5 ---- .../sklearn.tree/30318.feature.rst | 5 ---- .../sklearn.utils/29404.api.rst | 4 ---- .../sklearn.utils/29540.enhancement.rst | 4 ---- .../sklearn.utils/29818.api.rst | 7 ------ .../sklearn.utils/29869.fix.rst | 4 ---- .../sklearn.utils/29874.enhancement.rst | 5 ---- .../sklearn.utils/29880.enhancement.rst | 4 ---- .../sklearn.utils/30122.api.rst | 6 ----- .../sklearn.utils/30137.api.rst | 7 ------ .../sklearn.utils/30149.enhancement.rst | 23 ------------------- 110 files changed, 487 deletions(-) delete mode 100644 doc/whats_new/upcoming_changes/array-api/27096.feature.rst delete mode 100644 doc/whats_new/upcoming_changes/array-api/27369.feature.rst delete mode 100644 doc/whats_new/upcoming_changes/array-api/27381.feature.rst delete mode 100644 doc/whats_new/upcoming_changes/array-api/27736.feature.rst delete mode 100644 doc/whats_new/upcoming_changes/array-api/28106.feature.rst delete mode 100644 doc/whats_new/upcoming_changes/array-api/29014.feature.rst delete mode 100644 doc/whats_new/upcoming_changes/array-api/29112.feature.rst delete mode 100644 doc/whats_new/upcoming_changes/array-api/29141.feature.rst delete mode 100644 doc/whats_new/upcoming_changes/array-api/29142.feature.rst delete mode 100644 doc/whats_new/upcoming_changes/array-api/29144.feature.rst delete mode 100644 doc/whats_new/upcoming_changes/array-api/29207.feature.rst delete mode 100644 doc/whats_new/upcoming_changes/array-api/29212.feature.rst delete mode 100644 doc/whats_new/upcoming_changes/array-api/29227.feature.rst delete mode 100644 doc/whats_new/upcoming_changes/array-api/29239.feature.rst delete mode 100644 doc/whats_new/upcoming_changes/array-api/29265.feature.rst delete mode 100644 doc/whats_new/upcoming_changes/array-api/29267.feature.rst delete mode 100644 doc/whats_new/upcoming_changes/array-api/29300.feature.rst delete mode 100644 doc/whats_new/upcoming_changes/array-api/29389.feature.rst delete mode 100644 doc/whats_new/upcoming_changes/array-api/29433.feature.rst delete mode 100644 doc/whats_new/upcoming_changes/array-api/29475.feature.rst delete mode 100644 doc/whats_new/upcoming_changes/array-api/29639.other.rst delete mode 100644 doc/whats_new/upcoming_changes/array-api/29709.feature.rst delete mode 100644 doc/whats_new/upcoming_changes/array-api/29751.feature.rst delete mode 100644 doc/whats_new/upcoming_changes/custom-top-level/29128.other.rst delete mode 100644 doc/whats_new/upcoming_changes/custom-top-level/29400.other.rst delete mode 100644 doc/whats_new/upcoming_changes/custom-top-level/30360.other.rst delete mode 100644 doc/whats_new/upcoming_changes/many-modules/29677.enhancement.rst delete mode 100644 doc/whats_new/upcoming_changes/many-modules/29696.api.rst delete mode 100644 doc/whats_new/upcoming_changes/many-modules/29793.enhancement.rst delete mode 100644 doc/whats_new/upcoming_changes/many-modules/30023.fix.rst delete mode 100644 doc/whats_new/upcoming_changes/metadata-routing/28494.feature.rst delete mode 100644 doc/whats_new/upcoming_changes/metadata-routing/28701.feature.rst delete mode 100644 doc/whats_new/upcoming_changes/metadata-routing/28975.feature.rst delete mode 100644 doc/whats_new/upcoming_changes/metadata-routing/29136.feature.rst delete mode 100644 doc/whats_new/upcoming_changes/metadata-routing/29260.feature.rst delete mode 100644 doc/whats_new/upcoming_changes/metadata-routing/29266.feature.rst delete mode 100644 doc/whats_new/upcoming_changes/metadata-routing/29312.feature.rst delete mode 100644 doc/whats_new/upcoming_changes/metadata-routing/29329.feature.rst delete mode 100644 doc/whats_new/upcoming_changes/metadata-routing/29634.fix.rst delete mode 100644 doc/whats_new/upcoming_changes/metadata-routing/29920.fix.rst delete mode 100644 doc/whats_new/upcoming_changes/sklearn.base/28936.enhancement.rst delete mode 100644 doc/whats_new/upcoming_changes/sklearn.base/30122.api.rst delete mode 100644 doc/whats_new/upcoming_changes/sklearn.calibration/30171.api.rst delete mode 100644 doc/whats_new/upcoming_changes/sklearn.cluster/29124.api.rst delete mode 100644 doc/whats_new/upcoming_changes/sklearn.compose/28934.enhancement.rst delete mode 100644 doc/whats_new/upcoming_changes/sklearn.covariance/29835.efficiency.rst delete mode 100644 doc/whats_new/upcoming_changes/sklearn.cross_decomposition/29710.fix.rst delete mode 100644 doc/whats_new/upcoming_changes/sklearn.datasets/29354.feature.rst delete mode 100644 doc/whats_new/upcoming_changes/sklearn.decomposition/30097.enhancement.rst delete mode 100644 doc/whats_new/upcoming_changes/sklearn.decomposition/30224.fix.rst delete mode 100644 doc/whats_new/upcoming_changes/sklearn.discriminant_analysis/19731.fix.rst delete mode 100644 doc/whats_new/upcoming_changes/sklearn.ensemble/28064.efficiency.rst delete mode 100644 doc/whats_new/upcoming_changes/sklearn.ensemble/28179.enhancement.rst delete mode 100644 doc/whats_new/upcoming_changes/sklearn.ensemble/28268.feature.rst delete mode 100644 doc/whats_new/upcoming_changes/sklearn.ensemble/28622.efficiency.rst delete mode 100644 doc/whats_new/upcoming_changes/sklearn.ensemble/29997.api.rst delete mode 100644 doc/whats_new/upcoming_changes/sklearn.feature_extraction/30022.fix.rst delete mode 100644 doc/whats_new/upcoming_changes/sklearn.frozen/29705.major-feature.rst delete mode 100644 doc/whats_new/upcoming_changes/sklearn.impute/29135.fix.rst delete mode 100644 doc/whats_new/upcoming_changes/sklearn.impute/29451.fix.rst delete mode 100644 doc/whats_new/upcoming_changes/sklearn.impute/29779.fix.rst delete mode 100644 doc/whats_new/upcoming_changes/sklearn.impute/29950.api.rst delete mode 100644 doc/whats_new/upcoming_changes/sklearn.linear_model/19746.fix.rst delete mode 100644 doc/whats_new/upcoming_changes/sklearn.linear_model/28840.enhancement.rst delete mode 100644 doc/whats_new/upcoming_changes/sklearn.linear_model/29105.api.rst delete mode 100644 doc/whats_new/upcoming_changes/sklearn.linear_model/29419.fix.rst delete mode 100644 doc/whats_new/upcoming_changes/sklearn.linear_model/29442.fix.rst delete mode 100644 doc/whats_new/upcoming_changes/sklearn.linear_model/29818.fix.rst delete mode 100644 doc/whats_new/upcoming_changes/sklearn.linear_model/29842.fix.rst delete mode 100644 doc/whats_new/upcoming_changes/sklearn.linear_model/29884.fix.rst delete mode 100644 doc/whats_new/upcoming_changes/sklearn.linear_model/30040.fix.rst delete mode 100644 doc/whats_new/upcoming_changes/sklearn.linear_model/30100.fix.rst delete mode 100644 doc/whats_new/upcoming_changes/sklearn.linear_model/30227.fix.rst delete mode 100644 doc/whats_new/upcoming_changes/sklearn.manifold/28096.efficiency.rst delete mode 100644 doc/whats_new/upcoming_changes/sklearn.metrics/26367.enhancement.rst delete mode 100644 doc/whats_new/upcoming_changes/sklearn.metrics/27412.fix.rst delete mode 100644 doc/whats_new/upcoming_changes/sklearn.metrics/28992.enhancement.rst delete mode 100644 doc/whats_new/upcoming_changes/sklearn.metrics/29404.api.rst delete mode 100644 doc/whats_new/upcoming_changes/sklearn.metrics/29462.api.rst delete mode 100644 doc/whats_new/upcoming_changes/sklearn.metrics/29709.fix.rst delete mode 100644 doc/whats_new/upcoming_changes/sklearn.metrics/29738.efficiency.rst delete mode 100644 doc/whats_new/upcoming_changes/sklearn.metrics/30001.api.rst delete mode 100644 doc/whats_new/upcoming_changes/sklearn.metrics/30013.fix.rst delete mode 100644 doc/whats_new/upcoming_changes/sklearn.model_selection/28519.enhancement.rst delete mode 100644 doc/whats_new/upcoming_changes/sklearn.model_selection/29402.fix.rst delete mode 100644 doc/whats_new/upcoming_changes/sklearn.model_selection/30172.enhancement.rst delete mode 100644 doc/whats_new/upcoming_changes/sklearn.neighbors/25330.enhancement.rst delete mode 100644 doc/whats_new/upcoming_changes/sklearn.neighbors/26689.enhancement.rst delete mode 100644 doc/whats_new/upcoming_changes/sklearn.neighbors/28773.fix.rst delete mode 100644 doc/whats_new/upcoming_changes/sklearn.neighbors/30047.enhancement.rst delete mode 100644 doc/whats_new/upcoming_changes/sklearn.neural_network/29773.fix.rst delete mode 100644 doc/whats_new/upcoming_changes/sklearn.pipeline/28901.major-feature.rst delete mode 100644 doc/whats_new/upcoming_changes/sklearn.pipeline/29868.enhancement.rst delete mode 100644 doc/whats_new/upcoming_changes/sklearn.pipeline/30203.fix.rst delete mode 100644 doc/whats_new/upcoming_changes/sklearn.preprocessing/27875.fix.rst delete mode 100644 doc/whats_new/upcoming_changes/sklearn.preprocessing/28637.enhancement.rst delete mode 100644 doc/whats_new/upcoming_changes/sklearn.preprocessing/29158.enhancement.rst delete mode 100644 doc/whats_new/upcoming_changes/sklearn.semi_supervised/28494.api.rst delete mode 100644 doc/whats_new/upcoming_changes/sklearn.tree/17575.fix.rst delete mode 100644 doc/whats_new/upcoming_changes/sklearn.tree/27966.feature.rst delete mode 100644 doc/whats_new/upcoming_changes/sklearn.tree/30318.feature.rst delete mode 100644 doc/whats_new/upcoming_changes/sklearn.utils/29404.api.rst delete mode 100644 doc/whats_new/upcoming_changes/sklearn.utils/29540.enhancement.rst delete mode 100644 doc/whats_new/upcoming_changes/sklearn.utils/29818.api.rst delete mode 100644 doc/whats_new/upcoming_changes/sklearn.utils/29869.fix.rst delete mode 100644 doc/whats_new/upcoming_changes/sklearn.utils/29874.enhancement.rst delete mode 100644 doc/whats_new/upcoming_changes/sklearn.utils/29880.enhancement.rst delete mode 100644 doc/whats_new/upcoming_changes/sklearn.utils/30122.api.rst delete mode 100644 doc/whats_new/upcoming_changes/sklearn.utils/30137.api.rst delete mode 100644 doc/whats_new/upcoming_changes/sklearn.utils/30149.enhancement.rst diff --git a/doc/whats_new/upcoming_changes/array-api/27096.feature.rst b/doc/whats_new/upcoming_changes/array-api/27096.feature.rst deleted file mode 100644 index da3fada04419a..0000000000000 --- a/doc/whats_new/upcoming_changes/array-api/27096.feature.rst +++ /dev/null @@ -1,6 +0,0 @@ -- :class:`model_selection.GridSearchCV`, - :class:`model_selection.RandomizedSearchCV`, - :class:`model_selection.HalvingGridSearchCV` and - :class:`model_selection.HalvingRandomSearchCV` now support Array API - compatible inputs when their base estimators do. - By :user:`Tim Head ` and :user:`Olivier Grisel ` \ No newline at end of file diff --git a/doc/whats_new/upcoming_changes/array-api/27369.feature.rst b/doc/whats_new/upcoming_changes/array-api/27369.feature.rst deleted file mode 100644 index 6a32bd88e7987..0000000000000 --- a/doc/whats_new/upcoming_changes/array-api/27369.feature.rst +++ /dev/null @@ -1,3 +0,0 @@ -- :func:`sklearn.metrics.f1_score` now supports Array API compatible - inputs. - By :user:`Omar Salman ` diff --git a/doc/whats_new/upcoming_changes/array-api/27381.feature.rst b/doc/whats_new/upcoming_changes/array-api/27381.feature.rst deleted file mode 100644 index ee3d88b1c588d..0000000000000 --- a/doc/whats_new/upcoming_changes/array-api/27381.feature.rst +++ /dev/null @@ -1,2 +0,0 @@ -- :class:`preprocessing.LabelEncoder` now supports Array API compatible inputs. - By :user:`Omar Salman ` \ No newline at end of file diff --git a/doc/whats_new/upcoming_changes/array-api/27736.feature.rst b/doc/whats_new/upcoming_changes/array-api/27736.feature.rst deleted file mode 100644 index 9d524d3c8730e..0000000000000 --- a/doc/whats_new/upcoming_changes/array-api/27736.feature.rst +++ /dev/null @@ -1,3 +0,0 @@ -- :func:`sklearn.metrics.mean_absolute_error` now supports Array API compatible - inputs. - By :user:`Edoardo Abati ` diff --git a/doc/whats_new/upcoming_changes/array-api/28106.feature.rst b/doc/whats_new/upcoming_changes/array-api/28106.feature.rst deleted file mode 100644 index 34fb6341a3076..0000000000000 --- a/doc/whats_new/upcoming_changes/array-api/28106.feature.rst +++ /dev/null @@ -1,3 +0,0 @@ -- :func:`sklearn.metrics.mean_tweedie_deviance` now supports Array API - compatible inputs. - By :user:`Thomas Li ` diff --git a/doc/whats_new/upcoming_changes/array-api/29014.feature.rst b/doc/whats_new/upcoming_changes/array-api/29014.feature.rst deleted file mode 100644 index a60fe1f0cd2cf..0000000000000 --- a/doc/whats_new/upcoming_changes/array-api/29014.feature.rst +++ /dev/null @@ -1,3 +0,0 @@ -- :func:`sklearn.metrics.pairwise.cosine_similarity` now supports Array API - compatible inputs. - By :user:`Edoardo Abati ` diff --git a/doc/whats_new/upcoming_changes/array-api/29112.feature.rst b/doc/whats_new/upcoming_changes/array-api/29112.feature.rst deleted file mode 100644 index 4fdf49f36ea3b..0000000000000 --- a/doc/whats_new/upcoming_changes/array-api/29112.feature.rst +++ /dev/null @@ -1,3 +0,0 @@ -- :func:`sklearn.metrics.pairwise.paired_cosine_distances` now supports Array - API compatible inputs. - By :user:`Edoardo Abati ` diff --git a/doc/whats_new/upcoming_changes/array-api/29141.feature.rst b/doc/whats_new/upcoming_changes/array-api/29141.feature.rst deleted file mode 100644 index 40ba1c8f022e4..0000000000000 --- a/doc/whats_new/upcoming_changes/array-api/29141.feature.rst +++ /dev/null @@ -1,3 +0,0 @@ -- :func:`sklearn.metrics.cluster.entropy` now supports Array API compatible - inputs. - By :user:`Yaroslav Korobko ` diff --git a/doc/whats_new/upcoming_changes/array-api/29142.feature.rst b/doc/whats_new/upcoming_changes/array-api/29142.feature.rst deleted file mode 100644 index 7c731abdbdb07..0000000000000 --- a/doc/whats_new/upcoming_changes/array-api/29142.feature.rst +++ /dev/null @@ -1,3 +0,0 @@ -- :func:`sklearn.metrics.mean_squared_error` now supports Array API compatible - inputs. - By :user:`Yaroslav Korobko ` diff --git a/doc/whats_new/upcoming_changes/array-api/29144.feature.rst b/doc/whats_new/upcoming_changes/array-api/29144.feature.rst deleted file mode 100644 index 397f56d301919..0000000000000 --- a/doc/whats_new/upcoming_changes/array-api/29144.feature.rst +++ /dev/null @@ -1,3 +0,0 @@ -- :func:`sklearn.metrics.pairwise.additive_chi2_kernel` now supports Array API - compatible inputs. - By :user:`Yaroslav Korobko ` diff --git a/doc/whats_new/upcoming_changes/array-api/29207.feature.rst b/doc/whats_new/upcoming_changes/array-api/29207.feature.rst deleted file mode 100644 index 8223cb6c453b6..0000000000000 --- a/doc/whats_new/upcoming_changes/array-api/29207.feature.rst +++ /dev/null @@ -1,3 +0,0 @@ -- :func:`sklearn.metrics.d2_tweedie_score` now supports Array API compatible - inputs. - By :user:`Emily Chen ` diff --git a/doc/whats_new/upcoming_changes/array-api/29212.feature.rst b/doc/whats_new/upcoming_changes/array-api/29212.feature.rst deleted file mode 100644 index dc1fda61ca3c7..0000000000000 --- a/doc/whats_new/upcoming_changes/array-api/29212.feature.rst +++ /dev/null @@ -1,2 +0,0 @@ -- :func:`sklearn.metrics.max_error` now supports Array API compatible inputs. - By :user:`Edoardo Abati ` diff --git a/doc/whats_new/upcoming_changes/array-api/29227.feature.rst b/doc/whats_new/upcoming_changes/array-api/29227.feature.rst deleted file mode 100644 index 7756ba99fd1c5..0000000000000 --- a/doc/whats_new/upcoming_changes/array-api/29227.feature.rst +++ /dev/null @@ -1,3 +0,0 @@ -- :func:`sklearn.metrics.mean_poisson_deviance` now supports Array API - compatible inputs. - By :user:`Emily Chen ` diff --git a/doc/whats_new/upcoming_changes/array-api/29239.feature.rst b/doc/whats_new/upcoming_changes/array-api/29239.feature.rst deleted file mode 100644 index 1e147a329e21e..0000000000000 --- a/doc/whats_new/upcoming_changes/array-api/29239.feature.rst +++ /dev/null @@ -1,3 +0,0 @@ -- :func:`sklearn.metrics.mean_gamma_deviance` now supports Array API compatible - inputs. - By :user:`Emily Chen ` diff --git a/doc/whats_new/upcoming_changes/array-api/29265.feature.rst b/doc/whats_new/upcoming_changes/array-api/29265.feature.rst deleted file mode 100644 index 880c3017ab5c5..0000000000000 --- a/doc/whats_new/upcoming_changes/array-api/29265.feature.rst +++ /dev/null @@ -1,3 +0,0 @@ -- :func:`sklearn.metrics.pairwise.cosine_distances` now supports Array API - compatible inputs. - By :user:`Emily Chen ` diff --git a/doc/whats_new/upcoming_changes/array-api/29267.feature.rst b/doc/whats_new/upcoming_changes/array-api/29267.feature.rst deleted file mode 100644 index 2ef45d79666a4..0000000000000 --- a/doc/whats_new/upcoming_changes/array-api/29267.feature.rst +++ /dev/null @@ -1,3 +0,0 @@ -- :func:`sklearn.metrics.pairwise.chi2_kernel` now supports Array API - compatible inputs. - By :user:`Yaroslav Korobko ` diff --git a/doc/whats_new/upcoming_changes/array-api/29300.feature.rst b/doc/whats_new/upcoming_changes/array-api/29300.feature.rst deleted file mode 100644 index 77a4f6896ae55..0000000000000 --- a/doc/whats_new/upcoming_changes/array-api/29300.feature.rst +++ /dev/null @@ -1,3 +0,0 @@ -- :func:`sklearn.metrics.mean_absolute_percentage_error` now supports Array API - compatible inputs. - By :user:`Emily Chen ` diff --git a/doc/whats_new/upcoming_changes/array-api/29389.feature.rst b/doc/whats_new/upcoming_changes/array-api/29389.feature.rst deleted file mode 100644 index c19dd95f3a5c1..0000000000000 --- a/doc/whats_new/upcoming_changes/array-api/29389.feature.rst +++ /dev/null @@ -1,3 +0,0 @@ -- :func:`sklearn.metrics.pairwise.paired_euclidean_distances` now supports - Array API compatible inputs. - By :user:`Emily Chen ` diff --git a/doc/whats_new/upcoming_changes/array-api/29433.feature.rst b/doc/whats_new/upcoming_changes/array-api/29433.feature.rst deleted file mode 100644 index 39ea6aa36dc70..0000000000000 --- a/doc/whats_new/upcoming_changes/array-api/29433.feature.rst +++ /dev/null @@ -1,4 +0,0 @@ -- :func:`sklearn.metrics.pairwise.euclidean_distances` and - :func:`sklearn.metrics.pairwise.rbf_kernel` now supports Array API compatible - inputs. - By :user:`Omar Salman ` diff --git a/doc/whats_new/upcoming_changes/array-api/29475.feature.rst b/doc/whats_new/upcoming_changes/array-api/29475.feature.rst deleted file mode 100644 index 5336507fe5692..0000000000000 --- a/doc/whats_new/upcoming_changes/array-api/29475.feature.rst +++ /dev/null @@ -1,5 +0,0 @@ -- :func:`sklearn.metrics.pairwise.linear_kernel`, - :func:`sklearn.metrics.pairwise.sigmoid_kernel`, and - :func:`sklearn.metrics.pairwise.polynomial_kernel` now supports Array API - compatible inputs. - By :user:`Omar Salman ` diff --git a/doc/whats_new/upcoming_changes/array-api/29639.other.rst b/doc/whats_new/upcoming_changes/array-api/29639.other.rst deleted file mode 100644 index 6bb7ac8045841..0000000000000 --- a/doc/whats_new/upcoming_changes/array-api/29639.other.rst +++ /dev/null @@ -1,4 +0,0 @@ -- Support for the soon to be deprecated `cupy.array_api` module has been - removed in favor of directly supporting the top level `cupy` module, possibly - via the `array_api_compat.cupy` compatibility wrapper. - By :user:`Olivier Grisel ` diff --git a/doc/whats_new/upcoming_changes/array-api/29709.feature.rst b/doc/whats_new/upcoming_changes/array-api/29709.feature.rst deleted file mode 100644 index 027d36cd11bd2..0000000000000 --- a/doc/whats_new/upcoming_changes/array-api/29709.feature.rst +++ /dev/null @@ -1,4 +0,0 @@ -- :func:`sklearn.metrics.mean_squared_log_error` and - :func:`sklearn.metrics.root_mean_squared_log_error` - now supports Array API compatible inputs. - By :user:`Virgil Chan ` diff --git a/doc/whats_new/upcoming_changes/array-api/29751.feature.rst b/doc/whats_new/upcoming_changes/array-api/29751.feature.rst deleted file mode 100644 index db19c084fb8dd..0000000000000 --- a/doc/whats_new/upcoming_changes/array-api/29751.feature.rst +++ /dev/null @@ -1,3 +0,0 @@ -- :class:`preprocessing.MinMaxScaler` with `clip=True` now supports Array API - compatible inputs. - By :user:`Shreekant Nandiyawar ` diff --git a/doc/whats_new/upcoming_changes/custom-top-level/29128.other.rst b/doc/whats_new/upcoming_changes/custom-top-level/29128.other.rst deleted file mode 100644 index 8eb4c92cc53f8..0000000000000 --- a/doc/whats_new/upcoming_changes/custom-top-level/29128.other.rst +++ /dev/null @@ -1,7 +0,0 @@ -Dropping official support for PyPy ----------------------------------- - -Due to limited maintainer resources and small number of users, official PyPy -support has been dropped. Some parts of scikit-learn may still work but PyPy is -not tested anymore in the scikit-learn Continuous Integration. -By :user:`Loïc Estève ` \ No newline at end of file diff --git a/doc/whats_new/upcoming_changes/custom-top-level/29400.other.rst b/doc/whats_new/upcoming_changes/custom-top-level/29400.other.rst deleted file mode 100644 index a1689f37d28d9..0000000000000 --- a/doc/whats_new/upcoming_changes/custom-top-level/29400.other.rst +++ /dev/null @@ -1,7 +0,0 @@ -Dropping support for building with setuptools ---------------------------------------------- - -From scikit-learn 1.6 onwards, support for building with setuptools has been -removed. Meson is the only supported way to build scikit-learn, see -:ref:`Building from source ` for more details. -By :user:`Loïc Estève ` \ No newline at end of file diff --git a/doc/whats_new/upcoming_changes/custom-top-level/30360.other.rst b/doc/whats_new/upcoming_changes/custom-top-level/30360.other.rst deleted file mode 100644 index 11c2205c4bc2c..0000000000000 --- a/doc/whats_new/upcoming_changes/custom-top-level/30360.other.rst +++ /dev/null @@ -1,19 +0,0 @@ -Free-threaded CPython 3.13 support ----------------------------------- - -scikit-learn has preliminary support for free-threaded CPython, in particular -free-threaded wheels are available for all of our supported platforms. - -Free-threaded (also known as nogil) CPython 3.13 is an experimental version of -CPython 3.13 who aims at enabling efficient multi-threaded use cases by -removing the Global Interpreter Lock (GIL). - -For more details about free-threaded CPython see `py-free-threading doc `_, -in particular `how to install a free-threaded CPython `_ -and `Ecosystem compatibility tracking `_. - -Feel free to try free-threaded on your use case and report any issues! - -By :user:`Loïc Estève ` and many other people in the wider Scientific -Python and CPython ecosystem, for example :user:`Nathan Goldbaum `, -:user:`Ralf Gommers `, :user:`Edgar Andrés Margffoy Tuay `. diff --git a/doc/whats_new/upcoming_changes/many-modules/29677.enhancement.rst b/doc/whats_new/upcoming_changes/many-modules/29677.enhancement.rst deleted file mode 100644 index 112cf0782379e..0000000000000 --- a/doc/whats_new/upcoming_changes/many-modules/29677.enhancement.rst +++ /dev/null @@ -1,3 +0,0 @@ -- `__sklearn_tags__` was introduced for setting tags in estimators. - More details in :ref:`estimator_tags`. - By :user:`Thomas Fan ` and :user:`Adrin Jalali ` diff --git a/doc/whats_new/upcoming_changes/many-modules/29696.api.rst b/doc/whats_new/upcoming_changes/many-modules/29696.api.rst deleted file mode 100644 index 77c85f82b29bc..0000000000000 --- a/doc/whats_new/upcoming_changes/many-modules/29696.api.rst +++ /dev/null @@ -1,5 +0,0 @@ -- :func:`utils.validation.validate_data` is introduced and replaces previously - private `base.BaseEstimator._validate_data` method. This is intended for third party - estimator developers, who should use this function in most cases instead of - :func:`utils.check_array` and :func:`utils.check_X_y`. - By :user:`Adrin Jalali ` \ No newline at end of file diff --git a/doc/whats_new/upcoming_changes/many-modules/29793.enhancement.rst b/doc/whats_new/upcoming_changes/many-modules/29793.enhancement.rst deleted file mode 100644 index 514aa97e391cc..0000000000000 --- a/doc/whats_new/upcoming_changes/many-modules/29793.enhancement.rst +++ /dev/null @@ -1,3 +0,0 @@ -- Scikit-learn classes and functions can be used while only having a - `import sklearn` import line. For example, `import sklearn; sklearn.svm.SVC()` now works. - By :user:`Thomas Fan ` diff --git a/doc/whats_new/upcoming_changes/many-modules/30023.fix.rst b/doc/whats_new/upcoming_changes/many-modules/30023.fix.rst deleted file mode 100644 index c91267804fc1b..0000000000000 --- a/doc/whats_new/upcoming_changes/many-modules/30023.fix.rst +++ /dev/null @@ -1,6 +0,0 @@ -- Classes :class:`metrics.ConfusionMatrixDisplay`, - :class:`metrics.RocCurveDisplay`, :class:`calibration.CalibrationDisplay`, - :class:`metrics.PrecisionRecallDisplay`, :class:`metrics.PredictionErrorDisplay` and - :class:`inspection.PartialDependenceDisplay` now properly handle Matplotlib aliases - for style parameters (e.g., `c` and `color`, `ls` and `linestyle`, etc). - By :user:`Joseph Barbier ` \ No newline at end of file diff --git a/doc/whats_new/upcoming_changes/metadata-routing/28494.feature.rst b/doc/whats_new/upcoming_changes/metadata-routing/28494.feature.rst deleted file mode 100644 index 0bb407079f8ff..0000000000000 --- a/doc/whats_new/upcoming_changes/metadata-routing/28494.feature.rst +++ /dev/null @@ -1,12 +0,0 @@ -- :class:`semi_supervised.SelfTrainingClassifier` - now supports metadata routing. The fit method now accepts ``**fit_params`` - which are passed to the underlying estimators via their `fit` methods. - In addition, the - :meth:`~semi_supervised.SelfTrainingClassifier.predict`, - :meth:`~semi_supervised.SelfTrainingClassifier.predict_proba`, - :meth:`~semi_supervised.SelfTrainingClassifier.predict_log_proba`, - :meth:`~semi_supervised.SelfTrainingClassifier.score` - and :meth:`~semi_supervised.SelfTrainingClassifier.decision_function` - methods also accept ``**params`` which are - passed to the underlying estimators via their respective methods. - By :user:`Adam Li ` diff --git a/doc/whats_new/upcoming_changes/metadata-routing/28701.feature.rst b/doc/whats_new/upcoming_changes/metadata-routing/28701.feature.rst deleted file mode 100644 index abef6f8128f6f..0000000000000 --- a/doc/whats_new/upcoming_changes/metadata-routing/28701.feature.rst +++ /dev/null @@ -1,4 +0,0 @@ -- :class:`ensemble.StackingClassifier` and - :class:`ensemble.StackingRegressor` now support metadata routing and pass - ``**fit_params`` to the underlying estimators via their `fit` methods. - By :user:`Stefanie Senger ` \ No newline at end of file diff --git a/doc/whats_new/upcoming_changes/metadata-routing/28975.feature.rst b/doc/whats_new/upcoming_changes/metadata-routing/28975.feature.rst deleted file mode 100644 index a9baf1222a14e..0000000000000 --- a/doc/whats_new/upcoming_changes/metadata-routing/28975.feature.rst +++ /dev/null @@ -1,3 +0,0 @@ -- :func:`model_selection.learning_curve` now supports metadata routing for the - `fit` method of its estimator and for its underlying CV splitter and scorer. - By :user:`Stefanie Senger ` diff --git a/doc/whats_new/upcoming_changes/metadata-routing/29136.feature.rst b/doc/whats_new/upcoming_changes/metadata-routing/29136.feature.rst deleted file mode 100644 index 464667131784a..0000000000000 --- a/doc/whats_new/upcoming_changes/metadata-routing/29136.feature.rst +++ /dev/null @@ -1,5 +0,0 @@ -- :class:`compose.TransformedTargetRegressor` now supports metadata - routing in its :meth:`~compose.TransformedTargetRegressor.fit` and - :meth:`~compose.TransformedTargetRegressor.predict` methods and routes the - corresponding params to the underlying regressor. - By :user:`Omar Salman ` \ No newline at end of file diff --git a/doc/whats_new/upcoming_changes/metadata-routing/29260.feature.rst b/doc/whats_new/upcoming_changes/metadata-routing/29260.feature.rst deleted file mode 100644 index 8be997b7093fd..0000000000000 --- a/doc/whats_new/upcoming_changes/metadata-routing/29260.feature.rst +++ /dev/null @@ -1,4 +0,0 @@ -- :class:`feature_selection.SequentialFeatureSelector` now supports - metadata routing in its `fit` method and passes the corresponding params to - the :func:`model_selection.cross_val_score` function. - By :user:`Omar Salman ` \ No newline at end of file diff --git a/doc/whats_new/upcoming_changes/metadata-routing/29266.feature.rst b/doc/whats_new/upcoming_changes/metadata-routing/29266.feature.rst deleted file mode 100644 index b5b1d6ca06231..0000000000000 --- a/doc/whats_new/upcoming_changes/metadata-routing/29266.feature.rst +++ /dev/null @@ -1,3 +0,0 @@ -- :func:`model_selection.permutation_test_score` now supports metadata routing - for the `fit` method of its estimator and for its underlying CV splitter and scorer. - By :user:`Adam Li ` \ No newline at end of file diff --git a/doc/whats_new/upcoming_changes/metadata-routing/29312.feature.rst b/doc/whats_new/upcoming_changes/metadata-routing/29312.feature.rst deleted file mode 100644 index f7fb95bb791ce..0000000000000 --- a/doc/whats_new/upcoming_changes/metadata-routing/29312.feature.rst +++ /dev/null @@ -1,3 +0,0 @@ -- :class:`feature_selection.RFE` and :class:`feature_selection.RFECV` - now support metadata routing. - By :user:`Omar Salman ` \ No newline at end of file diff --git a/doc/whats_new/upcoming_changes/metadata-routing/29329.feature.rst b/doc/whats_new/upcoming_changes/metadata-routing/29329.feature.rst deleted file mode 100644 index d36023de06b80..0000000000000 --- a/doc/whats_new/upcoming_changes/metadata-routing/29329.feature.rst +++ /dev/null @@ -1,3 +0,0 @@ -- :func:`model_selection.validation_curve` now supports metadata routing for - the `fit` method of its estimator and for its underlying CV splitter and scorer. - By :user:`Stefanie Senger ` \ No newline at end of file diff --git a/doc/whats_new/upcoming_changes/metadata-routing/29634.fix.rst b/doc/whats_new/upcoming_changes/metadata-routing/29634.fix.rst deleted file mode 100644 index a8276c6053ad7..0000000000000 --- a/doc/whats_new/upcoming_changes/metadata-routing/29634.fix.rst +++ /dev/null @@ -1,5 +0,0 @@ -- Metadata is routed correctly to grouped CV splitters via - :class:`linear_model.RidgeCV` and :class:`linear_model.RidgeClassifierCV` and - `UnsetMetadataPassedError` is fixed for :class:`linear_model.RidgeClassifierCV` with - default scoring. - By :user:`Stefanie Senger ` diff --git a/doc/whats_new/upcoming_changes/metadata-routing/29920.fix.rst b/doc/whats_new/upcoming_changes/metadata-routing/29920.fix.rst deleted file mode 100644 index a15a66ce6c74f..0000000000000 --- a/doc/whats_new/upcoming_changes/metadata-routing/29920.fix.rst +++ /dev/null @@ -1,3 +0,0 @@ -- Many method arguments which shouldn't be included in the routing mechanism are - now excluded and the `set_{method}_request` methods are not generated for them. - By `Adrin Jalali`_ diff --git a/doc/whats_new/upcoming_changes/sklearn.base/28936.enhancement.rst b/doc/whats_new/upcoming_changes/sklearn.base/28936.enhancement.rst deleted file mode 100644 index 28fb9f1ac2f5e..0000000000000 --- a/doc/whats_new/upcoming_changes/sklearn.base/28936.enhancement.rst +++ /dev/null @@ -1,3 +0,0 @@ -- Added a function :func:`base.is_clusterer` which determines whether a given - estimator is of category clusterer. - By :user:`Christian Veenhuis ` diff --git a/doc/whats_new/upcoming_changes/sklearn.base/30122.api.rst b/doc/whats_new/upcoming_changes/sklearn.base/30122.api.rst deleted file mode 100644 index 1acfce3aeda5c..0000000000000 --- a/doc/whats_new/upcoming_changes/sklearn.base/30122.api.rst +++ /dev/null @@ -1,5 +0,0 @@ -- Passing a class object to :func:`~sklearn.base.is_classifier`, - :func:`~sklearn.base.is_regressor`, and - :func:`~sklearn.base.is_outlier_detector` is now deprecated. Pass an instance - instead. - By `Adrin Jalali`_ diff --git a/doc/whats_new/upcoming_changes/sklearn.calibration/30171.api.rst b/doc/whats_new/upcoming_changes/sklearn.calibration/30171.api.rst deleted file mode 100644 index eceae747a7def..0000000000000 --- a/doc/whats_new/upcoming_changes/sklearn.calibration/30171.api.rst +++ /dev/null @@ -1,4 +0,0 @@ -- `cv="prefit"` is deprecated for :class:`~sklearn.calibration.CalibratedClassifierCV`. - Use :class:`~sklearn.frozen.FrozenEstimator` instead, as - `CalibratedClassifierCV(FrozenEstimator(estimator))`. - By `Adrin Jalali`_ diff --git a/doc/whats_new/upcoming_changes/sklearn.cluster/29124.api.rst b/doc/whats_new/upcoming_changes/sklearn.cluster/29124.api.rst deleted file mode 100644 index 422679cd29081..0000000000000 --- a/doc/whats_new/upcoming_changes/sklearn.cluster/29124.api.rst +++ /dev/null @@ -1,4 +0,0 @@ -- The `copy` parameter of :class:`cluster.Birch` was deprecated in 1.6 and will be - removed in 1.8. It has no effect as the estimator does not perform in-place operations - on the input data. - By :user:`Yao Xiao ` diff --git a/doc/whats_new/upcoming_changes/sklearn.compose/28934.enhancement.rst b/doc/whats_new/upcoming_changes/sklearn.compose/28934.enhancement.rst deleted file mode 100644 index 627d1e051f1ad..0000000000000 --- a/doc/whats_new/upcoming_changes/sklearn.compose/28934.enhancement.rst +++ /dev/null @@ -1,3 +0,0 @@ -- :func:`sklearn.compose.ColumnTransformer` `verbose_feature_names_out` - now accepts string format or callable to generate feature names. - By :user:`Marc Bresson ` diff --git a/doc/whats_new/upcoming_changes/sklearn.covariance/29835.efficiency.rst b/doc/whats_new/upcoming_changes/sklearn.covariance/29835.efficiency.rst deleted file mode 100644 index 5efd3168006c3..0000000000000 --- a/doc/whats_new/upcoming_changes/sklearn.covariance/29835.efficiency.rst +++ /dev/null @@ -1,2 +0,0 @@ -- :class:`covariance.MinCovDet` fitting is now slightly faster. - By :user:`Antony Lee ` diff --git a/doc/whats_new/upcoming_changes/sklearn.cross_decomposition/29710.fix.rst b/doc/whats_new/upcoming_changes/sklearn.cross_decomposition/29710.fix.rst deleted file mode 100644 index 75617a70cd234..0000000000000 --- a/doc/whats_new/upcoming_changes/sklearn.cross_decomposition/29710.fix.rst +++ /dev/null @@ -1,3 +0,0 @@ -- :class:`cross_decomposition.PLSRegression` properly raises an error when - `n_components` is larger than `n_samples`. - By :user:`Thomas Fan ` diff --git a/doc/whats_new/upcoming_changes/sklearn.datasets/29354.feature.rst b/doc/whats_new/upcoming_changes/sklearn.datasets/29354.feature.rst deleted file mode 100644 index df32a47288fd2..0000000000000 --- a/doc/whats_new/upcoming_changes/sklearn.datasets/29354.feature.rst +++ /dev/null @@ -1,4 +0,0 @@ -- :func:`datasets.fetch_file` allows downloading arbitrary data-file - from the web. It handles local caching, integrity checks with SHA256 digests - and automatic retries in case of HTTP errors. - By :user:`Olivier Grisel ` diff --git a/doc/whats_new/upcoming_changes/sklearn.decomposition/30097.enhancement.rst b/doc/whats_new/upcoming_changes/sklearn.decomposition/30097.enhancement.rst deleted file mode 100644 index 2477d288fa56b..0000000000000 --- a/doc/whats_new/upcoming_changes/sklearn.decomposition/30097.enhancement.rst +++ /dev/null @@ -1,6 +0,0 @@ -- :class:`~sklearn.decomposition.LatentDirichletAllocation` now has a - ``normalize`` parameter in - :meth:`~sklearn.decomposition.LatentDirichletAllocation.transform` and - :meth:`~sklearn.decomposition.LatentDirichletAllocation.fit_transform` - methods to control whether the document topic distribution is normalized. - By `Adrin Jalali`_ diff --git a/doc/whats_new/upcoming_changes/sklearn.decomposition/30224.fix.rst b/doc/whats_new/upcoming_changes/sklearn.decomposition/30224.fix.rst deleted file mode 100644 index e325431c6e88f..0000000000000 --- a/doc/whats_new/upcoming_changes/sklearn.decomposition/30224.fix.rst +++ /dev/null @@ -1,6 +0,0 @@ -- :class:`~sklearn.decomposition.IncrementalPCA` - will now only raise a ``ValueError`` when the number of samples in the - input data to ``partial_fit`` is less than the number of components - on the first call to ``partial_fit``. Subsequent calls to ``partial_fit`` - no longer face this restriction. - By :user:`Thomas Gessey-Jones ` diff --git a/doc/whats_new/upcoming_changes/sklearn.discriminant_analysis/19731.fix.rst b/doc/whats_new/upcoming_changes/sklearn.discriminant_analysis/19731.fix.rst deleted file mode 100644 index db446f82fa602..0000000000000 --- a/doc/whats_new/upcoming_changes/sklearn.discriminant_analysis/19731.fix.rst +++ /dev/null @@ -1,4 +0,0 @@ -- :class:`discriminant_analysis.QuadraticDiscriminantAnalysis` - will now cause `LinAlgWarning` in case of collinear variables. These errors - can be silenced using the `reg_param` attribute. - By :user:`Alihan Zihna ` diff --git a/doc/whats_new/upcoming_changes/sklearn.ensemble/28064.efficiency.rst b/doc/whats_new/upcoming_changes/sklearn.ensemble/28064.efficiency.rst deleted file mode 100644 index 745efedc598c0..0000000000000 --- a/doc/whats_new/upcoming_changes/sklearn.ensemble/28064.efficiency.rst +++ /dev/null @@ -1,5 +0,0 @@ -- Small runtime improvement of fitting - :class:`ensemble.HistGradientBoostingClassifier` and - :class:`ensemble.HistGradientBoostingRegressor` by parallelizing the initial search - for bin thresholds. - By :user:`Christian Lorentzen ` diff --git a/doc/whats_new/upcoming_changes/sklearn.ensemble/28179.enhancement.rst b/doc/whats_new/upcoming_changes/sklearn.ensemble/28179.enhancement.rst deleted file mode 100644 index c40415072a3d1..0000000000000 --- a/doc/whats_new/upcoming_changes/sklearn.ensemble/28179.enhancement.rst +++ /dev/null @@ -1,5 +0,0 @@ -- The verbosity of :class:`ensemble.HistGradientBoostingClassifier` - and :class:`ensemble.HistGradientBoostingRegressor` got a more granular control. Now, - `verbose = 1` prints only summary messages, `verbose >= 2` prints the full - information as before. - By :user:`Christian Lorentzen ` diff --git a/doc/whats_new/upcoming_changes/sklearn.ensemble/28268.feature.rst b/doc/whats_new/upcoming_changes/sklearn.ensemble/28268.feature.rst deleted file mode 100644 index 886cd53abbd77..0000000000000 --- a/doc/whats_new/upcoming_changes/sklearn.ensemble/28268.feature.rst +++ /dev/null @@ -1,5 +0,0 @@ -- :class:`ensemble.ExtraTreesClassifier` and - :class:`ensemble.ExtraTreesRegressor` now support missing-values in the data matrix - `X`. Missing-values are handled by randomly moving all of the samples to the left, or - right child node as the tree is traversed. - By :user:`Adam Li ` diff --git a/doc/whats_new/upcoming_changes/sklearn.ensemble/28622.efficiency.rst b/doc/whats_new/upcoming_changes/sklearn.ensemble/28622.efficiency.rst deleted file mode 100644 index a73b03940749b..0000000000000 --- a/doc/whats_new/upcoming_changes/sklearn.ensemble/28622.efficiency.rst +++ /dev/null @@ -1,4 +0,0 @@ -- :class:`ensemble.IsolationForest` now runs parallel jobs - during :term:`predict` offering a speedup of up to 2-4x on sample sizes - larger than 2000 using `joblib`. - By :user:`Adam Li ` and :user:`Sérgio Pereira ` diff --git a/doc/whats_new/upcoming_changes/sklearn.ensemble/29997.api.rst b/doc/whats_new/upcoming_changes/sklearn.ensemble/29997.api.rst deleted file mode 100644 index 5dce72e8eb951..0000000000000 --- a/doc/whats_new/upcoming_changes/sklearn.ensemble/29997.api.rst +++ /dev/null @@ -1,3 +0,0 @@ -- The parameter `algorithm` of :class:`ensemble.AdaBoostClassifier` is deprecated - and will be removed in 1.8. - By :user:`Jérémie du Boisberranger ` diff --git a/doc/whats_new/upcoming_changes/sklearn.feature_extraction/30022.fix.rst b/doc/whats_new/upcoming_changes/sklearn.feature_extraction/30022.fix.rst deleted file mode 100644 index cec576a7158b0..0000000000000 --- a/doc/whats_new/upcoming_changes/sklearn.feature_extraction/30022.fix.rst +++ /dev/null @@ -1,3 +0,0 @@ -- :class:`feature_extraction.text.TfidfVectorizer` now correctly preserves the - `dtype` of `idf_` based on the input data. - By :user:`Guillaume Lemaitre ` diff --git a/doc/whats_new/upcoming_changes/sklearn.frozen/29705.major-feature.rst b/doc/whats_new/upcoming_changes/sklearn.frozen/29705.major-feature.rst deleted file mode 100644 index e94a50efd86fa..0000000000000 --- a/doc/whats_new/upcoming_changes/sklearn.frozen/29705.major-feature.rst +++ /dev/null @@ -1,4 +0,0 @@ -- :class:`~sklearn.frozen.FrozenEstimator` is now introduced which allows - freezing an estimator. This means calling `.fit` on it has no effect, and doing a - `clone(frozenestimator)` returns the same estimator instead of an unfitted clone. - :pr:`29705` By `Adrin Jalali`_ diff --git a/doc/whats_new/upcoming_changes/sklearn.impute/29135.fix.rst b/doc/whats_new/upcoming_changes/sklearn.impute/29135.fix.rst deleted file mode 100644 index 613c583ae17d6..0000000000000 --- a/doc/whats_new/upcoming_changes/sklearn.impute/29135.fix.rst +++ /dev/null @@ -1,3 +0,0 @@ -- :class:`impute.KNNImputer` excludes samples with nan distances when - computing the mean value for uniform weights. - By :user:`Xuefeng Xu ` diff --git a/doc/whats_new/upcoming_changes/sklearn.impute/29451.fix.rst b/doc/whats_new/upcoming_changes/sklearn.impute/29451.fix.rst deleted file mode 100644 index fe2551736f698..0000000000000 --- a/doc/whats_new/upcoming_changes/sklearn.impute/29451.fix.rst +++ /dev/null @@ -1,4 +0,0 @@ -- When `min_value` and `max_value` are array-like and some features are dropped due to - `keep_empty_features=False`, :class:`impute.IterativeImputer` no longer raises an - error and now indexes correctly. - By :user:`Guntitat Sawadwuthikul ` diff --git a/doc/whats_new/upcoming_changes/sklearn.impute/29779.fix.rst b/doc/whats_new/upcoming_changes/sklearn.impute/29779.fix.rst deleted file mode 100644 index 919990bfc18d6..0000000000000 --- a/doc/whats_new/upcoming_changes/sklearn.impute/29779.fix.rst +++ /dev/null @@ -1,3 +0,0 @@ -- Fixed :class:`impute.IterativeImputer` to make sure that it does not skip - the iterative process when `keep_empty_features` is set to `True`. - By :user:`Arif Qodari ` diff --git a/doc/whats_new/upcoming_changes/sklearn.impute/29950.api.rst b/doc/whats_new/upcoming_changes/sklearn.impute/29950.api.rst deleted file mode 100644 index 27ac9e06ac320..0000000000000 --- a/doc/whats_new/upcoming_changes/sklearn.impute/29950.api.rst +++ /dev/null @@ -1,4 +0,0 @@ -- Add a warning in :class:`impute.SimpleImputer` when `keep_empty_feature=False` and - `strategy="constant"`. In this case empty features are not dropped and this behaviour - will change in 1.8. - By :user:`Arthur Courselle ` and :user:`Simon Riou ` \ No newline at end of file diff --git a/doc/whats_new/upcoming_changes/sklearn.linear_model/19746.fix.rst b/doc/whats_new/upcoming_changes/sklearn.linear_model/19746.fix.rst deleted file mode 100644 index c115d01455263..0000000000000 --- a/doc/whats_new/upcoming_changes/sklearn.linear_model/19746.fix.rst +++ /dev/null @@ -1,3 +0,0 @@ -- In :class:`linear_model.Ridge` and :class:`linear_model.RidgeCV`, after `fit`, - the `coef_` attribute is now of shape `(n_samples,)` like other linear models. - By :user:`Maxwell Liu`, `Guillaume Lemaitre`_, and `Adrin Jalali`_ diff --git a/doc/whats_new/upcoming_changes/sklearn.linear_model/28840.enhancement.rst b/doc/whats_new/upcoming_changes/sklearn.linear_model/28840.enhancement.rst deleted file mode 100644 index 3f5941e1ca9de..0000000000000 --- a/doc/whats_new/upcoming_changes/sklearn.linear_model/28840.enhancement.rst +++ /dev/null @@ -1,5 +0,0 @@ -- The `solver="newton-cholesky"` in - :class:`linear_model.LogisticRegression` and - :class:`linear_model.LogisticRegressionCV` is extended to support the full - multinomial loss in a multiclass setting. - By :user:`Christian Lorentzen ` diff --git a/doc/whats_new/upcoming_changes/sklearn.linear_model/29105.api.rst b/doc/whats_new/upcoming_changes/sklearn.linear_model/29105.api.rst deleted file mode 100644 index fbc4f970d78a1..0000000000000 --- a/doc/whats_new/upcoming_changes/sklearn.linear_model/29105.api.rst +++ /dev/null @@ -1,3 +0,0 @@ -- Deprecates `copy_X` in :class:`linear_model.TheilSenRegressor` as the parameter - has no effect. `copy_X` will be removed in 1.8. - By :user:`Adam Li ` diff --git a/doc/whats_new/upcoming_changes/sklearn.linear_model/29419.fix.rst b/doc/whats_new/upcoming_changes/sklearn.linear_model/29419.fix.rst deleted file mode 100644 index 6f7fe7b4840b4..0000000000000 --- a/doc/whats_new/upcoming_changes/sklearn.linear_model/29419.fix.rst +++ /dev/null @@ -1,3 +0,0 @@ -- :class:`linear_model.LogisticRegressionCV` corrects sample weight handling - for the calculation of test scores. - By :user:`Shruti Nath ` diff --git a/doc/whats_new/upcoming_changes/sklearn.linear_model/29442.fix.rst b/doc/whats_new/upcoming_changes/sklearn.linear_model/29442.fix.rst deleted file mode 100644 index 0c77bae1a1a49..0000000000000 --- a/doc/whats_new/upcoming_changes/sklearn.linear_model/29442.fix.rst +++ /dev/null @@ -1,4 +0,0 @@ -- :class:`linear_model.LassoCV` and :class:`linear_model.ElasticNetCV` now - take sample weights into accounts to define the search grid for the internally tuned - `alpha` hyper-parameter. - By :user:`John Hopfensperger ` and :user:`Shruti Nath ` diff --git a/doc/whats_new/upcoming_changes/sklearn.linear_model/29818.fix.rst b/doc/whats_new/upcoming_changes/sklearn.linear_model/29818.fix.rst deleted file mode 100644 index 4efda13bc481d..0000000000000 --- a/doc/whats_new/upcoming_changes/sklearn.linear_model/29818.fix.rst +++ /dev/null @@ -1,5 +0,0 @@ -- :class:`linear_model.LogisticRegression`, :class:`linear_model.PoissonRegressor`, - :class:`linear_model.GammaRegressor`, :class:`linear_model.TweedieRegressor` - now take sample weights into account to decide when to fall back to `solver='lbfgs'` - whenever `solver='newton-cholesky'` becomes numerically unstable. - By :user:`Antoine Baker ` diff --git a/doc/whats_new/upcoming_changes/sklearn.linear_model/29842.fix.rst b/doc/whats_new/upcoming_changes/sklearn.linear_model/29842.fix.rst deleted file mode 100644 index a47dee6674124..0000000000000 --- a/doc/whats_new/upcoming_changes/sklearn.linear_model/29842.fix.rst +++ /dev/null @@ -1,8 +0,0 @@ -- :class:`linear_model.RidgeCV` now properly uses predictions on the same scale as - the target seen during `fit`. These predictions are stored in `cv_results_` when - `scoring != None`. Previously, the predictions were rescaled by the square root of the - sample weights and offset by the mean of the target, leading to an incorrect estimate - of the score. - By :user:`Guillaume Lemaitre `, - :user:`Jérôme Dockes ` and - :user:`Hanmin Qin ` \ No newline at end of file diff --git a/doc/whats_new/upcoming_changes/sklearn.linear_model/29884.fix.rst b/doc/whats_new/upcoming_changes/sklearn.linear_model/29884.fix.rst deleted file mode 100644 index bbff81b662be9..0000000000000 --- a/doc/whats_new/upcoming_changes/sklearn.linear_model/29884.fix.rst +++ /dev/null @@ -1,4 +0,0 @@ -- :class:`linear_model.RidgeCV` now properly supports custom multioutput scorers - by letting the scorer manage the multioutput averaging. Previously, the predictions - and true targets were both squeezed to a 1D array before computing the error. - By :user:`Guillaume Lemaitre ` diff --git a/doc/whats_new/upcoming_changes/sklearn.linear_model/30040.fix.rst b/doc/whats_new/upcoming_changes/sklearn.linear_model/30040.fix.rst deleted file mode 100644 index 26220e71bd71f..0000000000000 --- a/doc/whats_new/upcoming_changes/sklearn.linear_model/30040.fix.rst +++ /dev/null @@ -1,6 +0,0 @@ -- :class:`linear_model.LinearRegression` now sets the `cond` parameter when - calling the `scipy.linalg.lstsq` solver on dense input data. This ensures - more numerically robust results on rank-deficient data. In particular, it - empirically fixes the expected equivalence property between fitting with - reweighted or with repeated data points. - By :user:`Antoine Baker ` diff --git a/doc/whats_new/upcoming_changes/sklearn.linear_model/30100.fix.rst b/doc/whats_new/upcoming_changes/sklearn.linear_model/30100.fix.rst deleted file mode 100644 index 4ec508ad984a2..0000000000000 --- a/doc/whats_new/upcoming_changes/sklearn.linear_model/30100.fix.rst +++ /dev/null @@ -1,5 +0,0 @@ -- :class:`linear_model.LogisticRegression` and and other linear models that - accept `solver="newton-cholesky"` now report the correct number of iterations - when they fall back to the `"lbfgs"` solver because of a rank deficient - Hessian matrix. - By :user:`Olivier Grisel ` diff --git a/doc/whats_new/upcoming_changes/sklearn.linear_model/30227.fix.rst b/doc/whats_new/upcoming_changes/sklearn.linear_model/30227.fix.rst deleted file mode 100644 index d3a76ced7fc6b..0000000000000 --- a/doc/whats_new/upcoming_changes/sklearn.linear_model/30227.fix.rst +++ /dev/null @@ -1,3 +0,0 @@ -- :class:`~sklearn.linear_model.SGDOneClassSVM` now correctly inherits from - :class:`~sklearn.base.OutlierMixin` and the tags are correctly set. - By :user:`Guillaume Lemaitre ` \ No newline at end of file diff --git a/doc/whats_new/upcoming_changes/sklearn.manifold/28096.efficiency.rst b/doc/whats_new/upcoming_changes/sklearn.manifold/28096.efficiency.rst deleted file mode 100644 index f5d7001b08657..0000000000000 --- a/doc/whats_new/upcoming_changes/sklearn.manifold/28096.efficiency.rst +++ /dev/null @@ -1,4 +0,0 @@ -- :func:`manifold.locally_linear_embedding` and - :class:`manifold.LocallyLinearEmbedding` now allocate more efficiently the memory of - sparse matrices in the Hessian, Modified and LTSA methods. - By :user:`Giorgio Angelotti ` diff --git a/doc/whats_new/upcoming_changes/sklearn.metrics/26367.enhancement.rst b/doc/whats_new/upcoming_changes/sklearn.metrics/26367.enhancement.rst deleted file mode 100644 index 990e311c496ac..0000000000000 --- a/doc/whats_new/upcoming_changes/sklearn.metrics/26367.enhancement.rst +++ /dev/null @@ -1,6 +0,0 @@ -- :meth:`metrics.RocCurveDisplay.from_estimator`, - :meth:`metrics.RocCurveDisplay.from_predictions`, - :meth:`metrics.PrecisionRecallDisplay.from_estimator`, and - :meth:`metrics.PrecisionRecallDisplay.from_predictions` now accept a new keyword - `despine` to remove the top and right spines of the plot in order to make it clearer. - By :user:`Yao Xiao ` \ No newline at end of file diff --git a/doc/whats_new/upcoming_changes/sklearn.metrics/27412.fix.rst b/doc/whats_new/upcoming_changes/sklearn.metrics/27412.fix.rst deleted file mode 100644 index 350bd92a19478..0000000000000 --- a/doc/whats_new/upcoming_changes/sklearn.metrics/27412.fix.rst +++ /dev/null @@ -1,3 +0,0 @@ -- :func:`metrics.roc_auc_score` will now correctly return np.nan and - warn user if only one class is present in the labels. - By :user:`Gleb Levitski ` and :user:`Janez Demšar ` diff --git a/doc/whats_new/upcoming_changes/sklearn.metrics/28992.enhancement.rst b/doc/whats_new/upcoming_changes/sklearn.metrics/28992.enhancement.rst deleted file mode 100644 index 9900a4ec153c0..0000000000000 --- a/doc/whats_new/upcoming_changes/sklearn.metrics/28992.enhancement.rst +++ /dev/null @@ -1,4 +0,0 @@ -- :func:`sklearn.metrics.check_scoring` now accepts `raise_exc` to specify - whether to raise an exception if a subset of the scorers in multimetric scoring fails - or to return an error code. - By :user:`Stefanie Senger ` diff --git a/doc/whats_new/upcoming_changes/sklearn.metrics/29404.api.rst b/doc/whats_new/upcoming_changes/sklearn.metrics/29404.api.rst deleted file mode 100644 index 720f74cde7e8b..0000000000000 --- a/doc/whats_new/upcoming_changes/sklearn.metrics/29404.api.rst +++ /dev/null @@ -1,4 +0,0 @@ -- The `assert_all_finite` parameter of functions - :func:`metrics.pairwise.check_pairwise_arrays` and :func:`metrics.pairwise_distances` - is renamed into `ensure_all_finite`. `force_all_finite` will be removed in 1.8. - By :user:`Jérémie du Boisberranger ` diff --git a/doc/whats_new/upcoming_changes/sklearn.metrics/29462.api.rst b/doc/whats_new/upcoming_changes/sklearn.metrics/29462.api.rst deleted file mode 100644 index 501b8aa9f8681..0000000000000 --- a/doc/whats_new/upcoming_changes/sklearn.metrics/29462.api.rst +++ /dev/null @@ -1,3 +0,0 @@ -- `scoring="neg_max_error"` should be used instead of `scoring="max_error"` - which is now deprecated. - By :user:`Farid "Freddie" Taba ` diff --git a/doc/whats_new/upcoming_changes/sklearn.metrics/29709.fix.rst b/doc/whats_new/upcoming_changes/sklearn.metrics/29709.fix.rst deleted file mode 100644 index a74576af1326b..0000000000000 --- a/doc/whats_new/upcoming_changes/sklearn.metrics/29709.fix.rst +++ /dev/null @@ -1,8 +0,0 @@ -- The functions :func:`metrics.mean_squared_log_error` and - :func:`metrics.root_mean_squared_log_error` now check whether the inputs are within - the correct domain for the function :math:`y=\log(1+x)`, rather than - :math:`y=\log(x)`. The functions :func:`metrics.mean_absolute_error`, - :func:`metrics.mean_absolute_percentage_error`, :func:`metrics.mean_squared_error` - and :func:`metrics.root_mean_squared_error` now explicitly check whether a scalar - will be returned when `multioutput=uniform_average`. - By :user:`Virgil Chan ` diff --git a/doc/whats_new/upcoming_changes/sklearn.metrics/29738.efficiency.rst b/doc/whats_new/upcoming_changes/sklearn.metrics/29738.efficiency.rst deleted file mode 100644 index 66ab06d915e45..0000000000000 --- a/doc/whats_new/upcoming_changes/sklearn.metrics/29738.efficiency.rst +++ /dev/null @@ -1,3 +0,0 @@ -- :func:`sklearn.metrics.classification_report` is now faster by caching - classification labels. - By :user:`Adrin Jalali ` diff --git a/doc/whats_new/upcoming_changes/sklearn.metrics/30001.api.rst b/doc/whats_new/upcoming_changes/sklearn.metrics/30001.api.rst deleted file mode 100644 index 9209f4ae0a897..0000000000000 --- a/doc/whats_new/upcoming_changes/sklearn.metrics/30001.api.rst +++ /dev/null @@ -1,4 +0,0 @@ -- The default value of the `response_method` parameter of - :func:`metrics.make_scorer` will change from `None` to `"predict"` and `None` will be - removed in 1.8. In the mean time, `None` is equivalent to `"predict"`. - By :user:`Jérémie du Boisberranger ` diff --git a/doc/whats_new/upcoming_changes/sklearn.metrics/30013.fix.rst b/doc/whats_new/upcoming_changes/sklearn.metrics/30013.fix.rst deleted file mode 100644 index 4cee2ec523fb8..0000000000000 --- a/doc/whats_new/upcoming_changes/sklearn.metrics/30013.fix.rst +++ /dev/null @@ -1,3 +0,0 @@ -- :func:`metrics.roc_auc_score` will now correctly return np.nan and - warn user if only one class is present in the labels. - By :user:`Gleb Levitski ` and :user:`Janez Demšar ` \ No newline at end of file diff --git a/doc/whats_new/upcoming_changes/sklearn.model_selection/28519.enhancement.rst b/doc/whats_new/upcoming_changes/sklearn.model_selection/28519.enhancement.rst deleted file mode 100644 index 72098ca04ead5..0000000000000 --- a/doc/whats_new/upcoming_changes/sklearn.model_selection/28519.enhancement.rst +++ /dev/null @@ -1,3 +0,0 @@ -- :class:`~model_selection.GroupKFold` now has the ability to shuffle groups into - different folds when `shuffle=True`. - By :user:`Zachary Vealey ` diff --git a/doc/whats_new/upcoming_changes/sklearn.model_selection/29402.fix.rst b/doc/whats_new/upcoming_changes/sklearn.model_selection/29402.fix.rst deleted file mode 100644 index 3e2ea0259c7a2..0000000000000 --- a/doc/whats_new/upcoming_changes/sklearn.model_selection/29402.fix.rst +++ /dev/null @@ -1,3 +0,0 @@ -- Improve error message when :func:`model_selection.RepeatedStratifiedKFold.split` - is called without a `y` argument - By :user:`Anurag Varma ` diff --git a/doc/whats_new/upcoming_changes/sklearn.model_selection/30172.enhancement.rst b/doc/whats_new/upcoming_changes/sklearn.model_selection/30172.enhancement.rst deleted file mode 100644 index 266525cf5ba24..0000000000000 --- a/doc/whats_new/upcoming_changes/sklearn.model_selection/30172.enhancement.rst +++ /dev/null @@ -1,4 +0,0 @@ -- There is no need to call `fit` on a - :class:`~sklearn.model_selection.FixedThresholdClassifier` if the underlying - estimator is already fitted. - By :user:`Adrin Jalali ` diff --git a/doc/whats_new/upcoming_changes/sklearn.neighbors/25330.enhancement.rst b/doc/whats_new/upcoming_changes/sklearn.neighbors/25330.enhancement.rst deleted file mode 100644 index 48d3b385ef32d..0000000000000 --- a/doc/whats_new/upcoming_changes/sklearn.neighbors/25330.enhancement.rst +++ /dev/null @@ -1,10 +0,0 @@ -- :class:`neighbors.NearestNeighbors`, - :class:`neighbors.KNeighborsClassifier`, - :class:`neighbors.KNeighborsRegressor`, - :class:`neighbors.RadiusNeighborsClassifier`, - :class:`neighbors.RadiusNeighborsRegressor`, - :class:`neighbors.KNeighborsTransformer`, - :class:`neighbors.RadiusNeighborsTransformer`, and - :class:`neighbors.LocalOutlierFactor` - now work with `metric="nan_euclidean"`, supporting `nan` inputs. - By :user:`Carlo Lemos `, `Guillaume Lemaitre`_, and `Adrin Jalali`_ diff --git a/doc/whats_new/upcoming_changes/sklearn.neighbors/26689.enhancement.rst b/doc/whats_new/upcoming_changes/sklearn.neighbors/26689.enhancement.rst deleted file mode 100644 index ebc50d1bc6aaa..0000000000000 --- a/doc/whats_new/upcoming_changes/sklearn.neighbors/26689.enhancement.rst +++ /dev/null @@ -1,7 +0,0 @@ -- Add :meth:`neighbors.NearestCentroid.decision_function`, - :meth:`neighbors.NearestCentroid.predict_proba` and - :meth:`neighbors.NearestCentroid.predict_log_proba` - to the :class:`neighbors.NearestCentroid` estimator class. - Support the case when `X` is sparse and `shrinking_threshold` - is not `None` in :class:`neighbors.NearestCentroid`. - By :user:`Matthew Ning ` diff --git a/doc/whats_new/upcoming_changes/sklearn.neighbors/28773.fix.rst b/doc/whats_new/upcoming_changes/sklearn.neighbors/28773.fix.rst deleted file mode 100644 index 5810ae80f0b90..0000000000000 --- a/doc/whats_new/upcoming_changes/sklearn.neighbors/28773.fix.rst +++ /dev/null @@ -1,3 +0,0 @@ -- :class:`neighbors.LocalOutlierFactor` raises a warning in the `fit` method - when duplicate values in the training data lead to inaccurate outlier detection. - By :user:`Henrique Caroço ` diff --git a/doc/whats_new/upcoming_changes/sklearn.neighbors/30047.enhancement.rst b/doc/whats_new/upcoming_changes/sklearn.neighbors/30047.enhancement.rst deleted file mode 100644 index 79cd7a1b0c113..0000000000000 --- a/doc/whats_new/upcoming_changes/sklearn.neighbors/30047.enhancement.rst +++ /dev/null @@ -1,6 +0,0 @@ -- Make `predict`, `predict_proba`, and `score` of - :class:`neighbors.KNeighborsClassifier` and - :class:`neighbors.RadiusNeighborsClassifier` accept `X=None` as input. In this case - predictions for all training set points are returned, and points are not included - into their own neighbors. - By :user:`Dmitry Kobak ` diff --git a/doc/whats_new/upcoming_changes/sklearn.neural_network/29773.fix.rst b/doc/whats_new/upcoming_changes/sklearn.neural_network/29773.fix.rst deleted file mode 100644 index 9f4e23af1fbc4..0000000000000 --- a/doc/whats_new/upcoming_changes/sklearn.neural_network/29773.fix.rst +++ /dev/null @@ -1,3 +0,0 @@ -- :class:`neural_network.MLPRegressor` does no longer crash when the model - diverges and that `early_stopping` is enabled. - By :user:`Marc Bresson ` diff --git a/doc/whats_new/upcoming_changes/sklearn.pipeline/28901.major-feature.rst b/doc/whats_new/upcoming_changes/sklearn.pipeline/28901.major-feature.rst deleted file mode 100644 index 60703872d3980..0000000000000 --- a/doc/whats_new/upcoming_changes/sklearn.pipeline/28901.major-feature.rst +++ /dev/null @@ -1,3 +0,0 @@ -- :class:`pipeline.Pipeline` can now transform metadata up to the step requiring the - metadata, which can be set using the `transform_input` parameter. - By `Adrin Jalali`_ diff --git a/doc/whats_new/upcoming_changes/sklearn.pipeline/29868.enhancement.rst b/doc/whats_new/upcoming_changes/sklearn.pipeline/29868.enhancement.rst deleted file mode 100644 index ef8c6592af651..0000000000000 --- a/doc/whats_new/upcoming_changes/sklearn.pipeline/29868.enhancement.rst +++ /dev/null @@ -1,4 +0,0 @@ -- :class:`pipeline.Pipeline` now warns about not being fitted before calling methods - that require the pipeline to be fitted. This warning will become an error in 1.8. - By `Adrin Jalali`_ - diff --git a/doc/whats_new/upcoming_changes/sklearn.pipeline/30203.fix.rst b/doc/whats_new/upcoming_changes/sklearn.pipeline/30203.fix.rst deleted file mode 100644 index 89355c522e541..0000000000000 --- a/doc/whats_new/upcoming_changes/sklearn.pipeline/30203.fix.rst +++ /dev/null @@ -1,4 +0,0 @@ -- Fixed an issue with tags and estimator type of :class:`~sklearn.pipeline.Pipeline` - when pipeline is empty. This allows the HTML representation of an empty - pipeline to be rendered correctly. - By :user:`Gennaro Daniele Acciaro ` \ No newline at end of file diff --git a/doc/whats_new/upcoming_changes/sklearn.preprocessing/27875.fix.rst b/doc/whats_new/upcoming_changes/sklearn.preprocessing/27875.fix.rst deleted file mode 100644 index 1be507801c3f3..0000000000000 --- a/doc/whats_new/upcoming_changes/sklearn.preprocessing/27875.fix.rst +++ /dev/null @@ -1,3 +0,0 @@ -- :class:`preprocessing.PowerTransformer` now uses `scipy.special.inv_boxcox` - to output `nan` if the input of BoxCox's inverse is invalid. - By :user:`Xuefeng Xu ` diff --git a/doc/whats_new/upcoming_changes/sklearn.preprocessing/28637.enhancement.rst b/doc/whats_new/upcoming_changes/sklearn.preprocessing/28637.enhancement.rst deleted file mode 100644 index 506f67a9a6cda..0000000000000 --- a/doc/whats_new/upcoming_changes/sklearn.preprocessing/28637.enhancement.rst +++ /dev/null @@ -1,3 +0,0 @@ -- Added `warn` option to `handle_unknown` parameter in - :class:`preprocessing.OneHotEncoder`. - By :user:`Gleb Levitski ` diff --git a/doc/whats_new/upcoming_changes/sklearn.preprocessing/29158.enhancement.rst b/doc/whats_new/upcoming_changes/sklearn.preprocessing/29158.enhancement.rst deleted file mode 100644 index 0f70f8e5277d1..0000000000000 --- a/doc/whats_new/upcoming_changes/sklearn.preprocessing/29158.enhancement.rst +++ /dev/null @@ -1,3 +0,0 @@ -- The HTML representation of :class:`preprocessing.FunctionTransformer` - will show the function name in the label. - By :user:`Yao Xiao ` diff --git a/doc/whats_new/upcoming_changes/sklearn.semi_supervised/28494.api.rst b/doc/whats_new/upcoming_changes/sklearn.semi_supervised/28494.api.rst deleted file mode 100644 index c65069a27896a..0000000000000 --- a/doc/whats_new/upcoming_changes/sklearn.semi_supervised/28494.api.rst +++ /dev/null @@ -1,3 +0,0 @@ -- :class:`semi_supervised.SelfTrainingClassifier` - deprecated the `base_estimator` parameter in favor of `estimator`. - By :user:`Adam Li ` diff --git a/doc/whats_new/upcoming_changes/sklearn.tree/17575.fix.rst b/doc/whats_new/upcoming_changes/sklearn.tree/17575.fix.rst deleted file mode 100644 index f04954244f19c..0000000000000 --- a/doc/whats_new/upcoming_changes/sklearn.tree/17575.fix.rst +++ /dev/null @@ -1,3 +0,0 @@ -- Escape double quotes for labels and feature names when exporting trees to Graphviz - format. - By :user:`Santiago M. Mola `. diff --git a/doc/whats_new/upcoming_changes/sklearn.tree/27966.feature.rst b/doc/whats_new/upcoming_changes/sklearn.tree/27966.feature.rst deleted file mode 100644 index a5ad971ac02b9..0000000000000 --- a/doc/whats_new/upcoming_changes/sklearn.tree/27966.feature.rst +++ /dev/null @@ -1,5 +0,0 @@ -- :class:`tree.ExtraTreeClassifier` and :class:`tree.ExtraTreeRegressor` now - support missing-values in the data matrix ``X``. Missing-values are handled by - randomly moving all of the samples to the left, or right child node as the tree is - traversed. - By :user:`Adam Li ` and :user:`Loïc Estève ` diff --git a/doc/whats_new/upcoming_changes/sklearn.tree/30318.feature.rst b/doc/whats_new/upcoming_changes/sklearn.tree/30318.feature.rst deleted file mode 100644 index a5ad971ac02b9..0000000000000 --- a/doc/whats_new/upcoming_changes/sklearn.tree/30318.feature.rst +++ /dev/null @@ -1,5 +0,0 @@ -- :class:`tree.ExtraTreeClassifier` and :class:`tree.ExtraTreeRegressor` now - support missing-values in the data matrix ``X``. Missing-values are handled by - randomly moving all of the samples to the left, or right child node as the tree is - traversed. - By :user:`Adam Li ` and :user:`Loïc Estève ` diff --git a/doc/whats_new/upcoming_changes/sklearn.utils/29404.api.rst b/doc/whats_new/upcoming_changes/sklearn.utils/29404.api.rst deleted file mode 100644 index f5aa06dc5c5f0..0000000000000 --- a/doc/whats_new/upcoming_changes/sklearn.utils/29404.api.rst +++ /dev/null @@ -1,4 +0,0 @@ -- The `assert_all_finite` parameter of functions :func:`utils.check_array`, - :func:`utils.check_X_y`, :func:`utils.as_float_array` is renamed into - `ensure_all_finite`. `force_all_finite` will be removed in 1.8. - By :user:`Jérémie du Boisberranger ` diff --git a/doc/whats_new/upcoming_changes/sklearn.utils/29540.enhancement.rst b/doc/whats_new/upcoming_changes/sklearn.utils/29540.enhancement.rst deleted file mode 100644 index 707998aebde56..0000000000000 --- a/doc/whats_new/upcoming_changes/sklearn.utils/29540.enhancement.rst +++ /dev/null @@ -1,4 +0,0 @@ -- :func:`utils.check_array` now accepts `ensure_non_negative` - to check for negative values in the passed array, until now only available through - calling :func:`utils.check_non_negative`. - By :user:`Tamara Atanasoska ` diff --git a/doc/whats_new/upcoming_changes/sklearn.utils/29818.api.rst b/doc/whats_new/upcoming_changes/sklearn.utils/29818.api.rst deleted file mode 100644 index e7a92f8c49b1e..0000000000000 --- a/doc/whats_new/upcoming_changes/sklearn.utils/29818.api.rst +++ /dev/null @@ -1,7 +0,0 @@ -- `utils.estimator_checks.check_sample_weights_invariance` - replaced by - `utils.estimator_checks.check_sample_weight_equivalence_on_dense_data` - which uses integer (including zero) weights and - `utils.estimator_checks.check_sample_weight_equivalence_on_sparse_data` - which does the same on sparse data. - By :user:`Antoine Baker ` diff --git a/doc/whats_new/upcoming_changes/sklearn.utils/29869.fix.rst b/doc/whats_new/upcoming_changes/sklearn.utils/29869.fix.rst deleted file mode 100644 index 9bdb83c97a9d9..0000000000000 --- a/doc/whats_new/upcoming_changes/sklearn.utils/29869.fix.rst +++ /dev/null @@ -1,4 +0,0 @@ -- :func:`utils.estimator_checks.parametrize_with_checks` and - :func:`utils.estimator_checks.check_estimator` now support estimators that - have `set_output` called on them. - By :user:`Adrin Jalali ` diff --git a/doc/whats_new/upcoming_changes/sklearn.utils/29874.enhancement.rst b/doc/whats_new/upcoming_changes/sklearn.utils/29874.enhancement.rst deleted file mode 100644 index 6d1652906ee9d..0000000000000 --- a/doc/whats_new/upcoming_changes/sklearn.utils/29874.enhancement.rst +++ /dev/null @@ -1,5 +0,0 @@ -- :func:`~sklearn.utils.estimator_checks.check_estimator` and - :func:`~sklearn.utils.estimator_checks.parametrize_with_checks` now check and fail if - the classifier has the `tags.classifier_tags.multi_class = False` tag but does not - fail on multi-class data. - By `Adrin Jalali`_ diff --git a/doc/whats_new/upcoming_changes/sklearn.utils/29880.enhancement.rst b/doc/whats_new/upcoming_changes/sklearn.utils/29880.enhancement.rst deleted file mode 100644 index 22f61b7059edc..0000000000000 --- a/doc/whats_new/upcoming_changes/sklearn.utils/29880.enhancement.rst +++ /dev/null @@ -1,4 +0,0 @@ -- :func:`utils.validation.check_is_fitted` now passes on stateless - estimators. An estimator can indicate it's stateless by setting the `requires_fit` - tag. See :ref:`estimator_tags` for more information. - By :user:`Adrin Jalali ` diff --git a/doc/whats_new/upcoming_changes/sklearn.utils/30122.api.rst b/doc/whats_new/upcoming_changes/sklearn.utils/30122.api.rst deleted file mode 100644 index 50dec6ff8c82d..0000000000000 --- a/doc/whats_new/upcoming_changes/sklearn.utils/30122.api.rst +++ /dev/null @@ -1,6 +0,0 @@ -- Using `_estimator_type` to set the estimator type is deprecated. Inherit from - :class:`~sklearn.base.ClassifierMixin`, :class:`~sklearn.base.RegressorMixin`, - :class:`~sklearn.base.TransformerMixin`, or :class:`~sklearn.base.OutlierMixin` - instead. Alternatively, you can set `estimator_type` in :class:`~sklearn.utils.Tags` - in the `__sklearn_tags__` method. - By `Adrin Jalali`_ diff --git a/doc/whats_new/upcoming_changes/sklearn.utils/30137.api.rst b/doc/whats_new/upcoming_changes/sklearn.utils/30137.api.rst deleted file mode 100644 index e7a92f8c49b1e..0000000000000 --- a/doc/whats_new/upcoming_changes/sklearn.utils/30137.api.rst +++ /dev/null @@ -1,7 +0,0 @@ -- `utils.estimator_checks.check_sample_weights_invariance` - replaced by - `utils.estimator_checks.check_sample_weight_equivalence_on_dense_data` - which uses integer (including zero) weights and - `utils.estimator_checks.check_sample_weight_equivalence_on_sparse_data` - which does the same on sparse data. - By :user:`Antoine Baker ` diff --git a/doc/whats_new/upcoming_changes/sklearn.utils/30149.enhancement.rst b/doc/whats_new/upcoming_changes/sklearn.utils/30149.enhancement.rst deleted file mode 100644 index bf04bb4d91aab..0000000000000 --- a/doc/whats_new/upcoming_changes/sklearn.utils/30149.enhancement.rst +++ /dev/null @@ -1,23 +0,0 @@ -- Changes to :func:`~utils.estimator_checks.check_estimator` and - :func:`~utils.estimator_checks.parametrize_with_checks`. - - - :func:`~utils.estimator_checks.check_estimator` introduces new arguments: - ``on_skip``, ``on_fail``, and ``callback`` to control the behavior of the check - runner. Refer to the API documentation for more details. - - - ``generate_only=True`` is deprecated in - :func:`~utils.estimator_checks.check_estimator`. Use - :func:`~utils.estimator_checks.estimator_checks_generator` instead. - - - The ``_xfail_checks`` estimator tag is now removed, and now in order to indicate - which tests are expected to fail, you can pass a dictionary to the - :func:`~utils.estimator_checks.check_estimator` as the ``expected_failed_checks`` - parameter. Similarly, the ``expected_failed_checks`` parameter in - :func:`~utils.estimator_checks.parametrize_with_checks` can be used, which is a - callable returning a dictionary of the form:: - - { - "check_name": "reason to mark this check as xfail", - } - - By `Adrin Jalali`_ From d666202a9349893c1bd106cc9ee0ff0a807c7cf3 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Lo=C3=AFc=20Est=C3=A8ve?= Date: Wed, 18 Dec 2024 17:31:33 +0100 Subject: [PATCH 087/159] MNT Fetch script from main branch in lint.yml (#30505) --- .github/workflows/lint.yml | 1 + 1 file changed, 1 insertion(+) diff --git a/.github/workflows/lint.yml b/.github/workflows/lint.yml index e2de3bbde583b..0ef75cdcce660 100644 --- a/.github/workflows/lint.yml +++ b/.github/workflows/lint.yml @@ -31,6 +31,7 @@ jobs: - name: Install dependencies run: | + curl https://raw.githubusercontent.com/${{ github.repository }}/main/build_tools/shared.sh --retry 5 -o ./build_tools/shared.sh source build_tools/shared.sh # Include pytest compatibility with mypy pip install pytest $(get_dep ruff min) $(get_dep mypy min) $(get_dep black min) cython-lint From ebfb4ef1293bc4a0273617652ea16106fdf1384c Mon Sep 17 00:00:00 2001 From: Guillaume Lemaitre Date: Sat, 7 Dec 2024 12:21:38 +0100 Subject: [PATCH 088/159] MAINT add Maren Westermann in the documentation team (#30424) --- doc/documentation_team.rst | 4 ++++ 1 file changed, 4 insertions(+) diff --git a/doc/documentation_team.rst b/doc/documentation_team.rst index e7f13e5fe218f..64c0c2fea4b97 100644 --- a/doc/documentation_team.rst +++ b/doc/documentation_team.rst @@ -14,6 +14,10 @@

    Lucy Liu

+
+

Maren Westermann

+
+

Yao Xiao

From d83d99506853f3959c42dc8a14708ac6a43ce391 Mon Sep 17 00:00:00 2001 From: Stefanie Senger <91849487+StefanieSenger@users.noreply.github.com> Date: Sat, 7 Dec 2024 16:20:04 +0100 Subject: [PATCH 089/159] DOC fix link in HuberRegressor docstring (#30417) Co-authored-by: Virgil Chan Co-authored-by: Thomas J. Fan --- doc/modules/linear_model.rst | 20 +++++++++---------- doc/modules/model_evaluation.rst | 2 +- examples/linear_model/plot_robust_fit.py | 2 +- examples/model_selection/plot_roc.py | 2 +- .../preprocessing/plot_scaling_importance.py | 4 ++-- sklearn/linear_model/_huber.py | 12 +++++------ 6 files changed, 21 insertions(+), 21 deletions(-) diff --git a/doc/modules/linear_model.rst b/doc/modules/linear_model.rst index 01920325341cb..470ffe98185ed 100644 --- a/doc/modules/linear_model.rst +++ b/doc/modules/linear_model.rst @@ -1585,10 +1585,10 @@ better than an ordinary least squares in high dimension. Huber Regression ---------------- -The :class:`HuberRegressor` is different to :class:`Ridge` because it applies a -linear loss to samples that are classified as outliers. +The :class:`HuberRegressor` is different from :class:`Ridge` because it applies a +linear loss to samples that are defined as outliers by the `epsilon` parameter. A sample is classified as an inlier if the absolute error of that sample is -lesser than a certain threshold. It differs from :class:`TheilSenRegressor` +lesser than the threshold `epsilon`. It differs from :class:`TheilSenRegressor` and :class:`RANSACRegressor` because it does not ignore the effect of the outliers but gives a lesser weight to them. @@ -1603,13 +1603,13 @@ but gives a lesser weight to them. .. dropdown:: Mathematical details - The loss function that :class:`HuberRegressor` minimizes is given by + :class:`HuberRegressor` minimizes .. math:: \min_{w, \sigma} {\sum_{i=1}^n\left(\sigma + H_{\epsilon}\left(\frac{X_{i}w - y_{i}}{\sigma}\right)\sigma\right) + \alpha {||w||_2}^2} - where + where the loss function is given by .. math:: @@ -1624,7 +1624,7 @@ but gives a lesser weight to them. .. rubric:: References * Peter J. Huber, Elvezio M. Ronchetti: Robust Statistics, Concomitant scale - estimates, pg 172 + estimates, p. 172. The :class:`HuberRegressor` differs from using :class:`SGDRegressor` with loss set to `huber` in the following ways. @@ -1638,10 +1638,10 @@ in the following ways. samples while :class:`SGDRegressor` needs a number of passes on the training data to produce the same robustness. -Note that this estimator is different from the R implementation of Robust Regression -(https://stats.oarc.ucla.edu/r/dae/robust-regression/) because the R implementation does a weighted least -squares implementation with weights given to each sample on the basis of how much the residual is -greater than a certain threshold. +Note that this estimator is different from the `R implementation of Robust +Regression `_ because the R +implementation does a weighted least squares implementation with weights given to each +sample on the basis of how much the residual is greater than a certain threshold. .. _quantile_regression: diff --git a/doc/modules/model_evaluation.rst b/doc/modules/model_evaluation.rst index dacdb19a0111c..39befc057a35d 100644 --- a/doc/modules/model_evaluation.rst +++ b/doc/modules/model_evaluation.rst @@ -2543,7 +2543,7 @@ Here is a small example of usage of the :func:`mean_absolute_error` function:: Mean squared error ------------------- -The :func:`mean_squared_error` function computes `mean square +The :func:`mean_squared_error` function computes `mean squared error `_, a risk metric corresponding to the expected value of the squared (quadratic) error or loss. diff --git a/examples/linear_model/plot_robust_fit.py b/examples/linear_model/plot_robust_fit.py index 2b447e6175cdc..874a21fb87a22 100644 --- a/examples/linear_model/plot_robust_fit.py +++ b/examples/linear_model/plot_robust_fit.py @@ -5,7 +5,7 @@ Here a sine function is fit with a polynomial of order 3, for values close to zero. -Robust fitting is demoed in different situations: +Robust fitting is demonstrated in different situations: - No measurement errors, only modelling errors (fitting a sine with a polynomial) diff --git a/examples/model_selection/plot_roc.py b/examples/model_selection/plot_roc.py index 70bf3bd3f486d..f453399959896 100644 --- a/examples/model_selection/plot_roc.py +++ b/examples/model_selection/plot_roc.py @@ -159,7 +159,7 @@ # %% # In a multi-class classification setup with highly imbalanced classes, # micro-averaging is preferable over macro-averaging. In such cases, one can -# alternatively use a weighted macro-averaging, not demoed here. +# alternatively use a weighted macro-averaging, not demonstrated here. display = RocCurveDisplay.from_predictions( y_onehot_test.ravel(), diff --git a/examples/preprocessing/plot_scaling_importance.py b/examples/preprocessing/plot_scaling_importance.py index 55b133576b540..6432a1c48ec69 100644 --- a/examples/preprocessing/plot_scaling_importance.py +++ b/examples/preprocessing/plot_scaling_importance.py @@ -12,13 +12,13 @@ algorithms require features to be normalized, often for different reasons: to ease the convergence (such as a non-penalized logistic regression), to create a completely different model fit compared to the fit with unscaled data (such as -KNeighbors models). The latter is demoed on the first part of the present +KNeighbors models). The latter is demonstrated on the first part of the present example. On the second part of the example we show how Principal Component Analysis (PCA) is impacted by normalization of features. To illustrate this, we compare the principal components found using :class:`~sklearn.decomposition.PCA` on unscaled -data with those obatined when using a +data with those obtained when using a :class:`~sklearn.preprocessing.StandardScaler` to scale data first. In the last part of the example we show the effect of the normalization on the diff --git a/sklearn/linear_model/_huber.py b/sklearn/linear_model/_huber.py index 9e41cc4eae3b5..df939ca7f2e89 100644 --- a/sklearn/linear_model/_huber.py +++ b/sklearn/linear_model/_huber.py @@ -132,10 +132,10 @@ class HuberRegressor(LinearModel, RegressorMixin, BaseEstimator): ``|(y - Xw - c) / sigma| < epsilon`` and the absolute loss for the samples where ``|(y - Xw - c) / sigma| > epsilon``, where the model coefficients ``w``, the intercept ``c`` and the scale ``sigma`` are parameters - to be optimized. The parameter sigma makes sure that if y is scaled up - or down by a certain factor, one does not need to rescale epsilon to + to be optimized. The parameter `sigma` makes sure that if `y` is scaled up + or down by a certain factor, one does not need to rescale `epsilon` to achieve the same robustness. Note that this does not take into account - the fact that the different features of X may be of different scales. + the fact that the different features of `X` may be of different scales. The Huber loss function has the advantage of not being heavily influenced by the outliers while not completely ignoring their effect. @@ -219,9 +219,9 @@ class HuberRegressor(LinearModel, RegressorMixin, BaseEstimator): References ---------- .. [1] Peter J. Huber, Elvezio M. Ronchetti, Robust Statistics - Concomitant scale estimates, pg 172 - .. [2] Art B. Owen (2006), A robust hybrid of lasso and ridge regression. - https://statweb.stanford.edu/~owen/reports/hhu.pdf + Concomitant scale estimates, p. 172 + .. [2] Art B. Owen (2006), `A robust hybrid of lasso and ridge regression. + `_ Examples -------- From 433ac4c962017724ed594159c581e9714504de22 Mon Sep 17 00:00:00 2001 From: scikit-learn-bot Date: Mon, 9 Dec 2024 10:47:19 +0100 Subject: [PATCH 090/159] :lock: :robot: CI Update lock files for array-api CI build(s) :lock: :robot: (#30437) Co-authored-by: Lock file bot --- ...a_forge_cuda_array-api_linux-64_conda.lock | 110 +++++++++--------- 1 file changed, 55 insertions(+), 55 deletions(-) diff --git a/build_tools/github/pylatest_conda_forge_cuda_array-api_linux-64_conda.lock b/build_tools/github/pylatest_conda_forge_cuda_array-api_linux-64_conda.lock index cf5dff03c4561..da447debfa8c8 100644 --- a/build_tools/github/pylatest_conda_forge_cuda_array-api_linux-64_conda.lock +++ b/build_tools/github/pylatest_conda_forge_cuda_array-api_linux-64_conda.lock @@ -33,8 +33,9 @@ https://conda.anaconda.org/conda-forge/linux-64/libdeflate-1.22-hb9d3cd8_0.conda https://conda.anaconda.org/conda-forge/linux-64/libexpat-2.6.4-h5888daf_0.conda#db833e03127376d461e1e13e76f09b6c https://conda.anaconda.org/conda-forge/linux-64/libgcc-ng-14.2.0-h69a702a_1.conda#e39480b9ca41323497b05492a63bc35b https://conda.anaconda.org/conda-forge/linux-64/libgfortran5-14.2.0-hd5240d6_1.conda#9822b874ea29af082e5d36098d25427d +https://conda.anaconda.org/conda-forge/linux-64/liblzma-5.6.3-hb9d3cd8_1.conda#2ecf2f1c7e4e21fcfe6423a51a992d84 https://conda.anaconda.org/conda-forge/linux-64/libstdcxx-14.2.0-hc0a3c3a_1.conda#234a5554c53625688d51062645337328 -https://conda.anaconda.org/conda-forge/linux-64/libutf8proc-2.8.0-hf23e847_1.conda#b1aa0faa95017bca11369bd080487ec4 +https://conda.anaconda.org/conda-forge/linux-64/libutf8proc-2.9.0-hb9d3cd8_1.conda#1e936bd23d737aac62a18e9a1e7f8b18 https://conda.anaconda.org/conda-forge/linux-64/libzlib-1.3.1-hb9d3cd8_2.conda#edb0dca6bc32e4f4789199455a1dbeb8 https://conda.anaconda.org/conda-forge/linux-64/openssl-3.4.0-hb9d3cd8_0.conda#23cc74f77eb99315c0360ec3533147a9 https://conda.anaconda.org/conda-forge/linux-64/pthread-stubs-0.4-hb9d3cd8_1002.conda#b3c17d95b5a10c6e64a21fa17573e70e @@ -71,12 +72,13 @@ https://conda.anaconda.org/conda-forge/linux-64/libwebp-base-1.4.0-hd590300_0.co https://conda.anaconda.org/conda-forge/linux-64/libxcb-1.17.0-h8a09558_0.conda#92ed62436b625154323d40d5f2f11dd7 https://conda.anaconda.org/conda-forge/linux-64/libxcrypt-4.4.36-hd590300_1.conda#5aa797f8787fe7a17d1b0821485b5adc https://conda.anaconda.org/conda-forge/linux-64/llvm-openmp-15.0.7-h0cdce71_0.conda#589c9a3575a050b583241c3d688ad9aa -https://conda.anaconda.org/conda-forge/linux-64/mysql-common-9.0.1-h266115a_2.conda#85c0dc0bcd110c998b01856975486ee7 +https://conda.anaconda.org/conda-forge/linux-64/mysql-common-9.0.1-h266115a_3.conda#9411c61ff1070b5e065b32840c39faa5 https://conda.anaconda.org/conda-forge/linux-64/ncurses-6.5-he02047a_1.conda#70caf8bb6cf39a0b6b7efc885f51c0fe https://conda.anaconda.org/conda-forge/linux-64/opencl-headers-2024.10.24-h5888daf_0.conda#3ba02cce423fdac1a8582bd6bb189359 +https://conda.anaconda.org/conda-forge/linux-64/pixman-0.44.2-h29eaf8c_0.conda#5e2a7acfa2c24188af39e7944e1b3604 https://conda.anaconda.org/conda-forge/linux-64/s2n-1.5.9-h0fd0ee4_0.conda#f472432f3753c5ca763d2497e2ea30bf +https://conda.anaconda.org/conda-forge/linux-64/snappy-1.2.1-h8bd8927_1.conda#3b3e64af585eadfb52bb90b553db5edf https://conda.anaconda.org/conda-forge/linux-64/tk-8.6.13-noxft_h4845f30_101.conda#d453b98d9c83e71da0741bb0ff4d76bc -https://conda.anaconda.org/conda-forge/linux-64/xz-5.2.6-h166bdaf_0.tar.bz2#2161070d867d1b1204ea749c8eec4ef0 https://conda.anaconda.org/conda-forge/linux-64/yaml-0.2.5-h7f98852_2.tar.bz2#4cb3ad778ec2d5a7acbdf254eb1c42ae https://conda.anaconda.org/conda-forge/linux-64/zlib-1.3.1-hb9d3cd8_2.conda#c9f075ab2f33b3bbee9e62d4ad0a6cd8 https://conda.anaconda.org/conda-forge/linux-64/aws-c-io-0.15.2-hdeadb07_2.conda#461a1eaa075fd391add91bcffc9de0c1 @@ -96,7 +98,7 @@ https://conda.anaconda.org/conda-forge/linux-64/libcrc32c-1.1.2-h9c3ff4c_0.tar.b https://conda.anaconda.org/conda-forge/linux-64/libcufft-11.2.1.3-he02047a_2.conda#d2641a67c207946ef96f1328c4a8e8ed https://conda.anaconda.org/conda-forge/linux-64/libcufile-1.9.1.3-he02047a_2.conda#a051267bcb1912467c81d802a7d3465e https://conda.anaconda.org/conda-forge/linux-64/libcurand-10.3.5.147-he02047a_2.conda#9c4886d513fd477df88d411cd274c202 -https://conda.anaconda.org/conda-forge/linux-64/libdrm-2.4.123-hb9d3cd8_0.conda#ee605e794bdc14e2b7f84c4faa0d8c2c +https://conda.anaconda.org/conda-forge/linux-64/libdrm-2.4.124-hb9d3cd8_0.conda#8bc89311041d7fcb510238cf0848ccae https://conda.anaconda.org/conda-forge/linux-64/libedit-3.1.20191231-he28a2e2_2.tar.bz2#4d331e44109e3f0e19b4cb8f9b82f3e1 https://conda.anaconda.org/conda-forge/linux-64/libgfortran-ng-14.2.0-h69a702a_1.conda#0a7f4cd238267c88e5d69f7826a407eb https://conda.anaconda.org/conda-forge/linux-64/libnghttp2-1.64.0-h161d5f1_0.conda#19e57602824042dfd0446292ef90488b @@ -111,17 +113,15 @@ https://conda.anaconda.org/conda-forge/linux-64/lz4-c-1.9.4-hcb278e6_0.conda#318 https://conda.anaconda.org/conda-forge/linux-64/ninja-1.12.1-h297d8ca_0.conda#3aa1c7e292afeff25a0091ddd7c69b72 https://conda.anaconda.org/conda-forge/linux-64/ocl-icd-2.3.2-hb9d3cd8_2.conda#2e8d2b469559d6b2cb6fd4b34f9c8d7f https://conda.anaconda.org/conda-forge/linux-64/pcre2-10.44-hba22ea6_2.conda#df359c09c41cd186fffb93a2d87aa6f5 -https://conda.anaconda.org/conda-forge/linux-64/pixman-0.43.2-h59595ed_0.conda#71004cbf7924e19c02746ccde9fd7123 https://conda.anaconda.org/conda-forge/linux-64/qhull-2020.2-h434a139_5.conda#353823361b1d27eb3960efb076dfcaf6 https://conda.anaconda.org/conda-forge/linux-64/readline-8.2-h8228510_1.conda#47d31b792659ce70f470b5c82fdfb7a4 -https://conda.anaconda.org/conda-forge/linux-64/snappy-1.2.1-ha2e4443_0.conda#6b7dcc7349efd123d493d2dbe85a045f https://conda.anaconda.org/conda-forge/linux-64/wayland-1.23.1-h3e06ad9_0.conda#0a732427643ae5e0486a727927791da1 https://conda.anaconda.org/conda-forge/linux-64/xcb-util-0.4.1-hb711507_2.conda#8637c3e5821654d0edf97e2b0404b443 https://conda.anaconda.org/conda-forge/linux-64/xcb-util-keysyms-0.4.1-hb711507_0.conda#ad748ccca349aec3e91743e08b5e2b50 https://conda.anaconda.org/conda-forge/linux-64/xcb-util-renderutil-0.3.10-hb711507_0.conda#0e0cbe0564d03a99afd5fd7b362feecd https://conda.anaconda.org/conda-forge/linux-64/xcb-util-wm-0.4.2-hb711507_0.conda#608e0ef8256b81d04456e8d211eee3e8 https://conda.anaconda.org/conda-forge/linux-64/xorg-libsm-1.2.4-he73a12e_1.conda#05a8ea5f446de33006171a7afe6ae857 -https://conda.anaconda.org/conda-forge/linux-64/xorg-libx11-1.8.10-h4f16b4b_0.conda#0b666058a179b744a622d0a4a0c56353 +https://conda.anaconda.org/conda-forge/linux-64/xorg-libx11-1.8.10-h4f16b4b_1.conda#125f34a17d7b4bea418a83904ea82ea6 https://conda.anaconda.org/conda-forge/linux-64/zstd-1.5.6-ha6fb4c9_0.conda#4d056880988120e29d75bfff282e0f45 https://conda.anaconda.org/conda-forge/linux-64/aws-c-event-stream-0.5.0-h1ffe551_7.conda#7cce4dfab184f4bbdfc160789251b3c5 https://conda.anaconda.org/conda-forge/linux-64/aws-c-http-0.9.1-hab05fe4_2.conda#fb409f7053fa3dbbdf6eb41045a87795 @@ -134,12 +134,12 @@ https://conda.anaconda.org/conda-forge/linux-64/libcusparse-12.3.1.170-he02047a_ https://conda.anaconda.org/conda-forge/linux-64/libglib-2.82.2-h2ff4ddf_0.conda#13e8e54035ddd2b91875ba399f0f7c04 https://conda.anaconda.org/conda-forge/linux-64/libglx-1.7.0-ha4b6fd6_2.conda#c8013e438185f33b13814c5c488acd5c https://conda.anaconda.org/conda-forge/linux-64/libhiredis-1.0.2-h2cc385e_0.tar.bz2#b34907d3a81a3cd8095ee83d174c074a -https://conda.anaconda.org/conda-forge/linux-64/libtiff-4.7.0-he137b08_1.conda#63872517c98aa305da58a757c443698e -https://conda.anaconda.org/conda-forge/linux-64/libxml2-2.13.5-hb346dea_0.conda#c81a9f1118541aaa418ccb22190c817e +https://conda.anaconda.org/conda-forge/linux-64/libtiff-4.7.0-hc4654cb_2.conda#be54fb40ea32e8fe9dbaa94d4528b57e +https://conda.anaconda.org/conda-forge/linux-64/libxml2-2.13.5-h8d12d68_1.conda#1a21e49e190d1ffe58531a81b6e400e1 https://conda.anaconda.org/conda-forge/linux-64/mpfr-4.2.1-h90cbb55_3.conda#2eeb50cab6652538eee8fc0bc3340c81 -https://conda.anaconda.org/conda-forge/linux-64/mysql-libs-9.0.1-he0572af_2.conda#57a9e7ee3c0840d3c8c9012473978629 +https://conda.anaconda.org/conda-forge/linux-64/mysql-libs-9.0.1-he0572af_3.conda#dd9da69dd4c2bf798c0b8bd4786cafb5 https://conda.anaconda.org/conda-forge/linux-64/orc-2.0.3-he039a57_0.conda#052499acd6d6b79952197a13b23e2600 -https://conda.anaconda.org/conda-forge/linux-64/python-3.12.7-hc5c86c4_0_cpython.conda#0515111a9cdf69f83278f7c197db9807 +https://conda.anaconda.org/conda-forge/linux-64/python-3.12.8-h9e4cc4f_1_cpython.conda#7fd2fd79436d9b473812f14e86746844 https://conda.anaconda.org/conda-forge/linux-64/re2-2024.07.02-h77b4e00_1.conda#01093ff37c1b5e6bf9f17c0116747d11 https://conda.anaconda.org/conda-forge/linux-64/xcb-util-image-0.4.0-hb711507_2.conda#a0901183f08b6c7107aab109733a3c91 https://conda.anaconda.org/conda-forge/linux-64/xkeyboard-config-2.43-hb9d3cd8_0.conda#f725c7425d6d7c15e31f3b99a88ea02f @@ -152,17 +152,17 @@ https://conda.anaconda.org/conda-forge/linux-64/aws-c-mqtt-0.11.0-h7bd072d_8.con https://conda.anaconda.org/conda-forge/linux-64/cairo-1.18.0-hebfffa5_3.conda#fceaedf1cdbcb02df9699a0d9b005292 https://conda.anaconda.org/conda-forge/linux-64/ccache-4.10.1-h065aff2_0.conda#d6b48c138e0c8170a6fe9c136e063540 https://conda.anaconda.org/conda-forge/noarch/certifi-2024.8.30-pyhd8ed1ab_0.conda#12f7d00853807b0531775e9be891cb11 -https://conda.anaconda.org/conda-forge/noarch/colorama-0.4.6-pyhd8ed1ab_0.tar.bz2#3faab06a954c2a04039983f2c4a50d99 -https://conda.anaconda.org/conda-forge/noarch/cpython-3.12.7-py312hd8ed1ab_0.conda#f0d1309310498284ab13c9fd73db4781 -https://conda.anaconda.org/conda-forge/noarch/cycler-0.12.1-pyhd8ed1ab_0.conda#5cd86562580f274031ede6aa6aa24441 +https://conda.anaconda.org/conda-forge/noarch/colorama-0.4.6-pyhd8ed1ab_1.conda#962b9857ee8e7018c22f2776ffa0b2d7 +https://conda.anaconda.org/conda-forge/noarch/cpython-3.12.8-py312hd8ed1ab_1.conda#caa04d37126e82822468d6bdf50f5ebd +https://conda.anaconda.org/conda-forge/noarch/cycler-0.12.1-pyhd8ed1ab_1.conda#44600c4667a319d67dbe0681fc0bc833 https://conda.anaconda.org/conda-forge/linux-64/cyrus-sasl-2.1.27-h54b06d7_7.conda#dce22f70b4e5a407ce88f2be046f4ceb https://conda.anaconda.org/conda-forge/linux-64/cython-3.0.11-py312h8fd2918_3.conda#21e433caf1bb1e4c95832f8bb731d64c https://conda.anaconda.org/conda-forge/linux-64/dbus-1.13.6-h5008d03_3.tar.bz2#ecfff944ba3960ecb334b9a2663d708d -https://conda.anaconda.org/conda-forge/noarch/exceptiongroup-1.2.2-pyhd8ed1ab_0.conda#d02ae936e42063ca46af6cdad2dbd1e0 -https://conda.anaconda.org/conda-forge/noarch/execnet-2.1.1-pyhd8ed1ab_0.conda#15dda3cdbf330abfe9f555d22f66db46 +https://conda.anaconda.org/conda-forge/noarch/exceptiongroup-1.2.2-pyhd8ed1ab_1.conda#a16662747cdeb9abbac74d0057cc976e +https://conda.anaconda.org/conda-forge/noarch/execnet-2.1.1-pyhd8ed1ab_1.conda#a71efeae2c160f6789900ba2631a2c90 https://conda.anaconda.org/conda-forge/linux-64/fastrlock-0.8.2-py312h30efb56_2.conda#7065ec5a4909f925e305b77e505b0aec -https://conda.anaconda.org/conda-forge/noarch/filelock-3.16.1-pyhd8ed1ab_0.conda#916f8ec5dd4128cd5f207a3c4c07b2c6 -https://conda.anaconda.org/conda-forge/noarch/iniconfig-2.0.0-pyhd8ed1ab_0.conda#f800d2da156d08e289b14e87e43c1ae5 +https://conda.anaconda.org/conda-forge/noarch/filelock-3.16.1-pyhd8ed1ab_1.conda#d692e9ba6f92dc51484bf3477e36ce7c +https://conda.anaconda.org/conda-forge/noarch/iniconfig-2.0.0-pyhd8ed1ab_1.conda#6837f3eff7dcea42ecd714ce1ac2b108 https://conda.anaconda.org/conda-forge/linux-64/kiwisolver-1.4.7-py312h68727a3_0.conda#444266743652a4f1538145e9362f6d3b https://conda.anaconda.org/conda-forge/linux-64/lcms2-2.16-hb7c19ff_0.conda#51bb7010fc86f70eee639b4bb7a894f5 https://conda.anaconda.org/conda-forge/linux-64/libcups-2.3.3-h4637d8d_4.conda#d4529f4dff3057982a7617c7ac58fde3 @@ -171,30 +171,30 @@ https://conda.anaconda.org/conda-forge/linux-64/libcusolver-11.6.1.9-he02047a_2. https://conda.anaconda.org/conda-forge/linux-64/libgl-1.7.0-ha4b6fd6_2.conda#928b8be80851f5d8ffb016f9c81dae7a https://conda.anaconda.org/conda-forge/linux-64/libgrpc-1.67.1-hc2c308b_0.conda#4606a4647bfe857e3cfe21ca12ac3afb https://conda.anaconda.org/conda-forge/linux-64/libhwloc-2.11.2-default_h0d58e46_1001.conda#804ca9e91bcaea0824a341d55b1684f2 -https://conda.anaconda.org/conda-forge/linux-64/libllvm19-19.1.4-ha7bfdaf_1.conda#886acc67bcba28a5c6b429aad2f057ce +https://conda.anaconda.org/conda-forge/linux-64/libllvm19-19.1.5-ha7bfdaf_0.conda#76f3749eda7b24816aacd55b9f31447a https://conda.anaconda.org/conda-forge/linux-64/libxkbcommon-1.7.0-h2c5496b_1.conda#e2eaefa4de2b7237af7c907b8bbc760a https://conda.anaconda.org/conda-forge/linux-64/libxslt-1.1.39-h76b75d6_0.conda#e71f31f8cfb0a91439f2086fc8aa0461 -https://conda.anaconda.org/conda-forge/linux-64/markupsafe-3.0.2-py312h178313f_0.conda#a755704ea0e2503f8c227d84829a8e81 +https://conda.anaconda.org/conda-forge/linux-64/markupsafe-3.0.2-py312h178313f_1.conda#eb227c3e0bf58f5bd69c0532b157975b https://conda.anaconda.org/conda-forge/linux-64/mpc-1.3.1-h24ddda3_1.conda#aa14b9a5196a6d8dd364164b7ce56acf -https://conda.anaconda.org/conda-forge/noarch/mpmath-1.3.0-pyhd8ed1ab_0.conda#dbf6e2d89137da32fa6670f3bffc024e +https://conda.anaconda.org/conda-forge/noarch/mpmath-1.3.0-pyhd8ed1ab_1.conda#3585aa87c43ab15b167b574cd73b057b https://conda.anaconda.org/conda-forge/noarch/munkres-1.1.4-pyh9f0ad1d_0.tar.bz2#2ba8498c1018c1e9c61eb99b973dfe19 https://conda.anaconda.org/conda-forge/noarch/networkx-3.4.2-pyh267e887_2.conda#fd40bf7f7f4bc4b647dc8512053d9873 https://conda.anaconda.org/conda-forge/linux-64/openjpeg-2.5.2-h488ebb8_0.conda#7f2e286780f072ed750df46dc2631138 -https://conda.anaconda.org/conda-forge/noarch/packaging-24.2-pyhff2d567_1.conda#8508b703977f4c4ada34d657d051972c -https://conda.anaconda.org/conda-forge/noarch/pluggy-1.5.0-pyhd8ed1ab_0.conda#d3483c8fc2dc2cc3f5cf43e26d60cabf -https://conda.anaconda.org/conda-forge/noarch/pyparsing-3.2.0-pyhd8ed1ab_1.conda#035c17fbf099f50ff60bf2eb303b0a83 -https://conda.anaconda.org/conda-forge/noarch/python-tzdata-2024.2-pyhd8ed1ab_0.conda#986287f89929b2d629bd6ef6497dc307 +https://conda.anaconda.org/conda-forge/noarch/packaging-24.2-pyhd8ed1ab_2.conda#3bfed7e6228ebf2f7b9eaa47f1b4e2aa +https://conda.anaconda.org/conda-forge/noarch/pluggy-1.5.0-pyhd8ed1ab_1.conda#e9dcbce5f45f9ee500e728ae58b605b6 +https://conda.anaconda.org/conda-forge/noarch/pyparsing-3.2.0-pyhd8ed1ab_2.conda#4c05a2bcf87bb495512374143b57cf28 +https://conda.anaconda.org/conda-forge/noarch/python-tzdata-2024.2-pyhd8ed1ab_1.conda#c0def296b2f6d2dd7b030c2a7f66bb1f https://conda.anaconda.org/conda-forge/noarch/pytz-2024.1-pyhd8ed1ab_0.conda#3eeeeb9e4827ace8c0c1419c85d590ad https://conda.anaconda.org/conda-forge/linux-64/pyyaml-6.0.2-py312h66e93f0_1.conda#549e5930e768548a89c23f595dac5a95 https://conda.anaconda.org/conda-forge/noarch/setuptools-75.6.0-pyhff2d567_1.conda#fc80f7995e396cbaeabd23cf46c413dc -https://conda.anaconda.org/conda-forge/noarch/six-1.16.0-pyh6c4a22f_0.tar.bz2#e5f25f8dbc060e9a8d912e432202afc2 +https://conda.anaconda.org/conda-forge/noarch/six-1.17.0-pyhd8ed1ab_0.conda#a451d576819089b0d672f18768be0f65 https://conda.anaconda.org/conda-forge/noarch/threadpoolctl-3.5.0-pyhc1e730c_0.conda#df68d78237980a159bd7149f33c0e8fd https://conda.anaconda.org/conda-forge/noarch/toml-0.10.2-pyhd8ed1ab_0.tar.bz2#f832c45a477c78bebd107098db465095 -https://conda.anaconda.org/conda-forge/noarch/tomli-2.2.1-pyhd8ed1ab_0.conda#ee8ab0fe4c8dfc5a6319f7f8246022fc +https://conda.anaconda.org/conda-forge/noarch/tomli-2.2.1-pyhd8ed1ab_1.conda#ac944244f1fed2eb49bae07193ae8215 https://conda.anaconda.org/conda-forge/linux-64/tornado-6.4.2-py312h66e93f0_0.conda#e417822cb989e80a0d2b1b576fdd1657 -https://conda.anaconda.org/conda-forge/noarch/typing_extensions-4.12.2-pyha770c72_0.conda#ebe6952715e1d5eb567eeebf25250fa7 +https://conda.anaconda.org/conda-forge/noarch/typing_extensions-4.12.2-pyha770c72_1.conda#d17f13df8b65464ca316cbc000a3cb64 https://conda.anaconda.org/conda-forge/linux-64/unicodedata2-15.1.0-py312h66e93f0_1.conda#588486a61153f94c7c13816f7069e440 -https://conda.anaconda.org/conda-forge/noarch/wheel-0.45.1-pyhd8ed1ab_0.conda#bdb2f437ce62fd2f1fef9119a37a12d9 +https://conda.anaconda.org/conda-forge/noarch/wheel-0.45.1-pyhd8ed1ab_1.conda#75cb7132eb58d97896e173ef12ac9986 https://conda.anaconda.org/conda-forge/linux-64/xcb-util-cursor-0.1.5-hb9d3cd8_0.conda#eb44b3b6deb1cab08d72cb61686fe64c https://conda.anaconda.org/conda-forge/linux-64/xorg-libxcomposite-0.4.6-hb9d3cd8_2.conda#d3c295b50f092ab525ffe3c2aa4b7413 https://conda.anaconda.org/conda-forge/linux-64/xorg-libxcursor-1.2.3-hb9d3cd8_0.conda#2ccd714aa2242315acaf0a67faea780b @@ -202,39 +202,39 @@ https://conda.anaconda.org/conda-forge/linux-64/xorg-libxdamage-1.1.6-hb9d3cd8_0 https://conda.anaconda.org/conda-forge/linux-64/xorg-libxi-1.8.2-hb9d3cd8_0.conda#17dcc85db3c7886650b8908b183d6876 https://conda.anaconda.org/conda-forge/linux-64/xorg-libxrandr-1.5.4-hb9d3cd8_0.conda#2de7f99d6581a4a7adbff607b5c278ca https://conda.anaconda.org/conda-forge/linux-64/xorg-libxxf86vm-1.1.5-hb9d3cd8_4.conda#7da9007c0582712c4bad4131f89c8372 -https://conda.anaconda.org/conda-forge/linux-64/aws-c-s3-0.7.2-h3a84f74_0.conda#a5f883ce16928e898856b5bd8d1bee57 +https://conda.anaconda.org/conda-forge/linux-64/aws-c-s3-0.7.5-h3a84f74_0.conda#a13702b87657cf2d0cdd338fe55f4ba1 https://conda.anaconda.org/conda-forge/linux-64/azure-core-cpp-1.14.0-h5cfcd09_0.conda#0a8838771cc2e985cd295e01ae83baf1 -https://conda.anaconda.org/conda-forge/linux-64/coverage-7.6.8-py312h178313f_0.conda#fe8c93f4c75908fe2a1cc45ed0c47edf +https://conda.anaconda.org/conda-forge/linux-64/coverage-7.6.9-py312h178313f_0.conda#a6a5f52f8260983b0aaeebcebf558a3e https://conda.anaconda.org/conda-forge/linux-64/cuda-libraries-12.4.1-ha770c72_1.conda#6bb3f998485d4344a7539e0b218b3fc1 -https://conda.anaconda.org/conda-forge/linux-64/fonttools-4.55.0-py312h178313f_0.conda#f404f4fb99ccaea68b00c1cc64fc1e68 -https://conda.anaconda.org/conda-forge/linux-64/gmpy2-2.1.5-py312h7201bc8_2.conda#af9faf103fb57241246416dc70b466f7 +https://conda.anaconda.org/conda-forge/linux-64/fonttools-4.55.2-py312h178313f_0.conda#3a182582b6cccd88147721ee9eda010f +https://conda.anaconda.org/conda-forge/linux-64/gmpy2-2.1.5-py312h7201bc8_3.conda#673ef4d6611f5b4ca7b5c1f8c65a38dc https://conda.anaconda.org/conda-forge/linux-64/harfbuzz-9.0.0-hda332d3_1.conda#76b32dcf243444aea9c6b804bcfa40b8 -https://conda.anaconda.org/conda-forge/noarch/jinja2-3.1.4-pyhd8ed1ab_0.conda#7b86ecb7d3557821c649b3c31e3eb9f2 +https://conda.anaconda.org/conda-forge/noarch/jinja2-3.1.4-pyhd8ed1ab_1.conda#08cce3151bde4ecad7885bd9fb647532 https://conda.anaconda.org/conda-forge/noarch/joblib-1.4.2-pyhd8ed1ab_0.conda#25df261d4523d9f9783bcdb7208d872f -https://conda.anaconda.org/conda-forge/linux-64/libclang-cpp19.1-19.1.4-default_hb5137d0_0.conda#e7e4a0ebe1f6eedf483f6f5d4f7d2bdd -https://conda.anaconda.org/conda-forge/linux-64/libclang13-19.1.4-default_h9c6a7e4_0.conda#6c450adae455c7d648856e8b0cfcebd6 +https://conda.anaconda.org/conda-forge/linux-64/libclang-cpp19.1-19.1.5-default_hb5137d0_0.conda#ec8649c89988d8a443c252c20f259b72 +https://conda.anaconda.org/conda-forge/linux-64/libclang13-19.1.5-default_h9c6a7e4_0.conda#a3a5997b6b47373f0c1608d8503eb4e6 https://conda.anaconda.org/conda-forge/linux-64/libgoogle-cloud-2.31.0-h804f50b_0.conda#35ab838423b60f233391eb86d324a830 -https://conda.anaconda.org/conda-forge/noarch/meson-1.6.0-pyhd8ed1ab_0.conda#380ba6a3eddd8e7649bfe8e6812611aa +https://conda.anaconda.org/conda-forge/noarch/meson-1.6.0-pyhd8ed1ab_1.conda#59d45dbe1b0a123966266340b579d366 https://conda.anaconda.org/conda-forge/linux-64/openldap-2.6.9-he970967_0.conda#ca2de8bbdc871bce41dbf59e51324165 https://conda.anaconda.org/conda-forge/linux-64/pillow-11.0.0-py312h7b63e92_0.conda#385f46a4df6f97892503a841121a9acf https://conda.anaconda.org/conda-forge/noarch/pip-24.3.1-pyh8b19718_0.conda#5dd546fe99b44fda83963d15f84263b7 -https://conda.anaconda.org/conda-forge/noarch/pyproject-metadata-0.9.0-pyh2cfa8aa_0.conda#10906a130eeb4a68645bf97c28333141 -https://conda.anaconda.org/conda-forge/noarch/pytest-8.3.4-pyhd8ed1ab_0.conda#ff8f2ef7f2636906b3781d0cf92388d0 -https://conda.anaconda.org/conda-forge/noarch/python-dateutil-2.9.0.post0-pyhff2d567_0.conda#b6dfd90a2141e573e4b6a81630b56df5 +https://conda.anaconda.org/conda-forge/noarch/pyproject-metadata-0.9.0-pyhd8ed1ab_1.conda#1239146a53a383a84633800294120f17 +https://conda.anaconda.org/conda-forge/noarch/pytest-8.3.4-pyhd8ed1ab_1.conda#799ed216dc6af62520f32aa39bc1c2bb +https://conda.anaconda.org/conda-forge/noarch/python-dateutil-2.9.0.post0-pyhff2d567_1.conda#5ba79d7c71f03c678c8ead841f347d6e https://conda.anaconda.org/conda-forge/linux-64/tbb-2021.13.0-hceb3a55_1.conda#ba7726b8df7b9d34ea80e82b097a4893 https://conda.anaconda.org/conda-forge/linux-64/xorg-libxtst-1.2.5-hb9d3cd8_3.conda#7bbe9a0cc0df0ac5f5a8ad6d6a11af2f -https://conda.anaconda.org/conda-forge/linux-64/aws-crt-cpp-0.29.6-h0e61686_0.conda#651a6500e5fded51bb7572f4eebcfd7b +https://conda.anaconda.org/conda-forge/linux-64/aws-crt-cpp-0.29.7-ha6b94fc_1.conda#f5fb6f6283deb0b4d2c187ad4a7b6d4d https://conda.anaconda.org/conda-forge/linux-64/azure-identity-cpp-1.10.0-h113e628_0.conda#73f73f60854f325a55f1d31459f2ab73 https://conda.anaconda.org/conda-forge/linux-64/azure-storage-common-cpp-12.8.0-h736e048_1.conda#13de36be8de3ae3f05ba127631599213 https://conda.anaconda.org/conda-forge/noarch/cuda-runtime-12.4.1-ha804496_0.conda#48829f4ef6005ae8d4867b99168ff2b8 https://conda.anaconda.org/conda-forge/linux-64/libgoogle-cloud-storage-2.31.0-h0121fbd_0.conda#568d6a09a6ed76337a7b97c84ae7c0f8 -https://conda.anaconda.org/conda-forge/linux-64/libpq-17.2-h04577a9_0.conda#52dd46162c6fb2765b49e6fd06adf8d5 -https://conda.anaconda.org/conda-forge/noarch/meson-python-0.17.1-pyh70fd9c4_0.conda#722b649da38842068d83b6e6770f11a1 +https://conda.anaconda.org/conda-forge/linux-64/libpq-17.2-h3b95a9b_1.conda#37724d8bae042345a19ca1a25dde786b +https://conda.anaconda.org/conda-forge/noarch/meson-python-0.17.1-pyh70fd9c4_1.conda#7a02679229c6c2092571b4c025055440 https://conda.anaconda.org/conda-forge/linux-64/mkl-2022.1.0-h84fe81f_915.tar.bz2#b9c8f925797a93dbff45e1626b025a6b -https://conda.anaconda.org/conda-forge/noarch/pytest-cov-6.0.0-pyhd8ed1ab_0.conda#cb8a11b6d209e3d85e5094bdbd9ebd9c -https://conda.anaconda.org/conda-forge/noarch/pytest-xdist-3.6.1-pyhd8ed1ab_0.conda#b39568655c127a9c4a44d178ac99b6d0 +https://conda.anaconda.org/conda-forge/noarch/pytest-cov-6.0.0-pyhd8ed1ab_1.conda#79963c319d1be62c8fd3e34555816e01 +https://conda.anaconda.org/conda-forge/noarch/pytest-xdist-3.6.1-pyhd8ed1ab_1.conda#59aad4fb37cabc0bacc73cf344612ddd https://conda.anaconda.org/conda-forge/noarch/sympy-1.13.3-pyh2585a3b_104.conda#68085d736d2b2f54498832b65059875d -https://conda.anaconda.org/conda-forge/linux-64/aws-sdk-cpp-1.11.449-h5558e3c_4.conda#ba7abdc93b0ade11d774b47aaab84737 +https://conda.anaconda.org/conda-forge/linux-64/aws-sdk-cpp-1.11.458-hac138a2_1.conda#bbdd9589b1a32a80b0e3f98a2a482542 https://conda.anaconda.org/conda-forge/linux-64/azure-storage-blobs-cpp-12.13.0-h3cf044e_1.conda#7eb66060455c7a47d9dcdbfa9f46579b https://conda.anaconda.org/conda-forge/linux-64/libblas-3.9.0-16_linux64_mkl.tar.bz2#85f61af03fd291dae33150ffe89dc09a https://conda.anaconda.org/conda-forge/linux-64/mkl-devel-2022.1.0-ha770c72_916.tar.bz2#69ba49e445f87aea2cba343a71a35ca2 @@ -244,26 +244,26 @@ https://conda.anaconda.org/conda-forge/linux-64/azure-storage-files-datalake-cpp https://conda.anaconda.org/conda-forge/linux-64/libcblas-3.9.0-16_linux64_mkl.tar.bz2#361bf757b95488de76c4f123805742d3 https://conda.anaconda.org/conda-forge/linux-64/liblapack-3.9.0-16_linux64_mkl.tar.bz2#a2f166748917d6d6e4707841ca1f519e https://conda.anaconda.org/conda-forge/linux-64/pyside6-6.8.0.2-py312h91f0f75_0.conda#ec3da81d5f9d3612b227e09a650f7bf2 -https://conda.anaconda.org/conda-forge/linux-64/libarrow-18.1.0-he15abb1_1_cpu.conda#bd3e35a6f3f869b4777488452f315008 +https://conda.anaconda.org/conda-forge/linux-64/libarrow-18.1.0-h3b07799_4_cpu.conda#27675c7172667268440306533e4928de https://conda.anaconda.org/conda-forge/linux-64/liblapacke-3.9.0-16_linux64_mkl.tar.bz2#44ccc4d4dca6a8d57fa17442bc64b5a1 -https://conda.anaconda.org/conda-forge/linux-64/numpy-2.1.3-py312h58c1407_0.conda#dfdbc12e6d81889ba4c494a23f23eba8 +https://conda.anaconda.org/conda-forge/linux-64/numpy-2.2.0-py312h7e784f5_0.conda#c9e9a81299192e77428f40711a4fb00d https://conda.anaconda.org/conda-forge/noarch/array-api-strict-2.2-pyhd8ed1ab_0.conda#5f8d3e0f6b42318772d0f1cdddfe3025 https://conda.anaconda.org/conda-forge/linux-64/blas-devel-3.9.0-16_linux64_mkl.tar.bz2#3f92c1c9e1c0e183462c5071aa02cae1 https://conda.anaconda.org/conda-forge/linux-64/contourpy-1.3.1-py312h68727a3_0.conda#f5fbba0394ee45e9a64a73c2a994126a https://conda.anaconda.org/conda-forge/linux-64/cupy-core-13.3.0-py312h1acd1a8_2.conda#15e9530e87664584a6b409ecdf5c9264 -https://conda.anaconda.org/conda-forge/linux-64/libarrow-acero-18.1.0-h5888daf_1_cpu.conda#6197dcb930f6254e9b2fdc416be56b71 -https://conda.anaconda.org/conda-forge/linux-64/libparquet-18.1.0-h6bd9018_1_cpu.conda#1054909202f86e38bbbb7ca1131b8471 +https://conda.anaconda.org/conda-forge/linux-64/libarrow-acero-18.1.0-h8bbc2ab_4_cpu.conda#82bcbfe424868ce66b5ab986999f534d +https://conda.anaconda.org/conda-forge/linux-64/libparquet-18.1.0-hf4f6db6_4_cpu.conda#f18b10bf19bb384183f2aa546e9f6f0a https://conda.anaconda.org/conda-forge/linux-64/pandas-2.2.3-py312hf9745cd_1.conda#8bce4f6caaf8c5448c7ac86d87e26b4b https://conda.anaconda.org/conda-forge/linux-64/polars-1.16.0-py312hfe7c9be_0.conda#d772cdf6b9b7ba0bfd73f506af0d0bd9 https://conda.anaconda.org/conda-forge/linux-64/pyarrow-core-18.1.0-py312h01725c0_0_cpu.conda#ee80934a6c280ff8635f8db5dec11e04 -https://conda.anaconda.org/conda-forge/linux-64/scipy-1.14.1-py312h62794b6_1.conda#b43233a9e2f62fb94affe5607ea79473 +https://conda.anaconda.org/conda-forge/linux-64/scipy-1.14.1-py312h62794b6_2.conda#94688dd449f6c092e5f951780235aca1 https://conda.anaconda.org/conda-forge/linux-64/blas-2.116-mkl.tar.bz2#c196a26abf6b4f132c88828ab7c2231c https://conda.anaconda.org/conda-forge/linux-64/cupy-13.3.0-py312h7d319b9_2.conda#009ef049020fef7d1541183d52fab5a9 -https://conda.anaconda.org/conda-forge/linux-64/libarrow-dataset-18.1.0-h5888daf_1_cpu.conda#77501831a2aabbaabac55e8cb3b6900a -https://conda.anaconda.org/conda-forge/linux-64/matplotlib-base-3.9.2-py312hd3ec401_2.conda#2380c9ba933ffaac9ad16d8eac8e3318 +https://conda.anaconda.org/conda-forge/linux-64/libarrow-dataset-18.1.0-h8bbc2ab_4_cpu.conda#fa31464c75b20c2f3ac8fc758e034887 +https://conda.anaconda.org/conda-forge/linux-64/matplotlib-base-3.9.3-py312hd3ec401_0.conda#b023c7b33ecc2aa6726232dc3061ac6c https://conda.anaconda.org/conda-forge/linux-64/pyamg-5.2.1-py312hc39e661_1.conda#372efc32220f0dfb603e5b31ffaefa23 -https://conda.anaconda.org/conda-forge/linux-64/libarrow-substrait-18.1.0-h5c8f2c3_1_cpu.conda#5d47bd2674afd104dbe2f2f3534594b0 -https://conda.anaconda.org/conda-forge/linux-64/matplotlib-3.9.2-py312h7900ff3_2.conda#266d9ad348e2151d07ad9e4dc716eea5 +https://conda.anaconda.org/conda-forge/linux-64/libarrow-substrait-18.1.0-had74209_4_cpu.conda#bf261e5fa25ce4acc11a80bdc73b88b2 +https://conda.anaconda.org/conda-forge/linux-64/matplotlib-3.9.3-py312h7900ff3_0.conda#4297d8db465b02727a206d6e60477246 https://conda.anaconda.org/conda-forge/linux-64/pyarrow-18.1.0-py312h7900ff3_0.conda#ac65b70df28687c6af4270923c020bdd https://conda.anaconda.org/pytorch/linux-64/pytorch-2.5.1-py3.12_cuda12.4_cudnn9.1.0_0.tar.bz2#42164c6ce8e563c20a542686a8b9b964 https://conda.anaconda.org/pytorch/linux-64/torchtriton-3.1.0-py312.tar.bz2#bb4b2d07cb6b9b476e78740c08ba69fe From 065498506c74c28b918076a66f423dbae1c6208d Mon Sep 17 00:00:00 2001 From: scikit-learn-bot Date: Mon, 9 Dec 2024 10:48:22 +0100 Subject: [PATCH 091/159] :lock: :robot: CI Update lock files for scipy-dev CI build(s) :lock: :robot: (#30436) Co-authored-by: Lock file bot --- build_tools/azure/pylatest_pip_scipy_dev_linux-64_conda.lock | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/build_tools/azure/pylatest_pip_scipy_dev_linux-64_conda.lock b/build_tools/azure/pylatest_pip_scipy_dev_linux-64_conda.lock index 523454a0be726..6df3e406f1cb9 100644 --- a/build_tools/azure/pylatest_pip_scipy_dev_linux-64_conda.lock +++ b/build_tools/azure/pylatest_pip_scipy_dev_linux-64_conda.lock @@ -32,7 +32,7 @@ https://repo.anaconda.com/pkgs/main/linux-64/pip-24.2-py313h06a4308_0.conda#59f8 # pip babel @ https://files.pythonhosted.org/packages/ed/20/bc79bc575ba2e2a7f70e8a1155618bb1301eaa5132a8271373a6903f73f8/babel-2.16.0-py3-none-any.whl#sha256=368b5b98b37c06b7daf6696391c3240c938b37767d4584413e8438c5c435fa8b # pip certifi @ https://files.pythonhosted.org/packages/12/90/3c9ff0512038035f59d279fddeb79f5f1eccd8859f06d6163c58798b9487/certifi-2024.8.30-py3-none-any.whl#sha256=922820b53db7a7257ffbda3f597266d435245903d80737e34f8a45ff3e3230d8 # pip charset-normalizer @ https://files.pythonhosted.org/packages/2b/c9/1c8fe3ce05d30c87eff498592c89015b19fade13df42850aafae09e94f35/charset_normalizer-3.4.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl#sha256=4796efc4faf6b53a18e3d46343535caed491776a22af773f366534056c4e1fbc -# pip coverage @ https://files.pythonhosted.org/packages/d4/e4/a91e9bb46809c8b63e68fc5db5c4d567d3423b6691d049a4f950e38fbe9d/coverage-7.6.8-cp313-cp313-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl#sha256=3b4b4299dd0d2c67caaaf286d58aef5e75b125b95615dda4542561a5a566a1e3 +# pip coverage @ https://files.pythonhosted.org/packages/9f/79/6c7a800913a9dd23ac8c8da133ebb556771a5a3d4df36b46767b1baffd35/coverage-7.6.9-cp313-cp313-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl#sha256=3c026eb44f744acaa2bda7493dad903aa5bf5fc4f2554293a798d5606710055d # pip docutils @ https://files.pythonhosted.org/packages/8f/d7/9322c609343d929e75e7e5e6255e614fcc67572cfd083959cdef3b7aad79/docutils-0.21.2-py3-none-any.whl#sha256=dafca5b9e384f0e419294eb4d2ff9fa826435bf15f15b7bd45723e8ad76811b2 # pip execnet @ https://files.pythonhosted.org/packages/43/09/2aea36ff60d16dd8879bdb2f5b3ee0ba8d08cbbdcdfe870e695ce3784385/execnet-2.1.1-py3-none-any.whl#sha256=26dee51f1b80cebd6d0ca8e74dd8745419761d3bef34163928cbebbdc4749fdc # pip idna @ https://files.pythonhosted.org/packages/76/c6/c88e154df9c4e1a2a66ccf0005a88dfb2650c1dffb6f5ce603dfbd452ce3/idna-3.10-py3-none-any.whl#sha256=946d195a0d259cbba61165e88e65941f16e9b36ea6ddb97f00452bae8b1287d3 @@ -45,7 +45,7 @@ https://repo.anaconda.com/pkgs/main/linux-64/pip-24.2-py313h06a4308_0.conda#59f8 # pip platformdirs @ https://files.pythonhosted.org/packages/3c/a6/bc1012356d8ece4d66dd75c4b9fc6c1f6650ddd5991e421177d9f8f671be/platformdirs-4.3.6-py3-none-any.whl#sha256=73e575e1408ab8103900836b97580d5307456908a03e92031bab39e4554cc3fb # pip pluggy @ https://files.pythonhosted.org/packages/88/5f/e351af9a41f866ac3f1fac4ca0613908d9a41741cfcf2228f4ad853b697d/pluggy-1.5.0-py3-none-any.whl#sha256=44e1ad92c8ca002de6377e165f3e0f1be63266ab4d554740532335b9d75ea669 # pip pygments @ https://files.pythonhosted.org/packages/f7/3f/01c8b82017c199075f8f788d0d906b9ffbbc5a47dc9918a945e13d5a2bda/pygments-2.18.0-py3-none-any.whl#sha256=b8e6aca0523f3ab76fee51799c488e38782ac06eafcf95e7ba832985c8e7b13a -# pip six @ https://files.pythonhosted.org/packages/d9/5a/e7c31adbe875f2abbb91bd84cf2dc52d792b5a01506781dbcf25c91daf11/six-1.16.0-py2.py3-none-any.whl#sha256=8abb2f1d86890a2dfb989f9a77cfcfd3e47c2a354b01111771326f8aa26e0254 +# pip six @ https://files.pythonhosted.org/packages/b7/ce/149a00dd41f10bc29e5921b496af8b574d8413afcd5e30dfa0ed46c2cc5e/six-1.17.0-py2.py3-none-any.whl#sha256=4721f391ed90541fddacab5acf947aa0d3dc7d27b2e1e8eda2be8970586c3274 # pip snowballstemmer @ https://files.pythonhosted.org/packages/ed/dc/c02e01294f7265e63a7315fe086dd1df7dacb9f840a804da846b96d01b96/snowballstemmer-2.2.0-py2.py3-none-any.whl#sha256=c8e1716e83cc398ae16824e5572ae04e0d9fc2c6b985fb0f900f5f0c96ecba1a # pip sphinxcontrib-applehelp @ https://files.pythonhosted.org/packages/5d/85/9ebeae2f76e9e77b952f4b274c27238156eae7979c5421fba91a28f4970d/sphinxcontrib_applehelp-2.0.0-py3-none-any.whl#sha256=4cd3f0ec4ac5dd9c17ec65e9ab272c9b867ea77425228e68ecf08d6b28ddbdb5 # pip sphinxcontrib-devhelp @ https://files.pythonhosted.org/packages/35/7a/987e583882f985fe4d7323774889ec58049171828b58c2217e7f79cdf44e/sphinxcontrib_devhelp-2.0.0-py3-none-any.whl#sha256=aefb8b83854e4b0998877524d1029fd3e6879210422ee3780459e28a1f03a8a2 From 7ef31b0ee358661fa08f59614b121749bcd7fea7 Mon Sep 17 00:00:00 2001 From: scikit-learn-bot Date: Mon, 9 Dec 2024 10:49:59 +0100 Subject: [PATCH 092/159] :lock: :robot: CI Update lock files for free-threaded CI build(s) :lock: :robot: (#30435) Co-authored-by: Lock file bot --- ...pylatest_free_threaded_linux-64_conda.lock | 34 +++++++++---------- 1 file changed, 17 insertions(+), 17 deletions(-) diff --git a/build_tools/azure/pylatest_free_threaded_linux-64_conda.lock b/build_tools/azure/pylatest_free_threaded_linux-64_conda.lock index e7206c93913c8..d932de936f2bf 100644 --- a/build_tools/azure/pylatest_free_threaded_linux-64_conda.lock +++ b/build_tools/azure/pylatest_free_threaded_linux-64_conda.lock @@ -13,6 +13,7 @@ https://conda.anaconda.org/conda-forge/linux-64/libgcc-14.2.0-h77fa898_1.conda#3 https://conda.anaconda.org/conda-forge/linux-64/libexpat-2.6.4-h5888daf_0.conda#db833e03127376d461e1e13e76f09b6c https://conda.anaconda.org/conda-forge/linux-64/libgcc-ng-14.2.0-h69a702a_1.conda#e39480b9ca41323497b05492a63bc35b https://conda.anaconda.org/conda-forge/linux-64/libgfortran5-14.2.0-hd5240d6_1.conda#9822b874ea29af082e5d36098d25427d +https://conda.anaconda.org/conda-forge/linux-64/liblzma-5.6.3-hb9d3cd8_1.conda#2ecf2f1c7e4e21fcfe6423a51a992d84 https://conda.anaconda.org/conda-forge/linux-64/libstdcxx-14.2.0-hc0a3c3a_1.conda#234a5554c53625688d51062645337328 https://conda.anaconda.org/conda-forge/linux-64/libzlib-1.3.1-hb9d3cd8_2.conda#edb0dca6bc32e4f4789199455a1dbeb8 https://conda.anaconda.org/conda-forge/linux-64/openssl-3.4.0-hb9d3cd8_0.conda#23cc74f77eb99315c0360ec3533147a9 @@ -25,7 +26,6 @@ https://conda.anaconda.org/conda-forge/linux-64/libstdcxx-ng-14.2.0-h4852527_1.c https://conda.anaconda.org/conda-forge/linux-64/libuuid-2.38.1-h0b41bf4_0.conda#40b61aab5c7ba9ff276c41cfffe6b80b https://conda.anaconda.org/conda-forge/linux-64/ncurses-6.5-he02047a_1.conda#70caf8bb6cf39a0b6b7efc885f51c0fe https://conda.anaconda.org/conda-forge/linux-64/tk-8.6.13-noxft_h4845f30_101.conda#d453b98d9c83e71da0741bb0ff4d76bc -https://conda.anaconda.org/conda-forge/linux-64/xz-5.2.6-h166bdaf_0.tar.bz2#2161070d867d1b1204ea749c8eec4ef0 https://conda.anaconda.org/conda-forge/linux-64/libgfortran-ng-14.2.0-h69a702a_1.conda#0a7f4cd238267c88e5d69f7826a407eb https://conda.anaconda.org/conda-forge/linux-64/libopenblas-0.3.28-pthreads_h94d23a6_1.conda#62857b389e42b36b686331bec0922050 https://conda.anaconda.org/conda-forge/linux-64/ninja-1.12.1-h297d8ca_0.conda#3aa1c7e292afeff25a0091ddd7c69b72 @@ -33,26 +33,26 @@ https://conda.anaconda.org/conda-forge/linux-64/readline-8.2-h8228510_1.conda#47 https://conda.anaconda.org/conda-forge/linux-64/zstd-1.5.6-ha6fb4c9_0.conda#4d056880988120e29d75bfff282e0f45 https://conda.anaconda.org/conda-forge/linux-64/libblas-3.9.0-25_linux64_openblas.conda#8ea26d42ca88ec5258802715fe1ee10b https://conda.anaconda.org/conda-forge/linux-64/libhiredis-1.0.2-h2cc385e_0.tar.bz2#b34907d3a81a3cd8095ee83d174c074a -https://conda.anaconda.org/conda-forge/linux-64/python-3.13.0-h6355ac2_1_cp313t.conda#7642e52774e72aa98c2eb1211e2978fd +https://conda.anaconda.org/conda-forge/linux-64/python-3.13.1-h9a34b6e_2_cp313t.conda#f0659443f1e7eae7f7606583fde56397 https://conda.anaconda.org/conda-forge/linux-64/ccache-4.10.1-h065aff2_0.conda#d6b48c138e0c8170a6fe9c136e063540 -https://conda.anaconda.org/conda-forge/noarch/colorama-0.4.6-pyhd8ed1ab_0.tar.bz2#3faab06a954c2a04039983f2c4a50d99 -https://conda.anaconda.org/conda-forge/noarch/cpython-3.13.0-py313hd8ed1ab_1.conda#eaacf5e3c829acb1430c524f473a97ec -https://conda.anaconda.org/conda-forge/noarch/exceptiongroup-1.2.2-pyhd8ed1ab_0.conda#d02ae936e42063ca46af6cdad2dbd1e0 -https://conda.anaconda.org/conda-forge/noarch/execnet-2.1.1-pyhd8ed1ab_0.conda#15dda3cdbf330abfe9f555d22f66db46 -https://conda.anaconda.org/conda-forge/noarch/iniconfig-2.0.0-pyhd8ed1ab_0.conda#f800d2da156d08e289b14e87e43c1ae5 +https://conda.anaconda.org/conda-forge/noarch/colorama-0.4.6-pyhd8ed1ab_1.conda#962b9857ee8e7018c22f2776ffa0b2d7 +https://conda.anaconda.org/conda-forge/noarch/cpython-3.13.1-py313hd8ed1ab_2.conda#0808acf1f700deba701a0e86833a5f4d +https://conda.anaconda.org/conda-forge/noarch/exceptiongroup-1.2.2-pyhd8ed1ab_1.conda#a16662747cdeb9abbac74d0057cc976e +https://conda.anaconda.org/conda-forge/noarch/execnet-2.1.1-pyhd8ed1ab_1.conda#a71efeae2c160f6789900ba2631a2c90 +https://conda.anaconda.org/conda-forge/noarch/iniconfig-2.0.0-pyhd8ed1ab_1.conda#6837f3eff7dcea42ecd714ce1ac2b108 https://conda.anaconda.org/conda-forge/linux-64/libcblas-3.9.0-25_linux64_openblas.conda#5dbd1b0fc0d01ec5e0e1fbe667281a11 https://conda.anaconda.org/conda-forge/linux-64/liblapack-3.9.0-25_linux64_openblas.conda#4dc03a53fc69371a6158d0ed37214cd3 -https://conda.anaconda.org/conda-forge/noarch/packaging-24.2-pyhff2d567_1.conda#8508b703977f4c4ada34d657d051972c +https://conda.anaconda.org/conda-forge/noarch/packaging-24.2-pyhd8ed1ab_2.conda#3bfed7e6228ebf2f7b9eaa47f1b4e2aa https://conda.anaconda.org/conda-forge/noarch/pip-24.3.1-pyh145f28c_0.conda#ca3afe2d7b893a8c8cdf489d30a2b1a3 -https://conda.anaconda.org/conda-forge/noarch/pluggy-1.5.0-pyhd8ed1ab_0.conda#d3483c8fc2dc2cc3f5cf43e26d60cabf +https://conda.anaconda.org/conda-forge/noarch/pluggy-1.5.0-pyhd8ed1ab_1.conda#e9dcbce5f45f9ee500e728ae58b605b6 https://conda.anaconda.org/conda-forge/noarch/setuptools-75.6.0-pyhff2d567_1.conda#fc80f7995e396cbaeabd23cf46c413dc https://conda.anaconda.org/conda-forge/noarch/threadpoolctl-3.5.0-pyhc1e730c_0.conda#df68d78237980a159bd7149f33c0e8fd -https://conda.anaconda.org/conda-forge/noarch/tomli-2.2.1-pyhd8ed1ab_0.conda#ee8ab0fe4c8dfc5a6319f7f8246022fc +https://conda.anaconda.org/conda-forge/noarch/tomli-2.2.1-pyhd8ed1ab_1.conda#ac944244f1fed2eb49bae07193ae8215 https://conda.anaconda.org/conda-forge/noarch/joblib-1.4.2-pyhd8ed1ab_0.conda#25df261d4523d9f9783bcdb7208d872f -https://conda.anaconda.org/conda-forge/noarch/meson-1.6.0-pyhd8ed1ab_0.conda#380ba6a3eddd8e7649bfe8e6812611aa -https://conda.anaconda.org/conda-forge/linux-64/numpy-2.1.3-py313hb01392b_0.conda#edd0335b8d3c81f0a91aa68cb8749929 -https://conda.anaconda.org/conda-forge/noarch/pyproject-metadata-0.9.0-pyh2cfa8aa_0.conda#10906a130eeb4a68645bf97c28333141 -https://conda.anaconda.org/conda-forge/noarch/pytest-8.3.4-pyhd8ed1ab_0.conda#ff8f2ef7f2636906b3781d0cf92388d0 -https://conda.anaconda.org/conda-forge/noarch/python-freethreading-3.13.0-h92d6c8b_1.conda#19807e8cf2ac52aa2fa1984e76f42989 -https://conda.anaconda.org/conda-forge/noarch/meson-python-0.17.1-pyh70fd9c4_0.conda#722b649da38842068d83b6e6770f11a1 -https://conda.anaconda.org/conda-forge/noarch/pytest-xdist-3.6.1-pyhd8ed1ab_0.conda#b39568655c127a9c4a44d178ac99b6d0 +https://conda.anaconda.org/conda-forge/noarch/meson-1.6.0-pyhd8ed1ab_1.conda#59d45dbe1b0a123966266340b579d366 +https://conda.anaconda.org/conda-forge/linux-64/numpy-2.2.0-py313h151ba9f_0.conda#d9fc5df93c4e7eee55012d5e0e7a7803 +https://conda.anaconda.org/conda-forge/noarch/pyproject-metadata-0.9.0-pyhd8ed1ab_1.conda#1239146a53a383a84633800294120f17 +https://conda.anaconda.org/conda-forge/noarch/pytest-8.3.4-pyhd8ed1ab_1.conda#799ed216dc6af62520f32aa39bc1c2bb +https://conda.anaconda.org/conda-forge/noarch/python-freethreading-3.13.1-h92d6c8b_2.conda#8618c8e664359e801165606d1c5cf10e +https://conda.anaconda.org/conda-forge/noarch/meson-python-0.17.1-pyh70fd9c4_1.conda#7a02679229c6c2092571b4c025055440 +https://conda.anaconda.org/conda-forge/noarch/pytest-xdist-3.6.1-pyhd8ed1ab_1.conda#59aad4fb37cabc0bacc73cf344612ddd From 187665f4f6d62edbd7a7958f0bbb0a1a2c0f5543 Mon Sep 17 00:00:00 2001 From: scikit-learn-bot Date: Mon, 9 Dec 2024 10:51:25 +0100 Subject: [PATCH 093/159] :lock: :robot: CI Update lock files for cirrus-arm CI build(s) :lock: :robot: (#30434) Co-authored-by: Lock file bot --- ...pymin_conda_forge_linux-aarch64_conda.lock | 72 +++++++++---------- 1 file changed, 36 insertions(+), 36 deletions(-) diff --git a/build_tools/cirrus/pymin_conda_forge_linux-aarch64_conda.lock b/build_tools/cirrus/pymin_conda_forge_linux-aarch64_conda.lock index 25cbd36592de2..e627bfbbeb7ae 100644 --- a/build_tools/cirrus/pymin_conda_forge_linux-aarch64_conda.lock +++ b/build_tools/cirrus/pymin_conda_forge_linux-aarch64_conda.lock @@ -9,7 +9,7 @@ https://conda.anaconda.org/conda-forge/noarch/font-ttf-source-code-pro-2.038-h77 https://conda.anaconda.org/conda-forge/noarch/font-ttf-ubuntu-0.83-h77eed37_3.conda#49023d73832ef61042f6a237cb2687e7 https://conda.anaconda.org/conda-forge/linux-aarch64/ld_impl_linux-aarch64-2.43-h80caac9_2.conda#fcbde5ea19d55468953bf588770c0501 https://conda.anaconda.org/conda-forge/linux-aarch64/libglvnd-1.7.0-hd24410f_2.conda#9e115653741810778c9a915a2f8439e7 -https://conda.anaconda.org/conda-forge/linux-aarch64/llvm-openmp-19.1.4-h013ceaa_0.conda#2c5b3f823c988b7e5ce11b16c183f334 +https://conda.anaconda.org/conda-forge/linux-aarch64/llvm-openmp-19.1.5-h013ceaa_0.conda#261f657fa0930dd263ef4da9c6a77af5 https://conda.anaconda.org/conda-forge/linux-aarch64/python_abi-3.9-5_cp39.conda#2d2843f11ec622f556137d72d9c72d89 https://conda.anaconda.org/conda-forge/noarch/tzdata-2024b-hc8b5060_0.conda#8ac3367aafb1cc0a068483c580af8015 https://conda.anaconda.org/conda-forge/linux-aarch64/_openmp_mutex-4.5-2_kmp_llvm.tar.bz2#98a1185182fec3c434069fa74e6473d6 @@ -24,6 +24,7 @@ https://conda.anaconda.org/conda-forge/linux-aarch64/libdeflate-1.22-h86ecc28_0. https://conda.anaconda.org/conda-forge/linux-aarch64/libexpat-2.6.4-h5ad3122_0.conda#f1b3fab36861b3ce945a13f0dfdfc688 https://conda.anaconda.org/conda-forge/linux-aarch64/libgcc-ng-14.2.0-he9431aa_1.conda#0694c249c61469f2c0f7e2990782af21 https://conda.anaconda.org/conda-forge/linux-aarch64/libgfortran5-14.2.0-hb6113d0_1.conda#fc068e11b10e18f184e027782baa12b6 +https://conda.anaconda.org/conda-forge/linux-aarch64/liblzma-5.6.3-h86ecc28_1.conda#eb08b903681f9f2432c320e8ed626723 https://conda.anaconda.org/conda-forge/linux-aarch64/libstdcxx-14.2.0-h3f4de04_1.conda#37f489acd39e22b623d2d1e5ac6d195c https://conda.anaconda.org/conda-forge/linux-aarch64/libzlib-1.3.1-h86ecc28_2.conda#08aad7cbe9f5a6b460d0976076b6ae64 https://conda.anaconda.org/conda-forge/linux-aarch64/openssl-3.4.0-h86ecc28_0.conda#b2f202b5bddafac824eb610b65dde98f @@ -51,10 +52,10 @@ https://conda.anaconda.org/conda-forge/linux-aarch64/libuuid-2.38.1-hb4cce97_0.c https://conda.anaconda.org/conda-forge/linux-aarch64/libwebp-base-1.4.0-h31becfc_0.conda#5fd7ab3e5f382c70607fbac6335e6e19 https://conda.anaconda.org/conda-forge/linux-aarch64/libxcb-1.17.0-h262b8f6_0.conda#cd14ee5cca2464a425b1dbfc24d90db2 https://conda.anaconda.org/conda-forge/linux-aarch64/libxcrypt-4.4.36-h31becfc_1.conda#b4df5d7d4b63579d081fd3a4cf99740e -https://conda.anaconda.org/conda-forge/linux-aarch64/mysql-common-9.0.1-h3f5c77f_2.conda#cc7bc11893dd1aee492dae85f317769e +https://conda.anaconda.org/conda-forge/linux-aarch64/mysql-common-9.0.1-h3f5c77f_3.conda#38eee60dc5b5bec65da4ed0ca9841f30 https://conda.anaconda.org/conda-forge/linux-aarch64/ncurses-6.5-hcccb83c_1.conda#91d49c85cacd92caa40cf375ef72a25d +https://conda.anaconda.org/conda-forge/linux-aarch64/pixman-0.44.2-h86a87f0_0.conda#95689fc369832398e82d17c56ff5df8a https://conda.anaconda.org/conda-forge/linux-aarch64/tk-8.6.13-h194ca79_0.conda#f75105e0585851f818e0009dd1dde4dc -https://conda.anaconda.org/conda-forge/linux-aarch64/xz-5.2.6-h9cdd2b7_0.tar.bz2#83baad393a31d59c20b63ba4da6592df https://conda.anaconda.org/conda-forge/linux-aarch64/zlib-1.3.1-h86ecc28_2.conda#bc230abb5d21b63ff4799b0e75204783 https://conda.anaconda.org/conda-forge/linux-aarch64/brotli-bin-1.1.0-h86ecc28_2.conda#7d48b185fe1f722f8cda4539bb931f85 https://conda.anaconda.org/conda-forge/linux-aarch64/double-conversion-3.3.0-h2f0025b_0.conda#3b34b29f68d60abc1ce132b87f5a213c @@ -62,13 +63,12 @@ https://conda.anaconda.org/conda-forge/linux-aarch64/freetype-2.12.1-hf0a5ef3_2. https://conda.anaconda.org/conda-forge/linux-aarch64/graphite2-1.3.13-h2f0025b_1003.conda#f33009add6a08358bc12d114ceec1304 https://conda.anaconda.org/conda-forge/linux-aarch64/icu-75.1-hf9b3779_0.conda#268203e8b983fddb6412b36f2024e75c https://conda.anaconda.org/conda-forge/linux-aarch64/lerc-4.0.0-h4de3ea5_0.tar.bz2#1a0ffc65e03ce81559dbcb0695ad1476 -https://conda.anaconda.org/conda-forge/linux-aarch64/libdrm-2.4.123-h86ecc28_0.conda#4e3c67f6999ea7ccac41611f930d19d4 +https://conda.anaconda.org/conda-forge/linux-aarch64/libdrm-2.4.124-h86ecc28_0.conda#a8058bcb6b4fa195aaa20452437c7727 https://conda.anaconda.org/conda-forge/linux-aarch64/libedit-3.1.20191231-he28a2e2_2.tar.bz2#29371161d77933a54fccf1bb66b96529 https://conda.anaconda.org/conda-forge/linux-aarch64/libgfortran-ng-14.2.0-he9431aa_1.conda#5e90005d310d69708ba0aa7f4fed1de6 https://conda.anaconda.org/conda-forge/linux-aarch64/libopenblas-0.3.28-pthreads_h9d3fd7e_1.conda#e8dde93dd199da3c1f2c1fcfd0042cd4 https://conda.anaconda.org/conda-forge/linux-aarch64/ninja-1.12.1-h70be974_0.conda#216635cea46498d8045c7cf0f03eaf72 https://conda.anaconda.org/conda-forge/linux-aarch64/pcre2-10.44-h070dd5b_2.conda#94022de9682cb1a0bb18a99cbc3541b3 -https://conda.anaconda.org/conda-forge/linux-aarch64/pixman-0.43.4-h2f0025b_0.conda#81b2ddea4b0eca188da9c5a7aa4b0cff https://conda.anaconda.org/conda-forge/linux-aarch64/qhull-2020.2-h70be974_5.conda#bb138086d938e2b64f5f364945793ebf https://conda.anaconda.org/conda-forge/linux-aarch64/readline-8.2-h8fc344f_1.conda#105eb1e16bf83bfb2eb380a48032b655 https://conda.anaconda.org/conda-forge/linux-aarch64/wayland-1.23.1-h698ed42_0.conda#2661f9252065051914f1cdf5835e7430 @@ -77,7 +77,7 @@ https://conda.anaconda.org/conda-forge/linux-aarch64/xcb-util-keysyms-0.4.1-h5c7 https://conda.anaconda.org/conda-forge/linux-aarch64/xcb-util-renderutil-0.3.10-h5c728e9_0.conda#7beeda4223c5484ef72d89fb66b7e8c1 https://conda.anaconda.org/conda-forge/linux-aarch64/xcb-util-wm-0.4.2-h5c728e9_0.conda#f14dcda6894722e421da2b7dcffb0b78 https://conda.anaconda.org/conda-forge/linux-aarch64/xorg-libsm-1.2.4-hbac51e1_1.conda#18655ac9fc6624db89b33a89fed51c5f -https://conda.anaconda.org/conda-forge/linux-aarch64/xorg-libx11-1.8.9-he755bbd_2.conda#7acc45f80415e6ec352b729105dc0375 +https://conda.anaconda.org/conda-forge/linux-aarch64/xorg-libx11-1.8.10-hca56bd8_1.conda#6e3e980940b26a060e553266ae0181a9 https://conda.anaconda.org/conda-forge/linux-aarch64/zstd-1.5.6-h02f22dd_0.conda#be8d5f8cf21aed237b8b182ea86b3dd6 https://conda.anaconda.org/conda-forge/linux-aarch64/brotli-1.1.0-h86ecc28_2.conda#5094acc34eb173f74205c0b55f0dd4a4 https://conda.anaconda.org/conda-forge/linux-aarch64/fontconfig-2.15.0-h8dda3cd_1.conda#112b71b6af28b47c624bcbeefeea685b @@ -86,11 +86,11 @@ https://conda.anaconda.org/conda-forge/linux-aarch64/libblas-3.9.0-25_linuxaarch https://conda.anaconda.org/conda-forge/linux-aarch64/libglib-2.82.2-hc486b8e_0.conda#47f6d85fe47b865e56c539f2ba5f4dad https://conda.anaconda.org/conda-forge/linux-aarch64/libglx-1.7.0-hd24410f_2.conda#1d4269e233636148696a67e2d30dad2a https://conda.anaconda.org/conda-forge/linux-aarch64/libhiredis-1.0.2-h05efe27_0.tar.bz2#a87f068744fd20334cd41489eb163bee -https://conda.anaconda.org/conda-forge/linux-aarch64/libtiff-4.7.0-hec21d91_1.conda#1f80061f5ba6956fcdc381f34618cd8d -https://conda.anaconda.org/conda-forge/linux-aarch64/libxml2-2.13.5-hf4efe5d_0.conda#5650ac8a6ed680c032bdabe40ad19ee0 -https://conda.anaconda.org/conda-forge/linux-aarch64/mysql-libs-9.0.1-h11569fd_2.conda#94c70f21e0a1f8558941d901027215a4 +https://conda.anaconda.org/conda-forge/linux-aarch64/libtiff-4.7.0-hca96517_2.conda#278dcef6d1ea28c04109c3f5dea126cb +https://conda.anaconda.org/conda-forge/linux-aarch64/libxml2-2.13.5-h2e0c361_1.conda#63410f85031930cde371dfe0ee89109a +https://conda.anaconda.org/conda-forge/linux-aarch64/mysql-libs-9.0.1-h11569fd_3.conda#0b70a85c661a9891f39d8e9aab98b118 https://conda.anaconda.org/conda-forge/linux-aarch64/openblas-0.3.28-pthreads_h3a8cbd8_1.conda#d36b4f01d28df4f90c7e37adb8e9adb5 -https://conda.anaconda.org/conda-forge/linux-aarch64/python-3.9.20-h4a649e4_1_cpython.conda#c2833e3d5a6d210ffb433cbd4a1cf174 +https://conda.anaconda.org/conda-forge/linux-aarch64/python-3.9.21-hb97c71e_1_cpython.conda#49094665d26eac2d8a199169cf0989db https://conda.anaconda.org/conda-forge/linux-aarch64/xcb-util-image-0.4.0-h5c728e9_2.conda#b82e5c78dbbfa931980e8bfe83bce913 https://conda.anaconda.org/conda-forge/linux-aarch64/xkeyboard-config-2.43-h86ecc28_0.conda#a809b8e3776fbc05696c82f8cf6f5a92 https://conda.anaconda.org/conda-forge/linux-aarch64/xorg-libxext-1.3.6-h57736b2_0.conda#bd1e86dd8aa3afd78a4bfdb4ef918165 @@ -99,35 +99,35 @@ https://conda.anaconda.org/conda-forge/linux-aarch64/xorg-libxrender-0.9.11-h577 https://conda.anaconda.org/conda-forge/linux-aarch64/cairo-1.18.0-hdb1a16f_3.conda#080659f02bf2202c57f1cda4f9e51f21 https://conda.anaconda.org/conda-forge/linux-aarch64/ccache-4.10.1-ha3bccff_0.conda#7cd24a038d2727b5e6377975237a6cfa https://conda.anaconda.org/conda-forge/noarch/certifi-2024.8.30-pyhd8ed1ab_0.conda#12f7d00853807b0531775e9be891cb11 -https://conda.anaconda.org/conda-forge/noarch/colorama-0.4.6-pyhd8ed1ab_0.tar.bz2#3faab06a954c2a04039983f2c4a50d99 -https://conda.anaconda.org/conda-forge/noarch/cycler-0.12.1-pyhd8ed1ab_0.conda#5cd86562580f274031ede6aa6aa24441 +https://conda.anaconda.org/conda-forge/noarch/colorama-0.4.6-pyhd8ed1ab_1.conda#962b9857ee8e7018c22f2776ffa0b2d7 +https://conda.anaconda.org/conda-forge/noarch/cycler-0.12.1-pyhd8ed1ab_1.conda#44600c4667a319d67dbe0681fc0bc833 https://conda.anaconda.org/conda-forge/linux-aarch64/cyrus-sasl-2.1.27-hf6b2984_7.conda#7a85d417c8acd7a5215c082c5b9219e5 https://conda.anaconda.org/conda-forge/linux-aarch64/cython-3.0.11-py39h3e5e1bb_3.conda#9cbb30d5775193a8766a276d8fb52bc7 https://conda.anaconda.org/conda-forge/linux-aarch64/dbus-1.13.6-h12b9eeb_3.tar.bz2#f3d63805602166bac09386741e00935e -https://conda.anaconda.org/conda-forge/noarch/exceptiongroup-1.2.2-pyhd8ed1ab_0.conda#d02ae936e42063ca46af6cdad2dbd1e0 -https://conda.anaconda.org/conda-forge/noarch/execnet-2.1.1-pyhd8ed1ab_0.conda#15dda3cdbf330abfe9f555d22f66db46 -https://conda.anaconda.org/conda-forge/noarch/iniconfig-2.0.0-pyhd8ed1ab_0.conda#f800d2da156d08e289b14e87e43c1ae5 +https://conda.anaconda.org/conda-forge/noarch/exceptiongroup-1.2.2-pyhd8ed1ab_1.conda#a16662747cdeb9abbac74d0057cc976e +https://conda.anaconda.org/conda-forge/noarch/execnet-2.1.1-pyhd8ed1ab_1.conda#a71efeae2c160f6789900ba2631a2c90 +https://conda.anaconda.org/conda-forge/noarch/iniconfig-2.0.0-pyhd8ed1ab_1.conda#6837f3eff7dcea42ecd714ce1ac2b108 https://conda.anaconda.org/conda-forge/linux-aarch64/kiwisolver-1.4.7-py39h78c8b8d_0.conda#8dc5516dd121089f14c1a557ecec3224 https://conda.anaconda.org/conda-forge/linux-aarch64/lcms2-2.16-h922389a_0.conda#ffdd8267a04c515e7ce69c727b051414 https://conda.anaconda.org/conda-forge/linux-aarch64/libcblas-3.9.0-25_linuxaarch64_openblas.conda#db6af51123c67814572a8c25542cb368 https://conda.anaconda.org/conda-forge/linux-aarch64/libcups-2.3.3-h405e4a8_4.conda#d42c670b0c96c1795fd859d5e0275a55 https://conda.anaconda.org/conda-forge/linux-aarch64/libgl-1.7.0-hd24410f_2.conda#0d00176464ebb25af83d40736a2cd3bb https://conda.anaconda.org/conda-forge/linux-aarch64/liblapack-3.9.0-25_linuxaarch64_openblas.conda#0eb74e81de46454960bde9e44e7ee378 -https://conda.anaconda.org/conda-forge/linux-aarch64/libllvm19-19.1.4-h2edbd07_1.conda#9d2f8214e95ad15bd0da345a65c5f67f +https://conda.anaconda.org/conda-forge/linux-aarch64/libllvm19-19.1.5-h2edbd07_0.conda#9d5a091ca50b24c40c429f2dfe9a1bf9 https://conda.anaconda.org/conda-forge/linux-aarch64/libxkbcommon-1.7.0-h46f2afe_1.conda#78a24e611ab9c09c518f519be49c2e46 https://conda.anaconda.org/conda-forge/linux-aarch64/libxslt-1.1.39-h1cc9640_0.conda#13e1d3f9188e85c6d59a98651aced002 https://conda.anaconda.org/conda-forge/noarch/munkres-1.1.4-pyh9f0ad1d_0.tar.bz2#2ba8498c1018c1e9c61eb99b973dfe19 https://conda.anaconda.org/conda-forge/linux-aarch64/openjpeg-2.5.2-h0d9d63b_0.conda#fd2898519e839d5ceb778343f39a3176 -https://conda.anaconda.org/conda-forge/noarch/packaging-24.2-pyhff2d567_1.conda#8508b703977f4c4ada34d657d051972c -https://conda.anaconda.org/conda-forge/noarch/pluggy-1.5.0-pyhd8ed1ab_0.conda#d3483c8fc2dc2cc3f5cf43e26d60cabf -https://conda.anaconda.org/conda-forge/noarch/pyparsing-3.2.0-pyhd8ed1ab_1.conda#035c17fbf099f50ff60bf2eb303b0a83 +https://conda.anaconda.org/conda-forge/noarch/packaging-24.2-pyhd8ed1ab_2.conda#3bfed7e6228ebf2f7b9eaa47f1b4e2aa +https://conda.anaconda.org/conda-forge/noarch/pluggy-1.5.0-pyhd8ed1ab_1.conda#e9dcbce5f45f9ee500e728ae58b605b6 +https://conda.anaconda.org/conda-forge/noarch/pyparsing-3.2.0-pyhd8ed1ab_2.conda#4c05a2bcf87bb495512374143b57cf28 https://conda.anaconda.org/conda-forge/noarch/setuptools-75.6.0-pyhff2d567_1.conda#fc80f7995e396cbaeabd23cf46c413dc -https://conda.anaconda.org/conda-forge/noarch/six-1.16.0-pyh6c4a22f_0.tar.bz2#e5f25f8dbc060e9a8d912e432202afc2 +https://conda.anaconda.org/conda-forge/noarch/six-1.17.0-pyhd8ed1ab_0.conda#a451d576819089b0d672f18768be0f65 https://conda.anaconda.org/conda-forge/noarch/threadpoolctl-3.5.0-pyhc1e730c_0.conda#df68d78237980a159bd7149f33c0e8fd -https://conda.anaconda.org/conda-forge/noarch/tomli-2.2.1-pyhd8ed1ab_0.conda#ee8ab0fe4c8dfc5a6319f7f8246022fc +https://conda.anaconda.org/conda-forge/noarch/tomli-2.2.1-pyhd8ed1ab_1.conda#ac944244f1fed2eb49bae07193ae8215 https://conda.anaconda.org/conda-forge/linux-aarch64/tornado-6.4.2-py39h3e3acee_0.conda#fdf7a3dc0d7e6ca4cc792f1731d282c4 https://conda.anaconda.org/conda-forge/linux-aarch64/unicodedata2-15.1.0-py39h060674a_1.conda#22a119d3f80e6d91b28fbc49a3cc08b2 -https://conda.anaconda.org/conda-forge/noarch/wheel-0.45.1-pyhd8ed1ab_0.conda#bdb2f437ce62fd2f1fef9119a37a12d9 +https://conda.anaconda.org/conda-forge/noarch/wheel-0.45.1-pyhd8ed1ab_1.conda#75cb7132eb58d97896e173ef12ac9986 https://conda.anaconda.org/conda-forge/linux-aarch64/xcb-util-cursor-0.1.5-h86ecc28_0.conda#d6bb2038d26fa118d5cbc2761116f3e5 https://conda.anaconda.org/conda-forge/linux-aarch64/xorg-libxcomposite-0.4.6-h86ecc28_2.conda#86051eee0766c3542be24844a9c3cf36 https://conda.anaconda.org/conda-forge/linux-aarch64/xorg-libxcursor-1.2.3-h86ecc28_0.conda#f2054759c2203d12d0007005e1f1296d @@ -136,31 +136,31 @@ https://conda.anaconda.org/conda-forge/linux-aarch64/xorg-libxi-1.8.2-h57736b2_0 https://conda.anaconda.org/conda-forge/linux-aarch64/xorg-libxrandr-1.5.4-h86ecc28_0.conda#dd3e74283a082381aa3860312e3c721e https://conda.anaconda.org/conda-forge/linux-aarch64/xorg-libxxf86vm-1.1.5-h57736b2_4.conda#82fa1f5642ef7ac7172e295327ce20e2 https://conda.anaconda.org/conda-forge/noarch/zipp-3.21.0-pyhd8ed1ab_1.conda#0c3cc595284c5e8f0f9900a9b228a332 -https://conda.anaconda.org/conda-forge/linux-aarch64/fonttools-4.55.0-py39hbebea31_0.conda#bc7a7c58b3502d757efcc276e3ba7f0b +https://conda.anaconda.org/conda-forge/linux-aarch64/fonttools-4.55.2-py39hbebea31_0.conda#1476a4666ad3f055af36ae3003eb4873 https://conda.anaconda.org/conda-forge/linux-aarch64/harfbuzz-9.0.0-hbf49d6b_1.conda#ceb458f664cab8550fcd74fff26451db -https://conda.anaconda.org/conda-forge/noarch/importlib_resources-6.4.5-pyhd8ed1ab_0.conda#c808991d29b9838fb4d96ce8267ec9ec +https://conda.anaconda.org/conda-forge/noarch/importlib_resources-6.4.5-pyhd8ed1ab_1.conda#15798fa69312d433af690c8c42b3fb36 https://conda.anaconda.org/conda-forge/noarch/joblib-1.4.2-pyhd8ed1ab_0.conda#25df261d4523d9f9783bcdb7208d872f -https://conda.anaconda.org/conda-forge/linux-aarch64/libclang-cpp19.1-19.1.4-default_he324ac1_0.conda#d27a942c1106233db06764714df8dea6 -https://conda.anaconda.org/conda-forge/linux-aarch64/libclang13-19.1.4-default_h4390ef5_0.conda#d3855a39eb67f4758cfb3b66728f7007 +https://conda.anaconda.org/conda-forge/linux-aarch64/libclang-cpp19.1-19.1.5-default_he324ac1_0.conda#4dc511a04b2c13ccc5273038c18f1fa0 +https://conda.anaconda.org/conda-forge/linux-aarch64/libclang13-19.1.5-default_h4390ef5_0.conda#616a4e906ea6196eae03f2ced5adea63 https://conda.anaconda.org/conda-forge/linux-aarch64/liblapacke-3.9.0-25_linuxaarch64_openblas.conda#1e68063075954830f707b41dab6c7fd8 -https://conda.anaconda.org/conda-forge/noarch/meson-1.6.0-pyhd8ed1ab_0.conda#380ba6a3eddd8e7649bfe8e6812611aa +https://conda.anaconda.org/conda-forge/noarch/meson-1.6.0-pyhd8ed1ab_1.conda#59d45dbe1b0a123966266340b579d366 https://conda.anaconda.org/conda-forge/linux-aarch64/numpy-2.0.2-py39h4a34e27_1.conda#fe586ddf9512644add97b0526129ed95 https://conda.anaconda.org/conda-forge/linux-aarch64/openldap-2.6.9-h30c48ee_0.conda#c07822a5de65ce9797b9afa257faa917 https://conda.anaconda.org/conda-forge/linux-aarch64/pillow-11.0.0-py39hb20fde8_0.conda#78cdfe29a452feee8c5bd689c2c871bd https://conda.anaconda.org/conda-forge/noarch/pip-24.3.1-pyh8b19718_0.conda#5dd546fe99b44fda83963d15f84263b7 -https://conda.anaconda.org/conda-forge/noarch/pyproject-metadata-0.9.0-pyh2cfa8aa_0.conda#10906a130eeb4a68645bf97c28333141 -https://conda.anaconda.org/conda-forge/noarch/pytest-8.3.4-pyhd8ed1ab_0.conda#ff8f2ef7f2636906b3781d0cf92388d0 -https://conda.anaconda.org/conda-forge/noarch/python-dateutil-2.9.0.post0-pyhff2d567_0.conda#b6dfd90a2141e573e4b6a81630b56df5 +https://conda.anaconda.org/conda-forge/noarch/pyproject-metadata-0.9.0-pyhd8ed1ab_1.conda#1239146a53a383a84633800294120f17 +https://conda.anaconda.org/conda-forge/noarch/pytest-8.3.4-pyhd8ed1ab_1.conda#799ed216dc6af62520f32aa39bc1c2bb +https://conda.anaconda.org/conda-forge/noarch/python-dateutil-2.9.0.post0-pyhff2d567_1.conda#5ba79d7c71f03c678c8ead841f347d6e https://conda.anaconda.org/conda-forge/linux-aarch64/xorg-libxtst-1.2.5-h57736b2_3.conda#c05698071b5c8e0da82a282085845860 https://conda.anaconda.org/conda-forge/linux-aarch64/blas-devel-3.9.0-25_linuxaarch64_openblas.conda#32539a9b9e09140a83e987edf3c09926 https://conda.anaconda.org/conda-forge/linux-aarch64/contourpy-1.3.0-py39hbd2ca3f_2.conda#57fa6811a7a80c5641e373408389bc5a -https://conda.anaconda.org/conda-forge/noarch/importlib-resources-6.4.5-pyhd8ed1ab_0.conda#67f4772681cf86652f3e2261794cf045 -https://conda.anaconda.org/conda-forge/linux-aarch64/libpq-17.2-h081282e_0.conda#cfef255cbd6e1c9d5b15fad06667aa02 -https://conda.anaconda.org/conda-forge/noarch/meson-python-0.17.1-pyh70fd9c4_0.conda#722b649da38842068d83b6e6770f11a1 -https://conda.anaconda.org/conda-forge/noarch/pytest-xdist-3.6.1-pyhd8ed1ab_0.conda#b39568655c127a9c4a44d178ac99b6d0 +https://conda.anaconda.org/conda-forge/noarch/importlib-resources-6.4.5-pyhd8ed1ab_1.conda#59561d9b70f9df3b884c29910eba6593 +https://conda.anaconda.org/conda-forge/linux-aarch64/libpq-17.2-hd56632b_1.conda#2113425a121b0aa65dc87728ed5601ac +https://conda.anaconda.org/conda-forge/noarch/meson-python-0.17.1-pyh70fd9c4_1.conda#7a02679229c6c2092571b4c025055440 +https://conda.anaconda.org/conda-forge/noarch/pytest-xdist-3.6.1-pyhd8ed1ab_1.conda#59aad4fb37cabc0bacc73cf344612ddd https://conda.anaconda.org/conda-forge/linux-aarch64/scipy-1.13.1-py39hb921187_0.conda#1aac9080de661e03d286f18fb71e5240 https://conda.anaconda.org/conda-forge/linux-aarch64/blas-2.125-openblas.conda#dfbaf914827bc38dda840c90231c91df -https://conda.anaconda.org/conda-forge/linux-aarch64/matplotlib-base-3.9.2-py39hd333c8e_2.conda#c63ed45703d387b32cc53d504970dd5a +https://conda.anaconda.org/conda-forge/linux-aarch64/matplotlib-base-3.9.3-py39hd333c8e_0.conda#c1129c276d7ed9c1191406a55d289d56 https://conda.anaconda.org/conda-forge/linux-aarch64/qt6-main-6.8.0-h666f7c6_0.conda#1c50a44d681075eff85d0332624c927e https://conda.anaconda.org/conda-forge/linux-aarch64/pyside6-6.8.0.2-py39h51c6ee1_0.conda#c130c84c26696485a720d85bd530e992 -https://conda.anaconda.org/conda-forge/linux-aarch64/matplotlib-3.9.2-py39ha65689a_2.conda#8f4bc118a4497ed97ccbb9547b223233 +https://conda.anaconda.org/conda-forge/linux-aarch64/matplotlib-3.9.3-py39ha65689a_0.conda#c991e8a7690e2f39a54b250cf751511b From ac808ee96bc0a02daebef06227712cb6dab9756a Mon Sep 17 00:00:00 2001 From: Velislav Babatchev <47583134+vbabatchev@users.noreply.github.com> Date: Mon, 9 Dec 2024 06:51:00 -0600 Subject: [PATCH 094/159] DOC add caching example link to Pipeline class (#30421) --- sklearn/pipeline.py | 4 +++- 1 file changed, 3 insertions(+), 1 deletion(-) diff --git a/sklearn/pipeline.py b/sklearn/pipeline.py index 9ff8a3549ef28..d525051a403ef 100644 --- a/sklearn/pipeline.py +++ b/sklearn/pipeline.py @@ -182,7 +182,9 @@ class Pipeline(_BaseComposition): before fitting. Therefore, the transformer instance given to the pipeline cannot be inspected directly. Use the attribute ``named_steps`` or ``steps`` to inspect estimators within the pipeline. Caching the - transformers is advantageous when fitting is time consuming. + transformers is advantageous when fitting is time consuming. See + :ref:`sphx_glr_auto_examples_neighbors_plot_caching_nearest_neighbors.py` + for an example on how to enable caching. verbose : bool, default=False If True, the time elapsed while fitting each step will be printed as it From ff7a051033166bd4c73467a55b21b2b1df96af5c Mon Sep 17 00:00:00 2001 From: Xiao Yuan Date: Mon, 9 Dec 2024 21:06:33 +0800 Subject: [PATCH 095/159] DOC Add links to example `plot_kmeans_stability_low_dim_dense.py` (#30349) Co-authored-by: Stefanie Senger <91849487+StefanieSenger@users.noreply.github.com> --- doc/modules/clustering.rst | 7 ++++--- sklearn/cluster/_kmeans.py | 10 ++++++++-- 2 files changed, 12 insertions(+), 5 deletions(-) diff --git a/doc/modules/clustering.rst b/doc/modules/clustering.rst index 7cf593baf20d1..53e09829c1d41 100644 --- a/doc/modules/clustering.rst +++ b/doc/modules/clustering.rst @@ -222,9 +222,10 @@ initializations of the centroids. One method to help address this issue is the k-means++ initialization scheme, which has been implemented in scikit-learn (use the ``init='k-means++'`` parameter). This initializes the centroids to be (generally) distant from each other, leading to probably better results than -random initialization, as shown in the reference. For a detailed example of -comaparing different initialization schemes, refer to -:ref:`sphx_glr_auto_examples_cluster_plot_kmeans_digits.py`. +random initialization, as shown in the reference. For detailed examples of +comparing different initialization schemes, refer to +:ref:`sphx_glr_auto_examples_cluster_plot_kmeans_digits.py` and +:ref:`sphx_glr_auto_examples_cluster_plot_kmeans_stability_low_dim_dense.py`. K-means++ can also be called independently to select seeds for other clustering algorithms, see :func:`sklearn.cluster.kmeans_plusplus` for details diff --git a/sklearn/cluster/_kmeans.py b/sklearn/cluster/_kmeans.py index 4fdcb4d5eea0f..dba4388d0100c 100644 --- a/sklearn/cluster/_kmeans.py +++ b/sklearn/cluster/_kmeans.py @@ -1213,8 +1213,11 @@ class KMeans(_BaseKMeans): * If a callable is passed, it should take arguments X, n_clusters and a\ random state and return an initialization. - For an example of how to use the different `init` strategy, see the example - entitled :ref:`sphx_glr_auto_examples_cluster_plot_kmeans_digits.py`. + For an example of how to use the different `init` strategies, see + :ref:`sphx_glr_auto_examples_cluster_plot_kmeans_digits.py`. + + For an evaluation of the impact of initialization, see the example + :ref:`sphx_glr_auto_examples_cluster_plot_kmeans_stability_low_dim_dense.py`. n_init : 'auto' or int, default='auto' Number of times the k-means algorithm is run with different centroid @@ -1700,6 +1703,9 @@ class MiniBatchKMeans(_BaseKMeans): If a callable is passed, it should take arguments X, n_clusters and a random state and return an initialization. + For an evaluation of the impact of initialization, see the example + :ref:`sphx_glr_auto_examples_cluster_plot_kmeans_stability_low_dim_dense.py`. + max_iter : int, default=100 Maximum number of iterations over the complete dataset before stopping independently of any early stopping criterion heuristics. From 1f69223ee29abb494fc92b4132305a8750629926 Mon Sep 17 00:00:00 2001 From: scikit-learn-bot Date: Mon, 9 Dec 2024 15:10:58 +0100 Subject: [PATCH 096/159] :lock: :robot: CI Update lock files for main CI build(s) :lock: :robot: (#30438) Co-authored-by: Lock file bot Co-authored-by: Olivier Grisel --- build_tools/azure/debian_32bit_lock.txt | 2 +- ...latest_conda_forge_mkl_linux-64_conda.lock | 118 +++++++------- ...pylatest_conda_forge_mkl_osx-64_conda.lock | 61 ++++---- ...test_conda_mkl_no_openmp_osx-64_conda.lock | 2 +- ...st_pip_openblas_pandas_linux-64_conda.lock | 10 +- .../pymin_conda_forge_mkl_win-64_conda.lock | 62 ++++---- ...nblas_min_dependencies_linux-64_conda.lock | 84 +++++----- ...e_openblas_ubuntu_2204_linux-64_conda.lock | 108 ++++++------- build_tools/circle/doc_linux-64_conda.lock | 148 +++++++++--------- .../doc_min_dependencies_linux-64_conda.lock | 134 ++++++++-------- sklearn/cluster/_hdbscan/hdbscan.py | 7 +- 11 files changed, 369 insertions(+), 367 deletions(-) diff --git a/build_tools/azure/debian_32bit_lock.txt b/build_tools/azure/debian_32bit_lock.txt index addcc04343a62..79fbad9fff651 100644 --- a/build_tools/azure/debian_32bit_lock.txt +++ b/build_tools/azure/debian_32bit_lock.txt @@ -4,7 +4,7 @@ # # pip-compile --output-file=build_tools/azure/debian_32bit_lock.txt build_tools/azure/debian_32bit_requirements.txt # -coverage[toml]==7.6.8 +coverage[toml]==7.6.9 # via pytest-cov cython==3.0.11 # via -r build_tools/azure/debian_32bit_requirements.txt diff --git a/build_tools/azure/pylatest_conda_forge_mkl_linux-64_conda.lock b/build_tools/azure/pylatest_conda_forge_mkl_linux-64_conda.lock index 1ec87c281a72c..2a4afdfbf2d60 100644 --- a/build_tools/azure/pylatest_conda_forge_mkl_linux-64_conda.lock +++ b/build_tools/azure/pylatest_conda_forge_mkl_linux-64_conda.lock @@ -14,7 +14,7 @@ https://conda.anaconda.org/conda-forge/noarch/tzdata-2024b-hc8b5060_0.conda#8ac3 https://conda.anaconda.org/conda-forge/noarch/fonts-conda-forge-1-0.tar.bz2#f766549260d6815b0c52253f1fb1bb29 https://conda.anaconda.org/conda-forge/linux-64/ld_impl_linux-64-2.43-h712a8e2_2.conda#048b02e3962f066da18efe3a21b77672 https://conda.anaconda.org/conda-forge/linux-64/libglvnd-1.7.0-ha4b6fd6_2.conda#434ca7e50e40f4918ab701e3facd59a0 -https://conda.anaconda.org/conda-forge/linux-64/llvm-openmp-19.1.4-h024ca30_0.conda#9370a10ba6a13079cc0c0e09d2ec13a8 +https://conda.anaconda.org/conda-forge/linux-64/llvm-openmp-19.1.5-h024ca30_0.conda#dc90d15c25a57f641f0b84c271e4761e https://conda.anaconda.org/conda-forge/linux-64/_openmp_mutex-4.5-2_kmp_llvm.tar.bz2#562b26ba2e19059551a811e72ab7f793 https://conda.anaconda.org/conda-forge/noarch/fonts-conda-ecosystem-1-0.tar.bz2#fee5683a3f04bd15cbd8318b096a27ab https://conda.anaconda.org/conda-forge/linux-64/libegl-1.7.0-ha4b6fd6_2.conda#c151d5eb730e9b7480e6d48c0fc44048 @@ -28,8 +28,9 @@ https://conda.anaconda.org/conda-forge/linux-64/libdeflate-1.22-hb9d3cd8_0.conda https://conda.anaconda.org/conda-forge/linux-64/libexpat-2.6.4-h5888daf_0.conda#db833e03127376d461e1e13e76f09b6c https://conda.anaconda.org/conda-forge/linux-64/libgcc-ng-14.2.0-h69a702a_1.conda#e39480b9ca41323497b05492a63bc35b https://conda.anaconda.org/conda-forge/linux-64/libgfortran5-14.2.0-hd5240d6_1.conda#9822b874ea29af082e5d36098d25427d +https://conda.anaconda.org/conda-forge/linux-64/liblzma-5.6.3-hb9d3cd8_1.conda#2ecf2f1c7e4e21fcfe6423a51a992d84 https://conda.anaconda.org/conda-forge/linux-64/libstdcxx-14.2.0-hc0a3c3a_1.conda#234a5554c53625688d51062645337328 -https://conda.anaconda.org/conda-forge/linux-64/libutf8proc-2.8.0-hf23e847_1.conda#b1aa0faa95017bca11369bd080487ec4 +https://conda.anaconda.org/conda-forge/linux-64/libutf8proc-2.9.0-hb9d3cd8_1.conda#1e936bd23d737aac62a18e9a1e7f8b18 https://conda.anaconda.org/conda-forge/linux-64/libuv-1.49.2-hb9d3cd8_0.conda#070e3c9ddab77e38799d5c30b109c633 https://conda.anaconda.org/conda-forge/linux-64/libzlib-1.3.1-hb9d3cd8_2.conda#edb0dca6bc32e4f4789199455a1dbeb8 https://conda.anaconda.org/conda-forge/linux-64/openssl-3.4.0-hb9d3cd8_0.conda#23cc74f77eb99315c0360ec3533147a9 @@ -65,12 +66,13 @@ https://conda.anaconda.org/conda-forge/linux-64/libstdcxx-ng-14.2.0-h4852527_1.c https://conda.anaconda.org/conda-forge/linux-64/libuuid-2.38.1-h0b41bf4_0.conda#40b61aab5c7ba9ff276c41cfffe6b80b https://conda.anaconda.org/conda-forge/linux-64/libwebp-base-1.4.0-hd590300_0.conda#b26e8aa824079e1be0294e7152ca4559 https://conda.anaconda.org/conda-forge/linux-64/libxcb-1.17.0-h8a09558_0.conda#92ed62436b625154323d40d5f2f11dd7 -https://conda.anaconda.org/conda-forge/linux-64/mysql-common-9.0.1-h266115a_2.conda#85c0dc0bcd110c998b01856975486ee7 +https://conda.anaconda.org/conda-forge/linux-64/mysql-common-9.0.1-h266115a_3.conda#9411c61ff1070b5e065b32840c39faa5 https://conda.anaconda.org/conda-forge/linux-64/ncurses-6.5-he02047a_1.conda#70caf8bb6cf39a0b6b7efc885f51c0fe +https://conda.anaconda.org/conda-forge/linux-64/pixman-0.44.2-h29eaf8c_0.conda#5e2a7acfa2c24188af39e7944e1b3604 https://conda.anaconda.org/conda-forge/linux-64/s2n-1.5.9-h0fd0ee4_0.conda#f472432f3753c5ca763d2497e2ea30bf https://conda.anaconda.org/conda-forge/linux-64/sleef-3.7-h1b44611_2.conda#4792f3259c6fdc0b730563a85b211dc0 +https://conda.anaconda.org/conda-forge/linux-64/snappy-1.2.1-h8bd8927_1.conda#3b3e64af585eadfb52bb90b553db5edf https://conda.anaconda.org/conda-forge/linux-64/tk-8.6.13-noxft_h4845f30_101.conda#d453b98d9c83e71da0741bb0ff4d76bc -https://conda.anaconda.org/conda-forge/linux-64/xz-5.2.6-h166bdaf_0.tar.bz2#2161070d867d1b1204ea749c8eec4ef0 https://conda.anaconda.org/conda-forge/linux-64/zlib-1.3.1-hb9d3cd8_2.conda#c9f075ab2f33b3bbee9e62d4ad0a6cd8 https://conda.anaconda.org/conda-forge/linux-64/aws-c-io-0.15.2-hdeadb07_2.conda#461a1eaa075fd391add91bcffc9de0c1 https://conda.anaconda.org/conda-forge/linux-64/brotli-bin-1.1.0-hb9d3cd8_2.conda#c63b5e52939e795ba8d26e35d767a843 @@ -82,7 +84,7 @@ https://conda.anaconda.org/conda-forge/linux-64/graphite2-1.3.13-h59595ed_1003.c https://conda.anaconda.org/conda-forge/linux-64/icu-75.1-he02047a_0.conda#8b189310083baabfb622af68fd9d3ae3 https://conda.anaconda.org/conda-forge/linux-64/lerc-4.0.0-h27087fc_0.tar.bz2#76bbff344f0134279f225174e9064c8f https://conda.anaconda.org/conda-forge/linux-64/libcrc32c-1.1.2-h9c3ff4c_0.tar.bz2#c965a5aa0d5c1c37ffc62dff36e28400 -https://conda.anaconda.org/conda-forge/linux-64/libdrm-2.4.123-hb9d3cd8_0.conda#ee605e794bdc14e2b7f84c4faa0d8c2c +https://conda.anaconda.org/conda-forge/linux-64/libdrm-2.4.124-hb9d3cd8_0.conda#8bc89311041d7fcb510238cf0848ccae https://conda.anaconda.org/conda-forge/linux-64/libedit-3.1.20191231-he28a2e2_2.tar.bz2#4d331e44109e3f0e19b4cb8f9b82f3e1 https://conda.anaconda.org/conda-forge/linux-64/libgfortran-ng-14.2.0-h69a702a_1.conda#0a7f4cd238267c88e5d69f7826a407eb https://conda.anaconda.org/conda-forge/linux-64/libnghttp2-1.64.0-h161d5f1_0.conda#19e57602824042dfd0446292ef90488b @@ -92,17 +94,15 @@ https://conda.anaconda.org/conda-forge/linux-64/libthrift-0.21.0-h0e7cc3e_0.cond https://conda.anaconda.org/conda-forge/linux-64/lz4-c-1.9.4-hcb278e6_0.conda#318b08df404f9c9be5712aaa5a6f0bb0 https://conda.anaconda.org/conda-forge/linux-64/ninja-1.12.1-h297d8ca_0.conda#3aa1c7e292afeff25a0091ddd7c69b72 https://conda.anaconda.org/conda-forge/linux-64/pcre2-10.44-hba22ea6_2.conda#df359c09c41cd186fffb93a2d87aa6f5 -https://conda.anaconda.org/conda-forge/linux-64/pixman-0.43.2-h59595ed_0.conda#71004cbf7924e19c02746ccde9fd7123 https://conda.anaconda.org/conda-forge/linux-64/qhull-2020.2-h434a139_5.conda#353823361b1d27eb3960efb076dfcaf6 https://conda.anaconda.org/conda-forge/linux-64/readline-8.2-h8228510_1.conda#47d31b792659ce70f470b5c82fdfb7a4 -https://conda.anaconda.org/conda-forge/linux-64/snappy-1.2.1-ha2e4443_0.conda#6b7dcc7349efd123d493d2dbe85a045f https://conda.anaconda.org/conda-forge/linux-64/wayland-1.23.1-h3e06ad9_0.conda#0a732427643ae5e0486a727927791da1 https://conda.anaconda.org/conda-forge/linux-64/xcb-util-0.4.1-hb711507_2.conda#8637c3e5821654d0edf97e2b0404b443 https://conda.anaconda.org/conda-forge/linux-64/xcb-util-keysyms-0.4.1-hb711507_0.conda#ad748ccca349aec3e91743e08b5e2b50 https://conda.anaconda.org/conda-forge/linux-64/xcb-util-renderutil-0.3.10-hb711507_0.conda#0e0cbe0564d03a99afd5fd7b362feecd https://conda.anaconda.org/conda-forge/linux-64/xcb-util-wm-0.4.2-hb711507_0.conda#608e0ef8256b81d04456e8d211eee3e8 https://conda.anaconda.org/conda-forge/linux-64/xorg-libsm-1.2.4-he73a12e_1.conda#05a8ea5f446de33006171a7afe6ae857 -https://conda.anaconda.org/conda-forge/linux-64/xorg-libx11-1.8.10-h4f16b4b_0.conda#0b666058a179b744a622d0a4a0c56353 +https://conda.anaconda.org/conda-forge/linux-64/xorg-libx11-1.8.10-h4f16b4b_1.conda#125f34a17d7b4bea418a83904ea82ea6 https://conda.anaconda.org/conda-forge/linux-64/zstd-1.5.6-ha6fb4c9_0.conda#4d056880988120e29d75bfff282e0f45 https://conda.anaconda.org/conda-forge/linux-64/aws-c-event-stream-0.5.0-h1ffe551_7.conda#7cce4dfab184f4bbdfc160789251b3c5 https://conda.anaconda.org/conda-forge/linux-64/aws-c-http-0.9.1-hab05fe4_2.conda#fb409f7053fa3dbbdf6eb41045a87795 @@ -112,12 +112,12 @@ https://conda.anaconda.org/conda-forge/linux-64/krb5-1.21.3-h659f571_0.conda#3f4 https://conda.anaconda.org/conda-forge/linux-64/libglib-2.82.2-h2ff4ddf_0.conda#13e8e54035ddd2b91875ba399f0f7c04 https://conda.anaconda.org/conda-forge/linux-64/libglx-1.7.0-ha4b6fd6_2.conda#c8013e438185f33b13814c5c488acd5c https://conda.anaconda.org/conda-forge/linux-64/libhiredis-1.0.2-h2cc385e_0.tar.bz2#b34907d3a81a3cd8095ee83d174c074a -https://conda.anaconda.org/conda-forge/linux-64/libtiff-4.7.0-he137b08_1.conda#63872517c98aa305da58a757c443698e -https://conda.anaconda.org/conda-forge/linux-64/libxml2-2.13.5-hb346dea_0.conda#c81a9f1118541aaa418ccb22190c817e +https://conda.anaconda.org/conda-forge/linux-64/libtiff-4.7.0-hc4654cb_2.conda#be54fb40ea32e8fe9dbaa94d4528b57e +https://conda.anaconda.org/conda-forge/linux-64/libxml2-2.13.5-h8d12d68_1.conda#1a21e49e190d1ffe58531a81b6e400e1 https://conda.anaconda.org/conda-forge/linux-64/mpfr-4.2.1-h90cbb55_3.conda#2eeb50cab6652538eee8fc0bc3340c81 -https://conda.anaconda.org/conda-forge/linux-64/mysql-libs-9.0.1-he0572af_2.conda#57a9e7ee3c0840d3c8c9012473978629 +https://conda.anaconda.org/conda-forge/linux-64/mysql-libs-9.0.1-he0572af_3.conda#dd9da69dd4c2bf798c0b8bd4786cafb5 https://conda.anaconda.org/conda-forge/linux-64/orc-2.0.3-he039a57_0.conda#052499acd6d6b79952197a13b23e2600 -https://conda.anaconda.org/conda-forge/linux-64/python-3.13.0-h9ebbce0_101_cp313.conda#f4fea9d5bb3f2e61a39950a7ab70ee4e +https://conda.anaconda.org/conda-forge/linux-64/python-3.13.1-ha99a958_102_cp313.conda#6e7535f1d1faf524e9210d2689b3149b https://conda.anaconda.org/conda-forge/linux-64/re2-2024.07.02-h77b4e00_1.conda#01093ff37c1b5e6bf9f17c0116747d11 https://conda.anaconda.org/conda-forge/linux-64/xcb-util-image-0.4.0-hb711507_2.conda#a0901183f08b6c7107aab109733a3c91 https://conda.anaconda.org/conda-forge/linux-64/xkeyboard-config-2.43-hb9d3cd8_0.conda#f725c7425d6d7c15e31f3b99a88ea02f @@ -130,17 +130,17 @@ https://conda.anaconda.org/conda-forge/linux-64/aws-c-mqtt-0.11.0-h7bd072d_8.con https://conda.anaconda.org/conda-forge/linux-64/cairo-1.18.0-hebfffa5_3.conda#fceaedf1cdbcb02df9699a0d9b005292 https://conda.anaconda.org/conda-forge/linux-64/ccache-4.10.1-h065aff2_0.conda#d6b48c138e0c8170a6fe9c136e063540 https://conda.anaconda.org/conda-forge/noarch/certifi-2024.8.30-pyhd8ed1ab_0.conda#12f7d00853807b0531775e9be891cb11 -https://conda.anaconda.org/conda-forge/noarch/colorama-0.4.6-pyhd8ed1ab_0.tar.bz2#3faab06a954c2a04039983f2c4a50d99 -https://conda.anaconda.org/conda-forge/noarch/cpython-3.13.0-py313hd8ed1ab_101.conda#cf35258c45ef74c804a6768e178f5c62 -https://conda.anaconda.org/conda-forge/noarch/cycler-0.12.1-pyhd8ed1ab_0.conda#5cd86562580f274031ede6aa6aa24441 +https://conda.anaconda.org/conda-forge/noarch/colorama-0.4.6-pyhd8ed1ab_1.conda#962b9857ee8e7018c22f2776ffa0b2d7 +https://conda.anaconda.org/conda-forge/noarch/cpython-3.13.1-py313hd8ed1ab_102.conda#03f9b71509b4a492d7da023bf825ebbd +https://conda.anaconda.org/conda-forge/noarch/cycler-0.12.1-pyhd8ed1ab_1.conda#44600c4667a319d67dbe0681fc0bc833 https://conda.anaconda.org/conda-forge/linux-64/cyrus-sasl-2.1.27-h54b06d7_7.conda#dce22f70b4e5a407ce88f2be046f4ceb https://conda.anaconda.org/conda-forge/linux-64/cython-3.0.11-py313hc66aa0d_3.conda#1778443eb12b2da98428fa69152a2a2e https://conda.anaconda.org/conda-forge/linux-64/dbus-1.13.6-h5008d03_3.tar.bz2#ecfff944ba3960ecb334b9a2663d708d -https://conda.anaconda.org/conda-forge/noarch/exceptiongroup-1.2.2-pyhd8ed1ab_0.conda#d02ae936e42063ca46af6cdad2dbd1e0 -https://conda.anaconda.org/conda-forge/noarch/execnet-2.1.1-pyhd8ed1ab_0.conda#15dda3cdbf330abfe9f555d22f66db46 -https://conda.anaconda.org/conda-forge/noarch/filelock-3.16.1-pyhd8ed1ab_0.conda#916f8ec5dd4128cd5f207a3c4c07b2c6 -https://conda.anaconda.org/conda-forge/noarch/fsspec-2024.10.0-pyhff2d567_0.conda#816dbc4679a64e4417cd1385d661bb31 -https://conda.anaconda.org/conda-forge/noarch/iniconfig-2.0.0-pyhd8ed1ab_0.conda#f800d2da156d08e289b14e87e43c1ae5 +https://conda.anaconda.org/conda-forge/noarch/exceptiongroup-1.2.2-pyhd8ed1ab_1.conda#a16662747cdeb9abbac74d0057cc976e +https://conda.anaconda.org/conda-forge/noarch/execnet-2.1.1-pyhd8ed1ab_1.conda#a71efeae2c160f6789900ba2631a2c90 +https://conda.anaconda.org/conda-forge/noarch/filelock-3.16.1-pyhd8ed1ab_1.conda#d692e9ba6f92dc51484bf3477e36ce7c +https://conda.anaconda.org/conda-forge/noarch/fsspec-2024.10.0-pyhd8ed1ab_1.conda#906fe13095e734cb413b57a49116cdc8 +https://conda.anaconda.org/conda-forge/noarch/iniconfig-2.0.0-pyhd8ed1ab_1.conda#6837f3eff7dcea42ecd714ce1ac2b108 https://conda.anaconda.org/conda-forge/linux-64/kiwisolver-1.4.7-py313h33d0bda_0.conda#9862d13a5e466273d5a4738cffcb8d6c https://conda.anaconda.org/conda-forge/linux-64/lcms2-2.16-hb7c19ff_0.conda#51bb7010fc86f70eee639b4bb7a894f5 https://conda.anaconda.org/conda-forge/linux-64/libcups-2.3.3-h4637d8d_4.conda#d4529f4dff3057982a7617c7ac58fde3 @@ -148,28 +148,28 @@ https://conda.anaconda.org/conda-forge/linux-64/libcurl-8.10.1-hbbe4b11_0.conda# https://conda.anaconda.org/conda-forge/linux-64/libgl-1.7.0-ha4b6fd6_2.conda#928b8be80851f5d8ffb016f9c81dae7a https://conda.anaconda.org/conda-forge/linux-64/libgrpc-1.67.1-hc2c308b_0.conda#4606a4647bfe857e3cfe21ca12ac3afb https://conda.anaconda.org/conda-forge/linux-64/libhwloc-2.11.2-default_h0d58e46_1001.conda#804ca9e91bcaea0824a341d55b1684f2 -https://conda.anaconda.org/conda-forge/linux-64/libllvm19-19.1.4-ha7bfdaf_1.conda#886acc67bcba28a5c6b429aad2f057ce +https://conda.anaconda.org/conda-forge/linux-64/libllvm19-19.1.5-ha7bfdaf_0.conda#76f3749eda7b24816aacd55b9f31447a https://conda.anaconda.org/conda-forge/linux-64/libxkbcommon-1.7.0-h2c5496b_1.conda#e2eaefa4de2b7237af7c907b8bbc760a https://conda.anaconda.org/conda-forge/linux-64/libxslt-1.1.39-h76b75d6_0.conda#e71f31f8cfb0a91439f2086fc8aa0461 -https://conda.anaconda.org/conda-forge/linux-64/markupsafe-3.0.2-py313h8060acc_0.conda#ab825f8b676368beb91350c6a2da6e11 +https://conda.anaconda.org/conda-forge/linux-64/markupsafe-3.0.2-py313h8060acc_1.conda#21b62c55924f01b6eef6827167b46acb https://conda.anaconda.org/conda-forge/linux-64/mpc-1.3.1-h24ddda3_1.conda#aa14b9a5196a6d8dd364164b7ce56acf -https://conda.anaconda.org/conda-forge/noarch/mpmath-1.3.0-pyhd8ed1ab_0.conda#dbf6e2d89137da32fa6670f3bffc024e +https://conda.anaconda.org/conda-forge/noarch/mpmath-1.3.0-pyhd8ed1ab_1.conda#3585aa87c43ab15b167b574cd73b057b https://conda.anaconda.org/conda-forge/noarch/munkres-1.1.4-pyh9f0ad1d_0.tar.bz2#2ba8498c1018c1e9c61eb99b973dfe19 https://conda.anaconda.org/conda-forge/noarch/networkx-3.4.2-pyh267e887_2.conda#fd40bf7f7f4bc4b647dc8512053d9873 https://conda.anaconda.org/conda-forge/linux-64/openjpeg-2.5.2-h488ebb8_0.conda#7f2e286780f072ed750df46dc2631138 -https://conda.anaconda.org/conda-forge/noarch/packaging-24.2-pyhff2d567_1.conda#8508b703977f4c4ada34d657d051972c +https://conda.anaconda.org/conda-forge/noarch/packaging-24.2-pyhd8ed1ab_2.conda#3bfed7e6228ebf2f7b9eaa47f1b4e2aa https://conda.anaconda.org/conda-forge/noarch/pip-24.3.1-pyh145f28c_0.conda#ca3afe2d7b893a8c8cdf489d30a2b1a3 -https://conda.anaconda.org/conda-forge/noarch/pluggy-1.5.0-pyhd8ed1ab_0.conda#d3483c8fc2dc2cc3f5cf43e26d60cabf -https://conda.anaconda.org/conda-forge/noarch/pyparsing-3.2.0-pyhd8ed1ab_1.conda#035c17fbf099f50ff60bf2eb303b0a83 -https://conda.anaconda.org/conda-forge/noarch/python-tzdata-2024.2-pyhd8ed1ab_0.conda#986287f89929b2d629bd6ef6497dc307 +https://conda.anaconda.org/conda-forge/noarch/pluggy-1.5.0-pyhd8ed1ab_1.conda#e9dcbce5f45f9ee500e728ae58b605b6 +https://conda.anaconda.org/conda-forge/noarch/pyparsing-3.2.0-pyhd8ed1ab_2.conda#4c05a2bcf87bb495512374143b57cf28 +https://conda.anaconda.org/conda-forge/noarch/python-tzdata-2024.2-pyhd8ed1ab_1.conda#c0def296b2f6d2dd7b030c2a7f66bb1f https://conda.anaconda.org/conda-forge/noarch/pytz-2024.1-pyhd8ed1ab_0.conda#3eeeeb9e4827ace8c0c1419c85d590ad https://conda.anaconda.org/conda-forge/noarch/setuptools-75.6.0-pyhff2d567_1.conda#fc80f7995e396cbaeabd23cf46c413dc -https://conda.anaconda.org/conda-forge/noarch/six-1.16.0-pyh6c4a22f_0.tar.bz2#e5f25f8dbc060e9a8d912e432202afc2 +https://conda.anaconda.org/conda-forge/noarch/six-1.17.0-pyhd8ed1ab_0.conda#a451d576819089b0d672f18768be0f65 https://conda.anaconda.org/conda-forge/noarch/threadpoolctl-3.5.0-pyhc1e730c_0.conda#df68d78237980a159bd7149f33c0e8fd https://conda.anaconda.org/conda-forge/noarch/toml-0.10.2-pyhd8ed1ab_0.tar.bz2#f832c45a477c78bebd107098db465095 -https://conda.anaconda.org/conda-forge/noarch/tomli-2.2.1-pyhd8ed1ab_0.conda#ee8ab0fe4c8dfc5a6319f7f8246022fc +https://conda.anaconda.org/conda-forge/noarch/tomli-2.2.1-pyhd8ed1ab_1.conda#ac944244f1fed2eb49bae07193ae8215 https://conda.anaconda.org/conda-forge/linux-64/tornado-6.4.2-py313h536fd9c_0.conda#5f5cbdd527d2e74e270d8b6255ba714f -https://conda.anaconda.org/conda-forge/noarch/typing_extensions-4.12.2-pyha770c72_0.conda#ebe6952715e1d5eb567eeebf25250fa7 +https://conda.anaconda.org/conda-forge/noarch/typing_extensions-4.12.2-pyha770c72_1.conda#d17f13df8b65464ca316cbc000a3cb64 https://conda.anaconda.org/conda-forge/linux-64/xcb-util-cursor-0.1.5-hb9d3cd8_0.conda#eb44b3b6deb1cab08d72cb61686fe64c https://conda.anaconda.org/conda-forge/linux-64/xorg-libxcomposite-0.4.6-hb9d3cd8_2.conda#d3c295b50f092ab525ffe3c2aa4b7413 https://conda.anaconda.org/conda-forge/linux-64/xorg-libxcursor-1.2.3-hb9d3cd8_0.conda#2ccd714aa2242315acaf0a67faea780b @@ -177,36 +177,36 @@ https://conda.anaconda.org/conda-forge/linux-64/xorg-libxdamage-1.1.6-hb9d3cd8_0 https://conda.anaconda.org/conda-forge/linux-64/xorg-libxi-1.8.2-hb9d3cd8_0.conda#17dcc85db3c7886650b8908b183d6876 https://conda.anaconda.org/conda-forge/linux-64/xorg-libxrandr-1.5.4-hb9d3cd8_0.conda#2de7f99d6581a4a7adbff607b5c278ca https://conda.anaconda.org/conda-forge/linux-64/xorg-libxxf86vm-1.1.5-hb9d3cd8_4.conda#7da9007c0582712c4bad4131f89c8372 -https://conda.anaconda.org/conda-forge/linux-64/aws-c-s3-0.7.2-h3a84f74_0.conda#a5f883ce16928e898856b5bd8d1bee57 +https://conda.anaconda.org/conda-forge/linux-64/aws-c-s3-0.7.5-h3a84f74_0.conda#a13702b87657cf2d0cdd338fe55f4ba1 https://conda.anaconda.org/conda-forge/linux-64/azure-core-cpp-1.14.0-h5cfcd09_0.conda#0a8838771cc2e985cd295e01ae83baf1 -https://conda.anaconda.org/conda-forge/linux-64/coverage-7.6.8-py313h8060acc_0.conda#cf7681f6c2dc94ff8577430e4c280dc6 -https://conda.anaconda.org/conda-forge/linux-64/fonttools-4.55.0-py313h8060acc_0.conda#0ff3a44b54d02157f6e99074432b7396 -https://conda.anaconda.org/conda-forge/linux-64/gmpy2-2.1.5-py313h11186cd_2.conda#9eeedd9535d90c23a79ee109f5d4f391 +https://conda.anaconda.org/conda-forge/linux-64/coverage-7.6.9-py313h8060acc_0.conda#dc7f212c995a2126d955225844888dcb +https://conda.anaconda.org/conda-forge/linux-64/fonttools-4.55.2-py313h8060acc_0.conda#bcefb389907b2882f2c90dee23f07231 +https://conda.anaconda.org/conda-forge/linux-64/gmpy2-2.1.5-py313h11186cd_3.conda#846a773cdc154eda7b86d7f4427432f2 https://conda.anaconda.org/conda-forge/linux-64/harfbuzz-9.0.0-hda332d3_1.conda#76b32dcf243444aea9c6b804bcfa40b8 -https://conda.anaconda.org/conda-forge/noarch/jinja2-3.1.4-pyhd8ed1ab_0.conda#7b86ecb7d3557821c649b3c31e3eb9f2 +https://conda.anaconda.org/conda-forge/noarch/jinja2-3.1.4-pyhd8ed1ab_1.conda#08cce3151bde4ecad7885bd9fb647532 https://conda.anaconda.org/conda-forge/noarch/joblib-1.4.2-pyhd8ed1ab_0.conda#25df261d4523d9f9783bcdb7208d872f -https://conda.anaconda.org/conda-forge/linux-64/libclang-cpp19.1-19.1.4-default_hb5137d0_0.conda#e7e4a0ebe1f6eedf483f6f5d4f7d2bdd -https://conda.anaconda.org/conda-forge/linux-64/libclang13-19.1.4-default_h9c6a7e4_0.conda#6c450adae455c7d648856e8b0cfcebd6 +https://conda.anaconda.org/conda-forge/linux-64/libclang-cpp19.1-19.1.5-default_hb5137d0_0.conda#ec8649c89988d8a443c252c20f259b72 +https://conda.anaconda.org/conda-forge/linux-64/libclang13-19.1.5-default_h9c6a7e4_0.conda#a3a5997b6b47373f0c1608d8503eb4e6 https://conda.anaconda.org/conda-forge/linux-64/libgoogle-cloud-2.31.0-h804f50b_0.conda#35ab838423b60f233391eb86d324a830 -https://conda.anaconda.org/conda-forge/noarch/meson-1.6.0-pyhd8ed1ab_0.conda#380ba6a3eddd8e7649bfe8e6812611aa +https://conda.anaconda.org/conda-forge/noarch/meson-1.6.0-pyhd8ed1ab_1.conda#59d45dbe1b0a123966266340b579d366 https://conda.anaconda.org/conda-forge/linux-64/openldap-2.6.9-he970967_0.conda#ca2de8bbdc871bce41dbf59e51324165 https://conda.anaconda.org/conda-forge/linux-64/pillow-11.0.0-py313h2d7ed13_0.conda#0d95e1cda6bf9ce501e751c02561204e -https://conda.anaconda.org/conda-forge/noarch/pyproject-metadata-0.9.0-pyh2cfa8aa_0.conda#10906a130eeb4a68645bf97c28333141 -https://conda.anaconda.org/conda-forge/noarch/pytest-8.3.4-pyhd8ed1ab_0.conda#ff8f2ef7f2636906b3781d0cf92388d0 -https://conda.anaconda.org/conda-forge/noarch/python-dateutil-2.9.0.post0-pyhff2d567_0.conda#b6dfd90a2141e573e4b6a81630b56df5 +https://conda.anaconda.org/conda-forge/noarch/pyproject-metadata-0.9.0-pyhd8ed1ab_1.conda#1239146a53a383a84633800294120f17 +https://conda.anaconda.org/conda-forge/noarch/pytest-8.3.4-pyhd8ed1ab_1.conda#799ed216dc6af62520f32aa39bc1c2bb +https://conda.anaconda.org/conda-forge/noarch/python-dateutil-2.9.0.post0-pyhff2d567_1.conda#5ba79d7c71f03c678c8ead841f347d6e https://conda.anaconda.org/conda-forge/linux-64/tbb-2021.13.0-hceb3a55_1.conda#ba7726b8df7b9d34ea80e82b097a4893 https://conda.anaconda.org/conda-forge/linux-64/xorg-libxtst-1.2.5-hb9d3cd8_3.conda#7bbe9a0cc0df0ac5f5a8ad6d6a11af2f -https://conda.anaconda.org/conda-forge/linux-64/aws-crt-cpp-0.29.6-h0e61686_0.conda#651a6500e5fded51bb7572f4eebcfd7b +https://conda.anaconda.org/conda-forge/linux-64/aws-crt-cpp-0.29.7-ha6b94fc_1.conda#f5fb6f6283deb0b4d2c187ad4a7b6d4d https://conda.anaconda.org/conda-forge/linux-64/azure-identity-cpp-1.10.0-h113e628_0.conda#73f73f60854f325a55f1d31459f2ab73 https://conda.anaconda.org/conda-forge/linux-64/azure-storage-common-cpp-12.8.0-h736e048_1.conda#13de36be8de3ae3f05ba127631599213 https://conda.anaconda.org/conda-forge/linux-64/libgoogle-cloud-storage-2.31.0-h0121fbd_0.conda#568d6a09a6ed76337a7b97c84ae7c0f8 -https://conda.anaconda.org/conda-forge/linux-64/libpq-17.2-h04577a9_0.conda#52dd46162c6fb2765b49e6fd06adf8d5 -https://conda.anaconda.org/conda-forge/noarch/meson-python-0.17.1-pyh70fd9c4_0.conda#722b649da38842068d83b6e6770f11a1 +https://conda.anaconda.org/conda-forge/linux-64/libpq-17.2-h3b95a9b_1.conda#37724d8bae042345a19ca1a25dde786b +https://conda.anaconda.org/conda-forge/noarch/meson-python-0.17.1-pyh70fd9c4_1.conda#7a02679229c6c2092571b4c025055440 https://conda.anaconda.org/conda-forge/linux-64/mkl-2024.2.2-ha957f24_16.conda#1459379c79dda834673426504d52b319 -https://conda.anaconda.org/conda-forge/noarch/pytest-cov-6.0.0-pyhd8ed1ab_0.conda#cb8a11b6d209e3d85e5094bdbd9ebd9c -https://conda.anaconda.org/conda-forge/noarch/pytest-xdist-3.6.1-pyhd8ed1ab_0.conda#b39568655c127a9c4a44d178ac99b6d0 +https://conda.anaconda.org/conda-forge/noarch/pytest-cov-6.0.0-pyhd8ed1ab_1.conda#79963c319d1be62c8fd3e34555816e01 +https://conda.anaconda.org/conda-forge/noarch/pytest-xdist-3.6.1-pyhd8ed1ab_1.conda#59aad4fb37cabc0bacc73cf344612ddd https://conda.anaconda.org/conda-forge/noarch/sympy-1.13.3-pyh2585a3b_104.conda#68085d736d2b2f54498832b65059875d -https://conda.anaconda.org/conda-forge/linux-64/aws-sdk-cpp-1.11.449-h5558e3c_4.conda#ba7abdc93b0ade11d774b47aaab84737 +https://conda.anaconda.org/conda-forge/linux-64/aws-sdk-cpp-1.11.458-hac138a2_1.conda#bbdd9589b1a32a80b0e3f98a2a482542 https://conda.anaconda.org/conda-forge/linux-64/azure-storage-blobs-cpp-12.13.0-h3cf044e_1.conda#7eb66060455c7a47d9dcdbfa9f46579b https://conda.anaconda.org/conda-forge/linux-64/libblas-3.9.0-25_linux64_mkl.conda#b77ebfb548eae4d91639e2ca003662c8 https://conda.anaconda.org/conda-forge/linux-64/mkl-devel-2024.2.2-ha770c72_16.conda#140891ea14285fc634353b31e9e40a95 @@ -215,25 +215,25 @@ https://conda.anaconda.org/conda-forge/linux-64/azure-storage-files-datalake-cpp https://conda.anaconda.org/conda-forge/linux-64/libcblas-3.9.0-25_linux64_mkl.conda#e48aeb4ab1a293f621fe995959f1d32f https://conda.anaconda.org/conda-forge/linux-64/liblapack-3.9.0-25_linux64_mkl.conda#d5afbe3777c594434e4de6481254e99c https://conda.anaconda.org/conda-forge/linux-64/pyside6-6.8.0.2-py313h5f61773_0.conda#eb4dd1755647ad183e70c8668f5eb97b -https://conda.anaconda.org/conda-forge/linux-64/libarrow-18.1.0-he15abb1_1_cpu.conda#bd3e35a6f3f869b4777488452f315008 +https://conda.anaconda.org/conda-forge/linux-64/libarrow-18.1.0-h3b07799_4_cpu.conda#27675c7172667268440306533e4928de https://conda.anaconda.org/conda-forge/linux-64/liblapacke-3.9.0-25_linux64_mkl.conda#cbddb4169d3d24b13b308403b45f401e -https://conda.anaconda.org/conda-forge/linux-64/libtorch-2.5.1-cpu_mkl_h298519e_104.conda#40338c6dcd13f9936353ff16735cf512 -https://conda.anaconda.org/conda-forge/linux-64/numpy-2.1.3-py313h4bf6692_0.conda#17bcf851cceab793dad11ab8089d4bc4 +https://conda.anaconda.org/conda-forge/linux-64/libtorch-2.5.1-cpu_mkl_h791ef64_106.conda#a6197137453f4365412dcbef1f403141 +https://conda.anaconda.org/conda-forge/linux-64/numpy-2.2.0-py313hb30382a_0.conda#5aa2240f061c27ddabaa2a4924c1a066 https://conda.anaconda.org/conda-forge/noarch/array-api-strict-2.2-pyhd8ed1ab_0.conda#5f8d3e0f6b42318772d0f1cdddfe3025 https://conda.anaconda.org/conda-forge/linux-64/blas-devel-3.9.0-25_linux64_mkl.conda#cb60caae3cb30988431d7107691bd587 https://conda.anaconda.org/conda-forge/linux-64/contourpy-1.3.1-py313h33d0bda_0.conda#6b6768e7c585d7029f79a04cbc4cbff0 -https://conda.anaconda.org/conda-forge/linux-64/libarrow-acero-18.1.0-h5888daf_1_cpu.conda#6197dcb930f6254e9b2fdc416be56b71 -https://conda.anaconda.org/conda-forge/linux-64/libparquet-18.1.0-h6bd9018_1_cpu.conda#1054909202f86e38bbbb7ca1131b8471 +https://conda.anaconda.org/conda-forge/linux-64/libarrow-acero-18.1.0-h8bbc2ab_4_cpu.conda#82bcbfe424868ce66b5ab986999f534d +https://conda.anaconda.org/conda-forge/linux-64/libparquet-18.1.0-hf4f6db6_4_cpu.conda#f18b10bf19bb384183f2aa546e9f6f0a https://conda.anaconda.org/conda-forge/linux-64/pandas-2.2.3-py313ha87cce1_1.conda#c5d63dd501db554b84a30dea33824164 https://conda.anaconda.org/conda-forge/linux-64/polars-1.16.0-py313ha816797_0.conda#76b55dab38a5669124e2c6b73f54a35b https://conda.anaconda.org/conda-forge/linux-64/pyarrow-core-18.1.0-py313he5f92c8_0_cpu.conda#5380e12f4468e891911dbbd4248b521a -https://conda.anaconda.org/conda-forge/linux-64/pytorch-2.5.1-cpu_mkl_py313h433ac60_104.conda#afaa0d574d1703459a183f2b347083c3 -https://conda.anaconda.org/conda-forge/linux-64/scipy-1.14.1-py313h27c5614_1.conda#c5c52b95724a6d4adb72499912eea085 +https://conda.anaconda.org/conda-forge/linux-64/pytorch-2.5.1-cpu_mkl_py313hf76930e_106.conda#436a5c9f320b3230e67fbe26d224d516 +https://conda.anaconda.org/conda-forge/linux-64/scipy-1.14.1-py313h27c5614_2.conda#25c0eda0d2ed28962c5f3e8f7fbeace3 https://conda.anaconda.org/conda-forge/linux-64/blas-2.125-mkl.conda#8a0ffaaae2bccf691cffdde83cb0f1a5 -https://conda.anaconda.org/conda-forge/linux-64/libarrow-dataset-18.1.0-h5888daf_1_cpu.conda#77501831a2aabbaabac55e8cb3b6900a -https://conda.anaconda.org/conda-forge/linux-64/matplotlib-base-3.9.2-py313h129903b_2.conda#71d8f34a558d7e4d6656679c609b65d5 +https://conda.anaconda.org/conda-forge/linux-64/libarrow-dataset-18.1.0-h8bbc2ab_4_cpu.conda#fa31464c75b20c2f3ac8fc758e034887 +https://conda.anaconda.org/conda-forge/linux-64/matplotlib-base-3.9.3-py313h129903b_0.conda#e60c1296decc1bb82cc55e8a9da0ceb4 https://conda.anaconda.org/conda-forge/linux-64/pyamg-5.2.1-py313hf0ab243_1.conda#4c769bf3858f424cb2ecf952175ec600 -https://conda.anaconda.org/conda-forge/linux-64/pytorch-cpu-2.5.1-cpu_mkl_h74a56ca_104.conda#0e6c728b7790e3764d95a6803326cc3b -https://conda.anaconda.org/conda-forge/linux-64/libarrow-substrait-18.1.0-h5c8f2c3_1_cpu.conda#5d47bd2674afd104dbe2f2f3534594b0 -https://conda.anaconda.org/conda-forge/linux-64/matplotlib-3.9.2-py313h78bf25f_2.conda#1aa3c80617fecbf4614a7c5c21ec0897 +https://conda.anaconda.org/conda-forge/linux-64/pytorch-cpu-2.5.1-cpu_mkl_hc60beec_106.conda#0e8cc9f4649cbcd439c4a6bc8166ac03 +https://conda.anaconda.org/conda-forge/linux-64/libarrow-substrait-18.1.0-had74209_4_cpu.conda#bf261e5fa25ce4acc11a80bdc73b88b2 +https://conda.anaconda.org/conda-forge/linux-64/matplotlib-3.9.3-py313h78bf25f_0.conda#42fcd8e09d2faa62a5301fa73b956757 https://conda.anaconda.org/conda-forge/linux-64/pyarrow-18.1.0-py313h78bf25f_0.conda#a11d880ceedc33993c6f5c14a80ea9d3 diff --git a/build_tools/azure/pylatest_conda_forge_mkl_osx-64_conda.lock b/build_tools/azure/pylatest_conda_forge_mkl_osx-64_conda.lock index 2d0b0aa5f8ddf..02c762c5e31e0 100644 --- a/build_tools/azure/pylatest_conda_forge_mkl_osx-64_conda.lock +++ b/build_tools/azure/pylatest_conda_forge_mkl_osx-64_conda.lock @@ -11,16 +11,15 @@ https://conda.anaconda.org/conda-forge/osx-64/libwebp-base-1.4.0-h10d778d_0.cond https://conda.anaconda.org/conda-forge/osx-64/mkl-include-2023.2.0-h6bab518_50500.conda#835abb8ded5e26f23ea6996259c7972e https://conda.anaconda.org/conda-forge/osx-64/python_abi-3.13-5_cp313.conda#927a2186f1f997ac018d67c4eece90a6 https://conda.anaconda.org/conda-forge/noarch/tzdata-2024b-hc8b5060_0.conda#8ac3367aafb1cc0a068483c580af8015 -https://conda.anaconda.org/conda-forge/osx-64/xz-5.2.6-h775f41a_0.tar.bz2#a72f9d4ea13d55d745ff1ed594747f10 https://conda.anaconda.org/conda-forge/osx-64/bzip2-1.0.8-hfdf4475_7.conda#7ed4301d437b59045be7e051a0308211 -https://conda.anaconda.org/conda-forge/osx-64/icu-75.1-h120a0e1_0.conda#d68d48a3060eb5abdc1cdc8e2a3a5966 https://conda.anaconda.org/conda-forge/osx-64/libbrotlicommon-1.1.0-h00291cd_2.conda#58f2c4bdd56c46cc7451596e4ae68e0b -https://conda.anaconda.org/conda-forge/osx-64/libcxx-19.1.4-hf95d169_0.conda#5f23923c08151687ff2fc3002b0a7234 +https://conda.anaconda.org/conda-forge/osx-64/libcxx-19.1.5-hf95d169_0.conda#a20d4ea6839510372d1eeb8532b09acf https://conda.anaconda.org/conda-forge/osx-64/libdeflate-1.22-h00291cd_0.conda#a15785ccc62ae2a8febd299424081efb https://conda.anaconda.org/conda-forge/osx-64/libexpat-2.6.4-h240833e_0.conda#20307f4049a735a78a29073be1be2626 +https://conda.anaconda.org/conda-forge/osx-64/liblzma-5.6.3-hd471939_1.conda#f9e9205fed9c664421c1c09f0b90ce6d https://conda.anaconda.org/conda-forge/osx-64/libmpdec-4.0.0-hfdf4475_0.conda#ed625b2e59dff82859c23dd24774156b https://conda.anaconda.org/conda-forge/osx-64/libzlib-1.3.1-hd23fc13_2.conda#003a54a4e32b02f7355b50a837e699da -https://conda.anaconda.org/conda-forge/osx-64/llvm-openmp-19.1.4-ha54dae1_0.conda#193715d512f648fe0865f6f13b1957e3 +https://conda.anaconda.org/conda-forge/osx-64/llvm-openmp-19.1.5-ha54dae1_0.conda#fc0cec628a431e2f87d09e83a3a579e1 https://conda.anaconda.org/conda-forge/osx-64/ncurses-6.5-hf036a51_1.conda#e102bbf8a6ceeaf429deab8032fc8977 https://conda.anaconda.org/conda-forge/osx-64/openssl-3.4.0-hd471939_0.conda#ec99d2ce0b3033a75cbad01bbc7c5b71 https://conda.anaconda.org/conda-forge/osx-64/pthread-stubs-0.4-h00291cd_1002.conda#8bcf980d2c6b17094961198284b8e862 @@ -36,7 +35,7 @@ https://conda.anaconda.org/conda-forge/osx-64/libgfortran5-13.2.0-h2873a65_3.con https://conda.anaconda.org/conda-forge/osx-64/libpng-1.6.44-h4b8f8c9_0.conda#f32ac2c8dd390dbf169f550887ed09d9 https://conda.anaconda.org/conda-forge/osx-64/libsqlite-3.47.0-h2f8c449_1.conda#af445c495253a871c3d809e1199bb12b https://conda.anaconda.org/conda-forge/osx-64/libxcb-1.17.0-hf1f96e2_0.conda#bbeca862892e2898bdb45792a61c4afc -https://conda.anaconda.org/conda-forge/osx-64/libxml2-2.13.5-h495214b_0.conda#8711bc6fb054192dc432741dcd233ac3 +https://conda.anaconda.org/conda-forge/osx-64/libxml2-2.13.5-he8ee3e7_1.conda#9379f216f9132d0d3cdeeb10af165262 https://conda.anaconda.org/conda-forge/osx-64/ninja-1.12.1-h3c5361c_0.conda#a0ebabd021c8191aeb82793fe43cfdcb https://conda.anaconda.org/conda-forge/osx-64/qhull-2020.2-h3c5361c_5.conda#dd1ea9ff27c93db7c01a7b7656bd4ad4 https://conda.anaconda.org/conda-forge/osx-64/readline-8.2-h9e318b2_1.conda#f17f77f2acf4d344734bda76829ce14e @@ -50,17 +49,17 @@ https://conda.anaconda.org/conda-forge/osx-64/freetype-2.12.1-h60636b9_2.conda#2 https://conda.anaconda.org/conda-forge/osx-64/libgfortran-5.0.0-13_2_0_h97931a8_3.conda#0b6e23a012ee7a9a5f6b244f5a92c1d5 https://conda.anaconda.org/conda-forge/osx-64/libhwloc-2.11.2-default_h4cdd727_1001.conda#52bbb10ac083c563d00df035c94f9a63 https://conda.anaconda.org/conda-forge/osx-64/libllvm17-17.0.6-hbedff68_1.conda#fcd38f0553a99fa279fb66a5bfc2fb28 -https://conda.anaconda.org/conda-forge/osx-64/libtiff-4.7.0-h583c2ba_1.conda#4b78bcdcc8780cede8b3d090deba874d +https://conda.anaconda.org/conda-forge/osx-64/libtiff-4.7.0-hf4bdac2_2.conda#99a4153a4ee19d4902c0c08bfae4cdb4 https://conda.anaconda.org/conda-forge/osx-64/mpfr-4.2.1-haed47dc_3.conda#d511e58aaaabfc23136880d9956fa7a6 -https://conda.anaconda.org/conda-forge/osx-64/python-3.13.0-h3a8ca6c_101_cp313.conda#0acea4c3eee2454fd642d1a4eafa2943 +https://conda.anaconda.org/conda-forge/osx-64/python-3.13.1-h2334245_102_cp313.conda#bacdbf2fd86557ad1fb862cb2d30d821 https://conda.anaconda.org/conda-forge/osx-64/brotli-1.1.0-h00291cd_2.conda#2db0c38a7f2321c5bdaf32b181e832c7 https://conda.anaconda.org/conda-forge/noarch/certifi-2024.8.30-pyhd8ed1ab_0.conda#12f7d00853807b0531775e9be891cb11 -https://conda.anaconda.org/conda-forge/noarch/colorama-0.4.6-pyhd8ed1ab_0.tar.bz2#3faab06a954c2a04039983f2c4a50d99 -https://conda.anaconda.org/conda-forge/noarch/cycler-0.12.1-pyhd8ed1ab_0.conda#5cd86562580f274031ede6aa6aa24441 +https://conda.anaconda.org/conda-forge/noarch/colorama-0.4.6-pyhd8ed1ab_1.conda#962b9857ee8e7018c22f2776ffa0b2d7 +https://conda.anaconda.org/conda-forge/noarch/cycler-0.12.1-pyhd8ed1ab_1.conda#44600c4667a319d67dbe0681fc0bc833 https://conda.anaconda.org/conda-forge/osx-64/cython-3.0.11-py313h496bac6_3.conda#e2ff2f9b266fe869268ed4c4c97e8f34 -https://conda.anaconda.org/conda-forge/noarch/exceptiongroup-1.2.2-pyhd8ed1ab_0.conda#d02ae936e42063ca46af6cdad2dbd1e0 -https://conda.anaconda.org/conda-forge/noarch/execnet-2.1.1-pyhd8ed1ab_0.conda#15dda3cdbf330abfe9f555d22f66db46 -https://conda.anaconda.org/conda-forge/noarch/iniconfig-2.0.0-pyhd8ed1ab_0.conda#f800d2da156d08e289b14e87e43c1ae5 +https://conda.anaconda.org/conda-forge/noarch/exceptiongroup-1.2.2-pyhd8ed1ab_1.conda#a16662747cdeb9abbac74d0057cc976e +https://conda.anaconda.org/conda-forge/noarch/execnet-2.1.1-pyhd8ed1ab_1.conda#a71efeae2c160f6789900ba2631a2c90 +https://conda.anaconda.org/conda-forge/noarch/iniconfig-2.0.0-pyhd8ed1ab_1.conda#6837f3eff7dcea42ecd714ce1ac2b108 https://conda.anaconda.org/conda-forge/osx-64/kiwisolver-1.4.7-py313h0c4e38b_0.conda#c37fceab459e104e77bb5456e219fc37 https://conda.anaconda.org/conda-forge/osx-64/lcms2-2.16-ha2f27b4_0.conda#1442db8f03517834843666c422238c9b https://conda.anaconda.org/conda-forge/osx-64/ld64_osx-64-951.9-h5ffbe8e_2.conda#8cd0234328c8e9dcc2db757ff8a2ad22 @@ -70,57 +69,57 @@ https://conda.anaconda.org/conda-forge/osx-64/llvm-tools-17.0.6-hbedff68_1.conda https://conda.anaconda.org/conda-forge/osx-64/mpc-1.3.1-h9d8efa1_1.conda#0520855aaae268ea413d6bc913f1384c https://conda.anaconda.org/conda-forge/noarch/munkres-1.1.4-pyh9f0ad1d_0.tar.bz2#2ba8498c1018c1e9c61eb99b973dfe19 https://conda.anaconda.org/conda-forge/osx-64/openjpeg-2.5.2-h7310d3a_0.conda#05a14cc9d725dd74995927968d6547e3 -https://conda.anaconda.org/conda-forge/noarch/packaging-24.2-pyhff2d567_1.conda#8508b703977f4c4ada34d657d051972c +https://conda.anaconda.org/conda-forge/noarch/packaging-24.2-pyhd8ed1ab_2.conda#3bfed7e6228ebf2f7b9eaa47f1b4e2aa https://conda.anaconda.org/conda-forge/noarch/pip-24.3.1-pyh145f28c_0.conda#ca3afe2d7b893a8c8cdf489d30a2b1a3 -https://conda.anaconda.org/conda-forge/noarch/pluggy-1.5.0-pyhd8ed1ab_0.conda#d3483c8fc2dc2cc3f5cf43e26d60cabf -https://conda.anaconda.org/conda-forge/noarch/pyparsing-3.2.0-pyhd8ed1ab_1.conda#035c17fbf099f50ff60bf2eb303b0a83 -https://conda.anaconda.org/conda-forge/noarch/python-tzdata-2024.2-pyhd8ed1ab_0.conda#986287f89929b2d629bd6ef6497dc307 +https://conda.anaconda.org/conda-forge/noarch/pluggy-1.5.0-pyhd8ed1ab_1.conda#e9dcbce5f45f9ee500e728ae58b605b6 +https://conda.anaconda.org/conda-forge/noarch/pyparsing-3.2.0-pyhd8ed1ab_2.conda#4c05a2bcf87bb495512374143b57cf28 +https://conda.anaconda.org/conda-forge/noarch/python-tzdata-2024.2-pyhd8ed1ab_1.conda#c0def296b2f6d2dd7b030c2a7f66bb1f https://conda.anaconda.org/conda-forge/noarch/pytz-2024.1-pyhd8ed1ab_0.conda#3eeeeb9e4827ace8c0c1419c85d590ad https://conda.anaconda.org/conda-forge/noarch/setuptools-75.6.0-pyhff2d567_1.conda#fc80f7995e396cbaeabd23cf46c413dc -https://conda.anaconda.org/conda-forge/noarch/six-1.16.0-pyh6c4a22f_0.tar.bz2#e5f25f8dbc060e9a8d912e432202afc2 +https://conda.anaconda.org/conda-forge/noarch/six-1.17.0-pyhd8ed1ab_0.conda#a451d576819089b0d672f18768be0f65 https://conda.anaconda.org/conda-forge/osx-64/tbb-2021.13.0-hb890de9_1.conda#284892942cdddfded53d090050b639a5 https://conda.anaconda.org/conda-forge/noarch/threadpoolctl-3.5.0-pyhc1e730c_0.conda#df68d78237980a159bd7149f33c0e8fd https://conda.anaconda.org/conda-forge/noarch/toml-0.10.2-pyhd8ed1ab_0.tar.bz2#f832c45a477c78bebd107098db465095 -https://conda.anaconda.org/conda-forge/noarch/tomli-2.2.1-pyhd8ed1ab_0.conda#ee8ab0fe4c8dfc5a6319f7f8246022fc +https://conda.anaconda.org/conda-forge/noarch/tomli-2.2.1-pyhd8ed1ab_1.conda#ac944244f1fed2eb49bae07193ae8215 https://conda.anaconda.org/conda-forge/osx-64/tornado-6.4.2-py313h63b0ddb_0.conda#74a3a14f82dc65fa19f4fd4e2eb8da93 https://conda.anaconda.org/conda-forge/osx-64/ccache-4.10.1-hee5fd93_0.conda#09898bb80e196695cea9e07402cff215 https://conda.anaconda.org/conda-forge/osx-64/cctools_osx-64-1010.6-hea4301f_2.conda#70260b63386f080de1aa175dea5d57ac https://conda.anaconda.org/conda-forge/osx-64/clang-17-17.0.6-default_hb173f14_7.conda#809e36447b1bfb87ed1b7fb46339561a -https://conda.anaconda.org/conda-forge/osx-64/coverage-7.6.8-py313h717bdf5_0.conda#1f858c8c3b1dee85e64ce68fdaa0b6e7 -https://conda.anaconda.org/conda-forge/osx-64/fonttools-4.55.0-py313h717bdf5_0.conda#8652d2398f4c9e160d022844800f6be3 +https://conda.anaconda.org/conda-forge/osx-64/coverage-7.6.9-py313h717bdf5_0.conda#31f9f00b93e0a0c1fea6a5e94bcf0008 +https://conda.anaconda.org/conda-forge/osx-64/fonttools-4.55.2-py313h717bdf5_0.conda#d001bd52565c4e57cc36c25aac78bf03 https://conda.anaconda.org/conda-forge/osx-64/gfortran_impl_osx-64-13.2.0-h2bc304d_3.conda#57aa4cb95277a27aa0a1834ed97be45b https://conda.anaconda.org/conda-forge/noarch/joblib-1.4.2-pyhd8ed1ab_0.conda#25df261d4523d9f9783bcdb7208d872f https://conda.anaconda.org/conda-forge/osx-64/ld64-951.9-h0a3eb4e_2.conda#c198062cf84f2e797996ac156daffa9e -https://conda.anaconda.org/conda-forge/noarch/meson-1.6.0-pyhd8ed1ab_0.conda#380ba6a3eddd8e7649bfe8e6812611aa +https://conda.anaconda.org/conda-forge/noarch/meson-1.6.0-pyhd8ed1ab_1.conda#59d45dbe1b0a123966266340b579d366 https://conda.anaconda.org/conda-forge/osx-64/mkl-2023.2.0-h54c2260_50500.conda#0a342ccdc79e4fcd359245ac51941e7b https://conda.anaconda.org/conda-forge/osx-64/pillow-11.0.0-py313h4d44d4f_0.conda#d5a3e556600840a77c61394c48ee52d9 -https://conda.anaconda.org/conda-forge/noarch/pyproject-metadata-0.9.0-pyh2cfa8aa_0.conda#10906a130eeb4a68645bf97c28333141 -https://conda.anaconda.org/conda-forge/noarch/pytest-8.3.4-pyhd8ed1ab_0.conda#ff8f2ef7f2636906b3781d0cf92388d0 -https://conda.anaconda.org/conda-forge/noarch/python-dateutil-2.9.0.post0-pyhff2d567_0.conda#b6dfd90a2141e573e4b6a81630b56df5 +https://conda.anaconda.org/conda-forge/noarch/pyproject-metadata-0.9.0-pyhd8ed1ab_1.conda#1239146a53a383a84633800294120f17 +https://conda.anaconda.org/conda-forge/noarch/pytest-8.3.4-pyhd8ed1ab_1.conda#799ed216dc6af62520f32aa39bc1c2bb +https://conda.anaconda.org/conda-forge/noarch/python-dateutil-2.9.0.post0-pyhff2d567_1.conda#5ba79d7c71f03c678c8ead841f347d6e https://conda.anaconda.org/conda-forge/osx-64/cctools-1010.6-h5b2de21_2.conda#97f24eeeb3509883a6988894fd7c9bbf https://conda.anaconda.org/conda-forge/osx-64/clang-17.0.6-default_he371ed4_7.conda#fd6888f26c44ddb10c9954a2df5765c7 https://conda.anaconda.org/conda-forge/osx-64/libblas-3.9.0-20_osx64_mkl.conda#160fdc97a51d66d51dc782fb67d35205 -https://conda.anaconda.org/conda-forge/noarch/meson-python-0.17.1-pyh70fd9c4_0.conda#722b649da38842068d83b6e6770f11a1 +https://conda.anaconda.org/conda-forge/noarch/meson-python-0.17.1-pyh70fd9c4_1.conda#7a02679229c6c2092571b4c025055440 https://conda.anaconda.org/conda-forge/osx-64/mkl-devel-2023.2.0-h694c41f_50500.conda#1b4d0235ef253a1e19459351badf4f9f -https://conda.anaconda.org/conda-forge/noarch/pytest-cov-6.0.0-pyhd8ed1ab_0.conda#cb8a11b6d209e3d85e5094bdbd9ebd9c -https://conda.anaconda.org/conda-forge/noarch/pytest-xdist-3.6.1-pyhd8ed1ab_0.conda#b39568655c127a9c4a44d178ac99b6d0 +https://conda.anaconda.org/conda-forge/noarch/pytest-cov-6.0.0-pyhd8ed1ab_1.conda#79963c319d1be62c8fd3e34555816e01 +https://conda.anaconda.org/conda-forge/noarch/pytest-xdist-3.6.1-pyhd8ed1ab_1.conda#59aad4fb37cabc0bacc73cf344612ddd https://conda.anaconda.org/conda-forge/osx-64/clangxx-17.0.6-default_he371ed4_7.conda#4f110486af1272f0d4dee6adc5041fbf https://conda.anaconda.org/conda-forge/osx-64/libcblas-3.9.0-20_osx64_mkl.conda#51089a4865eb4aec2bc5c7468bd07f9f https://conda.anaconda.org/conda-forge/osx-64/liblapack-3.9.0-20_osx64_mkl.conda#58f08e12ad487fac4a08f90ff0b87aec https://conda.anaconda.org/conda-forge/noarch/compiler-rt_osx-64-17.0.6-hf2b8a54_2.conda#98e6d83e484e42f6beebba4276e38145 https://conda.anaconda.org/conda-forge/osx-64/liblapacke-3.9.0-20_osx64_mkl.conda#124ae8e384268a8da66f1d64114a1eda -https://conda.anaconda.org/conda-forge/osx-64/numpy-2.1.3-py313h7ca3f3b_0.conda#b827b0af2098c63435b27b7f4e4d50dd +https://conda.anaconda.org/conda-forge/osx-64/numpy-2.2.0-py313h6ae94ac_0.conda#5a29107bfc566fd1d44189c30ec67380 https://conda.anaconda.org/conda-forge/osx-64/blas-devel-3.9.0-20_osx64_mkl.conda#cc3260179093918b801e373c6e888e02 https://conda.anaconda.org/conda-forge/osx-64/compiler-rt-17.0.6-h1020d70_2.conda#be4cb4531d4cee9df94bf752455d68de https://conda.anaconda.org/conda-forge/osx-64/contourpy-1.3.1-py313ha0b1807_0.conda#5ae850f4b044294bd7d655228fc236f9 https://conda.anaconda.org/conda-forge/osx-64/pandas-2.2.3-py313h38cdd20_1.conda#ab61fb255c951a0514616e92dd2e18b2 -https://conda.anaconda.org/conda-forge/osx-64/scipy-1.14.1-py313hbd2dc07_1.conda#63098e1999a8f08b82ae921440e6ed0a +https://conda.anaconda.org/conda-forge/osx-64/scipy-1.14.1-py313hd641537_2.conda#761f4433e80b2daed4d050da787db155 https://conda.anaconda.org/conda-forge/osx-64/blas-2.120-mkl.conda#b041a7677a412f3d925d8208936cb1e2 https://conda.anaconda.org/conda-forge/osx-64/clang_impl_osx-64-17.0.6-h1af8efd_23.conda#90132dd643d402883e4fbd8f0527e152 -https://conda.anaconda.org/conda-forge/osx-64/matplotlib-base-3.9.2-py313h04f2f9a_2.conda#73c8a15c5101126f8adc9ab9a6818959 +https://conda.anaconda.org/conda-forge/osx-64/matplotlib-base-3.9.3-py313he981572_0.conda#f32773584f0db10dcd02e88271a645eb https://conda.anaconda.org/conda-forge/osx-64/pyamg-5.2.1-py313h0322a6a_1.conda#4bda5182eeaef3d2017a2ec625802e1a https://conda.anaconda.org/conda-forge/osx-64/clang_osx-64-17.0.6-h7e5c614_23.conda#615b86de1eb0162b7fa77bb8cbf57f1d -https://conda.anaconda.org/conda-forge/osx-64/matplotlib-3.9.2-py313habf4b1d_2.conda#4b81b94ada5a3bc121a91fc60d61fdd1 +https://conda.anaconda.org/conda-forge/osx-64/matplotlib-3.9.3-py313habf4b1d_0.conda#2a492d5f99ab3ca997a55f8a2d702cd0 https://conda.anaconda.org/conda-forge/osx-64/c-compiler-1.8.0-hfc4bf79_1.conda#d6e3cf55128335736c8d4bb86e73c191 https://conda.anaconda.org/conda-forge/osx-64/clangxx_impl_osx-64-17.0.6-hc3430b7_23.conda#b724718bfe53f93e782fe944ec58029e https://conda.anaconda.org/conda-forge/osx-64/gfortran_osx-64-13.2.0-h18f7dce_1.conda#71d59c1ae3fea7a97154ff0e20b38df3 diff --git a/build_tools/azure/pylatest_conda_mkl_no_openmp_osx-64_conda.lock b/build_tools/azure/pylatest_conda_mkl_no_openmp_osx-64_conda.lock index 7161a8b9ff14b..979572b3b7ec0 100644 --- a/build_tools/azure/pylatest_conda_mkl_no_openmp_osx-64_conda.lock +++ b/build_tools/azure/pylatest_conda_mkl_no_openmp_osx-64_conda.lock @@ -50,7 +50,7 @@ https://repo.anaconda.com/pkgs/main/osx-64/mkl-service-2.4.0-py312h6c40b1e_1.con https://repo.anaconda.com/pkgs/main/osx-64/ninja-1.12.1-hecd8cb5_0.conda#ee3b660616ef0fbcbd0096a67c11c94b https://repo.anaconda.com/pkgs/main/osx-64/openjpeg-2.5.2-hbf2204d_0.conda#8463f11309271a93d615450382761470 https://repo.anaconda.com/pkgs/main/osx-64/packaging-24.1-py312hecd8cb5_0.conda#6130dafc4d26d55e93ceab460d2a72b5 -https://repo.anaconda.com/pkgs/main/osx-64/pluggy-1.0.0-py312hecd8cb5_1.conda#647fada22f1697691fdee90b52c99bcb +https://repo.anaconda.com/pkgs/main/osx-64/pluggy-1.5.0-py312hecd8cb5_0.conda#ca381e438f1dbd7986ac0fa0da70c9d8 https://repo.anaconda.com/pkgs/main/osx-64/pyparsing-3.2.0-py312hecd8cb5_0.conda#e4086daaaed13f68cc8d5b9da7db73cc https://repo.anaconda.com/pkgs/main/noarch/python-tzdata-2023.3-pyhd3eb1b0_0.conda#479c037de0186d114b9911158427624e https://repo.anaconda.com/pkgs/main/osx-64/pytz-2024.1-py312hecd8cb5_0.conda#2b28ec0e0d07f5c0c701f75200b1e8b6 diff --git a/build_tools/azure/pylatest_pip_openblas_pandas_linux-64_conda.lock b/build_tools/azure/pylatest_pip_openblas_pandas_linux-64_conda.lock index a1c2a62d63155..45f266928eecb 100644 --- a/build_tools/azure/pylatest_pip_openblas_pandas_linux-64_conda.lock +++ b/build_tools/azure/pylatest_pip_openblas_pandas_linux-64_conda.lock @@ -33,12 +33,12 @@ https://repo.anaconda.com/pkgs/main/linux-64/pip-24.2-py313h06a4308_0.conda#59f8 # pip babel @ https://files.pythonhosted.org/packages/ed/20/bc79bc575ba2e2a7f70e8a1155618bb1301eaa5132a8271373a6903f73f8/babel-2.16.0-py3-none-any.whl#sha256=368b5b98b37c06b7daf6696391c3240c938b37767d4584413e8438c5c435fa8b # pip certifi @ https://files.pythonhosted.org/packages/12/90/3c9ff0512038035f59d279fddeb79f5f1eccd8859f06d6163c58798b9487/certifi-2024.8.30-py3-none-any.whl#sha256=922820b53db7a7257ffbda3f597266d435245903d80737e34f8a45ff3e3230d8 # pip charset-normalizer @ https://files.pythonhosted.org/packages/2b/c9/1c8fe3ce05d30c87eff498592c89015b19fade13df42850aafae09e94f35/charset_normalizer-3.4.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl#sha256=4796efc4faf6b53a18e3d46343535caed491776a22af773f366534056c4e1fbc -# pip coverage @ https://files.pythonhosted.org/packages/d4/e4/a91e9bb46809c8b63e68fc5db5c4d567d3423b6691d049a4f950e38fbe9d/coverage-7.6.8-cp313-cp313-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl#sha256=3b4b4299dd0d2c67caaaf286d58aef5e75b125b95615dda4542561a5a566a1e3 +# pip coverage @ https://files.pythonhosted.org/packages/9f/79/6c7a800913a9dd23ac8c8da133ebb556771a5a3d4df36b46767b1baffd35/coverage-7.6.9-cp313-cp313-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl#sha256=3c026eb44f744acaa2bda7493dad903aa5bf5fc4f2554293a798d5606710055d # pip cycler @ https://files.pythonhosted.org/packages/e7/05/c19819d5e3d95294a6f5947fb9b9629efb316b96de511b418c53d245aae6/cycler-0.12.1-py3-none-any.whl#sha256=85cef7cff222d8644161529808465972e51340599459b8ac3ccbac5a854e0d30 # pip cython @ https://files.pythonhosted.org/packages/1c/ae/d520f3cd94a8926bc47275a968e51bbc669a28f27a058cdfc5c3081fbbf7/Cython-3.0.11-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl#sha256=9c02361af9bfa10ff1ccf967fc75159e56b1c8093caf565739ed77a559c1f29f # pip docutils @ https://files.pythonhosted.org/packages/8f/d7/9322c609343d929e75e7e5e6255e614fcc67572cfd083959cdef3b7aad79/docutils-0.21.2-py3-none-any.whl#sha256=dafca5b9e384f0e419294eb4d2ff9fa826435bf15f15b7bd45723e8ad76811b2 # pip execnet @ https://files.pythonhosted.org/packages/43/09/2aea36ff60d16dd8879bdb2f5b3ee0ba8d08cbbdcdfe870e695ce3784385/execnet-2.1.1-py3-none-any.whl#sha256=26dee51f1b80cebd6d0ca8e74dd8745419761d3bef34163928cbebbdc4749fdc -# pip fonttools @ https://files.pythonhosted.org/packages/31/cf/c51ea1348f9fba9c627439afad9dee0090040809ab431f4422b5bfdda34c/fonttools-4.55.0-cp313-cp313-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl#sha256=5435e5f1eb893c35c2bc2b9cd3c9596b0fcb0a59e7a14121562986dd4c47b8dd +# pip fonttools @ https://files.pythonhosted.org/packages/a2/3a/5bbe1b2a01f6bdf911aca48941eb317a678b50fccf63a27298289af79023/fonttools-4.55.2-cp313-cp313-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl#sha256=9b1726872e09268bbedb14dc02e58b7ea31ecdd1204c6073eda4911746b44797 # pip idna @ https://files.pythonhosted.org/packages/76/c6/c88e154df9c4e1a2a66ccf0005a88dfb2650c1dffb6f5ce603dfbd452ce3/idna-3.10-py3-none-any.whl#sha256=946d195a0d259cbba61165e88e65941f16e9b36ea6ddb97f00452bae8b1287d3 # pip imagesize @ https://files.pythonhosted.org/packages/ff/62/85c4c919272577931d407be5ba5d71c20f0b616d31a0befe0ae45bb79abd/imagesize-1.4.1-py2.py3-none-any.whl#sha256=0d8d18d08f840c19d0ee7ca1fd82490fdc3729b7ac93f49870406ddde8ef8d8b # pip iniconfig @ https://files.pythonhosted.org/packages/ef/a6/62565a6e1cf69e10f5727360368e451d4b7f58beeac6173dc9db836a5b46/iniconfig-2.0.0-py3-none-any.whl#sha256=b6a85871a79d2e3b22d2d1b94ac2824226a63c6b741c88f7ae975f18b6778374 @@ -48,14 +48,14 @@ https://repo.anaconda.com/pkgs/main/linux-64/pip-24.2-py313h06a4308_0.conda#59f8 # pip meson @ https://files.pythonhosted.org/packages/76/73/3dc4edc855c9988ff05ea5590f5c7bda72b6e0d138b2ddc1fab92a1f242f/meson-1.6.0-py3-none-any.whl#sha256=234a45f9206c6ee33b473ec1baaef359d20c0b89a71871d58c65a6db6d98fe74 # pip networkx @ https://files.pythonhosted.org/packages/b9/54/dd730b32ea14ea797530a4479b2ed46a6fb250f682a9cfb997e968bf0261/networkx-3.4.2-py3-none-any.whl#sha256=df5d4365b724cf81b8c6a7312509d0c22386097011ad1abe274afd5e9d3bbc5f # pip ninja @ https://files.pythonhosted.org/packages/62/54/787bb70e6af2f1b1853af9bab62a5e7cb35b957d72daf253b7f3c653c005/ninja-1.11.1.2-py3-none-manylinux_2_12_x86_64.manylinux2010_x86_64.whl#sha256=33d258809c8eda81f9d80e18a081a6eef3215e5fd1ba8902400d786641994e89 -# pip numpy @ https://files.pythonhosted.org/packages/70/50/73f9a5aa0810cdccda9c1d20be3cbe4a4d6ea6bfd6931464a44c95eef731/numpy-2.1.3-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl#sha256=5641516794ca9e5f8a4d17bb45446998c6554704d888f86df9b200e66bdcce56 +# pip numpy @ https://files.pythonhosted.org/packages/df/54/13535f74391dbe5f479ceed96f1403267be302c840040700d4fd66688089/numpy-2.2.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl#sha256=a7d41d1612c1a82b64697e894b75db6758d4f21c3ec069d841e60ebe54b5b571 # pip packaging @ https://files.pythonhosted.org/packages/88/ef/eb23f262cca3c0c4eb7ab1933c3b1f03d021f2c48f54763065b6f0e321be/packaging-24.2-py3-none-any.whl#sha256=09abb1bccd265c01f4a3aa3f7a7db064b36514d2cba19a2f694fe6150451a759 # pip pillow @ https://files.pythonhosted.org/packages/44/ae/7e4f6662a9b1cb5f92b9cc9cab8321c381ffbee309210940e57432a4063a/pillow-11.0.0-cp313-cp313-manylinux_2_28_x86_64.whl#sha256=c6a660307ca9d4867caa8d9ca2c2658ab685de83792d1876274991adec7b93fa # pip pluggy @ https://files.pythonhosted.org/packages/88/5f/e351af9a41f866ac3f1fac4ca0613908d9a41741cfcf2228f4ad853b697d/pluggy-1.5.0-py3-none-any.whl#sha256=44e1ad92c8ca002de6377e165f3e0f1be63266ab4d554740532335b9d75ea669 # pip pygments @ https://files.pythonhosted.org/packages/f7/3f/01c8b82017c199075f8f788d0d906b9ffbbc5a47dc9918a945e13d5a2bda/pygments-2.18.0-py3-none-any.whl#sha256=b8e6aca0523f3ab76fee51799c488e38782ac06eafcf95e7ba832985c8e7b13a # pip pyparsing @ https://files.pythonhosted.org/packages/be/ec/2eb3cd785efd67806c46c13a17339708ddc346cbb684eade7a6e6f79536a/pyparsing-3.2.0-py3-none-any.whl#sha256=93d9577b88da0bbea8cc8334ee8b918ed014968fd2ec383e868fb8afb1ccef84 # pip pytz @ https://files.pythonhosted.org/packages/11/c3/005fcca25ce078d2cc29fd559379817424e94885510568bc1bc53d7d5846/pytz-2024.2-py2.py3-none-any.whl#sha256=31c7c1817eb7fae7ca4b8c7ee50c72f93aa2dd863de768e1ef4245d426aa0725 -# pip six @ https://files.pythonhosted.org/packages/d9/5a/e7c31adbe875f2abbb91bd84cf2dc52d792b5a01506781dbcf25c91daf11/six-1.16.0-py2.py3-none-any.whl#sha256=8abb2f1d86890a2dfb989f9a77cfcfd3e47c2a354b01111771326f8aa26e0254 +# pip six @ https://files.pythonhosted.org/packages/b7/ce/149a00dd41f10bc29e5921b496af8b574d8413afcd5e30dfa0ed46c2cc5e/six-1.17.0-py2.py3-none-any.whl#sha256=4721f391ed90541fddacab5acf947aa0d3dc7d27b2e1e8eda2be8970586c3274 # pip snowballstemmer @ https://files.pythonhosted.org/packages/ed/dc/c02e01294f7265e63a7315fe086dd1df7dacb9f840a804da846b96d01b96/snowballstemmer-2.2.0-py2.py3-none-any.whl#sha256=c8e1716e83cc398ae16824e5572ae04e0d9fc2c6b985fb0f900f5f0c96ecba1a # pip sphinxcontrib-applehelp @ https://files.pythonhosted.org/packages/5d/85/9ebeae2f76e9e77b952f4b274c27238156eae7979c5421fba91a28f4970d/sphinxcontrib_applehelp-2.0.0-py3-none-any.whl#sha256=4cd3f0ec4ac5dd9c17ec65e9ab272c9b867ea77425228e68ecf08d6b28ddbdb5 # pip sphinxcontrib-devhelp @ https://files.pythonhosted.org/packages/35/7a/987e583882f985fe4d7323774889ec58049171828b58c2217e7f79cdf44e/sphinxcontrib_devhelp-2.0.0-py3-none-any.whl#sha256=aefb8b83854e4b0998877524d1029fd3e6879210422ee3780459e28a1f03a8a2 @@ -82,7 +82,7 @@ https://repo.anaconda.com/pkgs/main/linux-64/pip-24.2-py313h06a4308_0.conda#59f8 # pip matplotlib @ https://files.pythonhosted.org/packages/29/09/146a17d37e32313507f11ac984e65311f2d5805d731eb981d4f70eb928dc/matplotlib-3.9.3-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl#sha256=6be0ba61f6ff2e6b68e4270fb63b6813c9e7dec3d15fc3a93f47480444fd72f0 # pip meson-python @ https://files.pythonhosted.org/packages/7d/ec/40c0ddd29ef4daa6689a2b9c5ced47d5b58fa54ae149b19e9a97f4979c8c/meson_python-0.17.1-py3-none-any.whl#sha256=30a75c52578ef14aff8392677b09c39346e0a24d2b2c6204b8ed30583c11269c # pip pandas @ https://files.pythonhosted.org/packages/e8/31/aa8da88ca0eadbabd0a639788a6da13bb2ff6edbbb9f29aa786450a30a91/pandas-2.2.3-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl#sha256=f3a255b2c19987fbbe62a9dfd6cff7ff2aa9ccab3fc75218fd4b7530f01efa24 -# pip pyamg @ https://files.pythonhosted.org/packages/72/10/aee094f1ab76d07d7c5c3ff7e4c411d720f0d4461e0fdea74a4393058863/pyamg-5.2.1.tar.gz#sha256=f449d934224e503401ee72cd2eece1a29d893b7abe35f62a44d52ba831198efa +# pip pyamg @ https://files.pythonhosted.org/packages/cd/a7/0df731cbfb09e73979a1a032fc7bc5be0eba617d798b998a0f887afe8ade/pyamg-5.2.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl#sha256=6999b351ab969c79faacb81faa74c0fa9682feeff3954979212872a3ee40c298 # pip pytest-cov @ https://files.pythonhosted.org/packages/36/3b/48e79f2cd6a61dbbd4807b4ed46cb564b4fd50a76166b1c4ea5c1d9e2371/pytest_cov-6.0.0-py3-none-any.whl#sha256=eee6f1b9e61008bd34975a4d5bab25801eb31898b032dd55addc93e96fcaaa35 # pip pytest-xdist @ https://files.pythonhosted.org/packages/6d/82/1d96bf03ee4c0fdc3c0cbe61470070e659ca78dc0086fb88b66c185e2449/pytest_xdist-3.6.1-py3-none-any.whl#sha256=9ed4adfb68a016610848639bb7e02c9352d5d9f03d04809919e2dafc3be4cca7 # pip scikit-image @ https://files.pythonhosted.org/packages/5d/c5/bcd66bf5aae5587d3b4b69c74bee30889c46c9778e858942ce93a030e1f3/scikit_image-0.24.0.tar.gz#sha256=5d16efe95da8edbeb363e0c4157b99becbd650a60b77f6e3af5768b66cf007ab diff --git a/build_tools/azure/pymin_conda_forge_mkl_win-64_conda.lock b/build_tools/azure/pymin_conda_forge_mkl_win-64_conda.lock index b076814e47afa..51a7d1928dadf 100644 --- a/build_tools/azure/pymin_conda_forge_mkl_win-64_conda.lock +++ b/build_tools/azure/pymin_conda_forge_mkl_win-64_conda.lock @@ -31,81 +31,81 @@ https://conda.anaconda.org/conda-forge/win-64/libexpat-2.6.4-he0c23c2_0.conda#eb https://conda.anaconda.org/conda-forge/win-64/libffi-3.4.2-h8ffe710_5.tar.bz2#2c96d1b6915b408893f9472569dee135 https://conda.anaconda.org/conda-forge/win-64/libiconv-1.17-hcfcfb64_2.conda#e1eb10b1cca179f2baa3601e4efc8712 https://conda.anaconda.org/conda-forge/win-64/libjpeg-turbo-3.0.0-hcfcfb64_1.conda#3f1b948619c45b1ca714d60c7389092c +https://conda.anaconda.org/conda-forge/win-64/liblzma-5.6.3-h2466b09_1.conda#015b9c0bd1eef60729ab577a38aaf0b5 https://conda.anaconda.org/conda-forge/win-64/libsqlite-3.47.0-h2466b09_1.conda#5b1f36012cc3d09c4eb9f24ad0e2c379 https://conda.anaconda.org/conda-forge/win-64/libwebp-base-1.4.0-hcfcfb64_0.conda#abd61d0ab127ec5cd68f62c2969e6f34 https://conda.anaconda.org/conda-forge/win-64/libzlib-1.3.1-h2466b09_2.conda#41fbfac52c601159df6c01f875de31b9 https://conda.anaconda.org/conda-forge/win-64/ninja-1.12.1-hc790b64_0.conda#a557dde55343e03c68cd7e29e7f87279 https://conda.anaconda.org/conda-forge/win-64/openssl-3.4.0-h2466b09_0.conda#d0d805d9b5524a14efb51b3bff965e83 -https://conda.anaconda.org/conda-forge/win-64/pixman-0.43.4-h63175ca_0.conda#b98135614135d5f458b75ab9ebb9558c +https://conda.anaconda.org/conda-forge/win-64/pixman-0.44.2-had0cd8c_0.conda#c720ac9a3bd825bf8b4dc7523ea49be4 https://conda.anaconda.org/conda-forge/win-64/qhull-2020.2-hc790b64_5.conda#854fbdff64b572b5c0b470f334d34c11 https://conda.anaconda.org/conda-forge/win-64/tk-8.6.13-h5226925_1.conda#fc048363eb8f03cd1737600a5d08aafe -https://conda.anaconda.org/conda-forge/win-64/xz-5.2.6-h8d14728_0.tar.bz2#515d77642eaa3639413c6b1bc3f94219 https://conda.anaconda.org/conda-forge/win-64/krb5-1.21.3-hdf4eb48_0.conda#31aec030344e962fbd7dbbbbd68e60a9 https://conda.anaconda.org/conda-forge/win-64/libbrotlidec-1.1.0-h2466b09_2.conda#9bae75ce723fa34e98e239d21d752a7e https://conda.anaconda.org/conda-forge/win-64/libbrotlienc-1.1.0-h2466b09_2.conda#85741a24d97954a991e55e34bc55990b https://conda.anaconda.org/conda-forge/win-64/libgcc-14.2.0-h1383e82_1.conda#75fdd34824997a0f9950a703b15d8ac5 https://conda.anaconda.org/conda-forge/win-64/libintl-0.22.5-h5728263_3.conda#2cf0cf76cc15d360dfa2f17fd6cf9772 https://conda.anaconda.org/conda-forge/win-64/libpng-1.6.44-h3ca93ac_0.conda#639ac6b55a40aa5de7b8c1b4d78f9e81 -https://conda.anaconda.org/conda-forge/win-64/libxml2-2.13.5-h442d1da_0.conda#1fbabbec60a3c7c519a5973b06c3b2f4 +https://conda.anaconda.org/conda-forge/win-64/libxml2-2.13.5-he286e8c_1.conda#77eaa84f90fc90643c5a0be0aa9bdd1b https://conda.anaconda.org/conda-forge/win-64/pcre2-10.44-h3d7b363_2.conda#a3a3baddcfb8c80db84bec3cb7746fb8 -https://conda.anaconda.org/conda-forge/win-64/python-3.9.20-hfaddaf0_1_cpython.conda#445389d1d311435a90def248c814ddd6 +https://conda.anaconda.org/conda-forge/win-64/python-3.9.21-h37870fc_1_cpython.conda#436316266ec1b6c23065b398e43d3a44 https://conda.anaconda.org/conda-forge/win-64/zlib-1.3.1-h2466b09_2.conda#be60c4e8efa55fddc17b4131aa47acbd https://conda.anaconda.org/conda-forge/win-64/zstd-1.5.6-h0ea2cb4_0.conda#9a17230f95733c04dc40a2b1e5491d74 https://conda.anaconda.org/conda-forge/win-64/brotli-bin-1.1.0-h2466b09_2.conda#d22534a9be5771fc58eb7564947f669d https://conda.anaconda.org/conda-forge/noarch/certifi-2024.8.30-pyhd8ed1ab_0.conda#12f7d00853807b0531775e9be891cb11 -https://conda.anaconda.org/conda-forge/noarch/colorama-0.4.6-pyhd8ed1ab_0.tar.bz2#3faab06a954c2a04039983f2c4a50d99 -https://conda.anaconda.org/conda-forge/noarch/cycler-0.12.1-pyhd8ed1ab_0.conda#5cd86562580f274031ede6aa6aa24441 +https://conda.anaconda.org/conda-forge/noarch/colorama-0.4.6-pyhd8ed1ab_1.conda#962b9857ee8e7018c22f2776ffa0b2d7 +https://conda.anaconda.org/conda-forge/noarch/cycler-0.12.1-pyhd8ed1ab_1.conda#44600c4667a319d67dbe0681fc0bc833 https://conda.anaconda.org/conda-forge/win-64/cython-3.0.11-py39h4279646_3.conda#c89d5275e2d6545ba01d6e1ce064496e -https://conda.anaconda.org/conda-forge/noarch/exceptiongroup-1.2.2-pyhd8ed1ab_0.conda#d02ae936e42063ca46af6cdad2dbd1e0 -https://conda.anaconda.org/conda-forge/noarch/execnet-2.1.1-pyhd8ed1ab_0.conda#15dda3cdbf330abfe9f555d22f66db46 +https://conda.anaconda.org/conda-forge/noarch/exceptiongroup-1.2.2-pyhd8ed1ab_1.conda#a16662747cdeb9abbac74d0057cc976e +https://conda.anaconda.org/conda-forge/noarch/execnet-2.1.1-pyhd8ed1ab_1.conda#a71efeae2c160f6789900ba2631a2c90 https://conda.anaconda.org/conda-forge/win-64/freetype-2.12.1-hdaf720e_2.conda#3761b23693f768dc75a8fd0a73ca053f -https://conda.anaconda.org/conda-forge/noarch/iniconfig-2.0.0-pyhd8ed1ab_0.conda#f800d2da156d08e289b14e87e43c1ae5 +https://conda.anaconda.org/conda-forge/noarch/iniconfig-2.0.0-pyhd8ed1ab_1.conda#6837f3eff7dcea42ecd714ce1ac2b108 https://conda.anaconda.org/conda-forge/win-64/kiwisolver-1.4.7-py39h2b77a98_0.conda#c116c25e2e36f770f065559ad2a1da73 -https://conda.anaconda.org/conda-forge/win-64/libclang13-19.1.4-default_ha5278ca_0.conda#6acaf8464e71abf0713a030e0eba8317 +https://conda.anaconda.org/conda-forge/win-64/libclang13-19.1.5-default_ha5278ca_0.conda#630e19cfac398a28661914e52d8d99a0 https://conda.anaconda.org/conda-forge/win-64/libgfortran5-14.2.0-hf020157_1.conda#294a5033b744648a2ba816b34ffd810a https://conda.anaconda.org/conda-forge/win-64/libglib-2.82.2-h7025463_0.conda#3e379c1b908a7101ecbc503def24613f https://conda.anaconda.org/conda-forge/win-64/libhwloc-2.11.2-default_ha69328c_1001.conda#b87a0ac5ab6495d8225db5dc72dd21cd -https://conda.anaconda.org/conda-forge/win-64/libtiff-4.7.0-hfc51747_1.conda#eac317ed1cc6b9c0af0c27297e364665 +https://conda.anaconda.org/conda-forge/win-64/libtiff-4.7.0-hdefb170_2.conda#49434938b99a5ba78c9afe573d158c1e https://conda.anaconda.org/conda-forge/win-64/libxslt-1.1.39-h3df6e99_0.conda#279ee338c9b34871d578cb3c7aa68f70 https://conda.anaconda.org/conda-forge/noarch/munkres-1.1.4-pyh9f0ad1d_0.tar.bz2#2ba8498c1018c1e9c61eb99b973dfe19 -https://conda.anaconda.org/conda-forge/noarch/packaging-24.2-pyhff2d567_1.conda#8508b703977f4c4ada34d657d051972c -https://conda.anaconda.org/conda-forge/noarch/pluggy-1.5.0-pyhd8ed1ab_0.conda#d3483c8fc2dc2cc3f5cf43e26d60cabf +https://conda.anaconda.org/conda-forge/noarch/packaging-24.2-pyhd8ed1ab_2.conda#3bfed7e6228ebf2f7b9eaa47f1b4e2aa +https://conda.anaconda.org/conda-forge/noarch/pluggy-1.5.0-pyhd8ed1ab_1.conda#e9dcbce5f45f9ee500e728ae58b605b6 https://conda.anaconda.org/conda-forge/win-64/pthread-stubs-0.4-h0e40799_1002.conda#3c8f2573569bb816483e5cf57efbbe29 -https://conda.anaconda.org/conda-forge/noarch/pyparsing-3.2.0-pyhd8ed1ab_1.conda#035c17fbf099f50ff60bf2eb303b0a83 +https://conda.anaconda.org/conda-forge/noarch/pyparsing-3.2.0-pyhd8ed1ab_2.conda#4c05a2bcf87bb495512374143b57cf28 https://conda.anaconda.org/conda-forge/noarch/setuptools-75.6.0-pyhff2d567_1.conda#fc80f7995e396cbaeabd23cf46c413dc -https://conda.anaconda.org/conda-forge/noarch/six-1.16.0-pyh6c4a22f_0.tar.bz2#e5f25f8dbc060e9a8d912e432202afc2 +https://conda.anaconda.org/conda-forge/noarch/six-1.17.0-pyhd8ed1ab_0.conda#a451d576819089b0d672f18768be0f65 https://conda.anaconda.org/conda-forge/noarch/threadpoolctl-3.5.0-pyhc1e730c_0.conda#df68d78237980a159bd7149f33c0e8fd https://conda.anaconda.org/conda-forge/noarch/toml-0.10.2-pyhd8ed1ab_0.tar.bz2#f832c45a477c78bebd107098db465095 -https://conda.anaconda.org/conda-forge/noarch/tomli-2.2.1-pyhd8ed1ab_0.conda#ee8ab0fe4c8dfc5a6319f7f8246022fc +https://conda.anaconda.org/conda-forge/noarch/tomli-2.2.1-pyhd8ed1ab_1.conda#ac944244f1fed2eb49bae07193ae8215 https://conda.anaconda.org/conda-forge/win-64/tornado-6.4.2-py39ha55e580_0.conda#96e4fc4c6aaaa23d99bf1ed008e7b1e1 https://conda.anaconda.org/conda-forge/win-64/unicodedata2-15.1.0-py39ha55e580_1.conda#7b7e5732092b9a635440ec939e45651d -https://conda.anaconda.org/conda-forge/noarch/wheel-0.45.1-pyhd8ed1ab_0.conda#bdb2f437ce62fd2f1fef9119a37a12d9 +https://conda.anaconda.org/conda-forge/noarch/wheel-0.45.1-pyhd8ed1ab_1.conda#75cb7132eb58d97896e173ef12ac9986 https://conda.anaconda.org/conda-forge/win-64/xorg-libxau-1.0.11-h0e40799_1.conda#ca66d6f8fe86dd53664e8de5087ef6b1 https://conda.anaconda.org/conda-forge/win-64/xorg-libxdmcp-1.1.5-h0e40799_0.conda#8393c0f7e7870b4eb45553326f81f0ff https://conda.anaconda.org/conda-forge/noarch/zipp-3.21.0-pyhd8ed1ab_1.conda#0c3cc595284c5e8f0f9900a9b228a332 https://conda.anaconda.org/conda-forge/win-64/brotli-1.1.0-h2466b09_2.conda#378f1c9421775dfe644731cb121c8979 -https://conda.anaconda.org/conda-forge/win-64/coverage-7.6.8-py39hf73967f_0.conda#99c682c1bde1e5661ad0af5c32710330 +https://conda.anaconda.org/conda-forge/win-64/coverage-7.6.9-py39hf73967f_0.conda#30eda386561c7e6b4ab15fe08d9b2835 https://conda.anaconda.org/conda-forge/win-64/fontconfig-2.15.0-h765892d_1.conda#9bb0026a2131b09404c59c4290c697cd -https://conda.anaconda.org/conda-forge/noarch/importlib_resources-6.4.5-pyhd8ed1ab_0.conda#c808991d29b9838fb4d96ce8267ec9ec +https://conda.anaconda.org/conda-forge/noarch/importlib_resources-6.4.5-pyhd8ed1ab_1.conda#15798fa69312d433af690c8c42b3fb36 https://conda.anaconda.org/conda-forge/noarch/joblib-1.4.2-pyhd8ed1ab_0.conda#25df261d4523d9f9783bcdb7208d872f https://conda.anaconda.org/conda-forge/win-64/lcms2-2.16-h67d730c_0.conda#d3592435917b62a8becff3a60db674f6 https://conda.anaconda.org/conda-forge/win-64/libgfortran-14.2.0-h719f0c7_1.conda#bd709ec903eeb030208c78e4c35691d6 https://conda.anaconda.org/conda-forge/win-64/libxcb-1.17.0-h0e4246c_0.conda#a69bbf778a462da324489976c84cfc8c -https://conda.anaconda.org/conda-forge/noarch/meson-1.6.0-pyhd8ed1ab_0.conda#380ba6a3eddd8e7649bfe8e6812611aa +https://conda.anaconda.org/conda-forge/noarch/meson-1.6.0-pyhd8ed1ab_1.conda#59d45dbe1b0a123966266340b579d366 https://conda.anaconda.org/conda-forge/win-64/openjpeg-2.5.2-h3d672ee_0.conda#7e7099ad94ac3b599808950cec30ad4e https://conda.anaconda.org/conda-forge/noarch/pip-24.3.1-pyh8b19718_0.conda#5dd546fe99b44fda83963d15f84263b7 -https://conda.anaconda.org/conda-forge/noarch/pyproject-metadata-0.9.0-pyh2cfa8aa_0.conda#10906a130eeb4a68645bf97c28333141 -https://conda.anaconda.org/conda-forge/noarch/pytest-8.3.4-pyhd8ed1ab_0.conda#ff8f2ef7f2636906b3781d0cf92388d0 -https://conda.anaconda.org/conda-forge/noarch/python-dateutil-2.9.0.post0-pyhff2d567_0.conda#b6dfd90a2141e573e4b6a81630b56df5 +https://conda.anaconda.org/conda-forge/noarch/pyproject-metadata-0.9.0-pyhd8ed1ab_1.conda#1239146a53a383a84633800294120f17 +https://conda.anaconda.org/conda-forge/noarch/pytest-8.3.4-pyhd8ed1ab_1.conda#799ed216dc6af62520f32aa39bc1c2bb +https://conda.anaconda.org/conda-forge/noarch/python-dateutil-2.9.0.post0-pyhff2d567_1.conda#5ba79d7c71f03c678c8ead841f347d6e https://conda.anaconda.org/conda-forge/win-64/tbb-2021.13.0-h62715c5_1.conda#9190dd0a23d925f7602f9628b3aed511 -https://conda.anaconda.org/conda-forge/win-64/cairo-1.18.0-h32b962e_3.conda#8f43723a4925c51e55c2d81725a97db4 -https://conda.anaconda.org/conda-forge/win-64/fonttools-4.55.0-py39hf73967f_0.conda#ec6d6a149d4e18a07f4bb959f68c4961 -https://conda.anaconda.org/conda-forge/noarch/importlib-resources-6.4.5-pyhd8ed1ab_0.conda#67f4772681cf86652f3e2261794cf045 -https://conda.anaconda.org/conda-forge/noarch/meson-python-0.17.1-pyh70fd9c4_0.conda#722b649da38842068d83b6e6770f11a1 +https://conda.anaconda.org/conda-forge/win-64/cairo-1.18.2-h5782bbf_0.conda#7282222777c47b6e426a2f001cc33621 +https://conda.anaconda.org/conda-forge/win-64/fonttools-4.55.2-py39hf73967f_0.conda#187c4c7c9ef2072b0098d5f910c83c16 +https://conda.anaconda.org/conda-forge/noarch/importlib-resources-6.4.5-pyhd8ed1ab_1.conda#59561d9b70f9df3b884c29910eba6593 +https://conda.anaconda.org/conda-forge/noarch/meson-python-0.17.1-pyh70fd9c4_1.conda#7a02679229c6c2092571b4c025055440 https://conda.anaconda.org/conda-forge/win-64/mkl-2024.2.2-h66d3029_14.conda#f011e7cc21918dc9d1efe0209e27fa16 https://conda.anaconda.org/conda-forge/win-64/pillow-11.0.0-py39h5ee314c_0.conda#0c57206c5215a7e56414ce0332805226 -https://conda.anaconda.org/conda-forge/noarch/pytest-cov-6.0.0-pyhd8ed1ab_0.conda#cb8a11b6d209e3d85e5094bdbd9ebd9c -https://conda.anaconda.org/conda-forge/noarch/pytest-xdist-3.6.1-pyhd8ed1ab_0.conda#b39568655c127a9c4a44d178ac99b6d0 +https://conda.anaconda.org/conda-forge/noarch/pytest-cov-6.0.0-pyhd8ed1ab_1.conda#79963c319d1be62c8fd3e34555816e01 +https://conda.anaconda.org/conda-forge/noarch/pytest-xdist-3.6.1-pyhd8ed1ab_1.conda#59aad4fb37cabc0bacc73cf344612ddd https://conda.anaconda.org/conda-forge/win-64/harfbuzz-9.0.0-h2bedf89_1.conda#254f119aaed2c0be271c1114ae18d09b https://conda.anaconda.org/conda-forge/win-64/libblas-3.9.0-25_win64_mkl.conda#499208e81242efb6e5abc7366c91c816 https://conda.anaconda.org/conda-forge/win-64/mkl-devel-2024.2.2-h57928b3_14.conda#ecc2c244eff5cb6289b6db5e0401c0aa @@ -119,5 +119,5 @@ https://conda.anaconda.org/conda-forge/win-64/blas-devel-3.9.0-25_win64_mkl.cond https://conda.anaconda.org/conda-forge/win-64/contourpy-1.3.0-py39h2b77a98_2.conda#37f8619ee96710220ead6bb386b9b24b https://conda.anaconda.org/conda-forge/win-64/scipy-1.13.1-py39h1a10956_0.conda#9f8e571406af04d2f5fdcbecec704505 https://conda.anaconda.org/conda-forge/win-64/blas-2.125-mkl.conda#186eeb4e8ba0a5944775e04f241fc02a -https://conda.anaconda.org/conda-forge/win-64/matplotlib-base-3.9.2-py39h5376392_2.conda#2b323077fcb629f959cc42ad95b08030 -https://conda.anaconda.org/conda-forge/win-64/matplotlib-3.9.2-py39hcbf5309_2.conda#669eb0180a4fa05503738dc02f9e3228 +https://conda.anaconda.org/conda-forge/win-64/matplotlib-base-3.9.3-py39h5376392_0.conda#c5e475d09dbb0f136818c5fc4b3b2117 +https://conda.anaconda.org/conda-forge/win-64/matplotlib-3.9.3-py39hcbf5309_0.conda#d038f7716b0e2869e404b48aaf190fef diff --git a/build_tools/azure/pymin_conda_forge_openblas_min_dependencies_linux-64_conda.lock b/build_tools/azure/pymin_conda_forge_openblas_min_dependencies_linux-64_conda.lock index f398c6d3f61f5..37bf61bdc91f1 100644 --- a/build_tools/azure/pymin_conda_forge_openblas_min_dependencies_linux-64_conda.lock +++ b/build_tools/azure/pymin_conda_forge_openblas_min_dependencies_linux-64_conda.lock @@ -13,7 +13,7 @@ https://conda.anaconda.org/conda-forge/noarch/tzdata-2024b-hc8b5060_0.conda#8ac3 https://conda.anaconda.org/conda-forge/noarch/fonts-conda-forge-1-0.tar.bz2#f766549260d6815b0c52253f1fb1bb29 https://conda.anaconda.org/conda-forge/linux-64/ld_impl_linux-64-2.43-h712a8e2_2.conda#048b02e3962f066da18efe3a21b77672 https://conda.anaconda.org/conda-forge/linux-64/libglvnd-1.7.0-ha4b6fd6_2.conda#434ca7e50e40f4918ab701e3facd59a0 -https://conda.anaconda.org/conda-forge/linux-64/llvm-openmp-19.1.4-h024ca30_0.conda#9370a10ba6a13079cc0c0e09d2ec13a8 +https://conda.anaconda.org/conda-forge/linux-64/llvm-openmp-19.1.5-h024ca30_0.conda#dc90d15c25a57f641f0b84c271e4761e https://conda.anaconda.org/conda-forge/linux-64/_openmp_mutex-4.5-2_kmp_llvm.tar.bz2#562b26ba2e19059551a811e72ab7f793 https://conda.anaconda.org/conda-forge/noarch/fonts-conda-ecosystem-1-0.tar.bz2#fee5683a3f04bd15cbd8318b096a27ab https://conda.anaconda.org/conda-forge/linux-64/libegl-1.7.0-ha4b6fd6_2.conda#c151d5eb730e9b7480e6d48c0fc44048 @@ -23,6 +23,7 @@ https://conda.anaconda.org/conda-forge/linux-64/libdeflate-1.22-hb9d3cd8_0.conda https://conda.anaconda.org/conda-forge/linux-64/libexpat-2.6.4-h5888daf_0.conda#db833e03127376d461e1e13e76f09b6c https://conda.anaconda.org/conda-forge/linux-64/libgcc-ng-14.2.0-h69a702a_1.conda#e39480b9ca41323497b05492a63bc35b https://conda.anaconda.org/conda-forge/linux-64/libgfortran5-14.2.0-hd5240d6_1.conda#9822b874ea29af082e5d36098d25427d +https://conda.anaconda.org/conda-forge/linux-64/liblzma-5.6.3-hb9d3cd8_1.conda#2ecf2f1c7e4e21fcfe6423a51a992d84 https://conda.anaconda.org/conda-forge/linux-64/libstdcxx-14.2.0-hc0a3c3a_1.conda#234a5554c53625688d51062645337328 https://conda.anaconda.org/conda-forge/linux-64/libzlib-1.3.1-hb9d3cd8_2.conda#edb0dca6bc32e4f4789199455a1dbeb8 https://conda.anaconda.org/conda-forge/linux-64/openssl-3.4.0-hb9d3cd8_0.conda#23cc74f77eb99315c0360ec3533147a9 @@ -46,6 +47,7 @@ https://conda.anaconda.org/conda-forge/linux-64/libgpg-error-1.51-hbd13f7d_1.con https://conda.anaconda.org/conda-forge/linux-64/libiconv-1.17-hd590300_2.conda#d66573916ffcf376178462f1b61c941e https://conda.anaconda.org/conda-forge/linux-64/libjpeg-turbo-3.0.0-hd590300_1.conda#ea25936bb4080d843790b586850f82b8 https://conda.anaconda.org/conda-forge/linux-64/libnsl-2.0.1-hd590300_0.conda#30fd6e37fe21f86f4bd26d6ee73eeec7 +https://conda.anaconda.org/conda-forge/linux-64/libntlm-1.4-h7f98852_1002.tar.bz2#e728e874159b042d92b90238a3cb0dc2 https://conda.anaconda.org/conda-forge/linux-64/libogg-1.3.5-h4ab18f5_0.conda#601bfb4b3c6f0b844443bb81a56651e0 https://conda.anaconda.org/conda-forge/linux-64/libopus-1.3.1-h7f98852_1.tar.bz2#15345e56d527b330e1cacbdf58676e8f https://conda.anaconda.org/conda-forge/linux-64/libpciaccess-0.18-hd590300_0.conda#48f4330bfcd959c3cfb704d424903c82 @@ -56,51 +58,49 @@ https://conda.anaconda.org/conda-forge/linux-64/libuuid-2.38.1-h0b41bf4_0.conda# https://conda.anaconda.org/conda-forge/linux-64/libwebp-base-1.4.0-hd590300_0.conda#b26e8aa824079e1be0294e7152ca4559 https://conda.anaconda.org/conda-forge/linux-64/libxcb-1.17.0-h8a09558_0.conda#92ed62436b625154323d40d5f2f11dd7 https://conda.anaconda.org/conda-forge/linux-64/libxcrypt-4.4.36-hd590300_1.conda#5aa797f8787fe7a17d1b0821485b5adc +https://conda.anaconda.org/conda-forge/linux-64/lz4-c-1.10.0-h5888daf_0.conda#af825462e69e44c88d628549ad59cfeb https://conda.anaconda.org/conda-forge/linux-64/mpg123-1.32.9-hc50e24c_0.conda#c7f302fd11eeb0987a6a5e1f3aed6a21 -https://conda.anaconda.org/conda-forge/linux-64/mysql-common-9.0.1-h266115a_2.conda#85c0dc0bcd110c998b01856975486ee7 +https://conda.anaconda.org/conda-forge/linux-64/mysql-common-9.0.1-h266115a_3.conda#9411c61ff1070b5e065b32840c39faa5 https://conda.anaconda.org/conda-forge/linux-64/ncurses-6.5-he02047a_1.conda#70caf8bb6cf39a0b6b7efc885f51c0fe https://conda.anaconda.org/conda-forge/linux-64/nspr-4.36-h5888daf_0.conda#de9cd5bca9e4918527b9b72b6e2e1409 +https://conda.anaconda.org/conda-forge/linux-64/pixman-0.44.2-h29eaf8c_0.conda#5e2a7acfa2c24188af39e7944e1b3604 https://conda.anaconda.org/conda-forge/linux-64/tk-8.6.13-noxft_h4845f30_101.conda#d453b98d9c83e71da0741bb0ff4d76bc -https://conda.anaconda.org/conda-forge/linux-64/xz-5.2.6-h166bdaf_0.tar.bz2#2161070d867d1b1204ea749c8eec4ef0 https://conda.anaconda.org/conda-forge/linux-64/zlib-1.3.1-hb9d3cd8_2.conda#c9f075ab2f33b3bbee9e62d4ad0a6cd8 https://conda.anaconda.org/conda-forge/linux-64/freetype-2.12.1-h267a509_2.conda#9ae35c3d96db2c94ce0cef86efdfa2cb https://conda.anaconda.org/conda-forge/linux-64/graphite2-1.3.13-h59595ed_1003.conda#f87c7b7c2cb45f323ffbce941c78ab7c https://conda.anaconda.org/conda-forge/linux-64/icu-75.1-he02047a_0.conda#8b189310083baabfb622af68fd9d3ae3 https://conda.anaconda.org/conda-forge/linux-64/lerc-4.0.0-h27087fc_0.tar.bz2#76bbff344f0134279f225174e9064c8f https://conda.anaconda.org/conda-forge/linux-64/libasprintf-0.22.5-he8f35ee_3.conda#4fab9799da9571266d05ca5503330655 -https://conda.anaconda.org/conda-forge/linux-64/libcap-2.69-h0f662aa_0.conda#25cb5999faa414e5ccb2c1388f62d3d5 -https://conda.anaconda.org/conda-forge/linux-64/libdrm-2.4.123-hb9d3cd8_0.conda#ee605e794bdc14e2b7f84c4faa0d8c2c +https://conda.anaconda.org/conda-forge/linux-64/libcap-2.71-h39aace5_0.conda#dd19e4e3043f6948bd7454b946ee0983 +https://conda.anaconda.org/conda-forge/linux-64/libdrm-2.4.124-hb9d3cd8_0.conda#8bc89311041d7fcb510238cf0848ccae https://conda.anaconda.org/conda-forge/linux-64/libedit-3.1.20191231-he28a2e2_2.tar.bz2#4d331e44109e3f0e19b4cb8f9b82f3e1 https://conda.anaconda.org/conda-forge/linux-64/libgcrypt-lib-1.11.0-hb9d3cd8_2.conda#e55712ff40a054134d51b89afca57dbc https://conda.anaconda.org/conda-forge/linux-64/libgettextpo-devel-0.22.5-he02047a_3.conda#9aba7960731e6b4547b3a52f812ed801 https://conda.anaconda.org/conda-forge/linux-64/libgfortran-ng-14.2.0-h69a702a_1.conda#0a7f4cd238267c88e5d69f7826a407eb https://conda.anaconda.org/conda-forge/linux-64/libvorbis-1.3.7-h9c3ff4c_0.tar.bz2#309dec04b70a3cc0f1e84a4013683bc0 -https://conda.anaconda.org/conda-forge/linux-64/lz4-c-1.9.4-hcb278e6_0.conda#318b08df404f9c9be5712aaa5a6f0bb0 https://conda.anaconda.org/conda-forge/linux-64/ninja-1.12.1-h297d8ca_0.conda#3aa1c7e292afeff25a0091ddd7c69b72 https://conda.anaconda.org/conda-forge/linux-64/nss-3.107-hdf54f9c_0.conda#294b7009fe9010b35c25bb683f663bc3 https://conda.anaconda.org/conda-forge/linux-64/pcre2-10.44-hba22ea6_2.conda#df359c09c41cd186fffb93a2d87aa6f5 -https://conda.anaconda.org/conda-forge/linux-64/pixman-0.43.2-h59595ed_0.conda#71004cbf7924e19c02746ccde9fd7123 https://conda.anaconda.org/conda-forge/linux-64/readline-8.2-h8228510_1.conda#47d31b792659ce70f470b5c82fdfb7a4 https://conda.anaconda.org/conda-forge/linux-64/xcb-util-0.4.1-hb711507_2.conda#8637c3e5821654d0edf97e2b0404b443 https://conda.anaconda.org/conda-forge/linux-64/xcb-util-keysyms-0.4.1-hb711507_0.conda#ad748ccca349aec3e91743e08b5e2b50 https://conda.anaconda.org/conda-forge/linux-64/xcb-util-renderutil-0.3.10-hb711507_0.conda#0e0cbe0564d03a99afd5fd7b362feecd https://conda.anaconda.org/conda-forge/linux-64/xcb-util-wm-0.4.2-hb711507_0.conda#608e0ef8256b81d04456e8d211eee3e8 https://conda.anaconda.org/conda-forge/linux-64/xorg-libsm-1.2.4-he73a12e_1.conda#05a8ea5f446de33006171a7afe6ae857 -https://conda.anaconda.org/conda-forge/linux-64/xorg-libx11-1.8.10-h4f16b4b_0.conda#0b666058a179b744a622d0a4a0c56353 +https://conda.anaconda.org/conda-forge/linux-64/xorg-libx11-1.8.10-h4f16b4b_1.conda#125f34a17d7b4bea418a83904ea82ea6 https://conda.anaconda.org/conda-forge/linux-64/zstd-1.5.6-ha6fb4c9_0.conda#4d056880988120e29d75bfff282e0f45 https://conda.anaconda.org/conda-forge/linux-64/fontconfig-2.15.0-h7e30c49_1.conda#8f5b0b297b59e1ac160ad4beec99dbee https://conda.anaconda.org/conda-forge/linux-64/krb5-1.21.3-h659f571_0.conda#3f43953b7d3fb3aaa1d0d0723d91e368 https://conda.anaconda.org/conda-forge/linux-64/libasprintf-devel-0.22.5-he8f35ee_3.conda#1091193789bb830127ed067a9e01ac57 -https://conda.anaconda.org/conda-forge/linux-64/libgcrypt-devel-1.11.0-hb9d3cd8_2.conda#bf888b6a37286e9ae3749a114f878a6e -https://conda.anaconda.org/conda-forge/linux-64/libgcrypt-tools-1.11.0-hb9d3cd8_2.conda#342389a8c9eef45fd8bb144b7522e28d https://conda.anaconda.org/conda-forge/linux-64/libglib-2.82.2-h2ff4ddf_0.conda#13e8e54035ddd2b91875ba399f0f7c04 https://conda.anaconda.org/conda-forge/linux-64/libglx-1.7.0-ha4b6fd6_2.conda#c8013e438185f33b13814c5c488acd5c https://conda.anaconda.org/conda-forge/linux-64/libhiredis-1.0.2-h2cc385e_0.tar.bz2#b34907d3a81a3cd8095ee83d174c074a https://conda.anaconda.org/conda-forge/linux-64/libopenblas-0.3.25-pthreads_h413a1c8_0.conda#d172b34a443b95f86089e8229ddc9a17 -https://conda.anaconda.org/conda-forge/linux-64/libtiff-4.7.0-he137b08_1.conda#63872517c98aa305da58a757c443698e -https://conda.anaconda.org/conda-forge/linux-64/libxml2-2.13.5-hb346dea_0.conda#c81a9f1118541aaa418ccb22190c817e -https://conda.anaconda.org/conda-forge/linux-64/mysql-libs-9.0.1-he0572af_2.conda#57a9e7ee3c0840d3c8c9012473978629 -https://conda.anaconda.org/conda-forge/linux-64/python-3.9.20-h13acc7a_1_cpython.conda#951cff166a5f170e27908811917165f8 +https://conda.anaconda.org/conda-forge/linux-64/libsystemd0-256.9-h0b6a36f_2.conda#135bbeb376345b6847c065115be4221a +https://conda.anaconda.org/conda-forge/linux-64/libtiff-4.7.0-hc4654cb_2.conda#be54fb40ea32e8fe9dbaa94d4528b57e +https://conda.anaconda.org/conda-forge/linux-64/libxml2-2.13.5-h8d12d68_1.conda#1a21e49e190d1ffe58531a81b6e400e1 +https://conda.anaconda.org/conda-forge/linux-64/mysql-libs-9.0.1-he0572af_3.conda#dd9da69dd4c2bf798c0b8bd4786cafb5 +https://conda.anaconda.org/conda-forge/linux-64/python-3.9.21-h9c0c6dc_1_cpython.conda#b4807744af026fdbe8c05131758fb4be https://conda.anaconda.org/conda-forge/linux-64/xcb-util-image-0.4.0-hb711507_2.conda#a0901183f08b6c7107aab109733a3c91 https://conda.anaconda.org/conda-forge/linux-64/xkeyboard-config-2.43-hb9d3cd8_0.conda#f725c7425d6d7c15e31f3b99a88ea02f https://conda.anaconda.org/conda-forge/linux-64/xorg-libxext-1.3.6-hb9d3cd8_0.conda#febbab7d15033c913d53c7a2c102309d @@ -109,66 +109,66 @@ https://conda.anaconda.org/conda-forge/linux-64/xorg-libxrender-0.9.11-hb9d3cd8_ https://conda.anaconda.org/conda-forge/linux-64/cairo-1.18.0-hebfffa5_3.conda#fceaedf1cdbcb02df9699a0d9b005292 https://conda.anaconda.org/conda-forge/linux-64/ccache-4.10.1-h065aff2_0.conda#d6b48c138e0c8170a6fe9c136e063540 https://conda.anaconda.org/conda-forge/noarch/certifi-2024.8.30-pyhd8ed1ab_0.conda#12f7d00853807b0531775e9be891cb11 -https://conda.anaconda.org/conda-forge/noarch/colorama-0.4.6-pyhd8ed1ab_0.tar.bz2#3faab06a954c2a04039983f2c4a50d99 -https://conda.anaconda.org/conda-forge/noarch/cycler-0.12.1-pyhd8ed1ab_0.conda#5cd86562580f274031ede6aa6aa24441 +https://conda.anaconda.org/conda-forge/noarch/colorama-0.4.6-pyhd8ed1ab_1.conda#962b9857ee8e7018c22f2776ffa0b2d7 +https://conda.anaconda.org/conda-forge/noarch/cycler-0.12.1-pyhd8ed1ab_1.conda#44600c4667a319d67dbe0681fc0bc833 +https://conda.anaconda.org/conda-forge/linux-64/cyrus-sasl-2.1.27-h54b06d7_7.conda#dce22f70b4e5a407ce88f2be046f4ceb https://conda.anaconda.org/conda-forge/linux-64/cython-3.0.10-py39h3d6467e_0.conda#76b5d215fb735a6dc43010ffbe78040e https://conda.anaconda.org/conda-forge/linux-64/dbus-1.13.6-h5008d03_3.tar.bz2#ecfff944ba3960ecb334b9a2663d708d -https://conda.anaconda.org/conda-forge/noarch/exceptiongroup-1.2.2-pyhd8ed1ab_0.conda#d02ae936e42063ca46af6cdad2dbd1e0 -https://conda.anaconda.org/conda-forge/noarch/execnet-2.1.1-pyhd8ed1ab_0.conda#15dda3cdbf330abfe9f555d22f66db46 +https://conda.anaconda.org/conda-forge/noarch/exceptiongroup-1.2.2-pyhd8ed1ab_1.conda#a16662747cdeb9abbac74d0057cc976e +https://conda.anaconda.org/conda-forge/noarch/execnet-2.1.1-pyhd8ed1ab_1.conda#a71efeae2c160f6789900ba2631a2c90 https://conda.anaconda.org/conda-forge/linux-64/gettext-0.22.5-he02047a_3.conda#c7f243bbaea97cd6ea1edd693270100e https://conda.anaconda.org/conda-forge/linux-64/glib-tools-2.82.2-h4833e2c_0.conda#12859f91830f58b1803e32846651c6f6 -https://conda.anaconda.org/conda-forge/noarch/iniconfig-2.0.0-pyhd8ed1ab_0.conda#f800d2da156d08e289b14e87e43c1ae5 +https://conda.anaconda.org/conda-forge/noarch/iniconfig-2.0.0-pyhd8ed1ab_1.conda#6837f3eff7dcea42ecd714ce1ac2b108 https://conda.anaconda.org/conda-forge/linux-64/kiwisolver-1.4.7-py39h74842e3_0.conda#1bf77976372ff6de02af7b75cf034ce5 https://conda.anaconda.org/conda-forge/linux-64/lcms2-2.16-hb7c19ff_0.conda#51bb7010fc86f70eee639b4bb7a894f5 https://conda.anaconda.org/conda-forge/linux-64/libblas-3.9.0-20_linux64_openblas.conda#2b7bb4f7562c8cf334fc2e20c2d28abc https://conda.anaconda.org/conda-forge/linux-64/libcups-2.3.3-h4637d8d_4.conda#d4529f4dff3057982a7617c7ac58fde3 -https://conda.anaconda.org/conda-forge/linux-64/libgcrypt-1.11.0-ha770c72_2.conda#92aaf7c067a5e63ac7f035bbd8864415 https://conda.anaconda.org/conda-forge/linux-64/libgl-1.7.0-ha4b6fd6_2.conda#928b8be80851f5d8ffb016f9c81dae7a -https://conda.anaconda.org/conda-forge/linux-64/libllvm19-19.1.4-ha7bfdaf_1.conda#886acc67bcba28a5c6b429aad2f057ce -https://conda.anaconda.org/conda-forge/linux-64/libpq-16.6-h2d7952a_0.conda#7fa1f554b760a2d6018ecc673fb73f6c +https://conda.anaconda.org/conda-forge/linux-64/libllvm19-19.1.5-ha7bfdaf_0.conda#76f3749eda7b24816aacd55b9f31447a https://conda.anaconda.org/conda-forge/linux-64/libxkbcommon-1.7.0-h2c5496b_1.conda#e2eaefa4de2b7237af7c907b8bbc760a https://conda.anaconda.org/conda-forge/linux-64/openblas-0.3.25-pthreads_h7a3da1a_0.conda#87661673941b5e702275fdf0fc095ad0 https://conda.anaconda.org/conda-forge/linux-64/openjpeg-2.5.2-h488ebb8_0.conda#7f2e286780f072ed750df46dc2631138 -https://conda.anaconda.org/conda-forge/noarch/packaging-24.2-pyhff2d567_1.conda#8508b703977f4c4ada34d657d051972c -https://conda.anaconda.org/conda-forge/noarch/pluggy-1.5.0-pyhd8ed1ab_0.conda#d3483c8fc2dc2cc3f5cf43e26d60cabf -https://conda.anaconda.org/conda-forge/noarch/ply-3.11-pyhd8ed1ab_2.conda#18c6deb6f9602e32446398203c8f0e91 -https://conda.anaconda.org/conda-forge/noarch/pyparsing-3.2.0-pyhd8ed1ab_1.conda#035c17fbf099f50ff60bf2eb303b0a83 -https://conda.anaconda.org/conda-forge/noarch/pytz-2024.2-pyhd8ed1ab_0.conda#260009d03c9d5c0f111904d851f053dc +https://conda.anaconda.org/conda-forge/noarch/packaging-24.2-pyhd8ed1ab_2.conda#3bfed7e6228ebf2f7b9eaa47f1b4e2aa +https://conda.anaconda.org/conda-forge/noarch/pluggy-1.5.0-pyhd8ed1ab_1.conda#e9dcbce5f45f9ee500e728ae58b605b6 +https://conda.anaconda.org/conda-forge/noarch/ply-3.11-pyhd8ed1ab_3.conda#fd5062942bfa1b0bd5e0d2a4397b099e +https://conda.anaconda.org/conda-forge/noarch/pyparsing-3.2.0-pyhd8ed1ab_2.conda#4c05a2bcf87bb495512374143b57cf28 +https://conda.anaconda.org/conda-forge/noarch/pytz-2024.2-pyhd8ed1ab_1.conda#f26ec986456c30f6dff154b670ae140f https://conda.anaconda.org/conda-forge/linux-64/setuptools-59.8.0-py39hf3d152e_1.tar.bz2#4252d0c211566a9f65149ba7f6e87aa4 -https://conda.anaconda.org/conda-forge/noarch/six-1.16.0-pyh6c4a22f_0.tar.bz2#e5f25f8dbc060e9a8d912e432202afc2 +https://conda.anaconda.org/conda-forge/noarch/six-1.17.0-pyhd8ed1ab_0.conda#a451d576819089b0d672f18768be0f65 https://conda.anaconda.org/conda-forge/noarch/threadpoolctl-3.1.0-pyh8a188c0_0.tar.bz2#a2995ee828f65687ac5b1e71a2ab1e0c https://conda.anaconda.org/conda-forge/noarch/toml-0.10.2-pyhd8ed1ab_0.tar.bz2#f832c45a477c78bebd107098db465095 -https://conda.anaconda.org/conda-forge/noarch/tomli-2.2.1-pyhd8ed1ab_0.conda#ee8ab0fe4c8dfc5a6319f7f8246022fc +https://conda.anaconda.org/conda-forge/noarch/tomli-2.2.1-pyhd8ed1ab_1.conda#ac944244f1fed2eb49bae07193ae8215 https://conda.anaconda.org/conda-forge/linux-64/tornado-6.4.2-py39h8cd3c5a_0.conda#ebfd05ae1501660e995a8b6bbe02a391 -https://conda.anaconda.org/conda-forge/noarch/typing_extensions-4.12.2-pyha770c72_0.conda#ebe6952715e1d5eb567eeebf25250fa7 -https://conda.anaconda.org/conda-forge/noarch/wheel-0.45.1-pyhd8ed1ab_0.conda#bdb2f437ce62fd2f1fef9119a37a12d9 +https://conda.anaconda.org/conda-forge/noarch/typing_extensions-4.12.2-pyha770c72_1.conda#d17f13df8b65464ca316cbc000a3cb64 +https://conda.anaconda.org/conda-forge/noarch/wheel-0.45.1-pyhd8ed1ab_1.conda#75cb7132eb58d97896e173ef12ac9986 https://conda.anaconda.org/conda-forge/linux-64/xorg-libxdamage-1.1.6-hb9d3cd8_0.conda#b5fcc7172d22516e1f965490e65e33a4 https://conda.anaconda.org/conda-forge/linux-64/xorg-libxxf86vm-1.1.5-hb9d3cd8_4.conda#7da9007c0582712c4bad4131f89c8372 -https://conda.anaconda.org/conda-forge/linux-64/coverage-7.6.8-py39h9399b63_0.conda#72f225b8c205b8c37330aa1311cba9b0 +https://conda.anaconda.org/conda-forge/linux-64/coverage-7.6.9-py39h9399b63_0.conda#a04d17fe73417952d7686fd1ff067bbd https://conda.anaconda.org/conda-forge/linux-64/glib-2.82.2-h44428e9_0.conda#f19f985ab043e8843045410f3b99de8a https://conda.anaconda.org/conda-forge/linux-64/harfbuzz-9.0.0-hda332d3_1.conda#76b32dcf243444aea9c6b804bcfa40b8 https://conda.anaconda.org/conda-forge/noarch/joblib-1.2.0-pyhd8ed1ab_0.tar.bz2#7583652522d71ad78ba536bba06940eb https://conda.anaconda.org/conda-forge/linux-64/libcblas-3.9.0-20_linux64_openblas.conda#36d486d72ab64ffea932329a1d3729a3 -https://conda.anaconda.org/conda-forge/linux-64/libclang-cpp19.1-19.1.4-default_hb5137d0_0.conda#e7e4a0ebe1f6eedf483f6f5d4f7d2bdd -https://conda.anaconda.org/conda-forge/linux-64/libclang13-19.1.4-default_h9c6a7e4_0.conda#6c450adae455c7d648856e8b0cfcebd6 +https://conda.anaconda.org/conda-forge/linux-64/libclang-cpp19.1-19.1.5-default_hb5137d0_0.conda#ec8649c89988d8a443c252c20f259b72 +https://conda.anaconda.org/conda-forge/linux-64/libclang13-19.1.5-default_h9c6a7e4_0.conda#a3a5997b6b47373f0c1608d8503eb4e6 https://conda.anaconda.org/conda-forge/linux-64/libflac-1.4.3-h59595ed_0.conda#ee48bf17cc83a00f59ca1494d5646869 https://conda.anaconda.org/conda-forge/linux-64/liblapack-3.9.0-20_linux64_openblas.conda#6fabc51f5e647d09cc010c40061557e0 -https://conda.anaconda.org/conda-forge/linux-64/libsystemd0-256.7-h2774228_1.conda#ad328c530a12a8798776e5f03942090f -https://conda.anaconda.org/conda-forge/noarch/meson-1.6.0-pyhd8ed1ab_0.conda#380ba6a3eddd8e7649bfe8e6812611aa +https://conda.anaconda.org/conda-forge/noarch/meson-1.6.0-pyhd8ed1ab_1.conda#59d45dbe1b0a123966266340b579d366 +https://conda.anaconda.org/conda-forge/linux-64/openldap-2.6.9-he970967_0.conda#ca2de8bbdc871bce41dbf59e51324165 https://conda.anaconda.org/conda-forge/linux-64/pillow-11.0.0-py39h538c539_0.conda#a2bafdf8ae51c9eb6e5be684cfcedd60 https://conda.anaconda.org/conda-forge/noarch/pip-24.3.1-pyh8b19718_0.conda#5dd546fe99b44fda83963d15f84263b7 -https://conda.anaconda.org/conda-forge/noarch/pyproject-metadata-0.9.0-pyh2cfa8aa_0.conda#10906a130eeb4a68645bf97c28333141 -https://conda.anaconda.org/conda-forge/noarch/pytest-8.3.4-pyhd8ed1ab_0.conda#ff8f2ef7f2636906b3781d0cf92388d0 -https://conda.anaconda.org/conda-forge/noarch/python-dateutil-2.9.0.post0-pyhff2d567_0.conda#b6dfd90a2141e573e4b6a81630b56df5 +https://conda.anaconda.org/conda-forge/noarch/pyproject-metadata-0.9.0-pyhd8ed1ab_1.conda#1239146a53a383a84633800294120f17 +https://conda.anaconda.org/conda-forge/noarch/pytest-8.3.4-pyhd8ed1ab_1.conda#799ed216dc6af62520f32aa39bc1c2bb +https://conda.anaconda.org/conda-forge/noarch/python-dateutil-2.9.0.post0-pyhff2d567_1.conda#5ba79d7c71f03c678c8ead841f347d6e https://conda.anaconda.org/conda-forge/linux-64/sip-6.7.12-py39h3d6467e_0.conda#e667a3ab0df62c54e60e1843d2e6defb https://conda.anaconda.org/conda-forge/linux-64/gstreamer-1.24.7-hf3bb09a_0.conda#c78bc4ef0afb3cd2365d9973c71fc876 https://conda.anaconda.org/conda-forge/linux-64/liblapacke-3.9.0-20_linux64_openblas.conda#05c5862c7dc25e65ba6c471d96429dae +https://conda.anaconda.org/conda-forge/linux-64/libpq-17.2-h3b95a9b_1.conda#37724d8bae042345a19ca1a25dde786b https://conda.anaconda.org/conda-forge/linux-64/libsndfile-1.2.2-hc60ed4a_1.conda#ef1910918dd895516a769ed36b5b3a4e https://conda.anaconda.org/conda-forge/noarch/meson-python-0.16.0-pyh0c530f3_0.conda#e16f0dbf502da873be9f9adb0dc52547 https://conda.anaconda.org/conda-forge/linux-64/numpy-1.19.5-py39hd249d9e_3.tar.bz2#0cf333996ebdeeba8d1c8c1c0ee9eff9 https://conda.anaconda.org/conda-forge/linux-64/pyqt5-sip-12.12.2-py39h3d6467e_5.conda#93aff412f3e49fdb43361c0215cbd72d -https://conda.anaconda.org/conda-forge/noarch/pytest-cov-6.0.0-pyhd8ed1ab_0.conda#cb8a11b6d209e3d85e5094bdbd9ebd9c -https://conda.anaconda.org/conda-forge/noarch/pytest-xdist-3.6.1-pyhd8ed1ab_0.conda#b39568655c127a9c4a44d178ac99b6d0 +https://conda.anaconda.org/conda-forge/noarch/pytest-cov-6.0.0-pyhd8ed1ab_1.conda#79963c319d1be62c8fd3e34555816e01 +https://conda.anaconda.org/conda-forge/noarch/pytest-xdist-3.6.1-pyhd8ed1ab_1.conda#59aad4fb37cabc0bacc73cf344612ddd https://conda.anaconda.org/conda-forge/linux-64/blas-devel-3.9.0-20_linux64_openblas.conda#9932a1d4e9ecf2d35fb19475446e361e https://conda.anaconda.org/conda-forge/linux-64/gst-plugins-base-1.24.7-h0a52356_0.conda#d368425fbd031a2f8e801a40c3415c72 https://conda.anaconda.org/conda-forge/linux-64/matplotlib-base-3.3.4-py39h2fa2bec_0.tar.bz2#9ec0b2186fab9121c54f4844f93ee5b7 @@ -178,6 +178,6 @@ https://conda.anaconda.org/conda-forge/linux-64/pulseaudio-client-17.0-hb77b528_ https://conda.anaconda.org/conda-forge/linux-64/scipy-1.6.0-py39hee8e79c_0.tar.bz2#3afcb78281836e61351a2924f3230060 https://conda.anaconda.org/conda-forge/linux-64/blas-2.120-openblas.conda#c8f6916a81a340650078171b1d852574 https://conda.anaconda.org/conda-forge/linux-64/pyamg-4.2.3-py39hac2352c_1.tar.bz2#6fb0628d6195d8b6caa2422d09296399 -https://conda.anaconda.org/conda-forge/linux-64/qt-main-5.15.15-h374914d_0.conda#26e8b00e73c114c9b787d36edcbf4424 +https://conda.anaconda.org/conda-forge/linux-64/qt-main-5.15.15-h796de64_1.conda#b63b4dcf67c300daa7ce5918eb9c1654 https://conda.anaconda.org/conda-forge/linux-64/pyqt-5.15.9-py39h52134e7_5.conda#e1f148e57d071b09187719df86f513c1 https://conda.anaconda.org/conda-forge/linux-64/matplotlib-3.3.4-py39hf3d152e_0.tar.bz2#cbaec993375a908bbe506dc7328d747c diff --git a/build_tools/azure/pymin_conda_forge_openblas_ubuntu_2204_linux-64_conda.lock b/build_tools/azure/pymin_conda_forge_openblas_ubuntu_2204_linux-64_conda.lock index b5de914ff76db..c6825e6e777d1 100644 --- a/build_tools/azure/pymin_conda_forge_openblas_ubuntu_2204_linux-64_conda.lock +++ b/build_tools/azure/pymin_conda_forge_openblas_ubuntu_2204_linux-64_conda.lock @@ -13,7 +13,7 @@ https://conda.anaconda.org/conda-forge/noarch/tzdata-2024b-hc8b5060_0.conda#8ac3 https://conda.anaconda.org/conda-forge/noarch/fonts-conda-forge-1-0.tar.bz2#f766549260d6815b0c52253f1fb1bb29 https://conda.anaconda.org/conda-forge/linux-64/ld_impl_linux-64-2.43-h712a8e2_2.conda#048b02e3962f066da18efe3a21b77672 https://conda.anaconda.org/conda-forge/linux-64/libglvnd-1.7.0-ha4b6fd6_2.conda#434ca7e50e40f4918ab701e3facd59a0 -https://conda.anaconda.org/conda-forge/linux-64/llvm-openmp-19.1.4-h024ca30_0.conda#9370a10ba6a13079cc0c0e09d2ec13a8 +https://conda.anaconda.org/conda-forge/linux-64/llvm-openmp-19.1.5-h024ca30_0.conda#dc90d15c25a57f641f0b84c271e4761e https://conda.anaconda.org/conda-forge/linux-64/_openmp_mutex-4.5-2_kmp_llvm.tar.bz2#562b26ba2e19059551a811e72ab7f793 https://conda.anaconda.org/conda-forge/noarch/fonts-conda-ecosystem-1-0.tar.bz2#fee5683a3f04bd15cbd8318b096a27ab https://conda.anaconda.org/conda-forge/linux-64/libegl-1.7.0-ha4b6fd6_2.conda#c151d5eb730e9b7480e6d48c0fc44048 @@ -25,6 +25,7 @@ https://conda.anaconda.org/conda-forge/linux-64/libdeflate-1.22-hb9d3cd8_0.conda https://conda.anaconda.org/conda-forge/linux-64/libexpat-2.6.4-h5888daf_0.conda#db833e03127376d461e1e13e76f09b6c https://conda.anaconda.org/conda-forge/linux-64/libgcc-ng-14.2.0-h69a702a_1.conda#e39480b9ca41323497b05492a63bc35b https://conda.anaconda.org/conda-forge/linux-64/libgfortran5-14.2.0-hd5240d6_1.conda#9822b874ea29af082e5d36098d25427d +https://conda.anaconda.org/conda-forge/linux-64/liblzma-5.6.3-hb9d3cd8_1.conda#2ecf2f1c7e4e21fcfe6423a51a992d84 https://conda.anaconda.org/conda-forge/linux-64/libstdcxx-14.2.0-hc0a3c3a_1.conda#234a5554c53625688d51062645337328 https://conda.anaconda.org/conda-forge/linux-64/libzlib-1.3.1-hb9d3cd8_2.conda#edb0dca6bc32e4f4789199455a1dbeb8 https://conda.anaconda.org/conda-forge/linux-64/openssl-3.4.0-hb9d3cd8_0.conda#23cc74f77eb99315c0360ec3533147a9 @@ -52,10 +53,10 @@ https://conda.anaconda.org/conda-forge/linux-64/libuuid-2.38.1-h0b41bf4_0.conda# https://conda.anaconda.org/conda-forge/linux-64/libwebp-base-1.4.0-hd590300_0.conda#b26e8aa824079e1be0294e7152ca4559 https://conda.anaconda.org/conda-forge/linux-64/libxcb-1.17.0-h8a09558_0.conda#92ed62436b625154323d40d5f2f11dd7 https://conda.anaconda.org/conda-forge/linux-64/libxcrypt-4.4.36-hd590300_1.conda#5aa797f8787fe7a17d1b0821485b5adc -https://conda.anaconda.org/conda-forge/linux-64/mysql-common-9.0.1-h266115a_2.conda#85c0dc0bcd110c998b01856975486ee7 +https://conda.anaconda.org/conda-forge/linux-64/mysql-common-9.0.1-h266115a_3.conda#9411c61ff1070b5e065b32840c39faa5 https://conda.anaconda.org/conda-forge/linux-64/ncurses-6.5-he02047a_1.conda#70caf8bb6cf39a0b6b7efc885f51c0fe +https://conda.anaconda.org/conda-forge/linux-64/pixman-0.44.2-h29eaf8c_0.conda#5e2a7acfa2c24188af39e7944e1b3604 https://conda.anaconda.org/conda-forge/linux-64/tk-8.6.13-noxft_h4845f30_101.conda#d453b98d9c83e71da0741bb0ff4d76bc -https://conda.anaconda.org/conda-forge/linux-64/xz-5.2.6-h166bdaf_0.tar.bz2#2161070d867d1b1204ea749c8eec4ef0 https://conda.anaconda.org/conda-forge/linux-64/zlib-1.3.1-hb9d3cd8_2.conda#c9f075ab2f33b3bbee9e62d4ad0a6cd8 https://conda.anaconda.org/conda-forge/linux-64/brotli-bin-1.1.0-hb9d3cd8_2.conda#c63b5e52939e795ba8d26e35d767a843 https://conda.anaconda.org/conda-forge/linux-64/double-conversion-3.3.0-h59595ed_0.conda#c2f83a5ddadadcdb08fe05863295ee97 @@ -63,13 +64,12 @@ https://conda.anaconda.org/conda-forge/linux-64/freetype-2.12.1-h267a509_2.conda https://conda.anaconda.org/conda-forge/linux-64/graphite2-1.3.13-h59595ed_1003.conda#f87c7b7c2cb45f323ffbce941c78ab7c https://conda.anaconda.org/conda-forge/linux-64/icu-75.1-he02047a_0.conda#8b189310083baabfb622af68fd9d3ae3 https://conda.anaconda.org/conda-forge/linux-64/lerc-4.0.0-h27087fc_0.tar.bz2#76bbff344f0134279f225174e9064c8f -https://conda.anaconda.org/conda-forge/linux-64/libdrm-2.4.123-hb9d3cd8_0.conda#ee605e794bdc14e2b7f84c4faa0d8c2c +https://conda.anaconda.org/conda-forge/linux-64/libdrm-2.4.124-hb9d3cd8_0.conda#8bc89311041d7fcb510238cf0848ccae https://conda.anaconda.org/conda-forge/linux-64/libedit-3.1.20191231-he28a2e2_2.tar.bz2#4d331e44109e3f0e19b4cb8f9b82f3e1 https://conda.anaconda.org/conda-forge/linux-64/libgfortran-ng-14.2.0-h69a702a_1.conda#0a7f4cd238267c88e5d69f7826a407eb https://conda.anaconda.org/conda-forge/linux-64/libopenblas-0.3.28-pthreads_h94d23a6_1.conda#62857b389e42b36b686331bec0922050 https://conda.anaconda.org/conda-forge/linux-64/ninja-1.12.1-h297d8ca_0.conda#3aa1c7e292afeff25a0091ddd7c69b72 https://conda.anaconda.org/conda-forge/linux-64/pcre2-10.44-hba22ea6_2.conda#df359c09c41cd186fffb93a2d87aa6f5 -https://conda.anaconda.org/conda-forge/linux-64/pixman-0.43.2-h59595ed_0.conda#71004cbf7924e19c02746ccde9fd7123 https://conda.anaconda.org/conda-forge/linux-64/qhull-2020.2-h434a139_5.conda#353823361b1d27eb3960efb076dfcaf6 https://conda.anaconda.org/conda-forge/linux-64/readline-8.2-h8228510_1.conda#47d31b792659ce70f470b5c82fdfb7a4 https://conda.anaconda.org/conda-forge/linux-64/wayland-1.23.1-h3e06ad9_0.conda#0a732427643ae5e0486a727927791da1 @@ -78,7 +78,7 @@ https://conda.anaconda.org/conda-forge/linux-64/xcb-util-keysyms-0.4.1-hb711507_ https://conda.anaconda.org/conda-forge/linux-64/xcb-util-renderutil-0.3.10-hb711507_0.conda#0e0cbe0564d03a99afd5fd7b362feecd https://conda.anaconda.org/conda-forge/linux-64/xcb-util-wm-0.4.2-hb711507_0.conda#608e0ef8256b81d04456e8d211eee3e8 https://conda.anaconda.org/conda-forge/linux-64/xorg-libsm-1.2.4-he73a12e_1.conda#05a8ea5f446de33006171a7afe6ae857 -https://conda.anaconda.org/conda-forge/linux-64/xorg-libx11-1.8.10-h4f16b4b_0.conda#0b666058a179b744a622d0a4a0c56353 +https://conda.anaconda.org/conda-forge/linux-64/xorg-libx11-1.8.10-h4f16b4b_1.conda#125f34a17d7b4bea418a83904ea82ea6 https://conda.anaconda.org/conda-forge/linux-64/zstd-1.5.6-ha6fb4c9_0.conda#4d056880988120e29d75bfff282e0f45 https://conda.anaconda.org/conda-forge/linux-64/brotli-1.1.0-hb9d3cd8_2.conda#98514fe74548d768907ce7a13f680e8f https://conda.anaconda.org/conda-forge/linux-64/fontconfig-2.15.0-h7e30c49_1.conda#8f5b0b297b59e1ac160ad4beec99dbee @@ -87,11 +87,11 @@ https://conda.anaconda.org/conda-forge/linux-64/libblas-3.9.0-25_linux64_openbla https://conda.anaconda.org/conda-forge/linux-64/libglib-2.82.2-h2ff4ddf_0.conda#13e8e54035ddd2b91875ba399f0f7c04 https://conda.anaconda.org/conda-forge/linux-64/libglx-1.7.0-ha4b6fd6_2.conda#c8013e438185f33b13814c5c488acd5c https://conda.anaconda.org/conda-forge/linux-64/libhiredis-1.0.2-h2cc385e_0.tar.bz2#b34907d3a81a3cd8095ee83d174c074a -https://conda.anaconda.org/conda-forge/linux-64/libtiff-4.7.0-he137b08_1.conda#63872517c98aa305da58a757c443698e -https://conda.anaconda.org/conda-forge/linux-64/libxml2-2.13.5-hb346dea_0.conda#c81a9f1118541aaa418ccb22190c817e -https://conda.anaconda.org/conda-forge/linux-64/mysql-libs-9.0.1-he0572af_2.conda#57a9e7ee3c0840d3c8c9012473978629 +https://conda.anaconda.org/conda-forge/linux-64/libtiff-4.7.0-hc4654cb_2.conda#be54fb40ea32e8fe9dbaa94d4528b57e +https://conda.anaconda.org/conda-forge/linux-64/libxml2-2.13.5-h8d12d68_1.conda#1a21e49e190d1ffe58531a81b6e400e1 +https://conda.anaconda.org/conda-forge/linux-64/mysql-libs-9.0.1-he0572af_3.conda#dd9da69dd4c2bf798c0b8bd4786cafb5 https://conda.anaconda.org/conda-forge/linux-64/openblas-0.3.28-pthreads_h6ec200e_1.conda#8fe5d50db07e92519cc639cb0aef9b1b -https://conda.anaconda.org/conda-forge/linux-64/python-3.9.20-h13acc7a_1_cpython.conda#951cff166a5f170e27908811917165f8 +https://conda.anaconda.org/conda-forge/linux-64/python-3.9.21-h9c0c6dc_1_cpython.conda#b4807744af026fdbe8c05131758fb4be https://conda.anaconda.org/conda-forge/linux-64/xcb-util-image-0.4.0-hb711507_2.conda#a0901183f08b6c7107aab109733a3c91 https://conda.anaconda.org/conda-forge/linux-64/xkeyboard-config-2.43-hb9d3cd8_0.conda#f725c7425d6d7c15e31f3b99a88ea02f https://conda.anaconda.org/conda-forge/linux-64/xorg-libxext-1.3.6-hb9d3cd8_0.conda#febbab7d15033c913d53c7a2c102309d @@ -102,50 +102,50 @@ https://conda.anaconda.org/conda-forge/linux-64/brotli-python-1.1.0-py39hf88036b https://conda.anaconda.org/conda-forge/linux-64/cairo-1.18.0-hebfffa5_3.conda#fceaedf1cdbcb02df9699a0d9b005292 https://conda.anaconda.org/conda-forge/linux-64/ccache-4.10.1-h065aff2_0.conda#d6b48c138e0c8170a6fe9c136e063540 https://conda.anaconda.org/conda-forge/noarch/certifi-2024.8.30-pyhd8ed1ab_0.conda#12f7d00853807b0531775e9be891cb11 -https://conda.anaconda.org/conda-forge/noarch/charset-normalizer-3.4.0-pyhd8ed1ab_0.conda#a374efa97290b8799046df7c5ca17164 -https://conda.anaconda.org/conda-forge/noarch/colorama-0.4.6-pyhd8ed1ab_0.tar.bz2#3faab06a954c2a04039983f2c4a50d99 -https://conda.anaconda.org/conda-forge/noarch/cycler-0.12.1-pyhd8ed1ab_0.conda#5cd86562580f274031ede6aa6aa24441 +https://conda.anaconda.org/conda-forge/noarch/charset-normalizer-3.4.0-pyhd8ed1ab_1.conda#6581a17bba6b948bb60130026404a9d6 +https://conda.anaconda.org/conda-forge/noarch/colorama-0.4.6-pyhd8ed1ab_1.conda#962b9857ee8e7018c22f2776ffa0b2d7 +https://conda.anaconda.org/conda-forge/noarch/cycler-0.12.1-pyhd8ed1ab_1.conda#44600c4667a319d67dbe0681fc0bc833 https://conda.anaconda.org/conda-forge/linux-64/cyrus-sasl-2.1.27-h54b06d7_7.conda#dce22f70b4e5a407ce88f2be046f4ceb https://conda.anaconda.org/conda-forge/linux-64/cython-3.0.11-py39hde8bd2b_3.conda#52637110266d72a26d01d3d81038664e https://conda.anaconda.org/conda-forge/linux-64/dbus-1.13.6-h5008d03_3.tar.bz2#ecfff944ba3960ecb334b9a2663d708d -https://conda.anaconda.org/conda-forge/noarch/docutils-0.21.2-pyhd8ed1ab_0.conda#e8cd5d629f65bdf0f3bb312cde14659e -https://conda.anaconda.org/conda-forge/noarch/exceptiongroup-1.2.2-pyhd8ed1ab_0.conda#d02ae936e42063ca46af6cdad2dbd1e0 -https://conda.anaconda.org/conda-forge/noarch/execnet-2.1.1-pyhd8ed1ab_0.conda#15dda3cdbf330abfe9f555d22f66db46 -https://conda.anaconda.org/conda-forge/noarch/hpack-4.0.0-pyh9f0ad1d_0.tar.bz2#914d6646c4dbb1fd3ff539830a12fd71 -https://conda.anaconda.org/conda-forge/noarch/hyperframe-6.0.1-pyhd8ed1ab_0.tar.bz2#9f765cbfab6870c8435b9eefecd7a1f4 -https://conda.anaconda.org/conda-forge/noarch/idna-3.10-pyhd8ed1ab_0.conda#7ba2ede0e7c795ff95088daf0dc59753 +https://conda.anaconda.org/conda-forge/noarch/docutils-0.21.2-pyhd8ed1ab_1.conda#24c1ca34138ee57de72a943237cde4cc +https://conda.anaconda.org/conda-forge/noarch/exceptiongroup-1.2.2-pyhd8ed1ab_1.conda#a16662747cdeb9abbac74d0057cc976e +https://conda.anaconda.org/conda-forge/noarch/execnet-2.1.1-pyhd8ed1ab_1.conda#a71efeae2c160f6789900ba2631a2c90 +https://conda.anaconda.org/conda-forge/noarch/hpack-4.0.0-pyhd8ed1ab_1.conda#2aa5ff7fa34a81b9196532c84c10d865 +https://conda.anaconda.org/conda-forge/noarch/hyperframe-6.0.1-pyhd8ed1ab_1.conda#566e75c90c1d0c8c459eb0ad9833dc7a +https://conda.anaconda.org/conda-forge/noarch/idna-3.10-pyhd8ed1ab_1.conda#39a4f67be3286c86d696df570b1201b7 https://conda.anaconda.org/conda-forge/noarch/imagesize-1.4.1-pyhd8ed1ab_0.tar.bz2#7de5386c8fea29e76b303f37dde4c352 -https://conda.anaconda.org/conda-forge/noarch/iniconfig-2.0.0-pyhd8ed1ab_0.conda#f800d2da156d08e289b14e87e43c1ae5 +https://conda.anaconda.org/conda-forge/noarch/iniconfig-2.0.0-pyhd8ed1ab_1.conda#6837f3eff7dcea42ecd714ce1ac2b108 https://conda.anaconda.org/conda-forge/linux-64/kiwisolver-1.4.7-py39h74842e3_0.conda#1bf77976372ff6de02af7b75cf034ce5 https://conda.anaconda.org/conda-forge/linux-64/lcms2-2.16-hb7c19ff_0.conda#51bb7010fc86f70eee639b4bb7a894f5 https://conda.anaconda.org/conda-forge/linux-64/libcblas-3.9.0-25_linux64_openblas.conda#5dbd1b0fc0d01ec5e0e1fbe667281a11 https://conda.anaconda.org/conda-forge/linux-64/libcups-2.3.3-h4637d8d_4.conda#d4529f4dff3057982a7617c7ac58fde3 https://conda.anaconda.org/conda-forge/linux-64/libgl-1.7.0-ha4b6fd6_2.conda#928b8be80851f5d8ffb016f9c81dae7a https://conda.anaconda.org/conda-forge/linux-64/liblapack-3.9.0-25_linux64_openblas.conda#4dc03a53fc69371a6158d0ed37214cd3 -https://conda.anaconda.org/conda-forge/linux-64/libllvm19-19.1.4-ha7bfdaf_1.conda#886acc67bcba28a5c6b429aad2f057ce +https://conda.anaconda.org/conda-forge/linux-64/libllvm19-19.1.5-ha7bfdaf_0.conda#76f3749eda7b24816aacd55b9f31447a https://conda.anaconda.org/conda-forge/linux-64/libxkbcommon-1.7.0-h2c5496b_1.conda#e2eaefa4de2b7237af7c907b8bbc760a https://conda.anaconda.org/conda-forge/linux-64/libxslt-1.1.39-h76b75d6_0.conda#e71f31f8cfb0a91439f2086fc8aa0461 -https://conda.anaconda.org/conda-forge/linux-64/markupsafe-3.0.2-py39h9399b63_0.conda#d38773fed557834d3211e019b7cf7c2f +https://conda.anaconda.org/conda-forge/linux-64/markupsafe-3.0.2-py39h9399b63_1.conda#7821f0938aa629b9f17efd98c300a487 https://conda.anaconda.org/conda-forge/noarch/munkres-1.1.4-pyh9f0ad1d_0.tar.bz2#2ba8498c1018c1e9c61eb99b973dfe19 https://conda.anaconda.org/conda-forge/linux-64/openjpeg-2.5.2-h488ebb8_0.conda#7f2e286780f072ed750df46dc2631138 -https://conda.anaconda.org/conda-forge/noarch/packaging-24.2-pyhff2d567_1.conda#8508b703977f4c4ada34d657d051972c -https://conda.anaconda.org/conda-forge/noarch/pluggy-1.5.0-pyhd8ed1ab_0.conda#d3483c8fc2dc2cc3f5cf43e26d60cabf -https://conda.anaconda.org/conda-forge/noarch/pycparser-2.22-pyhd8ed1ab_0.conda#844d9eb3b43095b031874477f7d70088 -https://conda.anaconda.org/conda-forge/noarch/pygments-2.18.0-pyhd8ed1ab_0.conda#b7f5c092b8f9800150d998a71b76d5a1 -https://conda.anaconda.org/conda-forge/noarch/pyparsing-3.2.0-pyhd8ed1ab_1.conda#035c17fbf099f50ff60bf2eb303b0a83 -https://conda.anaconda.org/conda-forge/noarch/pysocks-1.7.1-pyha2e5f31_6.tar.bz2#2a7de29fb590ca14b5243c4c812c8025 -https://conda.anaconda.org/conda-forge/noarch/python-tzdata-2024.2-pyhd8ed1ab_0.conda#986287f89929b2d629bd6ef6497dc307 +https://conda.anaconda.org/conda-forge/noarch/packaging-24.2-pyhd8ed1ab_2.conda#3bfed7e6228ebf2f7b9eaa47f1b4e2aa +https://conda.anaconda.org/conda-forge/noarch/pluggy-1.5.0-pyhd8ed1ab_1.conda#e9dcbce5f45f9ee500e728ae58b605b6 +https://conda.anaconda.org/conda-forge/noarch/pycparser-2.22-pyh29332c3_1.conda#12c566707c80111f9799308d9e265aef +https://conda.anaconda.org/conda-forge/noarch/pygments-2.18.0-pyhd8ed1ab_1.conda#b38dc0206e2a530e5c2cf11dc086b31a +https://conda.anaconda.org/conda-forge/noarch/pyparsing-3.2.0-pyhd8ed1ab_2.conda#4c05a2bcf87bb495512374143b57cf28 +https://conda.anaconda.org/conda-forge/noarch/pysocks-1.7.1-pyha55dd90_7.conda#461219d1a5bd61342293efa2c0c90eac +https://conda.anaconda.org/conda-forge/noarch/python-tzdata-2024.2-pyhd8ed1ab_1.conda#c0def296b2f6d2dd7b030c2a7f66bb1f https://conda.anaconda.org/conda-forge/noarch/pytz-2024.1-pyhd8ed1ab_0.conda#3eeeeb9e4827ace8c0c1419c85d590ad https://conda.anaconda.org/conda-forge/noarch/setuptools-75.6.0-pyhff2d567_1.conda#fc80f7995e396cbaeabd23cf46c413dc -https://conda.anaconda.org/conda-forge/noarch/six-1.16.0-pyh6c4a22f_0.tar.bz2#e5f25f8dbc060e9a8d912e432202afc2 +https://conda.anaconda.org/conda-forge/noarch/six-1.17.0-pyhd8ed1ab_0.conda#a451d576819089b0d672f18768be0f65 https://conda.anaconda.org/conda-forge/noarch/snowballstemmer-2.2.0-pyhd8ed1ab_0.tar.bz2#4d22a9315e78c6827f806065957d566e https://conda.anaconda.org/conda-forge/noarch/sphinxcontrib-jsmath-1.0.1-pyhd8ed1ab_0.conda#da1d979339e2714c30a8e806a33ec087 -https://conda.anaconda.org/conda-forge/noarch/tabulate-0.9.0-pyhd8ed1ab_1.tar.bz2#4759805cce2d914c38472f70bf4d8bcb +https://conda.anaconda.org/conda-forge/noarch/tabulate-0.9.0-pyhd8ed1ab_2.conda#959484a66b4b76befcddc4fa97c95567 https://conda.anaconda.org/conda-forge/noarch/threadpoolctl-3.5.0-pyhc1e730c_0.conda#df68d78237980a159bd7149f33c0e8fd -https://conda.anaconda.org/conda-forge/noarch/tomli-2.2.1-pyhd8ed1ab_0.conda#ee8ab0fe4c8dfc5a6319f7f8246022fc +https://conda.anaconda.org/conda-forge/noarch/tomli-2.2.1-pyhd8ed1ab_1.conda#ac944244f1fed2eb49bae07193ae8215 https://conda.anaconda.org/conda-forge/linux-64/tornado-6.4.2-py39h8cd3c5a_0.conda#ebfd05ae1501660e995a8b6bbe02a391 https://conda.anaconda.org/conda-forge/linux-64/unicodedata2-15.1.0-py39h8cd3c5a_1.conda#6346898044e4387631c614290789a434 -https://conda.anaconda.org/conda-forge/noarch/wheel-0.45.1-pyhd8ed1ab_0.conda#bdb2f437ce62fd2f1fef9119a37a12d9 +https://conda.anaconda.org/conda-forge/noarch/wheel-0.45.1-pyhd8ed1ab_1.conda#75cb7132eb58d97896e173ef12ac9986 https://conda.anaconda.org/conda-forge/linux-64/xcb-util-cursor-0.1.5-hb9d3cd8_0.conda#eb44b3b6deb1cab08d72cb61686fe64c https://conda.anaconda.org/conda-forge/linux-64/xorg-libxcomposite-0.4.6-hb9d3cd8_2.conda#d3c295b50f092ab525ffe3c2aa4b7413 https://conda.anaconda.org/conda-forge/linux-64/xorg-libxcursor-1.2.3-hb9d3cd8_0.conda#2ccd714aa2242315acaf0a67faea780b @@ -154,45 +154,45 @@ https://conda.anaconda.org/conda-forge/linux-64/xorg-libxi-1.8.2-hb9d3cd8_0.cond https://conda.anaconda.org/conda-forge/linux-64/xorg-libxrandr-1.5.4-hb9d3cd8_0.conda#2de7f99d6581a4a7adbff607b5c278ca https://conda.anaconda.org/conda-forge/linux-64/xorg-libxxf86vm-1.1.5-hb9d3cd8_4.conda#7da9007c0582712c4bad4131f89c8372 https://conda.anaconda.org/conda-forge/noarch/zipp-3.21.0-pyhd8ed1ab_1.conda#0c3cc595284c5e8f0f9900a9b228a332 -https://conda.anaconda.org/conda-forge/noarch/babel-2.16.0-pyhd8ed1ab_0.conda#6d4e9ecca8d88977147e109fc7053184 +https://conda.anaconda.org/conda-forge/noarch/babel-2.16.0-pyhd8ed1ab_1.conda#3e23f7db93ec14c80525257d8affac28 https://conda.anaconda.org/conda-forge/linux-64/cffi-1.17.1-py39h15c3d72_0.conda#7e61b8777f42e00b08ff059f9e8ebc44 -https://conda.anaconda.org/conda-forge/linux-64/fonttools-4.55.0-py39h9399b63_0.conda#61762136d872c6d2de2de7742a0c60ef -https://conda.anaconda.org/conda-forge/noarch/h2-4.1.0-pyhd8ed1ab_0.tar.bz2#b748fbf7060927a6e82df7cb5ee8f097 +https://conda.anaconda.org/conda-forge/linux-64/fonttools-4.55.2-py39h9399b63_0.conda#9dd7204c1c96d90bc143724b1fb2fe63 +https://conda.anaconda.org/conda-forge/noarch/h2-4.1.0-pyhd8ed1ab_1.conda#825927dc7b0f287ef8d4d0011bb113b1 https://conda.anaconda.org/conda-forge/linux-64/harfbuzz-9.0.0-hda332d3_1.conda#76b32dcf243444aea9c6b804bcfa40b8 -https://conda.anaconda.org/conda-forge/noarch/importlib-metadata-8.5.0-pyha770c72_0.conda#54198435fce4d64d8a89af22573012a8 -https://conda.anaconda.org/conda-forge/noarch/importlib_resources-6.4.5-pyhd8ed1ab_0.conda#c808991d29b9838fb4d96ce8267ec9ec -https://conda.anaconda.org/conda-forge/noarch/jinja2-3.1.4-pyhd8ed1ab_0.conda#7b86ecb7d3557821c649b3c31e3eb9f2 +https://conda.anaconda.org/conda-forge/noarch/importlib-metadata-8.5.0-pyha770c72_1.conda#315607a3030ad5d5227e76e0733798ff +https://conda.anaconda.org/conda-forge/noarch/importlib_resources-6.4.5-pyhd8ed1ab_1.conda#15798fa69312d433af690c8c42b3fb36 +https://conda.anaconda.org/conda-forge/noarch/jinja2-3.1.4-pyhd8ed1ab_1.conda#08cce3151bde4ecad7885bd9fb647532 https://conda.anaconda.org/conda-forge/noarch/joblib-1.4.2-pyhd8ed1ab_0.conda#25df261d4523d9f9783bcdb7208d872f -https://conda.anaconda.org/conda-forge/linux-64/libclang-cpp19.1-19.1.4-default_hb5137d0_0.conda#e7e4a0ebe1f6eedf483f6f5d4f7d2bdd -https://conda.anaconda.org/conda-forge/linux-64/libclang13-19.1.4-default_h9c6a7e4_0.conda#6c450adae455c7d648856e8b0cfcebd6 +https://conda.anaconda.org/conda-forge/linux-64/libclang-cpp19.1-19.1.5-default_hb5137d0_0.conda#ec8649c89988d8a443c252c20f259b72 +https://conda.anaconda.org/conda-forge/linux-64/libclang13-19.1.5-default_h9c6a7e4_0.conda#a3a5997b6b47373f0c1608d8503eb4e6 https://conda.anaconda.org/conda-forge/linux-64/liblapacke-3.9.0-25_linux64_openblas.conda#8f5ead31b3a168aedd488b8a87736c41 -https://conda.anaconda.org/conda-forge/noarch/meson-1.6.0-pyhd8ed1ab_0.conda#380ba6a3eddd8e7649bfe8e6812611aa +https://conda.anaconda.org/conda-forge/noarch/meson-1.6.0-pyhd8ed1ab_1.conda#59d45dbe1b0a123966266340b579d366 https://conda.anaconda.org/conda-forge/linux-64/numpy-2.0.2-py39h9cb892a_1.conda#be95cf76ebd05d08be67e50e88d3cd49 https://conda.anaconda.org/conda-forge/linux-64/openldap-2.6.9-he970967_0.conda#ca2de8bbdc871bce41dbf59e51324165 https://conda.anaconda.org/conda-forge/linux-64/pillow-11.0.0-py39h538c539_0.conda#a2bafdf8ae51c9eb6e5be684cfcedd60 https://conda.anaconda.org/conda-forge/noarch/pip-24.3.1-pyh8b19718_0.conda#5dd546fe99b44fda83963d15f84263b7 -https://conda.anaconda.org/conda-forge/noarch/pyproject-metadata-0.9.0-pyh2cfa8aa_0.conda#10906a130eeb4a68645bf97c28333141 -https://conda.anaconda.org/conda-forge/noarch/pytest-8.3.4-pyhd8ed1ab_0.conda#ff8f2ef7f2636906b3781d0cf92388d0 -https://conda.anaconda.org/conda-forge/noarch/python-dateutil-2.9.0.post0-pyhff2d567_0.conda#b6dfd90a2141e573e4b6a81630b56df5 +https://conda.anaconda.org/conda-forge/noarch/pyproject-metadata-0.9.0-pyhd8ed1ab_1.conda#1239146a53a383a84633800294120f17 +https://conda.anaconda.org/conda-forge/noarch/pytest-8.3.4-pyhd8ed1ab_1.conda#799ed216dc6af62520f32aa39bc1c2bb +https://conda.anaconda.org/conda-forge/noarch/python-dateutil-2.9.0.post0-pyhff2d567_1.conda#5ba79d7c71f03c678c8ead841f347d6e https://conda.anaconda.org/conda-forge/linux-64/xorg-libxtst-1.2.5-hb9d3cd8_3.conda#7bbe9a0cc0df0ac5f5a8ad6d6a11af2f https://conda.anaconda.org/conda-forge/linux-64/blas-devel-3.9.0-25_linux64_openblas.conda#02c516384c77f5a7b4d03ed6c0412c57 https://conda.anaconda.org/conda-forge/linux-64/contourpy-1.3.0-py39h74842e3_2.conda#5645190ef7f6d3aebee71e298dc9677b -https://conda.anaconda.org/conda-forge/noarch/importlib-resources-6.4.5-pyhd8ed1ab_0.conda#67f4772681cf86652f3e2261794cf045 -https://conda.anaconda.org/conda-forge/linux-64/libpq-17.2-h04577a9_0.conda#52dd46162c6fb2765b49e6fd06adf8d5 -https://conda.anaconda.org/conda-forge/noarch/meson-python-0.17.1-pyh70fd9c4_0.conda#722b649da38842068d83b6e6770f11a1 +https://conda.anaconda.org/conda-forge/noarch/importlib-resources-6.4.5-pyhd8ed1ab_1.conda#59561d9b70f9df3b884c29910eba6593 +https://conda.anaconda.org/conda-forge/linux-64/libpq-17.2-h3b95a9b_1.conda#37724d8bae042345a19ca1a25dde786b +https://conda.anaconda.org/conda-forge/noarch/meson-python-0.17.1-pyh70fd9c4_1.conda#7a02679229c6c2092571b4c025055440 https://conda.anaconda.org/conda-forge/linux-64/pandas-2.2.3-py39h3b40f6f_1.conda#d07f482720066758dad87cf90b3de111 -https://conda.anaconda.org/conda-forge/noarch/pytest-xdist-3.6.1-pyhd8ed1ab_0.conda#b39568655c127a9c4a44d178ac99b6d0 +https://conda.anaconda.org/conda-forge/noarch/pytest-xdist-3.6.1-pyhd8ed1ab_1.conda#59aad4fb37cabc0bacc73cf344612ddd https://conda.anaconda.org/conda-forge/linux-64/scipy-1.13.1-py39haf93ffa_0.conda#492a2cd65862d16a4aaf535ae9ccb761 https://conda.anaconda.org/conda-forge/linux-64/zstandard-0.23.0-py39h08a7858_1.conda#cd9fa334e11886738f17254f52210bc3 https://conda.anaconda.org/conda-forge/linux-64/blas-2.125-openblas.conda#0c46b8a31a587738befc587dd8e52558 -https://conda.anaconda.org/conda-forge/linux-64/matplotlib-base-3.9.2-py39h16632d1_2.conda#2f00d5e3236a78a1ce8d84e2334f0ec8 +https://conda.anaconda.org/conda-forge/linux-64/matplotlib-base-3.9.3-py39h16632d1_0.conda#93aa7d8c91f38dd494134f009cd0860c https://conda.anaconda.org/conda-forge/linux-64/pyamg-5.2.1-py39hf59e57a_1.conda#720dbce3188cecd95fc26525394d1e65 https://conda.anaconda.org/conda-forge/linux-64/qt6-main-6.8.0-h6e8976b_0.conda#6d1c5d2d904d24c17cbb538a95855a4e -https://conda.anaconda.org/conda-forge/noarch/urllib3-2.2.3-pyhd8ed1ab_0.conda#6b55867f385dd762ed99ea687af32a69 +https://conda.anaconda.org/conda-forge/noarch/urllib3-2.2.3-pyhd8ed1ab_1.conda#4a2d8ef7c37b8808c5b9b750501fffce https://conda.anaconda.org/conda-forge/linux-64/pyside6-6.8.0.2-py39h0383914_0.conda#b93573a620eb5396f0196e6267490738 -https://conda.anaconda.org/conda-forge/noarch/requests-2.32.3-pyhd8ed1ab_0.conda#5ede4753180c7a550a443c430dc8ab52 -https://conda.anaconda.org/conda-forge/linux-64/matplotlib-3.9.2-py39hf3d152e_2.conda#01ba5041c1109e21fdac78c5d108bf2e -https://conda.anaconda.org/conda-forge/noarch/numpydoc-1.8.0-pyhd8ed1ab_0.conda#0a5522bdd3983c52102e75d1307ad8c4 +https://conda.anaconda.org/conda-forge/noarch/requests-2.32.3-pyhd8ed1ab_1.conda#a9b9368f3701a417eac9edbcae7cb737 +https://conda.anaconda.org/conda-forge/linux-64/matplotlib-3.9.3-py39hf3d152e_0.conda#1bcbea7bd5b0aea3a6a8195f82d01d43 +https://conda.anaconda.org/conda-forge/noarch/numpydoc-1.8.0-pyhd8ed1ab_1.conda#5af206d64d18d6c8dfb3122b4d9e643b https://conda.anaconda.org/conda-forge/noarch/sphinxcontrib-applehelp-2.0.0-pyhd8ed1ab_0.conda#9075bd8c033f0257122300db914e49c9 https://conda.anaconda.org/conda-forge/noarch/sphinxcontrib-devhelp-2.0.0-pyhd8ed1ab_0.conda#b3bcc38c471ebb738854f52a36059b48 https://conda.anaconda.org/conda-forge/noarch/sphinxcontrib-htmlhelp-2.1.0-pyhd8ed1ab_0.conda#e25640d692c02e8acfff0372f547e940 diff --git a/build_tools/circle/doc_linux-64_conda.lock b/build_tools/circle/doc_linux-64_conda.lock index 36c408f556151..81af504142739 100644 --- a/build_tools/circle/doc_linux-64_conda.lock +++ b/build_tools/circle/doc_linux-64_conda.lock @@ -17,7 +17,7 @@ https://conda.anaconda.org/conda-forge/noarch/libgcc-devel_linux-64-13.3.0-h84ea https://conda.anaconda.org/conda-forge/linux-64/libglvnd-1.7.0-ha4b6fd6_2.conda#434ca7e50e40f4918ab701e3facd59a0 https://conda.anaconda.org/conda-forge/linux-64/libgomp-14.2.0-h77fa898_1.conda#cc3573974587f12dda90d96e3e55a702 https://conda.anaconda.org/conda-forge/noarch/libstdcxx-devel_linux-64-13.3.0-h84ea5a7_101.conda#29b5a4ed4613fa81a07c21045e3f5bf6 -https://conda.anaconda.org/conda-forge/linux-64/llvm-openmp-19.1.4-h024ca30_0.conda#9370a10ba6a13079cc0c0e09d2ec13a8 +https://conda.anaconda.org/conda-forge/linux-64/llvm-openmp-19.1.5-h024ca30_0.conda#dc90d15c25a57f641f0b84c271e4761e https://conda.anaconda.org/conda-forge/noarch/sysroot_linux-64-2.17-h4a8ded7_18.conda#0ea96f90a10838f58412aa84fdd9df09 https://conda.anaconda.org/conda-forge/linux-64/_openmp_mutex-4.5-2_kmp_llvm.tar.bz2#562b26ba2e19059551a811e72ab7f793 https://conda.anaconda.org/conda-forge/linux-64/binutils_impl_linux-64-2.43-h4bf12b8_2.conda#cf0c5521ac2a20dfa6c662a4009eeef6 @@ -33,6 +33,7 @@ https://conda.anaconda.org/conda-forge/linux-64/libdeflate-1.22-hb9d3cd8_0.conda https://conda.anaconda.org/conda-forge/linux-64/libexpat-2.6.4-h5888daf_0.conda#db833e03127376d461e1e13e76f09b6c https://conda.anaconda.org/conda-forge/linux-64/libgcc-ng-14.2.0-h69a702a_1.conda#e39480b9ca41323497b05492a63bc35b https://conda.anaconda.org/conda-forge/linux-64/libgfortran5-14.2.0-hd5240d6_1.conda#9822b874ea29af082e5d36098d25427d +https://conda.anaconda.org/conda-forge/linux-64/liblzma-5.6.3-hb9d3cd8_1.conda#2ecf2f1c7e4e21fcfe6423a51a992d84 https://conda.anaconda.org/conda-forge/linux-64/libstdcxx-14.2.0-hc0a3c3a_1.conda#234a5554c53625688d51062645337328 https://conda.anaconda.org/conda-forge/linux-64/libzlib-1.3.1-hb9d3cd8_2.conda#edb0dca6bc32e4f4789199455a1dbeb8 https://conda.anaconda.org/conda-forge/linux-64/openssl-3.4.0-hb9d3cd8_0.conda#23cc74f77eb99315c0360ec3533147a9 @@ -64,12 +65,14 @@ https://conda.anaconda.org/conda-forge/linux-64/libuuid-2.38.1-h0b41bf4_0.conda# https://conda.anaconda.org/conda-forge/linux-64/libwebp-base-1.4.0-hd590300_0.conda#b26e8aa824079e1be0294e7152ca4559 https://conda.anaconda.org/conda-forge/linux-64/libxcb-1.17.0-h8a09558_0.conda#92ed62436b625154323d40d5f2f11dd7 https://conda.anaconda.org/conda-forge/linux-64/libxcrypt-4.4.36-hd590300_1.conda#5aa797f8787fe7a17d1b0821485b5adc -https://conda.anaconda.org/conda-forge/linux-64/mysql-common-9.0.1-h266115a_2.conda#85c0dc0bcd110c998b01856975486ee7 +https://conda.anaconda.org/conda-forge/linux-64/lz4-c-1.10.0-h5888daf_0.conda#af825462e69e44c88d628549ad59cfeb +https://conda.anaconda.org/conda-forge/linux-64/mysql-common-9.0.1-h266115a_3.conda#9411c61ff1070b5e065b32840c39faa5 https://conda.anaconda.org/conda-forge/linux-64/ncurses-6.5-he02047a_1.conda#70caf8bb6cf39a0b6b7efc885f51c0fe +https://conda.anaconda.org/conda-forge/linux-64/pixman-0.44.2-h29eaf8c_0.conda#5e2a7acfa2c24188af39e7944e1b3604 https://conda.anaconda.org/conda-forge/linux-64/rav1e-0.6.6-he8a937b_2.conda#77d9955b4abddb811cb8ab1aa7d743e4 +https://conda.anaconda.org/conda-forge/linux-64/snappy-1.2.1-h8bd8927_1.conda#3b3e64af585eadfb52bb90b553db5edf https://conda.anaconda.org/conda-forge/linux-64/svt-av1-2.3.0-h5888daf_0.conda#355898d24394b2af353eb96358db9fdd https://conda.anaconda.org/conda-forge/linux-64/tk-8.6.13-noxft_h4845f30_101.conda#d453b98d9c83e71da0741bb0ff4d76bc -https://conda.anaconda.org/conda-forge/linux-64/xz-5.2.6-h166bdaf_0.tar.bz2#2161070d867d1b1204ea749c8eec4ef0 https://conda.anaconda.org/conda-forge/linux-64/zfp-1.0.1-h5888daf_2.conda#e0409515c467b87176b070bff5d9442e https://conda.anaconda.org/conda-forge/linux-64/zlib-1.3.1-hb9d3cd8_2.conda#c9f075ab2f33b3bbee9e62d4ad0a6cd8 https://conda.anaconda.org/conda-forge/linux-64/zlib-ng-2.2.2-h5888daf_0.conda#135fd3c66bccad3d2254f50f9809e86a @@ -83,30 +86,27 @@ https://conda.anaconda.org/conda-forge/linux-64/graphite2-1.3.13-h59595ed_1003.c https://conda.anaconda.org/conda-forge/linux-64/icu-75.1-he02047a_0.conda#8b189310083baabfb622af68fd9d3ae3 https://conda.anaconda.org/conda-forge/linux-64/lerc-4.0.0-h27087fc_0.tar.bz2#76bbff344f0134279f225174e9064c8f https://conda.anaconda.org/conda-forge/linux-64/libaec-1.1.3-h59595ed_0.conda#5e97e271911b8b2001a8b71860c32faa -https://conda.anaconda.org/conda-forge/linux-64/libdrm-2.4.123-hb9d3cd8_0.conda#ee605e794bdc14e2b7f84c4faa0d8c2c +https://conda.anaconda.org/conda-forge/linux-64/libdrm-2.4.124-hb9d3cd8_0.conda#8bc89311041d7fcb510238cf0848ccae https://conda.anaconda.org/conda-forge/linux-64/libedit-3.1.20191231-he28a2e2_2.tar.bz2#4d331e44109e3f0e19b4cb8f9b82f3e1 https://conda.anaconda.org/conda-forge/linux-64/libgfortran-ng-14.2.0-h69a702a_1.conda#0a7f4cd238267c88e5d69f7826a407eb https://conda.anaconda.org/conda-forge/linux-64/libhwy-1.1.0-h00ab1b0_0.conda#88928158ccfe797eac29ef5e03f7d23d https://conda.anaconda.org/conda-forge/linux-64/libopenblas-0.3.28-pthreads_h94d23a6_1.conda#62857b389e42b36b686331bec0922050 https://conda.anaconda.org/conda-forge/linux-64/libzopfli-1.0.3-h9c3ff4c_0.tar.bz2#c66fe2d123249af7651ebde8984c51c2 -https://conda.anaconda.org/conda-forge/linux-64/lz4-c-1.9.4-hcb278e6_0.conda#318b08df404f9c9be5712aaa5a6f0bb0 https://conda.anaconda.org/conda-forge/linux-64/ninja-1.12.1-h297d8ca_0.conda#3aa1c7e292afeff25a0091ddd7c69b72 https://conda.anaconda.org/conda-forge/linux-64/pcre2-10.44-hba22ea6_2.conda#df359c09c41cd186fffb93a2d87aa6f5 -https://conda.anaconda.org/conda-forge/linux-64/pixman-0.43.2-h59595ed_0.conda#71004cbf7924e19c02746ccde9fd7123 https://conda.anaconda.org/conda-forge/linux-64/qhull-2020.2-h434a139_5.conda#353823361b1d27eb3960efb076dfcaf6 https://conda.anaconda.org/conda-forge/linux-64/readline-8.2-h8228510_1.conda#47d31b792659ce70f470b5c82fdfb7a4 -https://conda.anaconda.org/conda-forge/linux-64/snappy-1.2.1-ha2e4443_0.conda#6b7dcc7349efd123d493d2dbe85a045f https://conda.anaconda.org/conda-forge/linux-64/wayland-1.23.1-h3e06ad9_0.conda#0a732427643ae5e0486a727927791da1 https://conda.anaconda.org/conda-forge/linux-64/xcb-util-0.4.1-hb711507_2.conda#8637c3e5821654d0edf97e2b0404b443 https://conda.anaconda.org/conda-forge/linux-64/xcb-util-keysyms-0.4.1-hb711507_0.conda#ad748ccca349aec3e91743e08b5e2b50 https://conda.anaconda.org/conda-forge/linux-64/xcb-util-renderutil-0.3.10-hb711507_0.conda#0e0cbe0564d03a99afd5fd7b362feecd https://conda.anaconda.org/conda-forge/linux-64/xcb-util-wm-0.4.2-hb711507_0.conda#608e0ef8256b81d04456e8d211eee3e8 https://conda.anaconda.org/conda-forge/linux-64/xorg-libsm-1.2.4-he73a12e_1.conda#05a8ea5f446de33006171a7afe6ae857 -https://conda.anaconda.org/conda-forge/linux-64/xorg-libx11-1.8.10-h4f16b4b_0.conda#0b666058a179b744a622d0a4a0c56353 +https://conda.anaconda.org/conda-forge/linux-64/xorg-libx11-1.8.10-h4f16b4b_1.conda#125f34a17d7b4bea418a83904ea82ea6 https://conda.anaconda.org/conda-forge/linux-64/zstd-1.5.6-ha6fb4c9_0.conda#4d056880988120e29d75bfff282e0f45 -https://conda.anaconda.org/conda-forge/linux-64/blosc-1.21.6-hef167b5_0.conda#54fe76ab3d0189acaef95156874db7f9 +https://conda.anaconda.org/conda-forge/linux-64/blosc-1.21.6-he440d0b_1.conda#2c2fae981fd2afd00812c92ac47d023d https://conda.anaconda.org/conda-forge/linux-64/brotli-1.1.0-hb9d3cd8_2.conda#98514fe74548d768907ce7a13f680e8f -https://conda.anaconda.org/conda-forge/linux-64/c-blosc2-2.15.2-h68e2383_0.conda#e7b11b508252ddc35c4b51dedef17b01 +https://conda.anaconda.org/conda-forge/linux-64/c-blosc2-2.15.2-h3122c55_1.conda#2bc8d76acd818d7e79229f5157d5c156 https://conda.anaconda.org/conda-forge/linux-64/fontconfig-2.15.0-h7e30c49_1.conda#8f5b0b297b59e1ac160ad4beec99dbee https://conda.anaconda.org/conda-forge/linux-64/gcc-13.3.0-h9576a4e_1.conda#606924335b5bcdf90e9aed9a2f5d22ed https://conda.anaconda.org/conda-forge/linux-64/gcc_linux-64-13.3.0-hc28eda2_7.conda#ac23afbf5805389eb771e2ad3b476f75 @@ -118,11 +118,11 @@ https://conda.anaconda.org/conda-forge/linux-64/libblas-3.9.0-25_linux64_openbla https://conda.anaconda.org/conda-forge/linux-64/libglib-2.82.2-h2ff4ddf_0.conda#13e8e54035ddd2b91875ba399f0f7c04 https://conda.anaconda.org/conda-forge/linux-64/libglx-1.7.0-ha4b6fd6_2.conda#c8013e438185f33b13814c5c488acd5c https://conda.anaconda.org/conda-forge/linux-64/libjxl-0.11.1-hdb8da77_0.conda#32b23f3487beae7e81495fbc1099ae9e -https://conda.anaconda.org/conda-forge/linux-64/libtiff-4.7.0-he137b08_1.conda#63872517c98aa305da58a757c443698e -https://conda.anaconda.org/conda-forge/linux-64/libxml2-2.13.5-hb346dea_0.conda#c81a9f1118541aaa418ccb22190c817e -https://conda.anaconda.org/conda-forge/linux-64/mysql-libs-9.0.1-he0572af_2.conda#57a9e7ee3c0840d3c8c9012473978629 +https://conda.anaconda.org/conda-forge/linux-64/libtiff-4.7.0-hc4654cb_2.conda#be54fb40ea32e8fe9dbaa94d4528b57e +https://conda.anaconda.org/conda-forge/linux-64/libxml2-2.13.5-h8d12d68_1.conda#1a21e49e190d1ffe58531a81b6e400e1 +https://conda.anaconda.org/conda-forge/linux-64/mysql-libs-9.0.1-he0572af_3.conda#dd9da69dd4c2bf798c0b8bd4786cafb5 https://conda.anaconda.org/conda-forge/linux-64/openblas-0.3.28-pthreads_h6ec200e_1.conda#8fe5d50db07e92519cc639cb0aef9b1b -https://conda.anaconda.org/conda-forge/linux-64/python-3.9.20-h13acc7a_1_cpython.conda#951cff166a5f170e27908811917165f8 +https://conda.anaconda.org/conda-forge/linux-64/python-3.9.21-h9c0c6dc_1_cpython.conda#b4807744af026fdbe8c05131758fb4be https://conda.anaconda.org/conda-forge/linux-64/xcb-util-image-0.4.0-hb711507_2.conda#a0901183f08b6c7107aab109733a3c91 https://conda.anaconda.org/conda-forge/linux-64/xkeyboard-config-2.43-hb9d3cd8_0.conda#f725c7425d6d7c15e31f3b99a88ea02f https://conda.anaconda.org/conda-forge/linux-64/xorg-libxext-1.3.6-hb9d3cd8_0.conda#febbab7d15033c913d53c7a2c102309d @@ -134,61 +134,61 @@ https://conda.anaconda.org/conda-forge/linux-64/brunsli-0.1-h9c3ff4c_0.tar.bz2#c https://conda.anaconda.org/conda-forge/linux-64/c-compiler-1.8.0-h2b85faf_1.conda#fa7b3bf2965b9d74a81a0702d9bb49ee https://conda.anaconda.org/conda-forge/linux-64/cairo-1.18.0-hebfffa5_3.conda#fceaedf1cdbcb02df9699a0d9b005292 https://conda.anaconda.org/conda-forge/noarch/certifi-2024.8.30-pyhd8ed1ab_0.conda#12f7d00853807b0531775e9be891cb11 -https://conda.anaconda.org/conda-forge/noarch/charset-normalizer-3.4.0-pyhd8ed1ab_0.conda#a374efa97290b8799046df7c5ca17164 -https://conda.anaconda.org/conda-forge/noarch/click-8.1.7-unix_pyh707e725_0.conda#f3ad426304898027fc619827ff428eca -https://conda.anaconda.org/conda-forge/noarch/colorama-0.4.6-pyhd8ed1ab_0.tar.bz2#3faab06a954c2a04039983f2c4a50d99 -https://conda.anaconda.org/conda-forge/noarch/cycler-0.12.1-pyhd8ed1ab_0.conda#5cd86562580f274031ede6aa6aa24441 +https://conda.anaconda.org/conda-forge/noarch/charset-normalizer-3.4.0-pyhd8ed1ab_1.conda#6581a17bba6b948bb60130026404a9d6 +https://conda.anaconda.org/conda-forge/noarch/click-8.1.7-unix_pyh707e725_1.conda#cb8e52f28f5e592598190c562e7b5bf1 +https://conda.anaconda.org/conda-forge/noarch/colorama-0.4.6-pyhd8ed1ab_1.conda#962b9857ee8e7018c22f2776ffa0b2d7 +https://conda.anaconda.org/conda-forge/noarch/cycler-0.12.1-pyhd8ed1ab_1.conda#44600c4667a319d67dbe0681fc0bc833 https://conda.anaconda.org/conda-forge/linux-64/cyrus-sasl-2.1.27-h54b06d7_7.conda#dce22f70b4e5a407ce88f2be046f4ceb https://conda.anaconda.org/conda-forge/linux-64/cython-3.0.11-py39hde8bd2b_3.conda#52637110266d72a26d01d3d81038664e https://conda.anaconda.org/conda-forge/linux-64/dbus-1.13.6-h5008d03_3.tar.bz2#ecfff944ba3960ecb334b9a2663d708d -https://conda.anaconda.org/conda-forge/noarch/docutils-0.21.2-pyhd8ed1ab_0.conda#e8cd5d629f65bdf0f3bb312cde14659e -https://conda.anaconda.org/conda-forge/noarch/exceptiongroup-1.2.2-pyhd8ed1ab_0.conda#d02ae936e42063ca46af6cdad2dbd1e0 -https://conda.anaconda.org/conda-forge/noarch/execnet-2.1.1-pyhd8ed1ab_0.conda#15dda3cdbf330abfe9f555d22f66db46 +https://conda.anaconda.org/conda-forge/noarch/docutils-0.21.2-pyhd8ed1ab_1.conda#24c1ca34138ee57de72a943237cde4cc +https://conda.anaconda.org/conda-forge/noarch/exceptiongroup-1.2.2-pyhd8ed1ab_1.conda#a16662747cdeb9abbac74d0057cc976e +https://conda.anaconda.org/conda-forge/noarch/execnet-2.1.1-pyhd8ed1ab_1.conda#a71efeae2c160f6789900ba2631a2c90 https://conda.anaconda.org/conda-forge/linux-64/gfortran-13.3.0-h9576a4e_1.conda#5e5e3b592d5174eb49607a973c77825b https://conda.anaconda.org/conda-forge/linux-64/gfortran_linux-64-13.3.0-hb919d3a_7.conda#0b8e7413559c4c892a37c35de4559969 https://conda.anaconda.org/conda-forge/linux-64/gxx-13.3.0-h9576a4e_1.conda#209182ca6b20aeff62f442e843961d81 https://conda.anaconda.org/conda-forge/linux-64/gxx_linux-64-13.3.0-h6834431_7.conda#7c82ca9bda609b6f72f670e4219d3787 -https://conda.anaconda.org/conda-forge/noarch/hpack-4.0.0-pyh9f0ad1d_0.tar.bz2#914d6646c4dbb1fd3ff539830a12fd71 -https://conda.anaconda.org/conda-forge/noarch/hyperframe-6.0.1-pyhd8ed1ab_0.tar.bz2#9f765cbfab6870c8435b9eefecd7a1f4 -https://conda.anaconda.org/conda-forge/noarch/idna-3.10-pyhd8ed1ab_0.conda#7ba2ede0e7c795ff95088daf0dc59753 +https://conda.anaconda.org/conda-forge/noarch/hpack-4.0.0-pyhd8ed1ab_1.conda#2aa5ff7fa34a81b9196532c84c10d865 +https://conda.anaconda.org/conda-forge/noarch/hyperframe-6.0.1-pyhd8ed1ab_1.conda#566e75c90c1d0c8c459eb0ad9833dc7a +https://conda.anaconda.org/conda-forge/noarch/idna-3.10-pyhd8ed1ab_1.conda#39a4f67be3286c86d696df570b1201b7 https://conda.anaconda.org/conda-forge/noarch/imagesize-1.4.1-pyhd8ed1ab_0.tar.bz2#7de5386c8fea29e76b303f37dde4c352 -https://conda.anaconda.org/conda-forge/noarch/iniconfig-2.0.0-pyhd8ed1ab_0.conda#f800d2da156d08e289b14e87e43c1ae5 +https://conda.anaconda.org/conda-forge/noarch/iniconfig-2.0.0-pyhd8ed1ab_1.conda#6837f3eff7dcea42ecd714ce1ac2b108 https://conda.anaconda.org/conda-forge/linux-64/kiwisolver-1.4.7-py39h74842e3_0.conda#1bf77976372ff6de02af7b75cf034ce5 https://conda.anaconda.org/conda-forge/linux-64/lcms2-2.16-hb7c19ff_0.conda#51bb7010fc86f70eee639b4bb7a894f5 https://conda.anaconda.org/conda-forge/linux-64/libcblas-3.9.0-25_linux64_openblas.conda#5dbd1b0fc0d01ec5e0e1fbe667281a11 https://conda.anaconda.org/conda-forge/linux-64/libcups-2.3.3-h4637d8d_4.conda#d4529f4dff3057982a7617c7ac58fde3 https://conda.anaconda.org/conda-forge/linux-64/libgl-1.7.0-ha4b6fd6_2.conda#928b8be80851f5d8ffb016f9c81dae7a https://conda.anaconda.org/conda-forge/linux-64/liblapack-3.9.0-25_linux64_openblas.conda#4dc03a53fc69371a6158d0ed37214cd3 -https://conda.anaconda.org/conda-forge/linux-64/libllvm19-19.1.4-ha7bfdaf_1.conda#886acc67bcba28a5c6b429aad2f057ce +https://conda.anaconda.org/conda-forge/linux-64/libllvm19-19.1.5-ha7bfdaf_0.conda#76f3749eda7b24816aacd55b9f31447a https://conda.anaconda.org/conda-forge/linux-64/libxkbcommon-1.7.0-h2c5496b_1.conda#e2eaefa4de2b7237af7c907b8bbc760a https://conda.anaconda.org/conda-forge/linux-64/libxslt-1.1.39-h76b75d6_0.conda#e71f31f8cfb0a91439f2086fc8aa0461 -https://conda.anaconda.org/conda-forge/linux-64/markupsafe-3.0.2-py39h9399b63_0.conda#d38773fed557834d3211e019b7cf7c2f +https://conda.anaconda.org/conda-forge/linux-64/markupsafe-3.0.2-py39h9399b63_1.conda#7821f0938aa629b9f17efd98c300a487 https://conda.anaconda.org/conda-forge/noarch/munkres-1.1.4-pyh9f0ad1d_0.tar.bz2#2ba8498c1018c1e9c61eb99b973dfe19 https://conda.anaconda.org/conda-forge/noarch/networkx-3.2.1-pyhd8ed1ab_0.conda#425fce3b531bed6ec3c74fab3e5f0a1c https://conda.anaconda.org/conda-forge/linux-64/openjpeg-2.5.2-h488ebb8_0.conda#7f2e286780f072ed750df46dc2631138 -https://conda.anaconda.org/conda-forge/noarch/packaging-24.2-pyhff2d567_1.conda#8508b703977f4c4ada34d657d051972c -https://conda.anaconda.org/conda-forge/noarch/platformdirs-4.3.6-pyhd8ed1ab_0.conda#fd8f2b18b65bbf62e8f653100690c8d2 -https://conda.anaconda.org/conda-forge/noarch/pluggy-1.5.0-pyhd8ed1ab_0.conda#d3483c8fc2dc2cc3f5cf43e26d60cabf +https://conda.anaconda.org/conda-forge/noarch/packaging-24.2-pyhd8ed1ab_2.conda#3bfed7e6228ebf2f7b9eaa47f1b4e2aa +https://conda.anaconda.org/conda-forge/noarch/platformdirs-4.3.6-pyhd8ed1ab_1.conda#577852c7e53901ddccc7e6a9959ddebe +https://conda.anaconda.org/conda-forge/noarch/pluggy-1.5.0-pyhd8ed1ab_1.conda#e9dcbce5f45f9ee500e728ae58b605b6 https://conda.anaconda.org/conda-forge/linux-64/psutil-6.1.0-py39h8cd3c5a_0.conda#ef257b7ce1e1cb152639ced6bc653475 -https://conda.anaconda.org/conda-forge/noarch/pycparser-2.22-pyhd8ed1ab_0.conda#844d9eb3b43095b031874477f7d70088 -https://conda.anaconda.org/conda-forge/noarch/pygments-2.18.0-pyhd8ed1ab_0.conda#b7f5c092b8f9800150d998a71b76d5a1 -https://conda.anaconda.org/conda-forge/noarch/pyparsing-3.2.0-pyhd8ed1ab_1.conda#035c17fbf099f50ff60bf2eb303b0a83 -https://conda.anaconda.org/conda-forge/noarch/pysocks-1.7.1-pyha2e5f31_6.tar.bz2#2a7de29fb590ca14b5243c4c812c8025 -https://conda.anaconda.org/conda-forge/noarch/python-tzdata-2024.2-pyhd8ed1ab_0.conda#986287f89929b2d629bd6ef6497dc307 +https://conda.anaconda.org/conda-forge/noarch/pycparser-2.22-pyh29332c3_1.conda#12c566707c80111f9799308d9e265aef +https://conda.anaconda.org/conda-forge/noarch/pygments-2.18.0-pyhd8ed1ab_1.conda#b38dc0206e2a530e5c2cf11dc086b31a +https://conda.anaconda.org/conda-forge/noarch/pyparsing-3.2.0-pyhd8ed1ab_2.conda#4c05a2bcf87bb495512374143b57cf28 +https://conda.anaconda.org/conda-forge/noarch/pysocks-1.7.1-pyha55dd90_7.conda#461219d1a5bd61342293efa2c0c90eac +https://conda.anaconda.org/conda-forge/noarch/python-tzdata-2024.2-pyhd8ed1ab_1.conda#c0def296b2f6d2dd7b030c2a7f66bb1f https://conda.anaconda.org/conda-forge/noarch/pytz-2024.1-pyhd8ed1ab_0.conda#3eeeeb9e4827ace8c0c1419c85d590ad https://conda.anaconda.org/conda-forge/noarch/setuptools-75.6.0-pyhff2d567_1.conda#fc80f7995e396cbaeabd23cf46c413dc -https://conda.anaconda.org/conda-forge/noarch/six-1.16.0-pyh6c4a22f_0.tar.bz2#e5f25f8dbc060e9a8d912e432202afc2 +https://conda.anaconda.org/conda-forge/noarch/six-1.17.0-pyhd8ed1ab_0.conda#a451d576819089b0d672f18768be0f65 https://conda.anaconda.org/conda-forge/noarch/snowballstemmer-2.2.0-pyhd8ed1ab_0.tar.bz2#4d22a9315e78c6827f806065957d566e https://conda.anaconda.org/conda-forge/noarch/soupsieve-2.5-pyhd8ed1ab_1.conda#3f144b2c34f8cb5a9abd9ed23a39c561 https://conda.anaconda.org/conda-forge/noarch/sphinxcontrib-jsmath-1.0.1-pyhd8ed1ab_0.conda#da1d979339e2714c30a8e806a33ec087 -https://conda.anaconda.org/conda-forge/noarch/tabulate-0.9.0-pyhd8ed1ab_1.tar.bz2#4759805cce2d914c38472f70bf4d8bcb -https://conda.anaconda.org/conda-forge/noarch/tenacity-9.0.0-pyhd8ed1ab_0.conda#42af51ad3b654ece73572628ad2882ae +https://conda.anaconda.org/conda-forge/noarch/tabulate-0.9.0-pyhd8ed1ab_2.conda#959484a66b4b76befcddc4fa97c95567 +https://conda.anaconda.org/conda-forge/noarch/tenacity-9.0.0-pyhd8ed1ab_1.conda#a09f66fe95a54a92172e56a4a97ba271 https://conda.anaconda.org/conda-forge/noarch/threadpoolctl-3.5.0-pyhc1e730c_0.conda#df68d78237980a159bd7149f33c0e8fd -https://conda.anaconda.org/conda-forge/noarch/tomli-2.2.1-pyhd8ed1ab_0.conda#ee8ab0fe4c8dfc5a6319f7f8246022fc +https://conda.anaconda.org/conda-forge/noarch/tomli-2.2.1-pyhd8ed1ab_1.conda#ac944244f1fed2eb49bae07193ae8215 https://conda.anaconda.org/conda-forge/linux-64/tornado-6.4.2-py39h8cd3c5a_0.conda#ebfd05ae1501660e995a8b6bbe02a391 -https://conda.anaconda.org/conda-forge/noarch/typing_extensions-4.12.2-pyha770c72_0.conda#ebe6952715e1d5eb567eeebf25250fa7 +https://conda.anaconda.org/conda-forge/noarch/typing_extensions-4.12.2-pyha770c72_1.conda#d17f13df8b65464ca316cbc000a3cb64 https://conda.anaconda.org/conda-forge/linux-64/unicodedata2-15.1.0-py39h8cd3c5a_1.conda#6346898044e4387631c614290789a434 -https://conda.anaconda.org/conda-forge/noarch/wheel-0.45.1-pyhd8ed1ab_0.conda#bdb2f437ce62fd2f1fef9119a37a12d9 +https://conda.anaconda.org/conda-forge/noarch/wheel-0.45.1-pyhd8ed1ab_1.conda#75cb7132eb58d97896e173ef12ac9986 https://conda.anaconda.org/conda-forge/linux-64/xcb-util-cursor-0.1.5-hb9d3cd8_0.conda#eb44b3b6deb1cab08d72cb61686fe64c https://conda.anaconda.org/conda-forge/linux-64/xorg-libxcomposite-0.4.6-hb9d3cd8_2.conda#d3c295b50f092ab525ffe3c2aa4b7413 https://conda.anaconda.org/conda-forge/linux-64/xorg-libxcursor-1.2.3-hb9d3cd8_0.conda#2ccd714aa2242315acaf0a67faea780b @@ -198,65 +198,65 @@ https://conda.anaconda.org/conda-forge/linux-64/xorg-libxrandr-1.5.4-hb9d3cd8_0. https://conda.anaconda.org/conda-forge/linux-64/xorg-libxxf86vm-1.1.5-hb9d3cd8_4.conda#7da9007c0582712c4bad4131f89c8372 https://conda.anaconda.org/conda-forge/noarch/zipp-3.21.0-pyhd8ed1ab_1.conda#0c3cc595284c5e8f0f9900a9b228a332 https://conda.anaconda.org/conda-forge/noarch/accessible-pygments-0.0.5-pyhd8ed1ab_0.conda#1bb1ef9806a9a20872434f58b3e7fc1a -https://conda.anaconda.org/conda-forge/noarch/babel-2.16.0-pyhd8ed1ab_0.conda#6d4e9ecca8d88977147e109fc7053184 -https://conda.anaconda.org/conda-forge/noarch/beautifulsoup4-4.12.3-pyha770c72_0.conda#332493000404d8411859539a5a630865 +https://conda.anaconda.org/conda-forge/noarch/babel-2.16.0-pyhd8ed1ab_1.conda#3e23f7db93ec14c80525257d8affac28 +https://conda.anaconda.org/conda-forge/noarch/beautifulsoup4-4.12.3-pyha770c72_1.conda#d48f7e9fdec44baf6d1da416fe402b04 https://conda.anaconda.org/conda-forge/linux-64/cffi-1.17.1-py39h15c3d72_0.conda#7e61b8777f42e00b08ff059f9e8ebc44 https://conda.anaconda.org/conda-forge/linux-64/cxx-compiler-1.8.0-h1a2810e_1.conda#3bb4907086d7187bf01c8bec397ffa5e -https://conda.anaconda.org/conda-forge/linux-64/fonttools-4.55.0-py39h9399b63_0.conda#61762136d872c6d2de2de7742a0c60ef +https://conda.anaconda.org/conda-forge/linux-64/fonttools-4.55.2-py39h9399b63_0.conda#9dd7204c1c96d90bc143724b1fb2fe63 https://conda.anaconda.org/conda-forge/linux-64/fortran-compiler-1.8.0-h36df796_1.conda#6b57750841d53ade8d3b47eafe53dd9f -https://conda.anaconda.org/conda-forge/noarch/h2-4.1.0-pyhd8ed1ab_0.tar.bz2#b748fbf7060927a6e82df7cb5ee8f097 +https://conda.anaconda.org/conda-forge/noarch/h2-4.1.0-pyhd8ed1ab_1.conda#825927dc7b0f287ef8d4d0011bb113b1 https://conda.anaconda.org/conda-forge/linux-64/harfbuzz-9.0.0-hda332d3_1.conda#76b32dcf243444aea9c6b804bcfa40b8 -https://conda.anaconda.org/conda-forge/noarch/importlib-metadata-8.5.0-pyha770c72_0.conda#54198435fce4d64d8a89af22573012a8 -https://conda.anaconda.org/conda-forge/noarch/importlib_resources-6.4.5-pyhd8ed1ab_0.conda#c808991d29b9838fb4d96ce8267ec9ec -https://conda.anaconda.org/conda-forge/noarch/jinja2-3.1.4-pyhd8ed1ab_0.conda#7b86ecb7d3557821c649b3c31e3eb9f2 +https://conda.anaconda.org/conda-forge/noarch/importlib-metadata-8.5.0-pyha770c72_1.conda#315607a3030ad5d5227e76e0733798ff +https://conda.anaconda.org/conda-forge/noarch/importlib_resources-6.4.5-pyhd8ed1ab_1.conda#15798fa69312d433af690c8c42b3fb36 +https://conda.anaconda.org/conda-forge/noarch/jinja2-3.1.4-pyhd8ed1ab_1.conda#08cce3151bde4ecad7885bd9fb647532 https://conda.anaconda.org/conda-forge/noarch/joblib-1.4.2-pyhd8ed1ab_0.conda#25df261d4523d9f9783bcdb7208d872f -https://conda.anaconda.org/conda-forge/linux-64/libclang-cpp19.1-19.1.4-default_hb5137d0_0.conda#e7e4a0ebe1f6eedf483f6f5d4f7d2bdd -https://conda.anaconda.org/conda-forge/linux-64/libclang13-19.1.4-default_h9c6a7e4_0.conda#6c450adae455c7d648856e8b0cfcebd6 +https://conda.anaconda.org/conda-forge/linux-64/libclang-cpp19.1-19.1.5-default_hb5137d0_0.conda#ec8649c89988d8a443c252c20f259b72 +https://conda.anaconda.org/conda-forge/linux-64/libclang13-19.1.5-default_h9c6a7e4_0.conda#a3a5997b6b47373f0c1608d8503eb4e6 https://conda.anaconda.org/conda-forge/linux-64/liblapacke-3.9.0-25_linux64_openblas.conda#8f5ead31b3a168aedd488b8a87736c41 https://conda.anaconda.org/conda-forge/noarch/memory_profiler-0.61.0-pyhd8ed1ab_0.tar.bz2#8b45f9f2b2f7a98b0ec179c8991a4a9b -https://conda.anaconda.org/conda-forge/noarch/meson-1.6.0-pyhd8ed1ab_0.conda#380ba6a3eddd8e7649bfe8e6812611aa +https://conda.anaconda.org/conda-forge/noarch/meson-1.6.0-pyhd8ed1ab_1.conda#59d45dbe1b0a123966266340b579d366 https://conda.anaconda.org/conda-forge/linux-64/numpy-2.0.2-py39h9cb892a_1.conda#be95cf76ebd05d08be67e50e88d3cd49 https://conda.anaconda.org/conda-forge/linux-64/openldap-2.6.9-he970967_0.conda#ca2de8bbdc871bce41dbf59e51324165 https://conda.anaconda.org/conda-forge/linux-64/pillow-11.0.0-py39h538c539_0.conda#a2bafdf8ae51c9eb6e5be684cfcedd60 https://conda.anaconda.org/conda-forge/noarch/pip-24.3.1-pyh8b19718_0.conda#5dd546fe99b44fda83963d15f84263b7 https://conda.anaconda.org/conda-forge/noarch/plotly-5.24.1-pyhd8ed1ab_0.conda#81bb643d6c3ab4cbeaf724e9d68d0a6a -https://conda.anaconda.org/conda-forge/noarch/pyproject-metadata-0.9.0-pyh2cfa8aa_0.conda#10906a130eeb4a68645bf97c28333141 -https://conda.anaconda.org/conda-forge/noarch/pytest-8.3.4-pyhd8ed1ab_0.conda#ff8f2ef7f2636906b3781d0cf92388d0 -https://conda.anaconda.org/conda-forge/noarch/python-dateutil-2.9.0.post0-pyhff2d567_0.conda#b6dfd90a2141e573e4b6a81630b56df5 +https://conda.anaconda.org/conda-forge/noarch/pyproject-metadata-0.9.0-pyhd8ed1ab_1.conda#1239146a53a383a84633800294120f17 +https://conda.anaconda.org/conda-forge/noarch/pytest-8.3.4-pyhd8ed1ab_1.conda#799ed216dc6af62520f32aa39bc1c2bb +https://conda.anaconda.org/conda-forge/noarch/python-dateutil-2.9.0.post0-pyhff2d567_1.conda#5ba79d7c71f03c678c8ead841f347d6e https://conda.anaconda.org/conda-forge/linux-64/xorg-libxtst-1.2.5-hb9d3cd8_3.conda#7bbe9a0cc0df0ac5f5a8ad6d6a11af2f https://conda.anaconda.org/conda-forge/linux-64/blas-devel-3.9.0-25_linux64_openblas.conda#02c516384c77f5a7b4d03ed6c0412c57 https://conda.anaconda.org/conda-forge/linux-64/compilers-1.8.0-ha770c72_1.conda#061e111d02f33a99548f0de07169d9fb https://conda.anaconda.org/conda-forge/linux-64/contourpy-1.3.0-py39h74842e3_2.conda#5645190ef7f6d3aebee71e298dc9677b -https://conda.anaconda.org/conda-forge/linux-64/imagecodecs-2024.9.22-py39h1aa77c4_0.conda#6001ae3f85403137d61e3ef7e96dd940 +https://conda.anaconda.org/conda-forge/linux-64/imagecodecs-2024.9.22-py39h966145a_1.conda#56479bfb4818d058f104339e547efe70 https://conda.anaconda.org/conda-forge/noarch/imageio-2.36.1-pyh12aca89_1.conda#84d5a2f075c861a8f98afd2842f7eb6e -https://conda.anaconda.org/conda-forge/noarch/importlib-resources-6.4.5-pyhd8ed1ab_0.conda#67f4772681cf86652f3e2261794cf045 -https://conda.anaconda.org/conda-forge/noarch/lazy-loader-0.4-pyhd8ed1ab_1.conda#4809b9f4c6ce106d443c3f90b8e10db2 -https://conda.anaconda.org/conda-forge/linux-64/libpq-17.2-h04577a9_0.conda#52dd46162c6fb2765b49e6fd06adf8d5 -https://conda.anaconda.org/conda-forge/noarch/meson-python-0.17.1-pyh70fd9c4_0.conda#722b649da38842068d83b6e6770f11a1 +https://conda.anaconda.org/conda-forge/noarch/importlib-resources-6.4.5-pyhd8ed1ab_1.conda#59561d9b70f9df3b884c29910eba6593 +https://conda.anaconda.org/conda-forge/noarch/lazy-loader-0.4-pyhd8ed1ab_2.conda#d10d9393680734a8febc4b362a4c94f2 +https://conda.anaconda.org/conda-forge/linux-64/libpq-17.2-h3b95a9b_1.conda#37724d8bae042345a19ca1a25dde786b +https://conda.anaconda.org/conda-forge/noarch/meson-python-0.17.1-pyh70fd9c4_1.conda#7a02679229c6c2092571b4c025055440 https://conda.anaconda.org/conda-forge/linux-64/pandas-2.2.3-py39h3b40f6f_1.conda#d07f482720066758dad87cf90b3de111 https://conda.anaconda.org/conda-forge/noarch/patsy-1.0.1-pyhff2d567_0.conda#a97b9c7586cedcf4a0a158ef3479975c https://conda.anaconda.org/conda-forge/linux-64/polars-1.16.0-py39h74f158a_0.conda#4794afe0c773e554c795eed445064161 -https://conda.anaconda.org/conda-forge/noarch/pytest-xdist-3.6.1-pyhd8ed1ab_0.conda#b39568655c127a9c4a44d178ac99b6d0 +https://conda.anaconda.org/conda-forge/noarch/pytest-xdist-3.6.1-pyhd8ed1ab_1.conda#59aad4fb37cabc0bacc73cf344612ddd https://conda.anaconda.org/conda-forge/linux-64/pywavelets-1.6.0-py39hd92a3bb_0.conda#32e26e16f60c568b17a82e3033a4d309 https://conda.anaconda.org/conda-forge/linux-64/scipy-1.13.1-py39haf93ffa_0.conda#492a2cd65862d16a4aaf535ae9ccb761 https://conda.anaconda.org/conda-forge/linux-64/zstandard-0.23.0-py39h08a7858_1.conda#cd9fa334e11886738f17254f52210bc3 https://conda.anaconda.org/conda-forge/linux-64/blas-2.125-openblas.conda#0c46b8a31a587738befc587dd8e52558 -https://conda.anaconda.org/conda-forge/noarch/lazy_loader-0.4-pyhd8ed1ab_1.conda#ec6f70b8a5242936567d4f886726a372 -https://conda.anaconda.org/conda-forge/linux-64/matplotlib-base-3.9.2-py39h16632d1_2.conda#2f00d5e3236a78a1ce8d84e2334f0ec8 +https://conda.anaconda.org/conda-forge/noarch/lazy_loader-0.4-pyhd8ed1ab_2.conda#bb0230917e2473c77d615104dbe8a49d +https://conda.anaconda.org/conda-forge/linux-64/matplotlib-base-3.9.3-py39h16632d1_0.conda#93aa7d8c91f38dd494134f009cd0860c https://conda.anaconda.org/conda-forge/linux-64/pyamg-5.2.1-py39hf59e57a_1.conda#720dbce3188cecd95fc26525394d1e65 https://conda.anaconda.org/conda-forge/linux-64/qt6-main-6.8.0-h6e8976b_0.conda#6d1c5d2d904d24c17cbb538a95855a4e https://conda.anaconda.org/conda-forge/linux-64/statsmodels-0.14.4-py39hf3d9206_0.conda#f633ed7c19e120b9e6c0efb79f20a53f https://conda.anaconda.org/conda-forge/noarch/tifffile-2024.6.18-pyhd8ed1ab_0.conda#7c3077529bfe3b86f9425d526d73bd24 https://conda.anaconda.org/conda-forge/noarch/towncrier-24.8.0-pyhd8ed1ab_0.conda#02190423152df62fda1cde3d9527b882 -https://conda.anaconda.org/conda-forge/noarch/urllib3-2.2.3-pyhd8ed1ab_0.conda#6b55867f385dd762ed99ea687af32a69 +https://conda.anaconda.org/conda-forge/noarch/urllib3-2.2.3-pyhd8ed1ab_1.conda#4a2d8ef7c37b8808c5b9b750501fffce https://conda.anaconda.org/conda-forge/linux-64/pyside6-6.8.0.2-py39h0383914_0.conda#b93573a620eb5396f0196e6267490738 -https://conda.anaconda.org/conda-forge/noarch/requests-2.32.3-pyhd8ed1ab_0.conda#5ede4753180c7a550a443c430dc8ab52 +https://conda.anaconda.org/conda-forge/noarch/requests-2.32.3-pyhd8ed1ab_1.conda#a9b9368f3701a417eac9edbcae7cb737 https://conda.anaconda.org/conda-forge/linux-64/scikit-image-0.24.0-py39h3b40f6f_3.conda#63666cfacc4dc32c8b2ff49705988f92 https://conda.anaconda.org/conda-forge/noarch/seaborn-base-0.13.2-pyhd8ed1ab_2.conda#b713b116feaf98acdba93ad4d7f90ca1 -https://conda.anaconda.org/conda-forge/linux-64/matplotlib-3.9.2-py39hf3d152e_2.conda#01ba5041c1109e21fdac78c5d108bf2e -https://conda.anaconda.org/conda-forge/noarch/pooch-1.8.2-pyhd8ed1ab_0.conda#8dab97d8a9616e07d779782995710aed +https://conda.anaconda.org/conda-forge/linux-64/matplotlib-3.9.3-py39hf3d152e_0.conda#1bcbea7bd5b0aea3a6a8195f82d01d43 +https://conda.anaconda.org/conda-forge/noarch/pooch-1.8.2-pyhd8ed1ab_1.conda#b3e783e8e8ed7577cf0b6dee37d1fbac https://conda.anaconda.org/conda-forge/noarch/seaborn-0.13.2-hd8ed1ab_2.conda#a79d8797f62715255308d92d3a91ef2e -https://conda.anaconda.org/conda-forge/noarch/numpydoc-1.8.0-pyhd8ed1ab_0.conda#0a5522bdd3983c52102e75d1307ad8c4 +https://conda.anaconda.org/conda-forge/noarch/numpydoc-1.8.0-pyhd8ed1ab_1.conda#5af206d64d18d6c8dfb3122b4d9e643b https://conda.anaconda.org/conda-forge/noarch/pydata-sphinx-theme-0.16.0-pyhd8ed1ab_0.conda#344261b0e77f5d2faaffb4eac225eeb7 https://conda.anaconda.org/conda-forge/noarch/sphinx-copybutton-0.5.2-pyhd8ed1ab_0.conda#ac832cc43adc79118cf6e23f1f9b8995 https://conda.anaconda.org/conda-forge/noarch/sphinx-design-0.6.1-pyhd8ed1ab_1.conda#db0f1eb28b6df3a11e89437597309009 @@ -273,7 +273,7 @@ https://conda.anaconda.org/conda-forge/noarch/sphinxext-opengraph-0.9.1-pyhd8ed1 # pip attrs @ https://files.pythonhosted.org/packages/6a/21/5b6702a7f963e95456c0de2d495f67bf5fd62840ac655dc451586d23d39a/attrs-24.2.0-py3-none-any.whl#sha256=81921eb96de3191c8258c199618104dd27ac608d9366f5e35d011eae1867ede2 # pip cloudpickle @ https://files.pythonhosted.org/packages/48/41/e1d85ca3cab0b674e277c8c4f678cf66a91cd2cecf93df94353a606fe0db/cloudpickle-3.1.0-py3-none-any.whl#sha256=fe11acda67f61aaaec473e3afe030feb131d78a43461b718185363384f1ba12e # pip defusedxml @ https://files.pythonhosted.org/packages/07/6c/aa3f2f849e01cb6a001cd8554a88d4c77c5c1a31c95bdf1cf9301e6d9ef4/defusedxml-0.7.1-py2.py3-none-any.whl#sha256=a352e7e428770286cc899e2542b6cdaedb2b4953ff269a210103ec58f6198a61 -# pip fastjsonschema @ https://files.pythonhosted.org/packages/3f/3a/404a60bb9789ce4daecbb4ec780bee1c46d2ea5258cf689b7ab63acefd6f/fastjsonschema-2.21.0-py3-none-any.whl#sha256=5b23b8e7c9c6adc0ecb91c03a0768cb48cd154d9159378a69c8318532e0b5cbf +# pip fastjsonschema @ https://files.pythonhosted.org/packages/90/2b/0817a2b257fe88725c25589d89aec060581aabf668707a8d03b2e9e0cb2a/fastjsonschema-2.21.1-py3-none-any.whl#sha256=c9e5b7e908310918cf494a434eeb31384dd84a98b57a30bcb1f535015b554667 # pip fqdn @ https://files.pythonhosted.org/packages/cf/58/8acf1b3e91c58313ce5cb67df61001fc9dcd21be4fadb76c1a2d540e09ed/fqdn-1.5.1-py3-none-any.whl#sha256=3a179af3761e4df6eb2e026ff9e1a3033d3587bf980a0b1b2e1e5d08d7358014 # pip json5 @ https://files.pythonhosted.org/packages/aa/42/797895b952b682c3dafe23b1834507ee7f02f4d6299b65aaa61425763278/json5-0.10.0-py3-none-any.whl#sha256=19b23410220a7271e8377f81ba8aacba2fdd56947fbb137ee5977cbe1f5e8dfa # pip jsonpointer @ https://files.pythonhosted.org/packages/71/92/5e77f98553e9e75130c78900d000368476aed74276eb8ae8796f65f00918/jsonpointer-3.0.0-py2.py3-none-any.whl#sha256=13e088adc14fca8b6aa8177c044e12701e6ad4b28ff10e65f2267a90109c9942 @@ -282,22 +282,22 @@ https://conda.anaconda.org/conda-forge/noarch/sphinxext-opengraph-0.9.1-pyhd8ed1 # pip mistune @ https://files.pythonhosted.org/packages/f0/74/c95adcdf032956d9ef6c89a9b8a5152bf73915f8c633f3e3d88d06bd699c/mistune-3.0.2-py3-none-any.whl#sha256=71481854c30fdbc938963d3605b72501f5c10a9320ecd412c121c163a1c7d205 # pip overrides @ https://files.pythonhosted.org/packages/2c/ab/fc8290c6a4c722e5514d80f62b2dc4c4df1a68a41d1364e625c35990fcf3/overrides-7.7.0-py3-none-any.whl#sha256=c7ed9d062f78b8e4c1a7b70bd8796b35ead4d9f510227ef9c5dc7626c60d7e49 # pip pandocfilters @ https://files.pythonhosted.org/packages/ef/af/4fbc8cab944db5d21b7e2a5b8e9211a03a79852b1157e2c102fcc61ac440/pandocfilters-1.5.1-py2.py3-none-any.whl#sha256=93be382804a9cdb0a7267585f157e5d1731bbe5545a85b268d6f5fe6232de2bc -# pip pkginfo @ https://files.pythonhosted.org/packages/17/b7/71f9fbebc37ecf55233407f348b9acc974482e6ee37d057a1e8e3baba081/pkginfo-1.11.2-py3-none-any.whl#sha256=9ec518eefccd159de7ed45386a6bb4c6ca5fa2cb3bd9b71154fae44f6f1b36a3 -# pip prometheus-client @ https://files.pythonhosted.org/packages/84/2d/46ed6436849c2c88228c3111865f44311cff784b4aabcdef4ea2545dbc3d/prometheus_client-0.21.0-py3-none-any.whl#sha256=4fa6b4dd0ac16d58bb587c04b1caae65b8c5043e85f778f42f5f632f6af2e166 +# pip pkginfo @ https://files.pythonhosted.org/packages/21/11/4af184fbd8ae13daa13953212b27a212f4e63772ca8a0dd84d08b60ed206/pkginfo-1.12.0-py3-none-any.whl#sha256=dcd589c9be4da8973eceffa247733c144812759aa67eaf4bbf97016a02f39088 +# pip prometheus-client @ https://files.pythonhosted.org/packages/ff/c2/ab7d37426c179ceb9aeb109a85cda8948bb269b7561a0be870cc656eefe4/prometheus_client-0.21.1-py3-none-any.whl#sha256=594b45c410d6f4f8888940fe80b5cc2521b305a1fafe1c58609ef715a001f301 # pip ptyprocess @ https://files.pythonhosted.org/packages/22/a6/858897256d0deac81a172289110f31629fc4cee19b6f01283303e18c8db3/ptyprocess-0.7.0-py2.py3-none-any.whl#sha256=4b41f3967fce3af57cc7e94b888626c18bf37a083e3651ca8feeb66d492fef35 # pip python-json-logger @ https://files.pythonhosted.org/packages/35/a6/145655273568ee78a581e734cf35beb9e33a370b29c5d3c8fee3744de29f/python_json_logger-2.0.7-py3-none-any.whl#sha256=f380b826a991ebbe3de4d897aeec42760035ac760345e57b812938dc8b35e2bd # pip pyyaml @ https://files.pythonhosted.org/packages/3d/32/e7bd8535d22ea2874cef6a81021ba019474ace0d13a4819c2a4bce79bd6a/PyYAML-6.0.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl#sha256=3b1fdb9dc17f5a7677423d508ab4f243a726dea51fa5e70992e59a7411c89d19 # pip rfc3986-validator @ https://files.pythonhosted.org/packages/9e/51/17023c0f8f1869d8806b979a2bffa3f861f26a3f1a66b094288323fba52f/rfc3986_validator-0.1.1-py2.py3-none-any.whl#sha256=2f235c432ef459970b4306369336b9d5dbdda31b510ca1e327636e01f528bfa9 -# pip rpds-py @ https://files.pythonhosted.org/packages/44/ab/6fd9144e3b182b7c6ee09fd3f1718541d86c74a595f2afe0bd8bf8fb5db0/rpds_py-0.21.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl#sha256=8404b3717da03cbf773a1d275d01fec84ea007754ed380f63dfc24fb76ce4592 +# pip rpds-py @ https://files.pythonhosted.org/packages/93/f5/c1c772364570d35b98ba64f36ec90c3c6d0b932bc4d8b9b4efef6dc64b07/rpds_py-0.22.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl#sha256=0c150c7a61ed4a4f4955a96626574e9baf1adf772c2fb61ef6a5027e52803543 # pip send2trash @ https://files.pythonhosted.org/packages/40/b0/4562db6223154aa4e22f939003cb92514c79f3d4dccca3444253fd17f902/Send2Trash-1.8.3-py3-none-any.whl#sha256=0c31227e0bd08961c7665474a3d1ef7193929fedda4233843689baa056be46c9 # pip sniffio @ https://files.pythonhosted.org/packages/e9/44/75a9c9421471a6c4805dbf2356f7c181a29c1879239abab1ea2cc8f38b40/sniffio-1.3.1-py3-none-any.whl#sha256=2f6da418d1f1e0fddd844478f41680e794e6051915791a034ff65e5f100525a2 # pip traitlets @ https://files.pythonhosted.org/packages/00/c0/8f5d070730d7836adc9c9b6408dec68c6ced86b304a9b26a14df072a6e8c/traitlets-5.14.3-py3-none-any.whl#sha256=b74e89e397b1ed28cc831db7aea759ba6640cb3de13090ca145426688ff1ac4f -# pip types-python-dateutil @ https://files.pythonhosted.org/packages/35/d6/ba5f61958f358028f2e2ba1b8e225b8e263053bd57d3a79e2d2db64c807b/types_python_dateutil-2.9.0.20241003-py3-none-any.whl#sha256=250e1d8e80e7bbc3a6c99b907762711d1a1cdd00e978ad39cb5940f6f0a87f3d +# pip types-python-dateutil @ https://files.pythonhosted.org/packages/0f/b3/ca41df24db5eb99b00d97f89d7674a90cb6b3134c52fb8121b6d8d30f15c/types_python_dateutil-2.9.0.20241206-py3-none-any.whl#sha256=e248a4bc70a486d3e3ec84d0dc30eec3a5f979d6e7ee4123ae043eedbb987f53 # pip uri-template @ https://files.pythonhosted.org/packages/e7/00/3fca040d7cf8a32776d3d81a00c8ee7457e00f80c649f1e4a863c8321ae9/uri_template-1.3.0-py3-none-any.whl#sha256=a44a133ea12d44a0c0f06d7d42a52d71282e77e2f937d8abd5655b8d56fc1363 # pip webcolors @ https://files.pythonhosted.org/packages/60/e8/c0e05e4684d13459f93d312077a9a2efbe04d59c393bc2b8802248c908d4/webcolors-24.11.1-py3-none-any.whl#sha256=515291393b4cdf0eb19c155749a096f779f7d909f7cceea072791cb9095b92e9 # pip webencodings @ https://files.pythonhosted.org/packages/f4/24/2a3e3df732393fed8b3ebf2ec078f05546de641fe1b667ee316ec1dcf3b7/webencodings-0.5.1-py2.py3-none-any.whl#sha256=a0af1213f3c2226497a97e2b3aa01a7e4bee4f403f95be16fc9acd2947514a78 # pip websocket-client @ https://files.pythonhosted.org/packages/5a/84/44687a29792a70e111c5c477230a72c4b957d88d16141199bf9acb7537a3/websocket_client-1.8.0-py3-none-any.whl#sha256=17b44cc997f5c498e809b22cdf2d9c7a9e71c02c8cc2b6c56e7c2d1239bfa526 -# pip anyio @ https://files.pythonhosted.org/packages/e4/f5/f2b75d2fc6f1a260f340f0e7c6a060f4dd2961cc16884ed851b0d18da06a/anyio-4.6.2.post1-py3-none-any.whl#sha256=6d170c36fba3bdd840c73d3868c1e777e33676a69c3a72cf0a0d5d6d8009b61d +# pip anyio @ https://files.pythonhosted.org/packages/a0/7a/4daaf3b6c08ad7ceffea4634ec206faeff697526421c20f07628c7372156/anyio-4.7.0-py3-none-any.whl#sha256=ea60c3723ab42ba6fff7e8ccb0488c898ec538ff4df1f1d5e642c3601d07e352 # pip argon2-cffi-bindings @ https://files.pythonhosted.org/packages/ec/f7/378254e6dd7ae6f31fe40c8649eea7d4832a42243acaf0f1fff9083b2bed/argon2_cffi_bindings-21.2.0-cp36-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl#sha256=b746dba803a79238e925d9046a63aa26bf86ab2a2fe74ce6b009a1c3f5c8f2ae # pip arrow @ https://files.pythonhosted.org/packages/f8/ed/e97229a566617f2ae958a6b13e7cc0f585470eac730a73e9e82c32a3cdd2/arrow-1.3.0-py3-none-any.whl#sha256=c728b120ebc00eb84e01882a6f5e7927a53960aa990ce7dd2b10f39005a67f80 # pip bleach @ https://files.pythonhosted.org/packages/fc/55/96142937f66150805c25c4d0f31ee4132fd33497753400734f9dfdcbdc66/bleach-6.2.0-py3-none-any.whl#sha256=117d9c6097a7c3d22fd578fcd8d35ff1e125df6736f554da4e432fdd63f31e5e @@ -314,7 +314,7 @@ https://conda.anaconda.org/conda-forge/noarch/sphinxext-opengraph-0.9.1-pyhd8ed1 # pip jsonschema-specifications @ https://files.pythonhosted.org/packages/d1/0f/8910b19ac0670a0f80ce1008e5e751c4a57e14d2c4c13a482aa6079fa9d6/jsonschema_specifications-2024.10.1-py3-none-any.whl#sha256=a09a0680616357d9a0ecf05c12ad234479f549239d0f5b55f3deea67475da9bf # pip jupyter-client @ https://files.pythonhosted.org/packages/11/85/b0394e0b6fcccd2c1eeefc230978a6f8cb0c5df1e4cd3e7625735a0d7d1e/jupyter_client-8.6.3-py3-none-any.whl#sha256=e8a19cc986cc45905ac3362915f410f3af85424b4c0905e94fa5f2cb08e8f23f # pip jupyter-server-terminals @ https://files.pythonhosted.org/packages/07/2d/2b32cdbe8d2a602f697a649798554e4f072115438e92249624e532e8aca6/jupyter_server_terminals-0.5.3-py3-none-any.whl#sha256=41ee0d7dc0ebf2809c668e0fc726dfaf258fcd3e769568996ca731b6194ae9aa -# pip jupyterlite-core @ https://files.pythonhosted.org/packages/35/ae/32b4040a66b8a2980d3581516478d0e258ec0627db34fcbfdf9373bce317/jupyterlite_core-0.4.4-py3-none-any.whl#sha256=cb64b5649c8171027cfaceed7d1615098a5c6db270cb8be281ca3f4b6caa4094 +# pip jupyterlite-core @ https://files.pythonhosted.org/packages/ff/51/0812a39260335c708c6f150e66e5d0ff2adcc40885f0a8b7244639286960/jupyterlite_core-0.4.5-py3-none-any.whl#sha256=2c30b815b0699d50160bfec35ff612295f8518ac66cf52acd7bfe41aa42ce0be # pip jsonschema @ https://files.pythonhosted.org/packages/69/4a/4f9dbeb84e8850557c02365a0eee0649abe5eb1d84af92a25731c6c0f922/jsonschema-4.23.0-py3-none-any.whl#sha256=fbadb6f8b144a8f8cf9f0b89ba94501d143e50411a1278633f56a7acf7fd5566 # pip jupyterlite-pyodide-kernel @ https://files.pythonhosted.org/packages/ca/4c/42bb232529ad3b11db6d87de6accb3a9daeafc0fdf5892ff047ee842e0a8/jupyterlite_pyodide_kernel-0.4.4-py3-none-any.whl#sha256=5569843bad0d1d4e5f2a61b093d325cd9113a6e5ac761395a28cfd483a370290 # pip jupyter-events @ https://files.pythonhosted.org/packages/a5/94/059180ea70a9a326e1815176b2370da56376da347a796f8c4f0b830208ef/jupyter_events-0.10.0-py3-none-any.whl#sha256=4b72130875e59d57716d327ea70d3ebc3af1944d3717e5a498b8a06c6c159960 diff --git a/build_tools/circle/doc_min_dependencies_linux-64_conda.lock b/build_tools/circle/doc_min_dependencies_linux-64_conda.lock index 8d9c5687da99e..8324a3fd856e4 100644 --- a/build_tools/circle/doc_min_dependencies_linux-64_conda.lock +++ b/build_tools/circle/doc_min_dependencies_linux-64_conda.lock @@ -18,7 +18,7 @@ https://conda.anaconda.org/conda-forge/noarch/libgcc-devel_linux-64-13.3.0-h84ea https://conda.anaconda.org/conda-forge/linux-64/libglvnd-1.7.0-ha4b6fd6_2.conda#434ca7e50e40f4918ab701e3facd59a0 https://conda.anaconda.org/conda-forge/linux-64/libgomp-14.2.0-h77fa898_1.conda#cc3573974587f12dda90d96e3e55a702 https://conda.anaconda.org/conda-forge/noarch/libstdcxx-devel_linux-64-13.3.0-h84ea5a7_101.conda#29b5a4ed4613fa81a07c21045e3f5bf6 -https://conda.anaconda.org/conda-forge/linux-64/llvm-openmp-19.1.4-h024ca30_0.conda#9370a10ba6a13079cc0c0e09d2ec13a8 +https://conda.anaconda.org/conda-forge/linux-64/llvm-openmp-19.1.5-h024ca30_0.conda#dc90d15c25a57f641f0b84c271e4761e https://conda.anaconda.org/conda-forge/noarch/sysroot_linux-64-2.17-h4a8ded7_18.conda#0ea96f90a10838f58412aa84fdd9df09 https://conda.anaconda.org/conda-forge/linux-64/_openmp_mutex-4.5-2_kmp_llvm.tar.bz2#562b26ba2e19059551a811e72ab7f793 https://conda.anaconda.org/conda-forge/linux-64/binutils_impl_linux-64-2.43-h4bf12b8_2.conda#cf0c5521ac2a20dfa6c662a4009eeef6 @@ -33,6 +33,7 @@ https://conda.anaconda.org/conda-forge/linux-64/libdeflate-1.22-hb9d3cd8_0.conda https://conda.anaconda.org/conda-forge/linux-64/libexpat-2.6.4-h5888daf_0.conda#db833e03127376d461e1e13e76f09b6c https://conda.anaconda.org/conda-forge/linux-64/libgcc-ng-14.2.0-h69a702a_1.conda#e39480b9ca41323497b05492a63bc35b https://conda.anaconda.org/conda-forge/linux-64/libgfortran5-14.2.0-hd5240d6_1.conda#9822b874ea29af082e5d36098d25427d +https://conda.anaconda.org/conda-forge/linux-64/liblzma-5.6.3-hb9d3cd8_1.conda#2ecf2f1c7e4e21fcfe6423a51a992d84 https://conda.anaconda.org/conda-forge/linux-64/libstdcxx-14.2.0-hc0a3c3a_1.conda#234a5554c53625688d51062645337328 https://conda.anaconda.org/conda-forge/linux-64/libzlib-1.3.1-hb9d3cd8_2.conda#edb0dca6bc32e4f4789199455a1dbeb8 https://conda.anaconda.org/conda-forge/linux-64/openssl-3.4.0-hb9d3cd8_0.conda#23cc74f77eb99315c0360ec3533147a9 @@ -61,6 +62,7 @@ https://conda.anaconda.org/conda-forge/linux-64/libgpg-error-1.51-hbd13f7d_1.con https://conda.anaconda.org/conda-forge/linux-64/libiconv-1.17-hd590300_2.conda#d66573916ffcf376178462f1b61c941e https://conda.anaconda.org/conda-forge/linux-64/libjpeg-turbo-3.0.0-hd590300_1.conda#ea25936bb4080d843790b586850f82b8 https://conda.anaconda.org/conda-forge/linux-64/libnsl-2.0.1-hd590300_0.conda#30fd6e37fe21f86f4bd26d6ee73eeec7 +https://conda.anaconda.org/conda-forge/linux-64/libntlm-1.4-h7f98852_1002.tar.bz2#e728e874159b042d92b90238a3cb0dc2 https://conda.anaconda.org/conda-forge/linux-64/libogg-1.3.5-h4ab18f5_0.conda#601bfb4b3c6f0b844443bb81a56651e0 https://conda.anaconda.org/conda-forge/linux-64/libopus-1.3.1-h7f98852_1.tar.bz2#15345e56d527b330e1cacbdf58676e8f https://conda.anaconda.org/conda-forge/linux-64/libpciaccess-0.18-hd590300_0.conda#48f4330bfcd959c3cfb704d424903c82 @@ -72,14 +74,16 @@ https://conda.anaconda.org/conda-forge/linux-64/libuuid-2.38.1-h0b41bf4_0.conda# https://conda.anaconda.org/conda-forge/linux-64/libwebp-base-1.4.0-hd590300_0.conda#b26e8aa824079e1be0294e7152ca4559 https://conda.anaconda.org/conda-forge/linux-64/libxcb-1.17.0-h8a09558_0.conda#92ed62436b625154323d40d5f2f11dd7 https://conda.anaconda.org/conda-forge/linux-64/libxcrypt-4.4.36-hd590300_1.conda#5aa797f8787fe7a17d1b0821485b5adc +https://conda.anaconda.org/conda-forge/linux-64/lz4-c-1.10.0-h5888daf_0.conda#af825462e69e44c88d628549ad59cfeb https://conda.anaconda.org/conda-forge/linux-64/mpg123-1.32.9-hc50e24c_0.conda#c7f302fd11eeb0987a6a5e1f3aed6a21 -https://conda.anaconda.org/conda-forge/linux-64/mysql-common-9.0.1-h266115a_2.conda#85c0dc0bcd110c998b01856975486ee7 +https://conda.anaconda.org/conda-forge/linux-64/mysql-common-9.0.1-h266115a_3.conda#9411c61ff1070b5e065b32840c39faa5 https://conda.anaconda.org/conda-forge/linux-64/ncurses-6.5-he02047a_1.conda#70caf8bb6cf39a0b6b7efc885f51c0fe https://conda.anaconda.org/conda-forge/linux-64/nspr-4.36-h5888daf_0.conda#de9cd5bca9e4918527b9b72b6e2e1409 +https://conda.anaconda.org/conda-forge/linux-64/pixman-0.44.2-h29eaf8c_0.conda#5e2a7acfa2c24188af39e7944e1b3604 https://conda.anaconda.org/conda-forge/linux-64/rav1e-0.6.6-he8a937b_2.conda#77d9955b4abddb811cb8ab1aa7d743e4 +https://conda.anaconda.org/conda-forge/linux-64/snappy-1.2.1-h8bd8927_1.conda#3b3e64af585eadfb52bb90b553db5edf https://conda.anaconda.org/conda-forge/linux-64/svt-av1-2.3.0-h5888daf_0.conda#355898d24394b2af353eb96358db9fdd https://conda.anaconda.org/conda-forge/linux-64/tk-8.6.13-noxft_h4845f30_101.conda#d453b98d9c83e71da0741bb0ff4d76bc -https://conda.anaconda.org/conda-forge/linux-64/xz-5.2.6-h166bdaf_0.tar.bz2#2161070d867d1b1204ea749c8eec4ef0 https://conda.anaconda.org/conda-forge/linux-64/yaml-0.2.5-h7f98852_2.tar.bz2#4cb3ad778ec2d5a7acbdf254eb1c42ae https://conda.anaconda.org/conda-forge/linux-64/zfp-1.0.1-h5888daf_2.conda#e0409515c467b87176b070bff5d9442e https://conda.anaconda.org/conda-forge/linux-64/zlib-1.3.1-hb9d3cd8_2.conda#c9f075ab2f33b3bbee9e62d4ad0a6cd8 @@ -94,8 +98,8 @@ https://conda.anaconda.org/conda-forge/linux-64/icu-75.1-he02047a_0.conda#8b1893 https://conda.anaconda.org/conda-forge/linux-64/lerc-4.0.0-h27087fc_0.tar.bz2#76bbff344f0134279f225174e9064c8f https://conda.anaconda.org/conda-forge/linux-64/libaec-1.1.3-h59595ed_0.conda#5e97e271911b8b2001a8b71860c32faa https://conda.anaconda.org/conda-forge/linux-64/libasprintf-0.22.5-he8f35ee_3.conda#4fab9799da9571266d05ca5503330655 -https://conda.anaconda.org/conda-forge/linux-64/libcap-2.69-h0f662aa_0.conda#25cb5999faa414e5ccb2c1388f62d3d5 -https://conda.anaconda.org/conda-forge/linux-64/libdrm-2.4.123-hb9d3cd8_0.conda#ee605e794bdc14e2b7f84c4faa0d8c2c +https://conda.anaconda.org/conda-forge/linux-64/libcap-2.71-h39aace5_0.conda#dd19e4e3043f6948bd7454b946ee0983 +https://conda.anaconda.org/conda-forge/linux-64/libdrm-2.4.124-hb9d3cd8_0.conda#8bc89311041d7fcb510238cf0848ccae https://conda.anaconda.org/conda-forge/linux-64/libedit-3.1.20191231-he28a2e2_2.tar.bz2#4d331e44109e3f0e19b4cb8f9b82f3e1 https://conda.anaconda.org/conda-forge/linux-64/libgcrypt-lib-1.11.0-hb9d3cd8_2.conda#e55712ff40a054134d51b89afca57dbc https://conda.anaconda.org/conda-forge/linux-64/libgettextpo-devel-0.22.5-he02047a_3.conda#9aba7960731e6b4547b3a52f812ed801 @@ -103,23 +107,20 @@ https://conda.anaconda.org/conda-forge/linux-64/libgfortran-ng-14.2.0-h69a702a_1 https://conda.anaconda.org/conda-forge/linux-64/libhwy-1.1.0-h00ab1b0_0.conda#88928158ccfe797eac29ef5e03f7d23d https://conda.anaconda.org/conda-forge/linux-64/libvorbis-1.3.7-h9c3ff4c_0.tar.bz2#309dec04b70a3cc0f1e84a4013683bc0 https://conda.anaconda.org/conda-forge/linux-64/libzopfli-1.0.3-h9c3ff4c_0.tar.bz2#c66fe2d123249af7651ebde8984c51c2 -https://conda.anaconda.org/conda-forge/linux-64/lz4-c-1.9.4-hcb278e6_0.conda#318b08df404f9c9be5712aaa5a6f0bb0 https://conda.anaconda.org/conda-forge/linux-64/ninja-1.12.1-h297d8ca_0.conda#3aa1c7e292afeff25a0091ddd7c69b72 https://conda.anaconda.org/conda-forge/linux-64/nss-3.107-hdf54f9c_0.conda#294b7009fe9010b35c25bb683f663bc3 https://conda.anaconda.org/conda-forge/linux-64/pcre2-10.44-hba22ea6_2.conda#df359c09c41cd186fffb93a2d87aa6f5 -https://conda.anaconda.org/conda-forge/linux-64/pixman-0.43.2-h59595ed_0.conda#71004cbf7924e19c02746ccde9fd7123 https://conda.anaconda.org/conda-forge/linux-64/readline-8.2-h8228510_1.conda#47d31b792659ce70f470b5c82fdfb7a4 -https://conda.anaconda.org/conda-forge/linux-64/snappy-1.2.1-ha2e4443_0.conda#6b7dcc7349efd123d493d2dbe85a045f https://conda.anaconda.org/conda-forge/linux-64/xcb-util-0.4.1-hb711507_2.conda#8637c3e5821654d0edf97e2b0404b443 https://conda.anaconda.org/conda-forge/linux-64/xcb-util-keysyms-0.4.1-hb711507_0.conda#ad748ccca349aec3e91743e08b5e2b50 https://conda.anaconda.org/conda-forge/linux-64/xcb-util-renderutil-0.3.10-hb711507_0.conda#0e0cbe0564d03a99afd5fd7b362feecd https://conda.anaconda.org/conda-forge/linux-64/xcb-util-wm-0.4.2-hb711507_0.conda#608e0ef8256b81d04456e8d211eee3e8 https://conda.anaconda.org/conda-forge/linux-64/xorg-libsm-1.2.4-he73a12e_1.conda#05a8ea5f446de33006171a7afe6ae857 -https://conda.anaconda.org/conda-forge/linux-64/xorg-libx11-1.8.10-h4f16b4b_0.conda#0b666058a179b744a622d0a4a0c56353 +https://conda.anaconda.org/conda-forge/linux-64/xorg-libx11-1.8.10-h4f16b4b_1.conda#125f34a17d7b4bea418a83904ea82ea6 https://conda.anaconda.org/conda-forge/linux-64/zstd-1.5.6-ha6fb4c9_0.conda#4d056880988120e29d75bfff282e0f45 -https://conda.anaconda.org/conda-forge/linux-64/blosc-1.21.6-hef167b5_0.conda#54fe76ab3d0189acaef95156874db7f9 +https://conda.anaconda.org/conda-forge/linux-64/blosc-1.21.6-he440d0b_1.conda#2c2fae981fd2afd00812c92ac47d023d https://conda.anaconda.org/conda-forge/linux-64/brotli-1.1.0-hb9d3cd8_2.conda#98514fe74548d768907ce7a13f680e8f -https://conda.anaconda.org/conda-forge/linux-64/c-blosc2-2.15.2-h68e2383_0.conda#e7b11b508252ddc35c4b51dedef17b01 +https://conda.anaconda.org/conda-forge/linux-64/c-blosc2-2.15.2-h3122c55_1.conda#2bc8d76acd818d7e79229f5157d5c156 https://conda.anaconda.org/conda-forge/linux-64/fontconfig-2.15.0-h7e30c49_1.conda#8f5b0b297b59e1ac160ad4beec99dbee https://conda.anaconda.org/conda-forge/linux-64/gcc-13.3.0-h9576a4e_1.conda#606924335b5bcdf90e9aed9a2f5d22ed https://conda.anaconda.org/conda-forge/linux-64/gcc_linux-64-13.3.0-hc28eda2_7.conda#ac23afbf5805389eb771e2ad3b476f75 @@ -128,15 +129,14 @@ https://conda.anaconda.org/conda-forge/linux-64/gxx_impl_linux-64-13.3.0-hdbfa83 https://conda.anaconda.org/conda-forge/linux-64/krb5-1.21.3-h659f571_0.conda#3f43953b7d3fb3aaa1d0d0723d91e368 https://conda.anaconda.org/conda-forge/linux-64/libasprintf-devel-0.22.5-he8f35ee_3.conda#1091193789bb830127ed067a9e01ac57 https://conda.anaconda.org/conda-forge/linux-64/libavif16-1.1.1-h1909e37_2.conda#21e468ed3786ebcb2124b123aa2484b7 -https://conda.anaconda.org/conda-forge/linux-64/libgcrypt-devel-1.11.0-hb9d3cd8_2.conda#bf888b6a37286e9ae3749a114f878a6e -https://conda.anaconda.org/conda-forge/linux-64/libgcrypt-tools-1.11.0-hb9d3cd8_2.conda#342389a8c9eef45fd8bb144b7522e28d https://conda.anaconda.org/conda-forge/linux-64/libglib-2.82.2-h2ff4ddf_0.conda#13e8e54035ddd2b91875ba399f0f7c04 https://conda.anaconda.org/conda-forge/linux-64/libglx-1.7.0-ha4b6fd6_2.conda#c8013e438185f33b13814c5c488acd5c https://conda.anaconda.org/conda-forge/linux-64/libjxl-0.11.1-hdb8da77_0.conda#32b23f3487beae7e81495fbc1099ae9e -https://conda.anaconda.org/conda-forge/linux-64/libtiff-4.7.0-he137b08_1.conda#63872517c98aa305da58a757c443698e -https://conda.anaconda.org/conda-forge/linux-64/libxml2-2.13.5-hb346dea_0.conda#c81a9f1118541aaa418ccb22190c817e -https://conda.anaconda.org/conda-forge/linux-64/mysql-libs-9.0.1-he0572af_2.conda#57a9e7ee3c0840d3c8c9012473978629 -https://conda.anaconda.org/conda-forge/linux-64/python-3.9.20-h13acc7a_1_cpython.conda#951cff166a5f170e27908811917165f8 +https://conda.anaconda.org/conda-forge/linux-64/libsystemd0-256.9-h0b6a36f_2.conda#135bbeb376345b6847c065115be4221a +https://conda.anaconda.org/conda-forge/linux-64/libtiff-4.7.0-hc4654cb_2.conda#be54fb40ea32e8fe9dbaa94d4528b57e +https://conda.anaconda.org/conda-forge/linux-64/libxml2-2.13.5-h8d12d68_1.conda#1a21e49e190d1ffe58531a81b6e400e1 +https://conda.anaconda.org/conda-forge/linux-64/mysql-libs-9.0.1-he0572af_3.conda#dd9da69dd4c2bf798c0b8bd4786cafb5 +https://conda.anaconda.org/conda-forge/linux-64/python-3.9.21-h9c0c6dc_1_cpython.conda#b4807744af026fdbe8c05131758fb4be https://conda.anaconda.org/conda-forge/linux-64/xcb-util-image-0.4.0-hb711507_2.conda#a0901183f08b6c7107aab109733a3c91 https://conda.anaconda.org/conda-forge/linux-64/xkeyboard-config-2.43-hb9d3cd8_0.conda#f725c7425d6d7c15e31f3b99a88ea02f https://conda.anaconda.org/conda-forge/linux-64/xorg-libxext-1.3.6-hb9d3cd8_0.conda#febbab7d15033c913d53c7a2c102309d @@ -149,105 +149,105 @@ https://conda.anaconda.org/conda-forge/linux-64/brunsli-0.1-h9c3ff4c_0.tar.bz2#c https://conda.anaconda.org/conda-forge/linux-64/c-compiler-1.8.0-h2b85faf_1.conda#fa7b3bf2965b9d74a81a0702d9bb49ee https://conda.anaconda.org/conda-forge/linux-64/cairo-1.18.0-hebfffa5_3.conda#fceaedf1cdbcb02df9699a0d9b005292 https://conda.anaconda.org/conda-forge/noarch/certifi-2024.8.30-pyhd8ed1ab_0.conda#12f7d00853807b0531775e9be891cb11 -https://conda.anaconda.org/conda-forge/noarch/charset-normalizer-3.4.0-pyhd8ed1ab_0.conda#a374efa97290b8799046df7c5ca17164 -https://conda.anaconda.org/conda-forge/noarch/click-8.1.7-unix_pyh707e725_0.conda#f3ad426304898027fc619827ff428eca +https://conda.anaconda.org/conda-forge/noarch/charset-normalizer-3.4.0-pyhd8ed1ab_1.conda#6581a17bba6b948bb60130026404a9d6 +https://conda.anaconda.org/conda-forge/noarch/click-8.1.7-unix_pyh707e725_1.conda#cb8e52f28f5e592598190c562e7b5bf1 https://conda.anaconda.org/conda-forge/noarch/cloudpickle-3.1.0-pyhd8ed1ab_1.conda#c88ca2bb7099167912e3b26463fff079 -https://conda.anaconda.org/conda-forge/noarch/colorama-0.4.6-pyhd8ed1ab_0.tar.bz2#3faab06a954c2a04039983f2c4a50d99 -https://conda.anaconda.org/conda-forge/noarch/cycler-0.12.1-pyhd8ed1ab_0.conda#5cd86562580f274031ede6aa6aa24441 +https://conda.anaconda.org/conda-forge/noarch/colorama-0.4.6-pyhd8ed1ab_1.conda#962b9857ee8e7018c22f2776ffa0b2d7 +https://conda.anaconda.org/conda-forge/noarch/cycler-0.12.1-pyhd8ed1ab_1.conda#44600c4667a319d67dbe0681fc0bc833 +https://conda.anaconda.org/conda-forge/linux-64/cyrus-sasl-2.1.27-h54b06d7_7.conda#dce22f70b4e5a407ce88f2be046f4ceb https://conda.anaconda.org/conda-forge/linux-64/cython-3.0.10-py39h3d6467e_0.conda#76b5d215fb735a6dc43010ffbe78040e https://conda.anaconda.org/conda-forge/linux-64/dbus-1.13.6-h5008d03_3.tar.bz2#ecfff944ba3960ecb334b9a2663d708d -https://conda.anaconda.org/conda-forge/noarch/docutils-0.21.2-pyhd8ed1ab_0.conda#e8cd5d629f65bdf0f3bb312cde14659e -https://conda.anaconda.org/conda-forge/noarch/exceptiongroup-1.2.2-pyhd8ed1ab_0.conda#d02ae936e42063ca46af6cdad2dbd1e0 -https://conda.anaconda.org/conda-forge/noarch/execnet-2.1.1-pyhd8ed1ab_0.conda#15dda3cdbf330abfe9f555d22f66db46 -https://conda.anaconda.org/conda-forge/noarch/fsspec-2024.10.0-pyhff2d567_0.conda#816dbc4679a64e4417cd1385d661bb31 +https://conda.anaconda.org/conda-forge/noarch/docutils-0.21.2-pyhd8ed1ab_1.conda#24c1ca34138ee57de72a943237cde4cc +https://conda.anaconda.org/conda-forge/noarch/exceptiongroup-1.2.2-pyhd8ed1ab_1.conda#a16662747cdeb9abbac74d0057cc976e +https://conda.anaconda.org/conda-forge/noarch/execnet-2.1.1-pyhd8ed1ab_1.conda#a71efeae2c160f6789900ba2631a2c90 +https://conda.anaconda.org/conda-forge/noarch/fsspec-2024.10.0-pyhd8ed1ab_1.conda#906fe13095e734cb413b57a49116cdc8 https://conda.anaconda.org/conda-forge/linux-64/gettext-0.22.5-he02047a_3.conda#c7f243bbaea97cd6ea1edd693270100e https://conda.anaconda.org/conda-forge/linux-64/gfortran-13.3.0-h9576a4e_1.conda#5e5e3b592d5174eb49607a973c77825b https://conda.anaconda.org/conda-forge/linux-64/gfortran_linux-64-13.3.0-hb919d3a_7.conda#0b8e7413559c4c892a37c35de4559969 https://conda.anaconda.org/conda-forge/linux-64/glib-tools-2.82.2-h4833e2c_0.conda#12859f91830f58b1803e32846651c6f6 https://conda.anaconda.org/conda-forge/linux-64/gxx-13.3.0-h9576a4e_1.conda#209182ca6b20aeff62f442e843961d81 https://conda.anaconda.org/conda-forge/linux-64/gxx_linux-64-13.3.0-h6834431_7.conda#7c82ca9bda609b6f72f670e4219d3787 -https://conda.anaconda.org/conda-forge/noarch/hpack-4.0.0-pyh9f0ad1d_0.tar.bz2#914d6646c4dbb1fd3ff539830a12fd71 -https://conda.anaconda.org/conda-forge/noarch/hyperframe-6.0.1-pyhd8ed1ab_0.tar.bz2#9f765cbfab6870c8435b9eefecd7a1f4 -https://conda.anaconda.org/conda-forge/noarch/idna-3.10-pyhd8ed1ab_0.conda#7ba2ede0e7c795ff95088daf0dc59753 +https://conda.anaconda.org/conda-forge/noarch/hpack-4.0.0-pyhd8ed1ab_1.conda#2aa5ff7fa34a81b9196532c84c10d865 +https://conda.anaconda.org/conda-forge/noarch/hyperframe-6.0.1-pyhd8ed1ab_1.conda#566e75c90c1d0c8c459eb0ad9833dc7a +https://conda.anaconda.org/conda-forge/noarch/idna-3.10-pyhd8ed1ab_1.conda#39a4f67be3286c86d696df570b1201b7 https://conda.anaconda.org/conda-forge/noarch/imagesize-1.4.1-pyhd8ed1ab_0.tar.bz2#7de5386c8fea29e76b303f37dde4c352 -https://conda.anaconda.org/conda-forge/noarch/iniconfig-2.0.0-pyhd8ed1ab_0.conda#f800d2da156d08e289b14e87e43c1ae5 +https://conda.anaconda.org/conda-forge/noarch/iniconfig-2.0.0-pyhd8ed1ab_1.conda#6837f3eff7dcea42ecd714ce1ac2b108 https://conda.anaconda.org/conda-forge/linux-64/kiwisolver-1.4.7-py39h74842e3_0.conda#1bf77976372ff6de02af7b75cf034ce5 https://conda.anaconda.org/conda-forge/linux-64/lcms2-2.16-hb7c19ff_0.conda#51bb7010fc86f70eee639b4bb7a894f5 https://conda.anaconda.org/conda-forge/linux-64/libcups-2.3.3-h4637d8d_4.conda#d4529f4dff3057982a7617c7ac58fde3 -https://conda.anaconda.org/conda-forge/linux-64/libgcrypt-1.11.0-ha770c72_2.conda#92aaf7c067a5e63ac7f035bbd8864415 https://conda.anaconda.org/conda-forge/linux-64/libgl-1.7.0-ha4b6fd6_2.conda#928b8be80851f5d8ffb016f9c81dae7a https://conda.anaconda.org/conda-forge/linux-64/libhwloc-2.11.2-default_h0d58e46_1001.conda#804ca9e91bcaea0824a341d55b1684f2 -https://conda.anaconda.org/conda-forge/linux-64/libllvm19-19.1.4-ha7bfdaf_1.conda#886acc67bcba28a5c6b429aad2f057ce -https://conda.anaconda.org/conda-forge/linux-64/libpq-16.6-h2d7952a_0.conda#7fa1f554b760a2d6018ecc673fb73f6c +https://conda.anaconda.org/conda-forge/linux-64/libllvm19-19.1.5-ha7bfdaf_0.conda#76f3749eda7b24816aacd55b9f31447a https://conda.anaconda.org/conda-forge/linux-64/libxkbcommon-1.7.0-h2c5496b_1.conda#e2eaefa4de2b7237af7c907b8bbc760a https://conda.anaconda.org/conda-forge/noarch/locket-1.0.0-pyhd8ed1ab_0.tar.bz2#91e27ef3d05cc772ce627e51cff111c4 -https://conda.anaconda.org/conda-forge/linux-64/markupsafe-3.0.2-py39h9399b63_0.conda#d38773fed557834d3211e019b7cf7c2f +https://conda.anaconda.org/conda-forge/linux-64/markupsafe-3.0.2-py39h9399b63_1.conda#7821f0938aa629b9f17efd98c300a487 https://conda.anaconda.org/conda-forge/noarch/networkx-3.2-pyhd8ed1ab_0.conda#cec8cc498664cc00a070676aa89e69a7 https://conda.anaconda.org/conda-forge/linux-64/openjpeg-2.5.2-h488ebb8_0.conda#7f2e286780f072ed750df46dc2631138 -https://conda.anaconda.org/conda-forge/noarch/packaging-24.2-pyhff2d567_1.conda#8508b703977f4c4ada34d657d051972c -https://conda.anaconda.org/conda-forge/noarch/pluggy-1.5.0-pyhd8ed1ab_0.conda#d3483c8fc2dc2cc3f5cf43e26d60cabf -https://conda.anaconda.org/conda-forge/noarch/ply-3.11-pyhd8ed1ab_2.conda#18c6deb6f9602e32446398203c8f0e91 +https://conda.anaconda.org/conda-forge/noarch/packaging-24.2-pyhd8ed1ab_2.conda#3bfed7e6228ebf2f7b9eaa47f1b4e2aa +https://conda.anaconda.org/conda-forge/noarch/pluggy-1.5.0-pyhd8ed1ab_1.conda#e9dcbce5f45f9ee500e728ae58b605b6 +https://conda.anaconda.org/conda-forge/noarch/ply-3.11-pyhd8ed1ab_3.conda#fd5062942bfa1b0bd5e0d2a4397b099e https://conda.anaconda.org/conda-forge/linux-64/psutil-6.1.0-py39h8cd3c5a_0.conda#ef257b7ce1e1cb152639ced6bc653475 -https://conda.anaconda.org/conda-forge/noarch/pycparser-2.22-pyhd8ed1ab_0.conda#844d9eb3b43095b031874477f7d70088 -https://conda.anaconda.org/conda-forge/noarch/pygments-2.18.0-pyhd8ed1ab_0.conda#b7f5c092b8f9800150d998a71b76d5a1 -https://conda.anaconda.org/conda-forge/noarch/pyparsing-3.2.0-pyhd8ed1ab_1.conda#035c17fbf099f50ff60bf2eb303b0a83 -https://conda.anaconda.org/conda-forge/noarch/pysocks-1.7.1-pyha2e5f31_6.tar.bz2#2a7de29fb590ca14b5243c4c812c8025 -https://conda.anaconda.org/conda-forge/noarch/pytz-2024.2-pyhd8ed1ab_0.conda#260009d03c9d5c0f111904d851f053dc +https://conda.anaconda.org/conda-forge/noarch/pycparser-2.22-pyh29332c3_1.conda#12c566707c80111f9799308d9e265aef +https://conda.anaconda.org/conda-forge/noarch/pygments-2.18.0-pyhd8ed1ab_1.conda#b38dc0206e2a530e5c2cf11dc086b31a +https://conda.anaconda.org/conda-forge/noarch/pyparsing-3.2.0-pyhd8ed1ab_2.conda#4c05a2bcf87bb495512374143b57cf28 +https://conda.anaconda.org/conda-forge/noarch/pysocks-1.7.1-pyha55dd90_7.conda#461219d1a5bd61342293efa2c0c90eac +https://conda.anaconda.org/conda-forge/noarch/pytz-2024.2-pyhd8ed1ab_1.conda#f26ec986456c30f6dff154b670ae140f https://conda.anaconda.org/conda-forge/linux-64/pyyaml-6.0.2-py39h8cd3c5a_1.conda#76e82e62b7bda86a7fceb1f32585abad https://conda.anaconda.org/conda-forge/linux-64/setuptools-59.8.0-py39hf3d152e_1.tar.bz2#4252d0c211566a9f65149ba7f6e87aa4 -https://conda.anaconda.org/conda-forge/noarch/six-1.16.0-pyh6c4a22f_0.tar.bz2#e5f25f8dbc060e9a8d912e432202afc2 +https://conda.anaconda.org/conda-forge/noarch/six-1.17.0-pyhd8ed1ab_0.conda#a451d576819089b0d672f18768be0f65 https://conda.anaconda.org/conda-forge/noarch/snowballstemmer-2.2.0-pyhd8ed1ab_0.tar.bz2#4d22a9315e78c6827f806065957d566e https://conda.anaconda.org/conda-forge/noarch/soupsieve-2.5-pyhd8ed1ab_1.conda#3f144b2c34f8cb5a9abd9ed23a39c561 https://conda.anaconda.org/conda-forge/noarch/sphinxcontrib-jsmath-1.0.1-pyhd8ed1ab_0.conda#da1d979339e2714c30a8e806a33ec087 -https://conda.anaconda.org/conda-forge/noarch/tenacity-9.0.0-pyhd8ed1ab_0.conda#42af51ad3b654ece73572628ad2882ae +https://conda.anaconda.org/conda-forge/noarch/tenacity-9.0.0-pyhd8ed1ab_1.conda#a09f66fe95a54a92172e56a4a97ba271 https://conda.anaconda.org/conda-forge/noarch/threadpoolctl-3.5.0-pyhc1e730c_0.conda#df68d78237980a159bd7149f33c0e8fd https://conda.anaconda.org/conda-forge/noarch/toml-0.10.2-pyhd8ed1ab_0.tar.bz2#f832c45a477c78bebd107098db465095 -https://conda.anaconda.org/conda-forge/noarch/tomli-2.2.1-pyhd8ed1ab_0.conda#ee8ab0fe4c8dfc5a6319f7f8246022fc +https://conda.anaconda.org/conda-forge/noarch/tomli-2.2.1-pyhd8ed1ab_1.conda#ac944244f1fed2eb49bae07193ae8215 https://conda.anaconda.org/conda-forge/noarch/toolz-1.0.0-pyhd8ed1ab_0.conda#34feccdd4177f2d3d53c73fc44fd9a37 https://conda.anaconda.org/conda-forge/linux-64/tornado-6.4.2-py39h8cd3c5a_0.conda#ebfd05ae1501660e995a8b6bbe02a391 -https://conda.anaconda.org/conda-forge/noarch/typing_extensions-4.12.2-pyha770c72_0.conda#ebe6952715e1d5eb567eeebf25250fa7 -https://conda.anaconda.org/conda-forge/noarch/wheel-0.45.1-pyhd8ed1ab_0.conda#bdb2f437ce62fd2f1fef9119a37a12d9 +https://conda.anaconda.org/conda-forge/noarch/typing_extensions-4.12.2-pyha770c72_1.conda#d17f13df8b65464ca316cbc000a3cb64 +https://conda.anaconda.org/conda-forge/noarch/wheel-0.45.1-pyhd8ed1ab_1.conda#75cb7132eb58d97896e173ef12ac9986 https://conda.anaconda.org/conda-forge/linux-64/xorg-libxdamage-1.1.6-hb9d3cd8_0.conda#b5fcc7172d22516e1f965490e65e33a4 https://conda.anaconda.org/conda-forge/linux-64/xorg-libxxf86vm-1.1.5-hb9d3cd8_4.conda#7da9007c0582712c4bad4131f89c8372 https://conda.anaconda.org/conda-forge/noarch/zipp-3.21.0-pyhd8ed1ab_1.conda#0c3cc595284c5e8f0f9900a9b228a332 https://conda.anaconda.org/conda-forge/noarch/accessible-pygments-0.0.5-pyhd8ed1ab_0.conda#1bb1ef9806a9a20872434f58b3e7fc1a -https://conda.anaconda.org/conda-forge/noarch/babel-2.16.0-pyhd8ed1ab_0.conda#6d4e9ecca8d88977147e109fc7053184 -https://conda.anaconda.org/conda-forge/noarch/beautifulsoup4-4.12.3-pyha770c72_0.conda#332493000404d8411859539a5a630865 +https://conda.anaconda.org/conda-forge/noarch/babel-2.16.0-pyhd8ed1ab_1.conda#3e23f7db93ec14c80525257d8affac28 +https://conda.anaconda.org/conda-forge/noarch/beautifulsoup4-4.12.3-pyha770c72_1.conda#d48f7e9fdec44baf6d1da416fe402b04 https://conda.anaconda.org/conda-forge/linux-64/cffi-1.17.1-py39h15c3d72_0.conda#7e61b8777f42e00b08ff059f9e8ebc44 https://conda.anaconda.org/conda-forge/linux-64/cxx-compiler-1.8.0-h1a2810e_1.conda#3bb4907086d7187bf01c8bec397ffa5e https://conda.anaconda.org/conda-forge/linux-64/cytoolz-1.0.0-py39h8cd3c5a_1.conda#7a98e8be85fb0ce5531cac253ca95497 https://conda.anaconda.org/conda-forge/linux-64/fortran-compiler-1.8.0-h36df796_1.conda#6b57750841d53ade8d3b47eafe53dd9f https://conda.anaconda.org/conda-forge/linux-64/glib-2.82.2-h44428e9_0.conda#f19f985ab043e8843045410f3b99de8a -https://conda.anaconda.org/conda-forge/noarch/h2-4.1.0-pyhd8ed1ab_0.tar.bz2#b748fbf7060927a6e82df7cb5ee8f097 +https://conda.anaconda.org/conda-forge/noarch/h2-4.1.0-pyhd8ed1ab_1.conda#825927dc7b0f287ef8d4d0011bb113b1 https://conda.anaconda.org/conda-forge/linux-64/harfbuzz-9.0.0-hda332d3_1.conda#76b32dcf243444aea9c6b804bcfa40b8 -https://conda.anaconda.org/conda-forge/noarch/importlib-metadata-8.5.0-pyha770c72_0.conda#54198435fce4d64d8a89af22573012a8 -https://conda.anaconda.org/conda-forge/noarch/importlib_resources-6.4.5-pyhd8ed1ab_0.conda#c808991d29b9838fb4d96ce8267ec9ec -https://conda.anaconda.org/conda-forge/noarch/jinja2-3.1.4-pyhd8ed1ab_0.conda#7b86ecb7d3557821c649b3c31e3eb9f2 +https://conda.anaconda.org/conda-forge/noarch/importlib-metadata-8.5.0-pyha770c72_1.conda#315607a3030ad5d5227e76e0733798ff +https://conda.anaconda.org/conda-forge/noarch/importlib_resources-6.4.5-pyhd8ed1ab_1.conda#15798fa69312d433af690c8c42b3fb36 +https://conda.anaconda.org/conda-forge/noarch/jinja2-3.1.4-pyhd8ed1ab_1.conda#08cce3151bde4ecad7885bd9fb647532 https://conda.anaconda.org/conda-forge/noarch/joblib-1.4.2-pyhd8ed1ab_0.conda#25df261d4523d9f9783bcdb7208d872f -https://conda.anaconda.org/conda-forge/linux-64/libclang-cpp19.1-19.1.4-default_hb5137d0_0.conda#e7e4a0ebe1f6eedf483f6f5d4f7d2bdd -https://conda.anaconda.org/conda-forge/linux-64/libclang13-19.1.4-default_h9c6a7e4_0.conda#6c450adae455c7d648856e8b0cfcebd6 +https://conda.anaconda.org/conda-forge/linux-64/libclang-cpp19.1-19.1.5-default_hb5137d0_0.conda#ec8649c89988d8a443c252c20f259b72 +https://conda.anaconda.org/conda-forge/linux-64/libclang13-19.1.5-default_h9c6a7e4_0.conda#a3a5997b6b47373f0c1608d8503eb4e6 https://conda.anaconda.org/conda-forge/linux-64/libflac-1.4.3-h59595ed_0.conda#ee48bf17cc83a00f59ca1494d5646869 -https://conda.anaconda.org/conda-forge/linux-64/libsystemd0-256.7-h2774228_1.conda#ad328c530a12a8798776e5f03942090f https://conda.anaconda.org/conda-forge/noarch/memory_profiler-0.61.0-pyhd8ed1ab_0.tar.bz2#8b45f9f2b2f7a98b0ec179c8991a4a9b -https://conda.anaconda.org/conda-forge/noarch/meson-1.6.0-pyhd8ed1ab_0.conda#380ba6a3eddd8e7649bfe8e6812611aa +https://conda.anaconda.org/conda-forge/noarch/meson-1.6.0-pyhd8ed1ab_1.conda#59d45dbe1b0a123966266340b579d366 +https://conda.anaconda.org/conda-forge/linux-64/openldap-2.6.9-he970967_0.conda#ca2de8bbdc871bce41dbf59e51324165 https://conda.anaconda.org/conda-forge/noarch/partd-1.4.2-pyhd8ed1ab_0.conda#0badf9c54e24cecfb0ad2f99d680c163 https://conda.anaconda.org/conda-forge/linux-64/pillow-11.0.0-py39h538c539_0.conda#a2bafdf8ae51c9eb6e5be684cfcedd60 https://conda.anaconda.org/conda-forge/noarch/pip-24.3.1-pyh8b19718_0.conda#5dd546fe99b44fda83963d15f84263b7 https://conda.anaconda.org/conda-forge/noarch/plotly-5.14.0-pyhd8ed1ab_0.conda#6a7bcc42ef58dd6cf3da9333ea102433 -https://conda.anaconda.org/conda-forge/noarch/pyproject-metadata-0.9.0-pyh2cfa8aa_0.conda#10906a130eeb4a68645bf97c28333141 -https://conda.anaconda.org/conda-forge/noarch/pytest-8.3.4-pyhd8ed1ab_0.conda#ff8f2ef7f2636906b3781d0cf92388d0 -https://conda.anaconda.org/conda-forge/noarch/python-dateutil-2.9.0.post0-pyhff2d567_0.conda#b6dfd90a2141e573e4b6a81630b56df5 +https://conda.anaconda.org/conda-forge/noarch/pyproject-metadata-0.9.0-pyhd8ed1ab_1.conda#1239146a53a383a84633800294120f17 +https://conda.anaconda.org/conda-forge/noarch/pytest-8.3.4-pyhd8ed1ab_1.conda#799ed216dc6af62520f32aa39bc1c2bb +https://conda.anaconda.org/conda-forge/noarch/python-dateutil-2.9.0.post0-pyhff2d567_1.conda#5ba79d7c71f03c678c8ead841f347d6e https://conda.anaconda.org/conda-forge/linux-64/sip-6.7.12-py39h3d6467e_0.conda#e667a3ab0df62c54e60e1843d2e6defb https://conda.anaconda.org/conda-forge/linux-64/tbb-2021.13.0-hceb3a55_1.conda#ba7726b8df7b9d34ea80e82b097a4893 https://conda.anaconda.org/conda-forge/linux-64/compilers-1.8.0-ha770c72_1.conda#061e111d02f33a99548f0de07169d9fb https://conda.anaconda.org/conda-forge/linux-64/gstreamer-1.24.7-hf3bb09a_0.conda#c78bc4ef0afb3cd2365d9973c71fc876 -https://conda.anaconda.org/conda-forge/noarch/importlib-resources-6.4.5-pyhd8ed1ab_0.conda#67f4772681cf86652f3e2261794cf045 -https://conda.anaconda.org/conda-forge/noarch/importlib_metadata-8.5.0-hd8ed1ab_0.conda#2a92e152208121afadf85a5e1f3a5f4d +https://conda.anaconda.org/conda-forge/noarch/importlib-resources-6.4.5-pyhd8ed1ab_1.conda#59561d9b70f9df3b884c29910eba6593 +https://conda.anaconda.org/conda-forge/noarch/importlib_metadata-8.5.0-hd8ed1ab_1.conda#c70dd0718dbccdcc6d5828de3e71399d +https://conda.anaconda.org/conda-forge/linux-64/libpq-17.2-h3b95a9b_1.conda#37724d8bae042345a19ca1a25dde786b https://conda.anaconda.org/conda-forge/linux-64/libsndfile-1.2.2-hc60ed4a_1.conda#ef1910918dd895516a769ed36b5b3a4e -https://conda.anaconda.org/conda-forge/noarch/meson-python-0.17.1-pyh70fd9c4_0.conda#722b649da38842068d83b6e6770f11a1 +https://conda.anaconda.org/conda-forge/noarch/meson-python-0.17.1-pyh70fd9c4_1.conda#7a02679229c6c2092571b4c025055440 https://conda.anaconda.org/conda-forge/linux-64/mkl-2024.2.2-ha957f24_16.conda#1459379c79dda834673426504d52b319 https://conda.anaconda.org/conda-forge/linux-64/pyqt5-sip-12.12.2-py39h3d6467e_5.conda#93aff412f3e49fdb43361c0215cbd72d -https://conda.anaconda.org/conda-forge/noarch/pytest-xdist-3.6.1-pyhd8ed1ab_0.conda#b39568655c127a9c4a44d178ac99b6d0 +https://conda.anaconda.org/conda-forge/noarch/pytest-xdist-3.6.1-pyhd8ed1ab_1.conda#59aad4fb37cabc0bacc73cf344612ddd https://conda.anaconda.org/conda-forge/linux-64/zstandard-0.23.0-py39h08a7858_1.conda#cd9fa334e11886738f17254f52210bc3 https://conda.anaconda.org/conda-forge/noarch/dask-core-2024.8.0-pyhd8ed1ab_0.conda#bf68bf9ff9a18f1b17aa8c817225aee0 https://conda.anaconda.org/conda-forge/linux-64/gst-plugins-base-1.24.7-h0a52356_0.conda#d368425fbd031a2f8e801a40c3415c72 @@ -255,17 +255,17 @@ https://conda.anaconda.org/conda-forge/linux-64/libblas-3.9.0-25_linux64_mkl.con https://conda.anaconda.org/conda-forge/linux-64/mkl-devel-2024.2.2-ha770c72_16.conda#140891ea14285fc634353b31e9e40a95 https://conda.anaconda.org/conda-forge/linux-64/pulseaudio-client-17.0-hb77b528_0.conda#07f45f1be1c25345faddb8db0de8039b https://conda.anaconda.org/conda-forge/noarch/towncrier-24.8.0-pyhd8ed1ab_0.conda#02190423152df62fda1cde3d9527b882 -https://conda.anaconda.org/conda-forge/noarch/urllib3-2.2.3-pyhd8ed1ab_0.conda#6b55867f385dd762ed99ea687af32a69 +https://conda.anaconda.org/conda-forge/noarch/urllib3-2.2.3-pyhd8ed1ab_1.conda#4a2d8ef7c37b8808c5b9b750501fffce https://conda.anaconda.org/conda-forge/linux-64/libcblas-3.9.0-25_linux64_mkl.conda#e48aeb4ab1a293f621fe995959f1d32f https://conda.anaconda.org/conda-forge/linux-64/liblapack-3.9.0-25_linux64_mkl.conda#d5afbe3777c594434e4de6481254e99c -https://conda.anaconda.org/conda-forge/linux-64/qt-main-5.15.15-h374914d_0.conda#26e8b00e73c114c9b787d36edcbf4424 -https://conda.anaconda.org/conda-forge/noarch/requests-2.32.3-pyhd8ed1ab_0.conda#5ede4753180c7a550a443c430dc8ab52 +https://conda.anaconda.org/conda-forge/linux-64/qt-main-5.15.15-h796de64_1.conda#b63b4dcf67c300daa7ce5918eb9c1654 +https://conda.anaconda.org/conda-forge/noarch/requests-2.32.3-pyhd8ed1ab_1.conda#a9b9368f3701a417eac9edbcae7cb737 https://conda.anaconda.org/conda-forge/linux-64/liblapacke-3.9.0-25_linux64_mkl.conda#cbddb4169d3d24b13b308403b45f401e https://conda.anaconda.org/conda-forge/linux-64/numpy-1.19.5-py39hd249d9e_3.tar.bz2#0cf333996ebdeeba8d1c8c1c0ee9eff9 https://conda.anaconda.org/conda-forge/noarch/pooch-1.6.0-pyhd8ed1ab_0.tar.bz2#6429e1d1091c51f626b5dcfdd38bf429 https://conda.anaconda.org/conda-forge/linux-64/pyqt-5.15.9-py39h52134e7_5.conda#e1f148e57d071b09187719df86f513c1 https://conda.anaconda.org/conda-forge/linux-64/blas-devel-3.9.0-25_linux64_mkl.conda#cb60caae3cb30988431d7107691bd587 -https://conda.anaconda.org/conda-forge/linux-64/imagecodecs-2024.9.22-py39h1aa77c4_0.conda#6001ae3f85403137d61e3ef7e96dd940 +https://conda.anaconda.org/conda-forge/linux-64/imagecodecs-2024.9.22-py39h966145a_1.conda#56479bfb4818d058f104339e547efe70 https://conda.anaconda.org/conda-forge/noarch/imageio-2.36.1-pyh12aca89_1.conda#84d5a2f075c861a8f98afd2842f7eb6e https://conda.anaconda.org/conda-forge/linux-64/matplotlib-base-3.3.4-py39h2fa2bec_0.tar.bz2#9ec0b2186fab9121c54f4844f93ee5b7 https://conda.anaconda.org/conda-forge/linux-64/pandas-1.1.5-py39hde0f152_0.tar.bz2#79fc4b5b3a865b90dd3701cecf1ad33c diff --git a/sklearn/cluster/_hdbscan/hdbscan.py b/sklearn/cluster/_hdbscan/hdbscan.py index 8bf402a5081c9..b4b92d8202b39 100644 --- a/sklearn/cluster/_hdbscan/hdbscan.py +++ b/sklearn/cluster/_hdbscan/hdbscan.py @@ -627,14 +627,17 @@ class HDBSCAN(ClusterMixin, BaseEstimator): Examples -------- + >>> import numpy as np >>> from sklearn.cluster import HDBSCAN >>> from sklearn.datasets import load_digits >>> X, _ = load_digits(return_X_y=True) >>> hdb = HDBSCAN(min_cluster_size=20) >>> hdb.fit(X) HDBSCAN(min_cluster_size=20) - >>> hdb.labels_ - array([ 2, 6, -1, ..., -1, -1, -1]) + >>> hdb.labels_.shape == (X.shape[0],) + True + >>> np.unique(hdb.labels_).tolist() + [-1, 0, 1, 2, 3, 4, 5, 6, 7] """ _parameter_constraints = { From a60897f63ad942aad133370361776e4bcbf42739 Mon Sep 17 00:00:00 2001 From: UV Date: Mon, 9 Dec 2024 22:00:45 +0530 Subject: [PATCH 097/159] DOC Correct short_summary for sklearn.kernel_approximation module (#30428) --- doc/api_reference.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/doc/api_reference.py b/doc/api_reference.py index b7bbeb3d3643f..7c81887f48f36 100644 --- a/doc/api_reference.py +++ b/doc/api_reference.py @@ -549,7 +549,7 @@ def _get_submodule(module_name, submodule_name): ], }, "sklearn.kernel_approximation": { - "short_summary": "Isotonic regression.", + "short_summary": "Kernel approximation.", "description": _get_guide("kernel_approximation"), "sections": [ { From ded27e364d42946836597ca01734a747fe7d6c16 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?J=C3=A9r=C3=A9mie=20du=20Boisberranger?= Date: Wed, 11 Dec 2024 18:30:11 +0100 Subject: [PATCH 098/159] CI Replace deprecated circle CI "deploy" key (#30466) --- .circleci/config.yml | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/.circleci/config.yml b/.circleci/config.yml index 7a98f88b813ad..4c7bfe009f978 100644 --- a/.circleci/config.yml +++ b/.circleci/config.yml @@ -107,7 +107,7 @@ jobs: - attach_workspace: at: doc/_build/html - run: ls -ltrh doc/_build/html/stable - - deploy: + - run: command: | if [[ "${CIRCLE_BRANCH}" =~ ^main$|^[0-9]+\.[0-9]+\.X$ ]]; then bash build_tools/circle/push_doc.sh doc/_build/html/stable From bf3cdf64841b95a25e92b9da86871647e21c0b32 Mon Sep 17 00:00:00 2001 From: Lucy Liu Date: Fri, 13 Dec 2024 00:06:05 +1100 Subject: [PATCH 099/159] DOC Remove examples for the old tutorials section (#30460) --- examples/exercises/README.txt | 4 - examples/exercises/plot_cv_diabetes.py | 93 ------------------- .../plot_digits_classification_exercise.py | 37 -------- examples/exercises/plot_iris_exercise.py | 78 ---------------- 4 files changed, 212 deletions(-) delete mode 100644 examples/exercises/README.txt delete mode 100644 examples/exercises/plot_cv_diabetes.py delete mode 100644 examples/exercises/plot_digits_classification_exercise.py delete mode 100644 examples/exercises/plot_iris_exercise.py diff --git a/examples/exercises/README.txt b/examples/exercises/README.txt deleted file mode 100644 index 5f211eadfef5a..0000000000000 --- a/examples/exercises/README.txt +++ /dev/null @@ -1,4 +0,0 @@ -Tutorial exercises ------------------- - -Exercises for the tutorials diff --git a/examples/exercises/plot_cv_diabetes.py b/examples/exercises/plot_cv_diabetes.py deleted file mode 100644 index 5e582b4b21571..0000000000000 --- a/examples/exercises/plot_cv_diabetes.py +++ /dev/null @@ -1,93 +0,0 @@ -""" -=============================================== -Cross-validation on diabetes Dataset Exercise -=============================================== - -A tutorial exercise which uses cross-validation with linear models. - -This exercise is used in the :ref:`cv_estimators_tut` part of the -:ref:`model_selection_tut` section of the :ref:`stat_learn_tut_index`. - -""" - -# Authors: The scikit-learn developers -# SPDX-License-Identifier: BSD-3-Clause - -# %% -# Load dataset and apply GridSearchCV -# ----------------------------------- -import matplotlib.pyplot as plt -import numpy as np - -from sklearn import datasets -from sklearn.linear_model import Lasso -from sklearn.model_selection import GridSearchCV - -X, y = datasets.load_diabetes(return_X_y=True) -X = X[:150] -y = y[:150] - -lasso = Lasso(random_state=0, max_iter=10000) -alphas = np.logspace(-4, -0.5, 30) - -tuned_parameters = [{"alpha": alphas}] -n_folds = 5 - -clf = GridSearchCV(lasso, tuned_parameters, cv=n_folds, refit=False) -clf.fit(X, y) -scores = clf.cv_results_["mean_test_score"] -scores_std = clf.cv_results_["std_test_score"] - -# %% -# Plot error lines showing +/- std. errors of the scores -# ------------------------------------------------------ - -plt.figure().set_size_inches(8, 6) -plt.semilogx(alphas, scores) - -std_error = scores_std / np.sqrt(n_folds) - -plt.semilogx(alphas, scores + std_error, "b--") -plt.semilogx(alphas, scores - std_error, "b--") - -# alpha=0.2 controls the translucency of the fill color -plt.fill_between(alphas, scores + std_error, scores - std_error, alpha=0.2) - -plt.ylabel("CV score +/- std error") -plt.xlabel("alpha") -plt.axhline(np.max(scores), linestyle="--", color=".5") -plt.xlim([alphas[0], alphas[-1]]) - -# %% -# Bonus: how much can you trust the selection of alpha? -# ----------------------------------------------------- - -# To answer this question we use the LassoCV object that sets its alpha -# parameter automatically from the data by internal cross-validation (i.e. it -# performs cross-validation on the training data it receives). -# We use external cross-validation to see how much the automatically obtained -# alphas differ across different cross-validation folds. - -from sklearn.linear_model import LassoCV -from sklearn.model_selection import KFold - -lasso_cv = LassoCV(alphas=alphas, random_state=0, max_iter=10000) -k_fold = KFold(3) - -print("Answer to the bonus question:", "how much can you trust the selection of alpha?") -print() -print("Alpha parameters maximising the generalization score on different") -print("subsets of the data:") -for k, (train, test) in enumerate(k_fold.split(X, y)): - lasso_cv.fit(X[train], y[train]) - print( - "[fold {0}] alpha: {1:.5f}, score: {2:.5f}".format( - k, lasso_cv.alpha_, lasso_cv.score(X[test], y[test]) - ) - ) -print() -print("Answer: Not very much since we obtained different alphas for different") -print("subsets of the data and moreover, the scores for these alphas differ") -print("quite substantially.") - -plt.show() diff --git a/examples/exercises/plot_digits_classification_exercise.py b/examples/exercises/plot_digits_classification_exercise.py deleted file mode 100644 index d65006178ca4f..0000000000000 --- a/examples/exercises/plot_digits_classification_exercise.py +++ /dev/null @@ -1,37 +0,0 @@ -""" -================================ -Digits Classification Exercise -================================ - -A tutorial exercise regarding the use of classification techniques on -the Digits dataset. - -This exercise is used in the :ref:`clf_tut` part of the -:ref:`supervised_learning_tut` section of the -:ref:`stat_learn_tut_index`. - -""" - -# Authors: The scikit-learn developers -# SPDX-License-Identifier: BSD-3-Clause - -from sklearn import datasets, linear_model, neighbors - -X_digits, y_digits = datasets.load_digits(return_X_y=True) -X_digits = X_digits / X_digits.max() - -n_samples = len(X_digits) - -X_train = X_digits[: int(0.9 * n_samples)] -y_train = y_digits[: int(0.9 * n_samples)] -X_test = X_digits[int(0.9 * n_samples) :] -y_test = y_digits[int(0.9 * n_samples) :] - -knn = neighbors.KNeighborsClassifier() -logistic = linear_model.LogisticRegression(max_iter=1000) - -print("KNN score: %f" % knn.fit(X_train, y_train).score(X_test, y_test)) -print( - "LogisticRegression score: %f" - % logistic.fit(X_train, y_train).score(X_test, y_test) -) diff --git a/examples/exercises/plot_iris_exercise.py b/examples/exercises/plot_iris_exercise.py deleted file mode 100644 index 8dcc4368ab620..0000000000000 --- a/examples/exercises/plot_iris_exercise.py +++ /dev/null @@ -1,78 +0,0 @@ -""" -================================ -SVM Exercise -================================ - -A tutorial exercise for using different SVM kernels. - -This exercise is used in the :ref:`using_kernels_tut` part of the -:ref:`supervised_learning_tut` section of the :ref:`stat_learn_tut_index`. - -""" - -# Authors: The scikit-learn developers -# SPDX-License-Identifier: BSD-3-Clause - -import matplotlib.pyplot as plt -import numpy as np - -from sklearn import datasets, svm - -iris = datasets.load_iris() -X = iris.data -y = iris.target - -X = X[y != 0, :2] -y = y[y != 0] - -n_sample = len(X) - -np.random.seed(0) -order = np.random.permutation(n_sample) -X = X[order] -y = y[order].astype(float) - -X_train = X[: int(0.9 * n_sample)] -y_train = y[: int(0.9 * n_sample)] -X_test = X[int(0.9 * n_sample) :] -y_test = y[int(0.9 * n_sample) :] - -# fit the model -for kernel in ("linear", "rbf", "poly"): - clf = svm.SVC(kernel=kernel, gamma=10) - clf.fit(X_train, y_train) - - plt.figure() - plt.clf() - plt.scatter( - X[:, 0], X[:, 1], c=y, zorder=10, cmap=plt.cm.Paired, edgecolor="k", s=20 - ) - - # Circle out the test data - plt.scatter( - X_test[:, 0], X_test[:, 1], s=80, facecolors="none", zorder=10, edgecolor="k" - ) - - plt.axis("tight") - x_min = X[:, 0].min() - x_max = X[:, 0].max() - y_min = X[:, 1].min() - y_max = X[:, 1].max() - - XX, YY = np.mgrid[x_min:x_max:200j, y_min:y_max:200j] - Z = clf.decision_function(np.c_[XX.ravel(), YY.ravel()]) - - # Put the result into a color plot - Z = Z.reshape(XX.shape) - plt.pcolormesh(XX, YY, Z > 0, cmap=plt.cm.Paired) - plt.contour( - XX, - YY, - Z, - colors=["k", "k", "k"], - linestyles=["--", "-", "--"], - levels=[-0.5, 0, 0.5], - ) - - plt.title(kernel) -plt.show() From 01c241736a2c74e512cfccba7bd5be8b1fe47b35 Mon Sep 17 00:00:00 2001 From: Guillaume Lemaitre Date: Thu, 12 Dec 2024 15:15:39 +0100 Subject: [PATCH 100/159] DOC add Stefanie Senger in Contributor Experience Team (#30471) --- doc/contributor_experience_team.rst | 4 ++++ 1 file changed, 4 insertions(+) diff --git a/doc/contributor_experience_team.rst b/doc/contributor_experience_team.rst index 7d942a07e6a7d..c2bd739ed584d 100644 --- a/doc/contributor_experience_team.rst +++ b/doc/contributor_experience_team.rst @@ -30,6 +30,10 @@

Norbert Preining

+
+

Stefanie Senger

+
+

Reshama Shaikh

From 8485315479b5519e62e3b6f15689d078975d134f Mon Sep 17 00:00:00 2001 From: Domenico Date: Thu, 12 Dec 2024 16:44:54 +0100 Subject: [PATCH 101/159] DOC fix typo in LabelPropagation (#30472) --- sklearn/semi_supervised/_label_propagation.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/sklearn/semi_supervised/_label_propagation.py b/sklearn/semi_supervised/_label_propagation.py index a2e25277cf450..c83a7d62e9108 100644 --- a/sklearn/semi_supervised/_label_propagation.py +++ b/sklearn/semi_supervised/_label_propagation.py @@ -359,7 +359,7 @@ class LabelPropagation(BaseLabelPropagation): max_iter : int, default=1000 Change maximum number of iterations allowed. - tol : float, 1e-3 + tol : float, default=1e-3 Convergence tolerance: threshold to consider the system at steady state. From 540529d34b61881813ec5ba720045b267f499bf6 Mon Sep 17 00:00:00 2001 From: Boney Patel Date: Sun, 15 Dec 2024 14:31:00 -0500 Subject: [PATCH 102/159] DOC sklearn/datasets/_openml.py: Fix spelling mistake when pandas is not installed (#30481) Co-authored-by: bpatel347 --- sklearn/datasets/_openml.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/sklearn/datasets/_openml.py b/sklearn/datasets/_openml.py index 4790431506bce..8a35e4f3680a0 100644 --- a/sklearn/datasets/_openml.py +++ b/sklearn/datasets/_openml.py @@ -1066,7 +1066,7 @@ def fetch_openml( ) else: err_msg = ( - f"Using `parser={parser!r}` wit dense data requires pandas to be " + f"Using `parser={parser!r}` with dense data requires pandas to be " "installed. Alternatively, explicitly set `parser='liac-arff'`." ) raise ImportError(err_msg) from exc From b7d5c04b0f8589e719bbb02ce145a39afc16aafe Mon Sep 17 00:00:00 2001 From: scikit-learn-bot Date: Mon, 16 Dec 2024 09:39:14 +0100 Subject: [PATCH 103/159] :lock: :robot: CI Update lock files for array-api CI build(s) :lock: :robot: (#30489) Co-authored-by: Lock file bot --- ...a_forge_cuda_array-api_linux-64_conda.lock | 86 +++++++++---------- 1 file changed, 42 insertions(+), 44 deletions(-) diff --git a/build_tools/github/pylatest_conda_forge_cuda_array-api_linux-64_conda.lock b/build_tools/github/pylatest_conda_forge_cuda_array-api_linux-64_conda.lock index da447debfa8c8..bdebc0d648176 100644 --- a/build_tools/github/pylatest_conda_forge_cuda_array-api_linux-64_conda.lock +++ b/build_tools/github/pylatest_conda_forge_cuda_array-api_linux-64_conda.lock @@ -3,7 +3,7 @@ # input_hash: 7044e24fc9243a244c265e4b8c44e1304a8f55cd0cfa2d036ead6f92921d624e @EXPLICIT https://conda.anaconda.org/conda-forge/linux-64/_libgcc_mutex-0.1-conda_forge.tar.bz2#d7c89558ba9fa0495403155b64376d81 -https://conda.anaconda.org/conda-forge/linux-64/ca-certificates-2024.8.30-hbcca054_0.conda#c27d1c142233b5bc9ca570c6e2e0c244 +https://conda.anaconda.org/conda-forge/linux-64/ca-certificates-2024.12.14-hbcca054_0.conda#720523eb0d6a9b0f6120c16b2aa4e7de https://conda.anaconda.org/conda-forge/noarch/cuda-version-12.4-h3060b56_3.conda#c9a3fe8b957176e1a8452c6f3431b0d8 https://conda.anaconda.org/conda-forge/noarch/font-ttf-dejavu-sans-mono-2.37-hab24e00_0.tar.bz2#0c96522c6bdaed4b1566d11387caaf45 https://conda.anaconda.org/conda-forge/noarch/font-ttf-inconsolata-3.000-h77eed37_0.tar.bz2#34893075a5c9e55cdafac56607368fc6 @@ -26,8 +26,8 @@ https://conda.anaconda.org/conda-forge/linux-64/libopengl-1.7.0-ha4b6fd6_2.conda https://conda.anaconda.org/conda-forge/linux-64/_openmp_mutex-4.5-2_kmp_llvm.tar.bz2#562b26ba2e19059551a811e72ab7f793 https://conda.anaconda.org/conda-forge/linux-64/libgcc-14.2.0-h77fa898_1.conda#3cb76c3f10d3bc7f1105b2fc9db984df https://conda.anaconda.org/conda-forge/linux-64/alsa-lib-1.2.13-hb9d3cd8_0.conda#ae1370588aa6a5157c34c73e9bbb36a0 -https://conda.anaconda.org/conda-forge/linux-64/aws-c-common-0.10.3-hb9d3cd8_0.conda#ff3653946d34a6a6ba10babb139d96ef -https://conda.anaconda.org/conda-forge/linux-64/c-ares-1.34.3-hb9d3cd8_1.conda#ee228789a85f961d14567252a03e725f +https://conda.anaconda.org/conda-forge/linux-64/aws-c-common-0.10.6-hb9d3cd8_0.conda#d7d4680337a14001b0e043e96529409b +https://conda.anaconda.org/conda-forge/linux-64/c-ares-1.34.4-hb9d3cd8_0.conda#e2775acf57efd5af15b8e3d1d74d72d3 https://conda.anaconda.org/conda-forge/linux-64/libbrotlicommon-1.1.0-hb9d3cd8_2.conda#41b599ed2b02abcfdd84302bff174b23 https://conda.anaconda.org/conda-forge/linux-64/libdeflate-1.22-hb9d3cd8_0.conda#b422943d5d772b7cc858b36ad2a92db5 https://conda.anaconda.org/conda-forge/linux-64/libexpat-2.6.4-h5888daf_0.conda#db833e03127376d461e1e13e76f09b6c @@ -39,14 +39,13 @@ https://conda.anaconda.org/conda-forge/linux-64/libutf8proc-2.9.0-hb9d3cd8_1.con https://conda.anaconda.org/conda-forge/linux-64/libzlib-1.3.1-hb9d3cd8_2.conda#edb0dca6bc32e4f4789199455a1dbeb8 https://conda.anaconda.org/conda-forge/linux-64/openssl-3.4.0-hb9d3cd8_0.conda#23cc74f77eb99315c0360ec3533147a9 https://conda.anaconda.org/conda-forge/linux-64/pthread-stubs-0.4-hb9d3cd8_1002.conda#b3c17d95b5a10c6e64a21fa17573e70e -https://conda.anaconda.org/conda-forge/linux-64/xorg-libice-1.1.1-hb9d3cd8_1.conda#19608a9656912805b2b9a2f6bd257b04 -https://conda.anaconda.org/conda-forge/linux-64/xorg-libxau-1.0.11-hb9d3cd8_1.conda#77cbc488235ebbaab2b6e912d3934bae +https://conda.anaconda.org/conda-forge/linux-64/xorg-libice-1.1.2-hb9d3cd8_0.conda#fb901ff28063514abb6046c9ec2c4a45 +https://conda.anaconda.org/conda-forge/linux-64/xorg-libxau-1.0.12-hb9d3cd8_0.conda#f6ebe2cb3f82ba6c057dde5d9debe4f7 https://conda.anaconda.org/conda-forge/linux-64/xorg-libxdmcp-1.1.5-hb9d3cd8_0.conda#8035c64cb77ed555e3f150b7b3972480 -https://conda.anaconda.org/conda-forge/linux-64/xorg-xorgproto-2024.1-hb9d3cd8_1.conda#7c21106b851ec72c037b162c216d8f05 -https://conda.anaconda.org/conda-forge/linux-64/aws-c-cal-0.8.0-hecf86a2_2.conda#c54459d686ad9d0502823cacff7e8423 -https://conda.anaconda.org/conda-forge/linux-64/aws-c-compression-0.3.0-hf42f96a_2.conda#257f4ae92fe11bd8436315c86468c39b -https://conda.anaconda.org/conda-forge/linux-64/aws-c-sdkutils-0.2.1-hf42f96a_1.conda#bbdd20fb1994a9f0ba98078fcb6c12ab -https://conda.anaconda.org/conda-forge/linux-64/aws-checksums-0.2.2-hf42f96a_1.conda#d908d43d87429be24edfb20e96543c20 +https://conda.anaconda.org/conda-forge/linux-64/aws-c-cal-0.8.1-h1a47875_3.conda#55a8561fdbbbd34f50f57d9be12ed084 +https://conda.anaconda.org/conda-forge/linux-64/aws-c-compression-0.3.0-h4e1184b_5.conda#3f4c1197462a6df2be6dc8241828fe93 +https://conda.anaconda.org/conda-forge/linux-64/aws-c-sdkutils-0.2.1-h4e1184b_4.conda#a5126a90e74ac739b00564a4c7ddcc36 +https://conda.anaconda.org/conda-forge/linux-64/aws-checksums-0.2.2-h4e1184b_4.conda#74e8c3e4df4ceae34aa2959df4b28101 https://conda.anaconda.org/conda-forge/linux-64/bzip2-1.0.8-h4bc722e_7.conda#62ee74e96c5ebb0af99386de58cf9553 https://conda.anaconda.org/conda-forge/linux-64/expat-2.6.4-h5888daf_0.conda#1d6afef758879ef5ee78127eb4cd2c4a https://conda.anaconda.org/conda-forge/linux-64/gflags-2.2.2-h5888daf_1005.conda#d411fc29e338efb48c5fd4576d71d881 @@ -64,7 +63,7 @@ https://conda.anaconda.org/conda-forge/linux-64/libnsl-2.0.1-hd590300_0.conda#30 https://conda.anaconda.org/conda-forge/linux-64/libntlm-1.4-h7f98852_1002.tar.bz2#e728e874159b042d92b90238a3cb0dc2 https://conda.anaconda.org/conda-forge/linux-64/libpciaccess-0.18-hd590300_0.conda#48f4330bfcd959c3cfb704d424903c82 https://conda.anaconda.org/conda-forge/linux-64/libpng-1.6.44-hadc24fc_0.conda#f4cc49d7aa68316213e4b12be35308d1 -https://conda.anaconda.org/conda-forge/linux-64/libsqlite-3.47.0-hadc24fc_1.conda#b6f02b52a174e612e89548f4663ce56a +https://conda.anaconda.org/conda-forge/linux-64/libsqlite-3.47.2-hee588c1_0.conda#b58da17db24b6e08bcbf8fed2fb8c915 https://conda.anaconda.org/conda-forge/linux-64/libssh2-1.11.1-hf672d98_0.conda#be2de152d8073ef1c01b7728475f2fe7 https://conda.anaconda.org/conda-forge/linux-64/libstdcxx-ng-14.2.0-h4852527_1.conda#8371ac6457591af2cf6159439c1fd051 https://conda.anaconda.org/conda-forge/linux-64/libuuid-2.38.1-h0b41bf4_0.conda#40b61aab5c7ba9ff276c41cfffe6b80b @@ -72,6 +71,7 @@ https://conda.anaconda.org/conda-forge/linux-64/libwebp-base-1.4.0-hd590300_0.co https://conda.anaconda.org/conda-forge/linux-64/libxcb-1.17.0-h8a09558_0.conda#92ed62436b625154323d40d5f2f11dd7 https://conda.anaconda.org/conda-forge/linux-64/libxcrypt-4.4.36-hd590300_1.conda#5aa797f8787fe7a17d1b0821485b5adc https://conda.anaconda.org/conda-forge/linux-64/llvm-openmp-15.0.7-h0cdce71_0.conda#589c9a3575a050b583241c3d688ad9aa +https://conda.anaconda.org/conda-forge/linux-64/lz4-c-1.10.0-h5888daf_1.conda#9de5350a85c4a20c685259b889aa6393 https://conda.anaconda.org/conda-forge/linux-64/mysql-common-9.0.1-h266115a_3.conda#9411c61ff1070b5e065b32840c39faa5 https://conda.anaconda.org/conda-forge/linux-64/ncurses-6.5-he02047a_1.conda#70caf8bb6cf39a0b6b7efc885f51c0fe https://conda.anaconda.org/conda-forge/linux-64/opencl-headers-2024.10.24-h5888daf_0.conda#3ba02cce423fdac1a8582bd6bb189359 @@ -80,8 +80,7 @@ https://conda.anaconda.org/conda-forge/linux-64/s2n-1.5.9-h0fd0ee4_0.conda#f4724 https://conda.anaconda.org/conda-forge/linux-64/snappy-1.2.1-h8bd8927_1.conda#3b3e64af585eadfb52bb90b553db5edf https://conda.anaconda.org/conda-forge/linux-64/tk-8.6.13-noxft_h4845f30_101.conda#d453b98d9c83e71da0741bb0ff4d76bc https://conda.anaconda.org/conda-forge/linux-64/yaml-0.2.5-h7f98852_2.tar.bz2#4cb3ad778ec2d5a7acbdf254eb1c42ae -https://conda.anaconda.org/conda-forge/linux-64/zlib-1.3.1-hb9d3cd8_2.conda#c9f075ab2f33b3bbee9e62d4ad0a6cd8 -https://conda.anaconda.org/conda-forge/linux-64/aws-c-io-0.15.2-hdeadb07_2.conda#461a1eaa075fd391add91bcffc9de0c1 +https://conda.anaconda.org/conda-forge/linux-64/aws-c-io-0.15.3-hbf5b6a4_4.conda#ad3a6713063c18b9232c48e89ada03ac https://conda.anaconda.org/conda-forge/linux-64/brotli-bin-1.1.0-hb9d3cd8_2.conda#c63b5e52939e795ba8d26e35d767a843 https://conda.anaconda.org/conda-forge/linux-64/cuda-cudart-12.4.127-he02047a_2.conda#a748faa52331983fc3adcc3b116fe0e4 https://conda.anaconda.org/conda-forge/linux-64/cuda-cupti-12.4.127-he02047a_2.conda#46422ef1b1161fb180027e50c598ecd0 @@ -109,7 +108,6 @@ https://conda.anaconda.org/conda-forge/linux-64/libnvjpeg-12.3.1.117-he02047a_2. https://conda.anaconda.org/conda-forge/linux-64/libprotobuf-5.28.2-h5b01275_0.conda#ab0bff36363bec94720275a681af8b83 https://conda.anaconda.org/conda-forge/linux-64/libre2-11-2024.07.02-hbbce691_1.conda#2124de47357b7a516c0a3efd8f88c143 https://conda.anaconda.org/conda-forge/linux-64/libthrift-0.21.0-h0e7cc3e_0.conda#dcb95c0a98ba9ff737f7ae482aef7833 -https://conda.anaconda.org/conda-forge/linux-64/lz4-c-1.9.4-hcb278e6_0.conda#318b08df404f9c9be5712aaa5a6f0bb0 https://conda.anaconda.org/conda-forge/linux-64/ninja-1.12.1-h297d8ca_0.conda#3aa1c7e292afeff25a0091ddd7c69b72 https://conda.anaconda.org/conda-forge/linux-64/ocl-icd-2.3.2-hb9d3cd8_2.conda#2e8d2b469559d6b2cb6fd4b34f9c8d7f https://conda.anaconda.org/conda-forge/linux-64/pcre2-10.44-hba22ea6_2.conda#df359c09c41cd186fffb93a2d87aa6f5 @@ -120,11 +118,11 @@ https://conda.anaconda.org/conda-forge/linux-64/xcb-util-0.4.1-hb711507_2.conda# https://conda.anaconda.org/conda-forge/linux-64/xcb-util-keysyms-0.4.1-hb711507_0.conda#ad748ccca349aec3e91743e08b5e2b50 https://conda.anaconda.org/conda-forge/linux-64/xcb-util-renderutil-0.3.10-hb711507_0.conda#0e0cbe0564d03a99afd5fd7b362feecd https://conda.anaconda.org/conda-forge/linux-64/xcb-util-wm-0.4.2-hb711507_0.conda#608e0ef8256b81d04456e8d211eee3e8 -https://conda.anaconda.org/conda-forge/linux-64/xorg-libsm-1.2.4-he73a12e_1.conda#05a8ea5f446de33006171a7afe6ae857 +https://conda.anaconda.org/conda-forge/linux-64/xorg-libsm-1.2.5-he73a12e_0.conda#4c3e9fab69804ec6077697922d70c6e2 https://conda.anaconda.org/conda-forge/linux-64/xorg-libx11-1.8.10-h4f16b4b_1.conda#125f34a17d7b4bea418a83904ea82ea6 https://conda.anaconda.org/conda-forge/linux-64/zstd-1.5.6-ha6fb4c9_0.conda#4d056880988120e29d75bfff282e0f45 -https://conda.anaconda.org/conda-forge/linux-64/aws-c-event-stream-0.5.0-h1ffe551_7.conda#7cce4dfab184f4bbdfc160789251b3c5 -https://conda.anaconda.org/conda-forge/linux-64/aws-c-http-0.9.1-hab05fe4_2.conda#fb409f7053fa3dbbdf6eb41045a87795 +https://conda.anaconda.org/conda-forge/linux-64/aws-c-event-stream-0.5.0-h7959bf6_11.conda#9b3fb60fe57925a92f399bc3fc42eccf +https://conda.anaconda.org/conda-forge/linux-64/aws-c-http-0.9.2-hefd7a92_4.conda#5ce4df662d32d3123ea8da15571b6f51 https://conda.anaconda.org/conda-forge/linux-64/brotli-1.1.0-hb9d3cd8_2.conda#98514fe74548d768907ce7a13f680e8f https://conda.anaconda.org/conda-forge/linux-64/cuda-opencl-12.4.127-he02047a_1.conda#1e98deda07c14d26c80d124cf0eb011a https://conda.anaconda.org/conda-forge/linux-64/fontconfig-2.15.0-h7e30c49_1.conda#8f5b0b297b59e1ac160ad4beec99dbee @@ -138,18 +136,18 @@ https://conda.anaconda.org/conda-forge/linux-64/libtiff-4.7.0-hc4654cb_2.conda#b https://conda.anaconda.org/conda-forge/linux-64/libxml2-2.13.5-h8d12d68_1.conda#1a21e49e190d1ffe58531a81b6e400e1 https://conda.anaconda.org/conda-forge/linux-64/mpfr-4.2.1-h90cbb55_3.conda#2eeb50cab6652538eee8fc0bc3340c81 https://conda.anaconda.org/conda-forge/linux-64/mysql-libs-9.0.1-he0572af_3.conda#dd9da69dd4c2bf798c0b8bd4786cafb5 -https://conda.anaconda.org/conda-forge/linux-64/orc-2.0.3-he039a57_0.conda#052499acd6d6b79952197a13b23e2600 +https://conda.anaconda.org/conda-forge/linux-64/orc-2.0.3-h97ab989_1.conda#2f46eae652623114e112df13fae311cf https://conda.anaconda.org/conda-forge/linux-64/python-3.12.8-h9e4cc4f_1_cpython.conda#7fd2fd79436d9b473812f14e86746844 https://conda.anaconda.org/conda-forge/linux-64/re2-2024.07.02-h77b4e00_1.conda#01093ff37c1b5e6bf9f17c0116747d11 https://conda.anaconda.org/conda-forge/linux-64/xcb-util-image-0.4.0-hb711507_2.conda#a0901183f08b6c7107aab109733a3c91 https://conda.anaconda.org/conda-forge/linux-64/xkeyboard-config-2.43-hb9d3cd8_0.conda#f725c7425d6d7c15e31f3b99a88ea02f https://conda.anaconda.org/conda-forge/linux-64/xorg-libxext-1.3.6-hb9d3cd8_0.conda#febbab7d15033c913d53c7a2c102309d https://conda.anaconda.org/conda-forge/linux-64/xorg-libxfixes-6.0.1-hb9d3cd8_0.conda#4bdb303603e9821baf5fe5fdff1dc8f8 -https://conda.anaconda.org/conda-forge/linux-64/xorg-libxrender-0.9.11-hb9d3cd8_1.conda#a7a49a8b85122b49214798321e2e96b4 -https://conda.anaconda.org/conda-forge/noarch/array-api-compat-1.9.1-pyhd8ed1ab_0.conda#f2328337441baa8f669d2a830cfd0097 -https://conda.anaconda.org/conda-forge/linux-64/aws-c-auth-0.8.0-hb88c0a9_10.conda#409b7ee6d3473cc62bda7280f6ac20d0 -https://conda.anaconda.org/conda-forge/linux-64/aws-c-mqtt-0.11.0-h7bd072d_8.conda#0e9d67838114c0dbd267a9311268b331 -https://conda.anaconda.org/conda-forge/linux-64/cairo-1.18.0-hebfffa5_3.conda#fceaedf1cdbcb02df9699a0d9b005292 +https://conda.anaconda.org/conda-forge/linux-64/xorg-libxrender-0.9.12-hb9d3cd8_0.conda#96d57aba173e878a2089d5638016dc5e +https://conda.anaconda.org/conda-forge/noarch/array-api-compat-1.9.1-pyhd8ed1ab_1.conda#524043e3f1797bd4c64cd7ef36f678e8 +https://conda.anaconda.org/conda-forge/linux-64/aws-c-auth-0.8.0-hb921021_15.conda#c79d50f64cffa5ad51ecc1a81057962f +https://conda.anaconda.org/conda-forge/linux-64/aws-c-mqtt-0.11.0-h11f4f37_12.conda#96c3e0221fa2da97619ee82faa341a73 +https://conda.anaconda.org/conda-forge/linux-64/cairo-1.18.2-h3394656_1.conda#b34c2833a1f56db610aeb27f206d800d https://conda.anaconda.org/conda-forge/linux-64/ccache-4.10.1-h065aff2_0.conda#d6b48c138e0c8170a6fe9c136e063540 https://conda.anaconda.org/conda-forge/noarch/certifi-2024.8.30-pyhd8ed1ab_0.conda#12f7d00853807b0531775e9be891cb11 https://conda.anaconda.org/conda-forge/noarch/colorama-0.4.6-pyhd8ed1ab_1.conda#962b9857ee8e7018c22f2776ffa0b2d7 @@ -166,7 +164,7 @@ https://conda.anaconda.org/conda-forge/noarch/iniconfig-2.0.0-pyhd8ed1ab_1.conda https://conda.anaconda.org/conda-forge/linux-64/kiwisolver-1.4.7-py312h68727a3_0.conda#444266743652a4f1538145e9362f6d3b https://conda.anaconda.org/conda-forge/linux-64/lcms2-2.16-hb7c19ff_0.conda#51bb7010fc86f70eee639b4bb7a894f5 https://conda.anaconda.org/conda-forge/linux-64/libcups-2.3.3-h4637d8d_4.conda#d4529f4dff3057982a7617c7ac58fde3 -https://conda.anaconda.org/conda-forge/linux-64/libcurl-8.10.1-hbbe4b11_0.conda#6e801c50a40301f6978c53976917b277 +https://conda.anaconda.org/conda-forge/linux-64/libcurl-8.11.1-h332b0f4_0.conda#2b3e0081006dc21e8bf53a91c83a055c https://conda.anaconda.org/conda-forge/linux-64/libcusolver-11.6.1.9-he02047a_2.conda#9f6877f8936be962f598db5e9b8efc51 https://conda.anaconda.org/conda-forge/linux-64/libgl-1.7.0-ha4b6fd6_2.conda#928b8be80851f5d8ffb016f9c81dae7a https://conda.anaconda.org/conda-forge/linux-64/libgrpc-1.67.1-hc2c308b_0.conda#4606a4647bfe857e3cfe21ca12ac3afb @@ -179,7 +177,7 @@ https://conda.anaconda.org/conda-forge/linux-64/mpc-1.3.1-h24ddda3_1.conda#aa14b https://conda.anaconda.org/conda-forge/noarch/mpmath-1.3.0-pyhd8ed1ab_1.conda#3585aa87c43ab15b167b574cd73b057b https://conda.anaconda.org/conda-forge/noarch/munkres-1.1.4-pyh9f0ad1d_0.tar.bz2#2ba8498c1018c1e9c61eb99b973dfe19 https://conda.anaconda.org/conda-forge/noarch/networkx-3.4.2-pyh267e887_2.conda#fd40bf7f7f4bc4b647dc8512053d9873 -https://conda.anaconda.org/conda-forge/linux-64/openjpeg-2.5.2-h488ebb8_0.conda#7f2e286780f072ed750df46dc2631138 +https://conda.anaconda.org/conda-forge/linux-64/openjpeg-2.5.3-h5fbd93e_0.conda#9e5816bc95d285c115a3ebc2f8563564 https://conda.anaconda.org/conda-forge/noarch/packaging-24.2-pyhd8ed1ab_2.conda#3bfed7e6228ebf2f7b9eaa47f1b4e2aa https://conda.anaconda.org/conda-forge/noarch/pluggy-1.5.0-pyhd8ed1ab_1.conda#e9dcbce5f45f9ee500e728ae58b605b6 https://conda.anaconda.org/conda-forge/noarch/pyparsing-3.2.0-pyhd8ed1ab_2.conda#4c05a2bcf87bb495512374143b57cf28 @@ -189,7 +187,7 @@ https://conda.anaconda.org/conda-forge/linux-64/pyyaml-6.0.2-py312h66e93f0_1.con https://conda.anaconda.org/conda-forge/noarch/setuptools-75.6.0-pyhff2d567_1.conda#fc80f7995e396cbaeabd23cf46c413dc https://conda.anaconda.org/conda-forge/noarch/six-1.17.0-pyhd8ed1ab_0.conda#a451d576819089b0d672f18768be0f65 https://conda.anaconda.org/conda-forge/noarch/threadpoolctl-3.5.0-pyhc1e730c_0.conda#df68d78237980a159bd7149f33c0e8fd -https://conda.anaconda.org/conda-forge/noarch/toml-0.10.2-pyhd8ed1ab_0.tar.bz2#f832c45a477c78bebd107098db465095 +https://conda.anaconda.org/conda-forge/noarch/toml-0.10.2-pyhd8ed1ab_1.conda#b0dd904de08b7db706167240bf37b164 https://conda.anaconda.org/conda-forge/noarch/tomli-2.2.1-pyhd8ed1ab_1.conda#ac944244f1fed2eb49bae07193ae8215 https://conda.anaconda.org/conda-forge/linux-64/tornado-6.4.2-py312h66e93f0_0.conda#e417822cb989e80a0d2b1b576fdd1657 https://conda.anaconda.org/conda-forge/noarch/typing_extensions-4.12.2-pyha770c72_1.conda#d17f13df8b65464ca316cbc000a3cb64 @@ -201,19 +199,19 @@ https://conda.anaconda.org/conda-forge/linux-64/xorg-libxcursor-1.2.3-hb9d3cd8_0 https://conda.anaconda.org/conda-forge/linux-64/xorg-libxdamage-1.1.6-hb9d3cd8_0.conda#b5fcc7172d22516e1f965490e65e33a4 https://conda.anaconda.org/conda-forge/linux-64/xorg-libxi-1.8.2-hb9d3cd8_0.conda#17dcc85db3c7886650b8908b183d6876 https://conda.anaconda.org/conda-forge/linux-64/xorg-libxrandr-1.5.4-hb9d3cd8_0.conda#2de7f99d6581a4a7adbff607b5c278ca -https://conda.anaconda.org/conda-forge/linux-64/xorg-libxxf86vm-1.1.5-hb9d3cd8_4.conda#7da9007c0582712c4bad4131f89c8372 -https://conda.anaconda.org/conda-forge/linux-64/aws-c-s3-0.7.5-h3a84f74_0.conda#a13702b87657cf2d0cdd338fe55f4ba1 +https://conda.anaconda.org/conda-forge/linux-64/xorg-libxxf86vm-1.1.6-hb9d3cd8_0.conda#5efa5fa6243a622445fdfd72aee15efa +https://conda.anaconda.org/conda-forge/linux-64/aws-c-s3-0.7.7-hf454442_0.conda#947c82025693bebd557f782bb5d6b469 https://conda.anaconda.org/conda-forge/linux-64/azure-core-cpp-1.14.0-h5cfcd09_0.conda#0a8838771cc2e985cd295e01ae83baf1 https://conda.anaconda.org/conda-forge/linux-64/coverage-7.6.9-py312h178313f_0.conda#a6a5f52f8260983b0aaeebcebf558a3e https://conda.anaconda.org/conda-forge/linux-64/cuda-libraries-12.4.1-ha770c72_1.conda#6bb3f998485d4344a7539e0b218b3fc1 -https://conda.anaconda.org/conda-forge/linux-64/fonttools-4.55.2-py312h178313f_0.conda#3a182582b6cccd88147721ee9eda010f +https://conda.anaconda.org/conda-forge/linux-64/fonttools-4.55.3-py312h178313f_0.conda#968104bfe69e21fadeb30edd9c3785f9 https://conda.anaconda.org/conda-forge/linux-64/gmpy2-2.1.5-py312h7201bc8_3.conda#673ef4d6611f5b4ca7b5c1f8c65a38dc https://conda.anaconda.org/conda-forge/linux-64/harfbuzz-9.0.0-hda332d3_1.conda#76b32dcf243444aea9c6b804bcfa40b8 https://conda.anaconda.org/conda-forge/noarch/jinja2-3.1.4-pyhd8ed1ab_1.conda#08cce3151bde4ecad7885bd9fb647532 -https://conda.anaconda.org/conda-forge/noarch/joblib-1.4.2-pyhd8ed1ab_0.conda#25df261d4523d9f9783bcdb7208d872f +https://conda.anaconda.org/conda-forge/noarch/joblib-1.4.2-pyhd8ed1ab_1.conda#bf8243ee348f3a10a14ed0cae323e0c1 https://conda.anaconda.org/conda-forge/linux-64/libclang-cpp19.1-19.1.5-default_hb5137d0_0.conda#ec8649c89988d8a443c252c20f259b72 https://conda.anaconda.org/conda-forge/linux-64/libclang13-19.1.5-default_h9c6a7e4_0.conda#a3a5997b6b47373f0c1608d8503eb4e6 -https://conda.anaconda.org/conda-forge/linux-64/libgoogle-cloud-2.31.0-h804f50b_0.conda#35ab838423b60f233391eb86d324a830 +https://conda.anaconda.org/conda-forge/linux-64/libgoogle-cloud-2.32.0-h804f50b_0.conda#3d96df4d6b1c88455e05b94ce8a14a53 https://conda.anaconda.org/conda-forge/noarch/meson-1.6.0-pyhd8ed1ab_1.conda#59d45dbe1b0a123966266340b579d366 https://conda.anaconda.org/conda-forge/linux-64/openldap-2.6.9-he970967_0.conda#ca2de8bbdc871bce41dbf59e51324165 https://conda.anaconda.org/conda-forge/linux-64/pillow-11.0.0-py312h7b63e92_0.conda#385f46a4df6f97892503a841121a9acf @@ -223,47 +221,47 @@ https://conda.anaconda.org/conda-forge/noarch/pytest-8.3.4-pyhd8ed1ab_1.conda#79 https://conda.anaconda.org/conda-forge/noarch/python-dateutil-2.9.0.post0-pyhff2d567_1.conda#5ba79d7c71f03c678c8ead841f347d6e https://conda.anaconda.org/conda-forge/linux-64/tbb-2021.13.0-hceb3a55_1.conda#ba7726b8df7b9d34ea80e82b097a4893 https://conda.anaconda.org/conda-forge/linux-64/xorg-libxtst-1.2.5-hb9d3cd8_3.conda#7bbe9a0cc0df0ac5f5a8ad6d6a11af2f -https://conda.anaconda.org/conda-forge/linux-64/aws-crt-cpp-0.29.7-ha6b94fc_1.conda#f5fb6f6283deb0b4d2c187ad4a7b6d4d +https://conda.anaconda.org/conda-forge/linux-64/aws-crt-cpp-0.29.7-hd92328a_7.conda#02b95564257d5c3db9c06beccf711f95 https://conda.anaconda.org/conda-forge/linux-64/azure-identity-cpp-1.10.0-h113e628_0.conda#73f73f60854f325a55f1d31459f2ab73 https://conda.anaconda.org/conda-forge/linux-64/azure-storage-common-cpp-12.8.0-h736e048_1.conda#13de36be8de3ae3f05ba127631599213 https://conda.anaconda.org/conda-forge/noarch/cuda-runtime-12.4.1-ha804496_0.conda#48829f4ef6005ae8d4867b99168ff2b8 -https://conda.anaconda.org/conda-forge/linux-64/libgoogle-cloud-storage-2.31.0-h0121fbd_0.conda#568d6a09a6ed76337a7b97c84ae7c0f8 +https://conda.anaconda.org/conda-forge/linux-64/libgoogle-cloud-storage-2.32.0-h0121fbd_0.conda#877a5ec0431a5af83bf0cd0522bfe661 https://conda.anaconda.org/conda-forge/linux-64/libpq-17.2-h3b95a9b_1.conda#37724d8bae042345a19ca1a25dde786b https://conda.anaconda.org/conda-forge/noarch/meson-python-0.17.1-pyh70fd9c4_1.conda#7a02679229c6c2092571b4c025055440 https://conda.anaconda.org/conda-forge/linux-64/mkl-2022.1.0-h84fe81f_915.tar.bz2#b9c8f925797a93dbff45e1626b025a6b https://conda.anaconda.org/conda-forge/noarch/pytest-cov-6.0.0-pyhd8ed1ab_1.conda#79963c319d1be62c8fd3e34555816e01 https://conda.anaconda.org/conda-forge/noarch/pytest-xdist-3.6.1-pyhd8ed1ab_1.conda#59aad4fb37cabc0bacc73cf344612ddd https://conda.anaconda.org/conda-forge/noarch/sympy-1.13.3-pyh2585a3b_104.conda#68085d736d2b2f54498832b65059875d -https://conda.anaconda.org/conda-forge/linux-64/aws-sdk-cpp-1.11.458-hac138a2_1.conda#bbdd9589b1a32a80b0e3f98a2a482542 +https://conda.anaconda.org/conda-forge/linux-64/aws-sdk-cpp-1.11.458-hc430e4a_4.conda#aeefac461bea1f126653c1285cf5af08 https://conda.anaconda.org/conda-forge/linux-64/azure-storage-blobs-cpp-12.13.0-h3cf044e_1.conda#7eb66060455c7a47d9dcdbfa9f46579b https://conda.anaconda.org/conda-forge/linux-64/libblas-3.9.0-16_linux64_mkl.tar.bz2#85f61af03fd291dae33150ffe89dc09a https://conda.anaconda.org/conda-forge/linux-64/mkl-devel-2022.1.0-ha770c72_916.tar.bz2#69ba49e445f87aea2cba343a71a35ca2 https://conda.anaconda.org/pytorch/linux-64/pytorch-cuda-12.4-hc786d27_7.tar.bz2#06635b1bbf5e2fef4a8b9b282500cd7b -https://conda.anaconda.org/conda-forge/linux-64/qt6-main-6.8.0-h6e8976b_0.conda#6d1c5d2d904d24c17cbb538a95855a4e +https://conda.anaconda.org/conda-forge/linux-64/qt6-main-6.8.1-h9d28a51_0.conda#7e8e17c44e7af62c77de7a0158afc35c https://conda.anaconda.org/conda-forge/linux-64/azure-storage-files-datalake-cpp-12.12.0-ha633028_1.conda#7c1980f89dd41b097549782121a73490 https://conda.anaconda.org/conda-forge/linux-64/libcblas-3.9.0-16_linux64_mkl.tar.bz2#361bf757b95488de76c4f123805742d3 https://conda.anaconda.org/conda-forge/linux-64/liblapack-3.9.0-16_linux64_mkl.tar.bz2#a2f166748917d6d6e4707841ca1f519e -https://conda.anaconda.org/conda-forge/linux-64/pyside6-6.8.0.2-py312h91f0f75_0.conda#ec3da81d5f9d3612b227e09a650f7bf2 -https://conda.anaconda.org/conda-forge/linux-64/libarrow-18.1.0-h3b07799_4_cpu.conda#27675c7172667268440306533e4928de +https://conda.anaconda.org/conda-forge/linux-64/pyside6-6.8.1-py312h91f0f75_0.conda#0b7900a6d6f6c441acad5e9ab51001ab +https://conda.anaconda.org/conda-forge/linux-64/libarrow-18.1.0-h44a453e_6_cpu.conda#2cf6d608d6e66506f69797d5c6944c35 https://conda.anaconda.org/conda-forge/linux-64/liblapacke-3.9.0-16_linux64_mkl.tar.bz2#44ccc4d4dca6a8d57fa17442bc64b5a1 https://conda.anaconda.org/conda-forge/linux-64/numpy-2.2.0-py312h7e784f5_0.conda#c9e9a81299192e77428f40711a4fb00d https://conda.anaconda.org/conda-forge/noarch/array-api-strict-2.2-pyhd8ed1ab_0.conda#5f8d3e0f6b42318772d0f1cdddfe3025 https://conda.anaconda.org/conda-forge/linux-64/blas-devel-3.9.0-16_linux64_mkl.tar.bz2#3f92c1c9e1c0e183462c5071aa02cae1 https://conda.anaconda.org/conda-forge/linux-64/contourpy-1.3.1-py312h68727a3_0.conda#f5fbba0394ee45e9a64a73c2a994126a https://conda.anaconda.org/conda-forge/linux-64/cupy-core-13.3.0-py312h1acd1a8_2.conda#15e9530e87664584a6b409ecdf5c9264 -https://conda.anaconda.org/conda-forge/linux-64/libarrow-acero-18.1.0-h8bbc2ab_4_cpu.conda#82bcbfe424868ce66b5ab986999f534d -https://conda.anaconda.org/conda-forge/linux-64/libparquet-18.1.0-hf4f6db6_4_cpu.conda#f18b10bf19bb384183f2aa546e9f6f0a +https://conda.anaconda.org/conda-forge/linux-64/libarrow-acero-18.1.0-hcb10f89_6_cpu.conda#143f9288b64759a6427563f058c62f2b +https://conda.anaconda.org/conda-forge/linux-64/libparquet-18.1.0-h081d1f1_6_cpu.conda#68788df49ce7480187eb6387f15b2b67 https://conda.anaconda.org/conda-forge/linux-64/pandas-2.2.3-py312hf9745cd_1.conda#8bce4f6caaf8c5448c7ac86d87e26b4b -https://conda.anaconda.org/conda-forge/linux-64/polars-1.16.0-py312hfe7c9be_0.conda#d772cdf6b9b7ba0bfd73f506af0d0bd9 +https://conda.anaconda.org/conda-forge/linux-64/polars-1.17.1-py312hda0fa55_0.conda#7ac74b8f85b43224508108f850617dad https://conda.anaconda.org/conda-forge/linux-64/pyarrow-core-18.1.0-py312h01725c0_0_cpu.conda#ee80934a6c280ff8635f8db5dec11e04 https://conda.anaconda.org/conda-forge/linux-64/scipy-1.14.1-py312h62794b6_2.conda#94688dd449f6c092e5f951780235aca1 https://conda.anaconda.org/conda-forge/linux-64/blas-2.116-mkl.tar.bz2#c196a26abf6b4f132c88828ab7c2231c https://conda.anaconda.org/conda-forge/linux-64/cupy-13.3.0-py312h7d319b9_2.conda#009ef049020fef7d1541183d52fab5a9 -https://conda.anaconda.org/conda-forge/linux-64/libarrow-dataset-18.1.0-h8bbc2ab_4_cpu.conda#fa31464c75b20c2f3ac8fc758e034887 -https://conda.anaconda.org/conda-forge/linux-64/matplotlib-base-3.9.3-py312hd3ec401_0.conda#b023c7b33ecc2aa6726232dc3061ac6c +https://conda.anaconda.org/conda-forge/linux-64/libarrow-dataset-18.1.0-hcb10f89_6_cpu.conda#20ca46a6bc714a6ab189d5b3f46e66d8 +https://conda.anaconda.org/conda-forge/linux-64/matplotlib-base-3.9.4-py312hd3ec401_0.conda#b39b563d1a75c7b9b623e2a2b42d9e6d https://conda.anaconda.org/conda-forge/linux-64/pyamg-5.2.1-py312hc39e661_1.conda#372efc32220f0dfb603e5b31ffaefa23 -https://conda.anaconda.org/conda-forge/linux-64/libarrow-substrait-18.1.0-had74209_4_cpu.conda#bf261e5fa25ce4acc11a80bdc73b88b2 -https://conda.anaconda.org/conda-forge/linux-64/matplotlib-3.9.3-py312h7900ff3_0.conda#4297d8db465b02727a206d6e60477246 +https://conda.anaconda.org/conda-forge/linux-64/libarrow-substrait-18.1.0-h3ee7192_6_cpu.conda#aa313b3168caf98d00b3753f5ba27650 +https://conda.anaconda.org/conda-forge/linux-64/matplotlib-3.9.4-py312h7900ff3_0.conda#2b1df96ad1f394cb0d3e67a930ac19c0 https://conda.anaconda.org/conda-forge/linux-64/pyarrow-18.1.0-py312h7900ff3_0.conda#ac65b70df28687c6af4270923c020bdd https://conda.anaconda.org/pytorch/linux-64/pytorch-2.5.1-py3.12_cuda12.4_cudnn9.1.0_0.tar.bz2#42164c6ce8e563c20a542686a8b9b964 https://conda.anaconda.org/pytorch/linux-64/torchtriton-3.1.0-py312.tar.bz2#bb4b2d07cb6b9b476e78740c08ba69fe From c7c9b099677d72c01468881cfe002b60fd963c4b Mon Sep 17 00:00:00 2001 From: scikit-learn-bot Date: Mon, 16 Dec 2024 09:39:39 +0100 Subject: [PATCH 104/159] :lock: :robot: CI Update lock files for scipy-dev CI build(s) :lock: :robot: (#30488) Co-authored-by: Lock file bot --- .../azure/pylatest_pip_scipy_dev_linux-64_conda.lock | 8 ++++---- 1 file changed, 4 insertions(+), 4 deletions(-) diff --git a/build_tools/azure/pylatest_pip_scipy_dev_linux-64_conda.lock b/build_tools/azure/pylatest_pip_scipy_dev_linux-64_conda.lock index 6df3e406f1cb9..187f7f8afbe06 100644 --- a/build_tools/azure/pylatest_pip_scipy_dev_linux-64_conda.lock +++ b/build_tools/azure/pylatest_pip_scipy_dev_linux-64_conda.lock @@ -12,7 +12,7 @@ https://repo.anaconda.com/pkgs/main/linux-64/libstdcxx-ng-11.2.0-h1234567_1.cond https://repo.anaconda.com/pkgs/main/linux-64/_openmp_mutex-5.1-1_gnu.conda#71d281e9c2192cb3fa425655a8defb85 https://repo.anaconda.com/pkgs/main/linux-64/libgcc-ng-11.2.0-h1234567_1.conda#a87728dabf3151fb9cfa990bd2eb0464 https://repo.anaconda.com/pkgs/main/linux-64/bzip2-1.0.8-h5eee18b_6.conda#f21a3ff51c1b271977f53ce956a69297 -https://repo.anaconda.com/pkgs/main/linux-64/expat-2.6.3-h6a678d5_0.conda#5e184279ccb8b85331093305cb548f5c +https://repo.anaconda.com/pkgs/main/linux-64/expat-2.6.4-h6a678d5_0.conda#3ec804f5b85a66e64b262cc2341dd004 https://repo.anaconda.com/pkgs/main/linux-64/libffi-3.4.4-h6a678d5_1.conda#70646cc713f0c43926cfdcfe9b695fe0 https://repo.anaconda.com/pkgs/main/linux-64/libmpdec-4.0.0-h5eee18b_0.conda#feb10f42b1a7b523acbf85461be41a3e https://repo.anaconda.com/pkgs/main/linux-64/libuuid-1.41.5-h5eee18b_0.conda#4a6a2354414c9080327274aa514e5299 @@ -24,13 +24,13 @@ https://repo.anaconda.com/pkgs/main/linux-64/ccache-3.7.9-hfe4627d_0.conda#bef6f https://repo.anaconda.com/pkgs/main/linux-64/readline-8.2-h5eee18b_0.conda#be42180685cce6e6b0329201d9f48efb https://repo.anaconda.com/pkgs/main/linux-64/tk-8.6.14-h39e8969_0.conda#78dbc5e3c69143ebc037fc5d5b22e597 https://repo.anaconda.com/pkgs/main/linux-64/sqlite-3.45.3-h5eee18b_0.conda#acf93d6aceb74d6110e20b44cc45939e -https://repo.anaconda.com/pkgs/main/linux-64/python-3.13.0-hf623796_100_cp313.conda#39dace58d617c330efddfd8c27b6da04 +https://repo.anaconda.com/pkgs/main/linux-64/python-3.13.1-hf623796_100_cp313.conda#9159d14122892f226415ae401c2d12bd https://repo.anaconda.com/pkgs/main/linux-64/setuptools-75.1.0-py313h06a4308_0.conda#93277f023374c43e49b1081438de1798 https://repo.anaconda.com/pkgs/main/linux-64/wheel-0.44.0-py313h06a4308_0.conda#0d8e57ed81bb23b971817beeb3d49606 https://repo.anaconda.com/pkgs/main/linux-64/pip-24.2-py313h06a4308_0.conda#59f806485e89cb8721847b5857f6df2b # pip alabaster @ https://files.pythonhosted.org/packages/7e/b3/6b4067be973ae96ba0d615946e314c5ae35f9f993eca561b356540bb0c2b/alabaster-1.0.0-py3-none-any.whl#sha256=fc6786402dc3fcb2de3cabd5fe455a2db534b371124f1f21de8731783dec828b # pip babel @ https://files.pythonhosted.org/packages/ed/20/bc79bc575ba2e2a7f70e8a1155618bb1301eaa5132a8271373a6903f73f8/babel-2.16.0-py3-none-any.whl#sha256=368b5b98b37c06b7daf6696391c3240c938b37767d4584413e8438c5c435fa8b -# pip certifi @ https://files.pythonhosted.org/packages/12/90/3c9ff0512038035f59d279fddeb79f5f1eccd8859f06d6163c58798b9487/certifi-2024.8.30-py3-none-any.whl#sha256=922820b53db7a7257ffbda3f597266d435245903d80737e34f8a45ff3e3230d8 +# pip certifi @ https://files.pythonhosted.org/packages/a5/32/8f6669fc4798494966bf446c8c4a162e0b5d893dff088afddf76414f70e1/certifi-2024.12.14-py3-none-any.whl#sha256=1275f7a45be9464efc1173084eaa30f866fe2e47d389406136d332ed4967ec56 # pip charset-normalizer @ https://files.pythonhosted.org/packages/2b/c9/1c8fe3ce05d30c87eff498592c89015b19fade13df42850aafae09e94f35/charset_normalizer-3.4.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl#sha256=4796efc4faf6b53a18e3d46343535caed491776a22af773f366534056c4e1fbc # pip coverage @ https://files.pythonhosted.org/packages/9f/79/6c7a800913a9dd23ac8c8da133ebb556771a5a3d4df36b46767b1baffd35/coverage-7.6.9-cp313-cp313-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl#sha256=3c026eb44f744acaa2bda7493dad903aa5bf5fc4f2554293a798d5606710055d # pip docutils @ https://files.pythonhosted.org/packages/8f/d7/9322c609343d929e75e7e5e6255e614fcc67572cfd083959cdef3b7aad79/docutils-0.21.2-py3-none-any.whl#sha256=dafca5b9e384f0e419294eb4d2ff9fa826435bf15f15b7bd45723e8ad76811b2 @@ -40,7 +40,7 @@ https://repo.anaconda.com/pkgs/main/linux-64/pip-24.2-py313h06a4308_0.conda#59f8 # pip iniconfig @ https://files.pythonhosted.org/packages/ef/a6/62565a6e1cf69e10f5727360368e451d4b7f58beeac6173dc9db836a5b46/iniconfig-2.0.0-py3-none-any.whl#sha256=b6a85871a79d2e3b22d2d1b94ac2824226a63c6b741c88f7ae975f18b6778374 # pip markupsafe @ https://files.pythonhosted.org/packages/0c/91/96cf928db8236f1bfab6ce15ad070dfdd02ed88261c2afafd4b43575e9e9/MarkupSafe-3.0.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl#sha256=15ab75ef81add55874e7ab7055e9c397312385bd9ced94920f2802310c930396 # pip meson @ https://files.pythonhosted.org/packages/76/73/3dc4edc855c9988ff05ea5590f5c7bda72b6e0d138b2ddc1fab92a1f242f/meson-1.6.0-py3-none-any.whl#sha256=234a45f9206c6ee33b473ec1baaef359d20c0b89a71871d58c65a6db6d98fe74 -# pip ninja @ https://files.pythonhosted.org/packages/62/54/787bb70e6af2f1b1853af9bab62a5e7cb35b957d72daf253b7f3c653c005/ninja-1.11.1.2-py3-none-manylinux_2_12_x86_64.manylinux2010_x86_64.whl#sha256=33d258809c8eda81f9d80e18a081a6eef3215e5fd1ba8902400d786641994e89 +# pip ninja @ https://files.pythonhosted.org/packages/6b/35/a8e38d54768e67324e365e2a41162be298f51ec93e6bd4b18d237d7250d8/ninja-1.11.1.3-py3-none-manylinux_2_12_x86_64.manylinux2010_x86_64.whl#sha256=a27e78ca71316c8654965ee94b286a98c83877bfebe2607db96897bbfe458af0 # pip packaging @ https://files.pythonhosted.org/packages/88/ef/eb23f262cca3c0c4eb7ab1933c3b1f03d021f2c48f54763065b6f0e321be/packaging-24.2-py3-none-any.whl#sha256=09abb1bccd265c01f4a3aa3f7a7db064b36514d2cba19a2f694fe6150451a759 # pip platformdirs @ https://files.pythonhosted.org/packages/3c/a6/bc1012356d8ece4d66dd75c4b9fc6c1f6650ddd5991e421177d9f8f671be/platformdirs-4.3.6-py3-none-any.whl#sha256=73e575e1408ab8103900836b97580d5307456908a03e92031bab39e4554cc3fb # pip pluggy @ https://files.pythonhosted.org/packages/88/5f/e351af9a41f866ac3f1fac4ca0613908d9a41741cfcf2228f4ad853b697d/pluggy-1.5.0-py3-none-any.whl#sha256=44e1ad92c8ca002de6377e165f3e0f1be63266ab4d554740532335b9d75ea669 From ff495ecac3588d579311b265e26828f75565a015 Mon Sep 17 00:00:00 2001 From: scikit-learn-bot Date: Mon, 16 Dec 2024 09:40:09 +0100 Subject: [PATCH 105/159] :lock: :robot: CI Update lock files for free-threaded CI build(s) :lock: :robot: (#30487) Co-authored-by: Lock file bot --- .../azure/pylatest_free_threaded_linux-64_conda.lock | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/build_tools/azure/pylatest_free_threaded_linux-64_conda.lock b/build_tools/azure/pylatest_free_threaded_linux-64_conda.lock index d932de936f2bf..49ffdb88340ec 100644 --- a/build_tools/azure/pylatest_free_threaded_linux-64_conda.lock +++ b/build_tools/azure/pylatest_free_threaded_linux-64_conda.lock @@ -3,7 +3,7 @@ # input_hash: 8bf0c47c0d22842fa5a5531ad2ad62b4795b6b1cbf713816fa1101103a2e3dcc @EXPLICIT https://conda.anaconda.org/conda-forge/linux-64/_libgcc_mutex-0.1-conda_forge.tar.bz2#d7c89558ba9fa0495403155b64376d81 -https://conda.anaconda.org/conda-forge/linux-64/ca-certificates-2024.8.30-hbcca054_0.conda#c27d1c142233b5bc9ca570c6e2e0c244 +https://conda.anaconda.org/conda-forge/linux-64/ca-certificates-2024.12.14-hbcca054_0.conda#720523eb0d6a9b0f6120c16b2aa4e7de https://conda.anaconda.org/conda-forge/linux-64/python_abi-3.13-5_cp313t.conda#ea4c21b96e8280414d9e243da0ec3201 https://conda.anaconda.org/conda-forge/noarch/tzdata-2024b-hc8b5060_0.conda#8ac3367aafb1cc0a068483c580af8015 https://conda.anaconda.org/conda-forge/linux-64/ld_impl_linux-64-2.43-h712a8e2_2.conda#048b02e3962f066da18efe3a21b77672 @@ -21,7 +21,7 @@ https://conda.anaconda.org/conda-forge/linux-64/bzip2-1.0.8-h4bc722e_7.conda#62e https://conda.anaconda.org/conda-forge/linux-64/libffi-3.4.2-h7f98852_5.tar.bz2#d645c6d2ac96843a2bfaccd2d62b3ac3 https://conda.anaconda.org/conda-forge/linux-64/libgfortran-14.2.0-h69a702a_1.conda#f1fd30127802683586f768875127a987 https://conda.anaconda.org/conda-forge/linux-64/libmpdec-4.0.0-h4bc722e_0.conda#aeb98fdeb2e8f25d43ef71fbacbeec80 -https://conda.anaconda.org/conda-forge/linux-64/libsqlite-3.47.0-hadc24fc_1.conda#b6f02b52a174e612e89548f4663ce56a +https://conda.anaconda.org/conda-forge/linux-64/libsqlite-3.47.2-hee588c1_0.conda#b58da17db24b6e08bcbf8fed2fb8c915 https://conda.anaconda.org/conda-forge/linux-64/libstdcxx-ng-14.2.0-h4852527_1.conda#8371ac6457591af2cf6159439c1fd051 https://conda.anaconda.org/conda-forge/linux-64/libuuid-2.38.1-h0b41bf4_0.conda#40b61aab5c7ba9ff276c41cfffe6b80b https://conda.anaconda.org/conda-forge/linux-64/ncurses-6.5-he02047a_1.conda#70caf8bb6cf39a0b6b7efc885f51c0fe @@ -48,7 +48,7 @@ https://conda.anaconda.org/conda-forge/noarch/pluggy-1.5.0-pyhd8ed1ab_1.conda#e9 https://conda.anaconda.org/conda-forge/noarch/setuptools-75.6.0-pyhff2d567_1.conda#fc80f7995e396cbaeabd23cf46c413dc https://conda.anaconda.org/conda-forge/noarch/threadpoolctl-3.5.0-pyhc1e730c_0.conda#df68d78237980a159bd7149f33c0e8fd https://conda.anaconda.org/conda-forge/noarch/tomli-2.2.1-pyhd8ed1ab_1.conda#ac944244f1fed2eb49bae07193ae8215 -https://conda.anaconda.org/conda-forge/noarch/joblib-1.4.2-pyhd8ed1ab_0.conda#25df261d4523d9f9783bcdb7208d872f +https://conda.anaconda.org/conda-forge/noarch/joblib-1.4.2-pyhd8ed1ab_1.conda#bf8243ee348f3a10a14ed0cae323e0c1 https://conda.anaconda.org/conda-forge/noarch/meson-1.6.0-pyhd8ed1ab_1.conda#59d45dbe1b0a123966266340b579d366 https://conda.anaconda.org/conda-forge/linux-64/numpy-2.2.0-py313h151ba9f_0.conda#d9fc5df93c4e7eee55012d5e0e7a7803 https://conda.anaconda.org/conda-forge/noarch/pyproject-metadata-0.9.0-pyhd8ed1ab_1.conda#1239146a53a383a84633800294120f17 From 8a123af7e9903c20fbb1626753432824bc37d364 Mon Sep 17 00:00:00 2001 From: scikit-learn-bot Date: Mon, 16 Dec 2024 09:54:16 +0100 Subject: [PATCH 106/159] :lock: :robot: CI Update lock files for main CI build(s) :lock: :robot: (#30490) Co-authored-by: Lock file bot --- build_tools/azure/debian_32bit_lock.txt | 2 +- ...latest_conda_forge_mkl_linux-64_conda.lock | 86 +++++++++---------- ...pylatest_conda_forge_mkl_osx-64_conda.lock | 18 ++-- ...test_conda_mkl_no_openmp_osx-64_conda.lock | 8 +- ...st_pip_openblas_pandas_linux-64_conda.lock | 16 ++-- .../pymin_conda_forge_mkl_win-64_conda.lock | 27 +++--- ...nblas_min_dependencies_linux-64_conda.lock | 29 +++---- ...e_openblas_ubuntu_2204_linux-64_conda.lock | 44 +++++----- build_tools/azure/ubuntu_atlas_lock.txt | 2 +- build_tools/circle/doc_linux-64_conda.lock | 60 +++++++------ .../doc_min_dependencies_linux-64_conda.lock | 51 ++++++----- 11 files changed, 165 insertions(+), 178 deletions(-) diff --git a/build_tools/azure/debian_32bit_lock.txt b/build_tools/azure/debian_32bit_lock.txt index 79fbad9fff651..b9168a394eb47 100644 --- a/build_tools/azure/debian_32bit_lock.txt +++ b/build_tools/azure/debian_32bit_lock.txt @@ -16,7 +16,7 @@ meson==1.6.0 # via meson-python meson-python==0.17.1 # via -r build_tools/azure/debian_32bit_requirements.txt -ninja==1.11.1.2 +ninja==1.11.1.3 # via -r build_tools/azure/debian_32bit_requirements.txt packaging==24.2 # via diff --git a/build_tools/azure/pylatest_conda_forge_mkl_linux-64_conda.lock b/build_tools/azure/pylatest_conda_forge_mkl_linux-64_conda.lock index 2a4afdfbf2d60..6939e68df7889 100644 --- a/build_tools/azure/pylatest_conda_forge_mkl_linux-64_conda.lock +++ b/build_tools/azure/pylatest_conda_forge_mkl_linux-64_conda.lock @@ -3,7 +3,7 @@ # input_hash: 93ee312868bc5df4bdc9b2ef07f938f6a5922dfe2375c4963a7c63d19c5d87f6 @EXPLICIT https://conda.anaconda.org/conda-forge/linux-64/_libgcc_mutex-0.1-conda_forge.tar.bz2#d7c89558ba9fa0495403155b64376d81 -https://conda.anaconda.org/conda-forge/linux-64/ca-certificates-2024.8.30-hbcca054_0.conda#c27d1c142233b5bc9ca570c6e2e0c244 +https://conda.anaconda.org/conda-forge/linux-64/ca-certificates-2024.12.14-hbcca054_0.conda#720523eb0d6a9b0f6120c16b2aa4e7de https://conda.anaconda.org/conda-forge/noarch/font-ttf-dejavu-sans-mono-2.37-hab24e00_0.tar.bz2#0c96522c6bdaed4b1566d11387caaf45 https://conda.anaconda.org/conda-forge/noarch/font-ttf-inconsolata-3.000-h77eed37_0.tar.bz2#34893075a5c9e55cdafac56607368fc6 https://conda.anaconda.org/conda-forge/noarch/font-ttf-source-code-pro-2.038-h77eed37_0.tar.bz2#4d59c254e01d9cde7957100457e2d5fb @@ -21,8 +21,8 @@ https://conda.anaconda.org/conda-forge/linux-64/libegl-1.7.0-ha4b6fd6_2.conda#c1 https://conda.anaconda.org/conda-forge/linux-64/libopengl-1.7.0-ha4b6fd6_2.conda#7df50d44d4a14d6c31a2c54f2cd92157 https://conda.anaconda.org/conda-forge/linux-64/libgcc-14.2.0-h77fa898_1.conda#3cb76c3f10d3bc7f1105b2fc9db984df https://conda.anaconda.org/conda-forge/linux-64/alsa-lib-1.2.13-hb9d3cd8_0.conda#ae1370588aa6a5157c34c73e9bbb36a0 -https://conda.anaconda.org/conda-forge/linux-64/aws-c-common-0.10.3-hb9d3cd8_0.conda#ff3653946d34a6a6ba10babb139d96ef -https://conda.anaconda.org/conda-forge/linux-64/c-ares-1.34.3-hb9d3cd8_1.conda#ee228789a85f961d14567252a03e725f +https://conda.anaconda.org/conda-forge/linux-64/aws-c-common-0.10.6-hb9d3cd8_0.conda#d7d4680337a14001b0e043e96529409b +https://conda.anaconda.org/conda-forge/linux-64/c-ares-1.34.4-hb9d3cd8_0.conda#e2775acf57efd5af15b8e3d1d74d72d3 https://conda.anaconda.org/conda-forge/linux-64/libbrotlicommon-1.1.0-hb9d3cd8_2.conda#41b599ed2b02abcfdd84302bff174b23 https://conda.anaconda.org/conda-forge/linux-64/libdeflate-1.22-hb9d3cd8_0.conda#b422943d5d772b7cc858b36ad2a92db5 https://conda.anaconda.org/conda-forge/linux-64/libexpat-2.6.4-h5888daf_0.conda#db833e03127376d461e1e13e76f09b6c @@ -35,14 +35,13 @@ https://conda.anaconda.org/conda-forge/linux-64/libuv-1.49.2-hb9d3cd8_0.conda#07 https://conda.anaconda.org/conda-forge/linux-64/libzlib-1.3.1-hb9d3cd8_2.conda#edb0dca6bc32e4f4789199455a1dbeb8 https://conda.anaconda.org/conda-forge/linux-64/openssl-3.4.0-hb9d3cd8_0.conda#23cc74f77eb99315c0360ec3533147a9 https://conda.anaconda.org/conda-forge/linux-64/pthread-stubs-0.4-hb9d3cd8_1002.conda#b3c17d95b5a10c6e64a21fa17573e70e -https://conda.anaconda.org/conda-forge/linux-64/xorg-libice-1.1.1-hb9d3cd8_1.conda#19608a9656912805b2b9a2f6bd257b04 -https://conda.anaconda.org/conda-forge/linux-64/xorg-libxau-1.0.11-hb9d3cd8_1.conda#77cbc488235ebbaab2b6e912d3934bae +https://conda.anaconda.org/conda-forge/linux-64/xorg-libice-1.1.2-hb9d3cd8_0.conda#fb901ff28063514abb6046c9ec2c4a45 +https://conda.anaconda.org/conda-forge/linux-64/xorg-libxau-1.0.12-hb9d3cd8_0.conda#f6ebe2cb3f82ba6c057dde5d9debe4f7 https://conda.anaconda.org/conda-forge/linux-64/xorg-libxdmcp-1.1.5-hb9d3cd8_0.conda#8035c64cb77ed555e3f150b7b3972480 -https://conda.anaconda.org/conda-forge/linux-64/xorg-xorgproto-2024.1-hb9d3cd8_1.conda#7c21106b851ec72c037b162c216d8f05 -https://conda.anaconda.org/conda-forge/linux-64/aws-c-cal-0.8.0-hecf86a2_2.conda#c54459d686ad9d0502823cacff7e8423 -https://conda.anaconda.org/conda-forge/linux-64/aws-c-compression-0.3.0-hf42f96a_2.conda#257f4ae92fe11bd8436315c86468c39b -https://conda.anaconda.org/conda-forge/linux-64/aws-c-sdkutils-0.2.1-hf42f96a_1.conda#bbdd20fb1994a9f0ba98078fcb6c12ab -https://conda.anaconda.org/conda-forge/linux-64/aws-checksums-0.2.2-hf42f96a_1.conda#d908d43d87429be24edfb20e96543c20 +https://conda.anaconda.org/conda-forge/linux-64/aws-c-cal-0.8.1-h1a47875_3.conda#55a8561fdbbbd34f50f57d9be12ed084 +https://conda.anaconda.org/conda-forge/linux-64/aws-c-compression-0.3.0-h4e1184b_5.conda#3f4c1197462a6df2be6dc8241828fe93 +https://conda.anaconda.org/conda-forge/linux-64/aws-c-sdkutils-0.2.1-h4e1184b_4.conda#a5126a90e74ac739b00564a4c7ddcc36 +https://conda.anaconda.org/conda-forge/linux-64/aws-checksums-0.2.2-h4e1184b_4.conda#74e8c3e4df4ceae34aa2959df4b28101 https://conda.anaconda.org/conda-forge/linux-64/bzip2-1.0.8-h4bc722e_7.conda#62ee74e96c5ebb0af99386de58cf9553 https://conda.anaconda.org/conda-forge/linux-64/expat-2.6.4-h5888daf_0.conda#1d6afef758879ef5ee78127eb4cd2c4a https://conda.anaconda.org/conda-forge/linux-64/gflags-2.2.2-h5888daf_1005.conda#d411fc29e338efb48c5fd4576d71d881 @@ -60,12 +59,13 @@ https://conda.anaconda.org/conda-forge/linux-64/libmpdec-4.0.0-h4bc722e_0.conda# https://conda.anaconda.org/conda-forge/linux-64/libntlm-1.4-h7f98852_1002.tar.bz2#e728e874159b042d92b90238a3cb0dc2 https://conda.anaconda.org/conda-forge/linux-64/libpciaccess-0.18-hd590300_0.conda#48f4330bfcd959c3cfb704d424903c82 https://conda.anaconda.org/conda-forge/linux-64/libpng-1.6.44-hadc24fc_0.conda#f4cc49d7aa68316213e4b12be35308d1 -https://conda.anaconda.org/conda-forge/linux-64/libsqlite-3.47.0-hadc24fc_1.conda#b6f02b52a174e612e89548f4663ce56a +https://conda.anaconda.org/conda-forge/linux-64/libsqlite-3.47.2-hee588c1_0.conda#b58da17db24b6e08bcbf8fed2fb8c915 https://conda.anaconda.org/conda-forge/linux-64/libssh2-1.11.1-hf672d98_0.conda#be2de152d8073ef1c01b7728475f2fe7 https://conda.anaconda.org/conda-forge/linux-64/libstdcxx-ng-14.2.0-h4852527_1.conda#8371ac6457591af2cf6159439c1fd051 https://conda.anaconda.org/conda-forge/linux-64/libuuid-2.38.1-h0b41bf4_0.conda#40b61aab5c7ba9ff276c41cfffe6b80b https://conda.anaconda.org/conda-forge/linux-64/libwebp-base-1.4.0-hd590300_0.conda#b26e8aa824079e1be0294e7152ca4559 https://conda.anaconda.org/conda-forge/linux-64/libxcb-1.17.0-h8a09558_0.conda#92ed62436b625154323d40d5f2f11dd7 +https://conda.anaconda.org/conda-forge/linux-64/lz4-c-1.10.0-h5888daf_1.conda#9de5350a85c4a20c685259b889aa6393 https://conda.anaconda.org/conda-forge/linux-64/mysql-common-9.0.1-h266115a_3.conda#9411c61ff1070b5e065b32840c39faa5 https://conda.anaconda.org/conda-forge/linux-64/ncurses-6.5-he02047a_1.conda#70caf8bb6cf39a0b6b7efc885f51c0fe https://conda.anaconda.org/conda-forge/linux-64/pixman-0.44.2-h29eaf8c_0.conda#5e2a7acfa2c24188af39e7944e1b3604 @@ -73,8 +73,7 @@ https://conda.anaconda.org/conda-forge/linux-64/s2n-1.5.9-h0fd0ee4_0.conda#f4724 https://conda.anaconda.org/conda-forge/linux-64/sleef-3.7-h1b44611_2.conda#4792f3259c6fdc0b730563a85b211dc0 https://conda.anaconda.org/conda-forge/linux-64/snappy-1.2.1-h8bd8927_1.conda#3b3e64af585eadfb52bb90b553db5edf https://conda.anaconda.org/conda-forge/linux-64/tk-8.6.13-noxft_h4845f30_101.conda#d453b98d9c83e71da0741bb0ff4d76bc -https://conda.anaconda.org/conda-forge/linux-64/zlib-1.3.1-hb9d3cd8_2.conda#c9f075ab2f33b3bbee9e62d4ad0a6cd8 -https://conda.anaconda.org/conda-forge/linux-64/aws-c-io-0.15.2-hdeadb07_2.conda#461a1eaa075fd391add91bcffc9de0c1 +https://conda.anaconda.org/conda-forge/linux-64/aws-c-io-0.15.3-hbf5b6a4_4.conda#ad3a6713063c18b9232c48e89ada03ac https://conda.anaconda.org/conda-forge/linux-64/brotli-bin-1.1.0-hb9d3cd8_2.conda#c63b5e52939e795ba8d26e35d767a843 https://conda.anaconda.org/conda-forge/linux-64/double-conversion-3.3.0-h59595ed_0.conda#c2f83a5ddadadcdb08fe05863295ee97 https://conda.anaconda.org/conda-forge/linux-64/freetype-2.12.1-h267a509_2.conda#9ae35c3d96db2c94ce0cef86efdfa2cb @@ -91,7 +90,6 @@ https://conda.anaconda.org/conda-forge/linux-64/libnghttp2-1.64.0-h161d5f1_0.con https://conda.anaconda.org/conda-forge/linux-64/libprotobuf-5.28.2-h5b01275_0.conda#ab0bff36363bec94720275a681af8b83 https://conda.anaconda.org/conda-forge/linux-64/libre2-11-2024.07.02-hbbce691_1.conda#2124de47357b7a516c0a3efd8f88c143 https://conda.anaconda.org/conda-forge/linux-64/libthrift-0.21.0-h0e7cc3e_0.conda#dcb95c0a98ba9ff737f7ae482aef7833 -https://conda.anaconda.org/conda-forge/linux-64/lz4-c-1.9.4-hcb278e6_0.conda#318b08df404f9c9be5712aaa5a6f0bb0 https://conda.anaconda.org/conda-forge/linux-64/ninja-1.12.1-h297d8ca_0.conda#3aa1c7e292afeff25a0091ddd7c69b72 https://conda.anaconda.org/conda-forge/linux-64/pcre2-10.44-hba22ea6_2.conda#df359c09c41cd186fffb93a2d87aa6f5 https://conda.anaconda.org/conda-forge/linux-64/qhull-2020.2-h434a139_5.conda#353823361b1d27eb3960efb076dfcaf6 @@ -101,11 +99,11 @@ https://conda.anaconda.org/conda-forge/linux-64/xcb-util-0.4.1-hb711507_2.conda# https://conda.anaconda.org/conda-forge/linux-64/xcb-util-keysyms-0.4.1-hb711507_0.conda#ad748ccca349aec3e91743e08b5e2b50 https://conda.anaconda.org/conda-forge/linux-64/xcb-util-renderutil-0.3.10-hb711507_0.conda#0e0cbe0564d03a99afd5fd7b362feecd https://conda.anaconda.org/conda-forge/linux-64/xcb-util-wm-0.4.2-hb711507_0.conda#608e0ef8256b81d04456e8d211eee3e8 -https://conda.anaconda.org/conda-forge/linux-64/xorg-libsm-1.2.4-he73a12e_1.conda#05a8ea5f446de33006171a7afe6ae857 +https://conda.anaconda.org/conda-forge/linux-64/xorg-libsm-1.2.5-he73a12e_0.conda#4c3e9fab69804ec6077697922d70c6e2 https://conda.anaconda.org/conda-forge/linux-64/xorg-libx11-1.8.10-h4f16b4b_1.conda#125f34a17d7b4bea418a83904ea82ea6 https://conda.anaconda.org/conda-forge/linux-64/zstd-1.5.6-ha6fb4c9_0.conda#4d056880988120e29d75bfff282e0f45 -https://conda.anaconda.org/conda-forge/linux-64/aws-c-event-stream-0.5.0-h1ffe551_7.conda#7cce4dfab184f4bbdfc160789251b3c5 -https://conda.anaconda.org/conda-forge/linux-64/aws-c-http-0.9.1-hab05fe4_2.conda#fb409f7053fa3dbbdf6eb41045a87795 +https://conda.anaconda.org/conda-forge/linux-64/aws-c-event-stream-0.5.0-h7959bf6_11.conda#9b3fb60fe57925a92f399bc3fc42eccf +https://conda.anaconda.org/conda-forge/linux-64/aws-c-http-0.9.2-hefd7a92_4.conda#5ce4df662d32d3123ea8da15571b6f51 https://conda.anaconda.org/conda-forge/linux-64/brotli-1.1.0-hb9d3cd8_2.conda#98514fe74548d768907ce7a13f680e8f https://conda.anaconda.org/conda-forge/linux-64/fontconfig-2.15.0-h7e30c49_1.conda#8f5b0b297b59e1ac160ad4beec99dbee https://conda.anaconda.org/conda-forge/linux-64/krb5-1.21.3-h659f571_0.conda#3f43953b7d3fb3aaa1d0d0723d91e368 @@ -116,18 +114,18 @@ https://conda.anaconda.org/conda-forge/linux-64/libtiff-4.7.0-hc4654cb_2.conda#b https://conda.anaconda.org/conda-forge/linux-64/libxml2-2.13.5-h8d12d68_1.conda#1a21e49e190d1ffe58531a81b6e400e1 https://conda.anaconda.org/conda-forge/linux-64/mpfr-4.2.1-h90cbb55_3.conda#2eeb50cab6652538eee8fc0bc3340c81 https://conda.anaconda.org/conda-forge/linux-64/mysql-libs-9.0.1-he0572af_3.conda#dd9da69dd4c2bf798c0b8bd4786cafb5 -https://conda.anaconda.org/conda-forge/linux-64/orc-2.0.3-he039a57_0.conda#052499acd6d6b79952197a13b23e2600 +https://conda.anaconda.org/conda-forge/linux-64/orc-2.0.3-h97ab989_1.conda#2f46eae652623114e112df13fae311cf https://conda.anaconda.org/conda-forge/linux-64/python-3.13.1-ha99a958_102_cp313.conda#6e7535f1d1faf524e9210d2689b3149b https://conda.anaconda.org/conda-forge/linux-64/re2-2024.07.02-h77b4e00_1.conda#01093ff37c1b5e6bf9f17c0116747d11 https://conda.anaconda.org/conda-forge/linux-64/xcb-util-image-0.4.0-hb711507_2.conda#a0901183f08b6c7107aab109733a3c91 https://conda.anaconda.org/conda-forge/linux-64/xkeyboard-config-2.43-hb9d3cd8_0.conda#f725c7425d6d7c15e31f3b99a88ea02f https://conda.anaconda.org/conda-forge/linux-64/xorg-libxext-1.3.6-hb9d3cd8_0.conda#febbab7d15033c913d53c7a2c102309d https://conda.anaconda.org/conda-forge/linux-64/xorg-libxfixes-6.0.1-hb9d3cd8_0.conda#4bdb303603e9821baf5fe5fdff1dc8f8 -https://conda.anaconda.org/conda-forge/linux-64/xorg-libxrender-0.9.11-hb9d3cd8_1.conda#a7a49a8b85122b49214798321e2e96b4 -https://conda.anaconda.org/conda-forge/noarch/array-api-compat-1.9.1-pyhd8ed1ab_0.conda#f2328337441baa8f669d2a830cfd0097 -https://conda.anaconda.org/conda-forge/linux-64/aws-c-auth-0.8.0-hb88c0a9_10.conda#409b7ee6d3473cc62bda7280f6ac20d0 -https://conda.anaconda.org/conda-forge/linux-64/aws-c-mqtt-0.11.0-h7bd072d_8.conda#0e9d67838114c0dbd267a9311268b331 -https://conda.anaconda.org/conda-forge/linux-64/cairo-1.18.0-hebfffa5_3.conda#fceaedf1cdbcb02df9699a0d9b005292 +https://conda.anaconda.org/conda-forge/linux-64/xorg-libxrender-0.9.12-hb9d3cd8_0.conda#96d57aba173e878a2089d5638016dc5e +https://conda.anaconda.org/conda-forge/noarch/array-api-compat-1.9.1-pyhd8ed1ab_1.conda#524043e3f1797bd4c64cd7ef36f678e8 +https://conda.anaconda.org/conda-forge/linux-64/aws-c-auth-0.8.0-hb921021_15.conda#c79d50f64cffa5ad51ecc1a81057962f +https://conda.anaconda.org/conda-forge/linux-64/aws-c-mqtt-0.11.0-h11f4f37_12.conda#96c3e0221fa2da97619ee82faa341a73 +https://conda.anaconda.org/conda-forge/linux-64/cairo-1.18.2-h3394656_1.conda#b34c2833a1f56db610aeb27f206d800d https://conda.anaconda.org/conda-forge/linux-64/ccache-4.10.1-h065aff2_0.conda#d6b48c138e0c8170a6fe9c136e063540 https://conda.anaconda.org/conda-forge/noarch/certifi-2024.8.30-pyhd8ed1ab_0.conda#12f7d00853807b0531775e9be891cb11 https://conda.anaconda.org/conda-forge/noarch/colorama-0.4.6-pyhd8ed1ab_1.conda#962b9857ee8e7018c22f2776ffa0b2d7 @@ -144,7 +142,7 @@ https://conda.anaconda.org/conda-forge/noarch/iniconfig-2.0.0-pyhd8ed1ab_1.conda https://conda.anaconda.org/conda-forge/linux-64/kiwisolver-1.4.7-py313h33d0bda_0.conda#9862d13a5e466273d5a4738cffcb8d6c https://conda.anaconda.org/conda-forge/linux-64/lcms2-2.16-hb7c19ff_0.conda#51bb7010fc86f70eee639b4bb7a894f5 https://conda.anaconda.org/conda-forge/linux-64/libcups-2.3.3-h4637d8d_4.conda#d4529f4dff3057982a7617c7ac58fde3 -https://conda.anaconda.org/conda-forge/linux-64/libcurl-8.10.1-hbbe4b11_0.conda#6e801c50a40301f6978c53976917b277 +https://conda.anaconda.org/conda-forge/linux-64/libcurl-8.11.1-h332b0f4_0.conda#2b3e0081006dc21e8bf53a91c83a055c https://conda.anaconda.org/conda-forge/linux-64/libgl-1.7.0-ha4b6fd6_2.conda#928b8be80851f5d8ffb016f9c81dae7a https://conda.anaconda.org/conda-forge/linux-64/libgrpc-1.67.1-hc2c308b_0.conda#4606a4647bfe857e3cfe21ca12ac3afb https://conda.anaconda.org/conda-forge/linux-64/libhwloc-2.11.2-default_h0d58e46_1001.conda#804ca9e91bcaea0824a341d55b1684f2 @@ -156,7 +154,7 @@ https://conda.anaconda.org/conda-forge/linux-64/mpc-1.3.1-h24ddda3_1.conda#aa14b https://conda.anaconda.org/conda-forge/noarch/mpmath-1.3.0-pyhd8ed1ab_1.conda#3585aa87c43ab15b167b574cd73b057b https://conda.anaconda.org/conda-forge/noarch/munkres-1.1.4-pyh9f0ad1d_0.tar.bz2#2ba8498c1018c1e9c61eb99b973dfe19 https://conda.anaconda.org/conda-forge/noarch/networkx-3.4.2-pyh267e887_2.conda#fd40bf7f7f4bc4b647dc8512053d9873 -https://conda.anaconda.org/conda-forge/linux-64/openjpeg-2.5.2-h488ebb8_0.conda#7f2e286780f072ed750df46dc2631138 +https://conda.anaconda.org/conda-forge/linux-64/openjpeg-2.5.3-h5fbd93e_0.conda#9e5816bc95d285c115a3ebc2f8563564 https://conda.anaconda.org/conda-forge/noarch/packaging-24.2-pyhd8ed1ab_2.conda#3bfed7e6228ebf2f7b9eaa47f1b4e2aa https://conda.anaconda.org/conda-forge/noarch/pip-24.3.1-pyh145f28c_0.conda#ca3afe2d7b893a8c8cdf489d30a2b1a3 https://conda.anaconda.org/conda-forge/noarch/pluggy-1.5.0-pyhd8ed1ab_1.conda#e9dcbce5f45f9ee500e728ae58b605b6 @@ -166,7 +164,7 @@ https://conda.anaconda.org/conda-forge/noarch/pytz-2024.1-pyhd8ed1ab_0.conda#3ee https://conda.anaconda.org/conda-forge/noarch/setuptools-75.6.0-pyhff2d567_1.conda#fc80f7995e396cbaeabd23cf46c413dc https://conda.anaconda.org/conda-forge/noarch/six-1.17.0-pyhd8ed1ab_0.conda#a451d576819089b0d672f18768be0f65 https://conda.anaconda.org/conda-forge/noarch/threadpoolctl-3.5.0-pyhc1e730c_0.conda#df68d78237980a159bd7149f33c0e8fd -https://conda.anaconda.org/conda-forge/noarch/toml-0.10.2-pyhd8ed1ab_0.tar.bz2#f832c45a477c78bebd107098db465095 +https://conda.anaconda.org/conda-forge/noarch/toml-0.10.2-pyhd8ed1ab_1.conda#b0dd904de08b7db706167240bf37b164 https://conda.anaconda.org/conda-forge/noarch/tomli-2.2.1-pyhd8ed1ab_1.conda#ac944244f1fed2eb49bae07193ae8215 https://conda.anaconda.org/conda-forge/linux-64/tornado-6.4.2-py313h536fd9c_0.conda#5f5cbdd527d2e74e270d8b6255ba714f https://conda.anaconda.org/conda-forge/noarch/typing_extensions-4.12.2-pyha770c72_1.conda#d17f13df8b65464ca316cbc000a3cb64 @@ -176,18 +174,18 @@ https://conda.anaconda.org/conda-forge/linux-64/xorg-libxcursor-1.2.3-hb9d3cd8_0 https://conda.anaconda.org/conda-forge/linux-64/xorg-libxdamage-1.1.6-hb9d3cd8_0.conda#b5fcc7172d22516e1f965490e65e33a4 https://conda.anaconda.org/conda-forge/linux-64/xorg-libxi-1.8.2-hb9d3cd8_0.conda#17dcc85db3c7886650b8908b183d6876 https://conda.anaconda.org/conda-forge/linux-64/xorg-libxrandr-1.5.4-hb9d3cd8_0.conda#2de7f99d6581a4a7adbff607b5c278ca -https://conda.anaconda.org/conda-forge/linux-64/xorg-libxxf86vm-1.1.5-hb9d3cd8_4.conda#7da9007c0582712c4bad4131f89c8372 -https://conda.anaconda.org/conda-forge/linux-64/aws-c-s3-0.7.5-h3a84f74_0.conda#a13702b87657cf2d0cdd338fe55f4ba1 +https://conda.anaconda.org/conda-forge/linux-64/xorg-libxxf86vm-1.1.6-hb9d3cd8_0.conda#5efa5fa6243a622445fdfd72aee15efa +https://conda.anaconda.org/conda-forge/linux-64/aws-c-s3-0.7.7-hf454442_0.conda#947c82025693bebd557f782bb5d6b469 https://conda.anaconda.org/conda-forge/linux-64/azure-core-cpp-1.14.0-h5cfcd09_0.conda#0a8838771cc2e985cd295e01ae83baf1 https://conda.anaconda.org/conda-forge/linux-64/coverage-7.6.9-py313h8060acc_0.conda#dc7f212c995a2126d955225844888dcb -https://conda.anaconda.org/conda-forge/linux-64/fonttools-4.55.2-py313h8060acc_0.conda#bcefb389907b2882f2c90dee23f07231 +https://conda.anaconda.org/conda-forge/linux-64/fonttools-4.55.3-py313h8060acc_0.conda#8402b3d23142194dde4af92af17b276c https://conda.anaconda.org/conda-forge/linux-64/gmpy2-2.1.5-py313h11186cd_3.conda#846a773cdc154eda7b86d7f4427432f2 https://conda.anaconda.org/conda-forge/linux-64/harfbuzz-9.0.0-hda332d3_1.conda#76b32dcf243444aea9c6b804bcfa40b8 https://conda.anaconda.org/conda-forge/noarch/jinja2-3.1.4-pyhd8ed1ab_1.conda#08cce3151bde4ecad7885bd9fb647532 -https://conda.anaconda.org/conda-forge/noarch/joblib-1.4.2-pyhd8ed1ab_0.conda#25df261d4523d9f9783bcdb7208d872f +https://conda.anaconda.org/conda-forge/noarch/joblib-1.4.2-pyhd8ed1ab_1.conda#bf8243ee348f3a10a14ed0cae323e0c1 https://conda.anaconda.org/conda-forge/linux-64/libclang-cpp19.1-19.1.5-default_hb5137d0_0.conda#ec8649c89988d8a443c252c20f259b72 https://conda.anaconda.org/conda-forge/linux-64/libclang13-19.1.5-default_h9c6a7e4_0.conda#a3a5997b6b47373f0c1608d8503eb4e6 -https://conda.anaconda.org/conda-forge/linux-64/libgoogle-cloud-2.31.0-h804f50b_0.conda#35ab838423b60f233391eb86d324a830 +https://conda.anaconda.org/conda-forge/linux-64/libgoogle-cloud-2.32.0-h804f50b_0.conda#3d96df4d6b1c88455e05b94ce8a14a53 https://conda.anaconda.org/conda-forge/noarch/meson-1.6.0-pyhd8ed1ab_1.conda#59d45dbe1b0a123966266340b579d366 https://conda.anaconda.org/conda-forge/linux-64/openldap-2.6.9-he970967_0.conda#ca2de8bbdc871bce41dbf59e51324165 https://conda.anaconda.org/conda-forge/linux-64/pillow-11.0.0-py313h2d7ed13_0.conda#0d95e1cda6bf9ce501e751c02561204e @@ -196,44 +194,44 @@ https://conda.anaconda.org/conda-forge/noarch/pytest-8.3.4-pyhd8ed1ab_1.conda#79 https://conda.anaconda.org/conda-forge/noarch/python-dateutil-2.9.0.post0-pyhff2d567_1.conda#5ba79d7c71f03c678c8ead841f347d6e https://conda.anaconda.org/conda-forge/linux-64/tbb-2021.13.0-hceb3a55_1.conda#ba7726b8df7b9d34ea80e82b097a4893 https://conda.anaconda.org/conda-forge/linux-64/xorg-libxtst-1.2.5-hb9d3cd8_3.conda#7bbe9a0cc0df0ac5f5a8ad6d6a11af2f -https://conda.anaconda.org/conda-forge/linux-64/aws-crt-cpp-0.29.7-ha6b94fc_1.conda#f5fb6f6283deb0b4d2c187ad4a7b6d4d +https://conda.anaconda.org/conda-forge/linux-64/aws-crt-cpp-0.29.7-hd92328a_7.conda#02b95564257d5c3db9c06beccf711f95 https://conda.anaconda.org/conda-forge/linux-64/azure-identity-cpp-1.10.0-h113e628_0.conda#73f73f60854f325a55f1d31459f2ab73 https://conda.anaconda.org/conda-forge/linux-64/azure-storage-common-cpp-12.8.0-h736e048_1.conda#13de36be8de3ae3f05ba127631599213 -https://conda.anaconda.org/conda-forge/linux-64/libgoogle-cloud-storage-2.31.0-h0121fbd_0.conda#568d6a09a6ed76337a7b97c84ae7c0f8 +https://conda.anaconda.org/conda-forge/linux-64/libgoogle-cloud-storage-2.32.0-h0121fbd_0.conda#877a5ec0431a5af83bf0cd0522bfe661 https://conda.anaconda.org/conda-forge/linux-64/libpq-17.2-h3b95a9b_1.conda#37724d8bae042345a19ca1a25dde786b https://conda.anaconda.org/conda-forge/noarch/meson-python-0.17.1-pyh70fd9c4_1.conda#7a02679229c6c2092571b4c025055440 https://conda.anaconda.org/conda-forge/linux-64/mkl-2024.2.2-ha957f24_16.conda#1459379c79dda834673426504d52b319 https://conda.anaconda.org/conda-forge/noarch/pytest-cov-6.0.0-pyhd8ed1ab_1.conda#79963c319d1be62c8fd3e34555816e01 https://conda.anaconda.org/conda-forge/noarch/pytest-xdist-3.6.1-pyhd8ed1ab_1.conda#59aad4fb37cabc0bacc73cf344612ddd https://conda.anaconda.org/conda-forge/noarch/sympy-1.13.3-pyh2585a3b_104.conda#68085d736d2b2f54498832b65059875d -https://conda.anaconda.org/conda-forge/linux-64/aws-sdk-cpp-1.11.458-hac138a2_1.conda#bbdd9589b1a32a80b0e3f98a2a482542 +https://conda.anaconda.org/conda-forge/linux-64/aws-sdk-cpp-1.11.458-hc430e4a_4.conda#aeefac461bea1f126653c1285cf5af08 https://conda.anaconda.org/conda-forge/linux-64/azure-storage-blobs-cpp-12.13.0-h3cf044e_1.conda#7eb66060455c7a47d9dcdbfa9f46579b https://conda.anaconda.org/conda-forge/linux-64/libblas-3.9.0-25_linux64_mkl.conda#b77ebfb548eae4d91639e2ca003662c8 https://conda.anaconda.org/conda-forge/linux-64/mkl-devel-2024.2.2-ha770c72_16.conda#140891ea14285fc634353b31e9e40a95 -https://conda.anaconda.org/conda-forge/linux-64/qt6-main-6.8.0-h6e8976b_0.conda#6d1c5d2d904d24c17cbb538a95855a4e +https://conda.anaconda.org/conda-forge/linux-64/qt6-main-6.8.1-h9d28a51_0.conda#7e8e17c44e7af62c77de7a0158afc35c https://conda.anaconda.org/conda-forge/linux-64/azure-storage-files-datalake-cpp-12.12.0-ha633028_1.conda#7c1980f89dd41b097549782121a73490 https://conda.anaconda.org/conda-forge/linux-64/libcblas-3.9.0-25_linux64_mkl.conda#e48aeb4ab1a293f621fe995959f1d32f https://conda.anaconda.org/conda-forge/linux-64/liblapack-3.9.0-25_linux64_mkl.conda#d5afbe3777c594434e4de6481254e99c -https://conda.anaconda.org/conda-forge/linux-64/pyside6-6.8.0.2-py313h5f61773_0.conda#eb4dd1755647ad183e70c8668f5eb97b -https://conda.anaconda.org/conda-forge/linux-64/libarrow-18.1.0-h3b07799_4_cpu.conda#27675c7172667268440306533e4928de +https://conda.anaconda.org/conda-forge/linux-64/pyside6-6.8.1-py313h5f61773_0.conda#689386169e9c1e4879e81384de4d47e9 +https://conda.anaconda.org/conda-forge/linux-64/libarrow-18.1.0-h44a453e_6_cpu.conda#2cf6d608d6e66506f69797d5c6944c35 https://conda.anaconda.org/conda-forge/linux-64/liblapacke-3.9.0-25_linux64_mkl.conda#cbddb4169d3d24b13b308403b45f401e https://conda.anaconda.org/conda-forge/linux-64/libtorch-2.5.1-cpu_mkl_h791ef64_106.conda#a6197137453f4365412dcbef1f403141 https://conda.anaconda.org/conda-forge/linux-64/numpy-2.2.0-py313hb30382a_0.conda#5aa2240f061c27ddabaa2a4924c1a066 https://conda.anaconda.org/conda-forge/noarch/array-api-strict-2.2-pyhd8ed1ab_0.conda#5f8d3e0f6b42318772d0f1cdddfe3025 https://conda.anaconda.org/conda-forge/linux-64/blas-devel-3.9.0-25_linux64_mkl.conda#cb60caae3cb30988431d7107691bd587 https://conda.anaconda.org/conda-forge/linux-64/contourpy-1.3.1-py313h33d0bda_0.conda#6b6768e7c585d7029f79a04cbc4cbff0 -https://conda.anaconda.org/conda-forge/linux-64/libarrow-acero-18.1.0-h8bbc2ab_4_cpu.conda#82bcbfe424868ce66b5ab986999f534d -https://conda.anaconda.org/conda-forge/linux-64/libparquet-18.1.0-hf4f6db6_4_cpu.conda#f18b10bf19bb384183f2aa546e9f6f0a +https://conda.anaconda.org/conda-forge/linux-64/libarrow-acero-18.1.0-hcb10f89_6_cpu.conda#143f9288b64759a6427563f058c62f2b +https://conda.anaconda.org/conda-forge/linux-64/libparquet-18.1.0-h081d1f1_6_cpu.conda#68788df49ce7480187eb6387f15b2b67 https://conda.anaconda.org/conda-forge/linux-64/pandas-2.2.3-py313ha87cce1_1.conda#c5d63dd501db554b84a30dea33824164 -https://conda.anaconda.org/conda-forge/linux-64/polars-1.16.0-py313ha816797_0.conda#76b55dab38a5669124e2c6b73f54a35b +https://conda.anaconda.org/conda-forge/linux-64/polars-1.17.1-py313hae41bca_0.conda#ee6fe8aba7963d1229645a3f831e3744 https://conda.anaconda.org/conda-forge/linux-64/pyarrow-core-18.1.0-py313he5f92c8_0_cpu.conda#5380e12f4468e891911dbbd4248b521a https://conda.anaconda.org/conda-forge/linux-64/pytorch-2.5.1-cpu_mkl_py313hf76930e_106.conda#436a5c9f320b3230e67fbe26d224d516 https://conda.anaconda.org/conda-forge/linux-64/scipy-1.14.1-py313h27c5614_2.conda#25c0eda0d2ed28962c5f3e8f7fbeace3 https://conda.anaconda.org/conda-forge/linux-64/blas-2.125-mkl.conda#8a0ffaaae2bccf691cffdde83cb0f1a5 -https://conda.anaconda.org/conda-forge/linux-64/libarrow-dataset-18.1.0-h8bbc2ab_4_cpu.conda#fa31464c75b20c2f3ac8fc758e034887 -https://conda.anaconda.org/conda-forge/linux-64/matplotlib-base-3.9.3-py313h129903b_0.conda#e60c1296decc1bb82cc55e8a9da0ceb4 +https://conda.anaconda.org/conda-forge/linux-64/libarrow-dataset-18.1.0-hcb10f89_6_cpu.conda#20ca46a6bc714a6ab189d5b3f46e66d8 +https://conda.anaconda.org/conda-forge/linux-64/matplotlib-base-3.9.4-py313h129903b_0.conda#50b877c205e32719e279cc78d9b4b466 https://conda.anaconda.org/conda-forge/linux-64/pyamg-5.2.1-py313hf0ab243_1.conda#4c769bf3858f424cb2ecf952175ec600 https://conda.anaconda.org/conda-forge/linux-64/pytorch-cpu-2.5.1-cpu_mkl_hc60beec_106.conda#0e8cc9f4649cbcd439c4a6bc8166ac03 -https://conda.anaconda.org/conda-forge/linux-64/libarrow-substrait-18.1.0-had74209_4_cpu.conda#bf261e5fa25ce4acc11a80bdc73b88b2 -https://conda.anaconda.org/conda-forge/linux-64/matplotlib-3.9.3-py313h78bf25f_0.conda#42fcd8e09d2faa62a5301fa73b956757 +https://conda.anaconda.org/conda-forge/linux-64/libarrow-substrait-18.1.0-h3ee7192_6_cpu.conda#aa313b3168caf98d00b3753f5ba27650 +https://conda.anaconda.org/conda-forge/linux-64/matplotlib-3.9.4-py313h78bf25f_0.conda#3793e5d2148f2154bfe3303b42b67a2e https://conda.anaconda.org/conda-forge/linux-64/pyarrow-18.1.0-py313h78bf25f_0.conda#a11d880ceedc33993c6f5c14a80ea9d3 diff --git a/build_tools/azure/pylatest_conda_forge_mkl_osx-64_conda.lock b/build_tools/azure/pylatest_conda_forge_mkl_osx-64_conda.lock index 02c762c5e31e0..e946631f422e3 100644 --- a/build_tools/azure/pylatest_conda_forge_mkl_osx-64_conda.lock +++ b/build_tools/azure/pylatest_conda_forge_mkl_osx-64_conda.lock @@ -2,7 +2,7 @@ # platform: osx-64 # input_hash: e7c2bc2b07721ef735f30d3b1cf0b2a780b5bf5c138d9d18ad174611bfbd32bf @EXPLICIT -https://conda.anaconda.org/conda-forge/osx-64/ca-certificates-2024.8.30-h8857fd0_0.conda#b7e5424e7f06547a903d28e4651dbb21 +https://conda.anaconda.org/conda-forge/osx-64/ca-certificates-2024.12.14-h8857fd0_0.conda#b7b887091c99ed2e74845e75e9128410 https://conda.anaconda.org/conda-forge/osx-64/libffi-3.4.2-h0d85af4_5.tar.bz2#ccb34fb14960ad8b125962d3d79b31a9 https://conda.anaconda.org/conda-forge/noarch/libgfortran-devel_osx-64-13.2.0-h80d4556_3.conda#3a689f0d733e67828ad00eac5f3cf26e https://conda.anaconda.org/conda-forge/osx-64/libiconv-1.17-hd75f5a5_2.conda#6c3628d047e151efba7cf08c5e54d1ca @@ -23,7 +23,7 @@ https://conda.anaconda.org/conda-forge/osx-64/llvm-openmp-19.1.5-ha54dae1_0.cond https://conda.anaconda.org/conda-forge/osx-64/ncurses-6.5-hf036a51_1.conda#e102bbf8a6ceeaf429deab8032fc8977 https://conda.anaconda.org/conda-forge/osx-64/openssl-3.4.0-hd471939_0.conda#ec99d2ce0b3033a75cbad01bbc7c5b71 https://conda.anaconda.org/conda-forge/osx-64/pthread-stubs-0.4-h00291cd_1002.conda#8bcf980d2c6b17094961198284b8e862 -https://conda.anaconda.org/conda-forge/osx-64/xorg-libxau-1.0.11-h00291cd_1.conda#c6cc91149a08402bbb313c5dc0142567 +https://conda.anaconda.org/conda-forge/osx-64/xorg-libxau-1.0.12-h6e16a3a_0.conda#4cf40e60b444d56512a64f39d12c20bd https://conda.anaconda.org/conda-forge/osx-64/xorg-libxdmcp-1.1.5-h00291cd_0.conda#9f438e1b6f4e73fd9e6d78bfe7c36743 https://conda.anaconda.org/conda-forge/osx-64/gmp-6.3.0-hf036a51_2.conda#427101d13f19c4974552a4e5b072eef1 https://conda.anaconda.org/conda-forge/osx-64/isl-0.26-imath32_h2e86a7b_101.conda#d06222822a9144918333346f145b68c6 @@ -33,7 +33,7 @@ https://conda.anaconda.org/conda-forge/osx-64/libbrotlienc-1.1.0-h00291cd_2.cond https://conda.anaconda.org/conda-forge/osx-64/libcxx-devel-17.0.6-h8f8a49f_6.conda#faa013d493ffd2d5f2d2fc6df5f98f2e https://conda.anaconda.org/conda-forge/osx-64/libgfortran5-13.2.0-h2873a65_3.conda#e4fb4d23ec2870ff3c40d10afe305aec https://conda.anaconda.org/conda-forge/osx-64/libpng-1.6.44-h4b8f8c9_0.conda#f32ac2c8dd390dbf169f550887ed09d9 -https://conda.anaconda.org/conda-forge/osx-64/libsqlite-3.47.0-h2f8c449_1.conda#af445c495253a871c3d809e1199bb12b +https://conda.anaconda.org/conda-forge/osx-64/libsqlite-3.47.2-hdb6dae5_0.conda#44d9799fda97eb34f6d88ac1e3eb0ea6 https://conda.anaconda.org/conda-forge/osx-64/libxcb-1.17.0-hf1f96e2_0.conda#bbeca862892e2898bdb45792a61c4afc https://conda.anaconda.org/conda-forge/osx-64/libxml2-2.13.5-he8ee3e7_1.conda#9379f216f9132d0d3cdeeb10af165262 https://conda.anaconda.org/conda-forge/osx-64/ninja-1.12.1-h3c5361c_0.conda#a0ebabd021c8191aeb82793fe43cfdcb @@ -68,7 +68,7 @@ https://conda.anaconda.org/conda-forge/osx-64/libhiredis-1.0.2-h2beb688_0.tar.bz https://conda.anaconda.org/conda-forge/osx-64/llvm-tools-17.0.6-hbedff68_1.conda#4260f86b3dd201ad7ea758d783cd5613 https://conda.anaconda.org/conda-forge/osx-64/mpc-1.3.1-h9d8efa1_1.conda#0520855aaae268ea413d6bc913f1384c https://conda.anaconda.org/conda-forge/noarch/munkres-1.1.4-pyh9f0ad1d_0.tar.bz2#2ba8498c1018c1e9c61eb99b973dfe19 -https://conda.anaconda.org/conda-forge/osx-64/openjpeg-2.5.2-h7310d3a_0.conda#05a14cc9d725dd74995927968d6547e3 +https://conda.anaconda.org/conda-forge/osx-64/openjpeg-2.5.3-h7fd6d84_0.conda#025c711177fc3309228ca1a32374458d https://conda.anaconda.org/conda-forge/noarch/packaging-24.2-pyhd8ed1ab_2.conda#3bfed7e6228ebf2f7b9eaa47f1b4e2aa https://conda.anaconda.org/conda-forge/noarch/pip-24.3.1-pyh145f28c_0.conda#ca3afe2d7b893a8c8cdf489d30a2b1a3 https://conda.anaconda.org/conda-forge/noarch/pluggy-1.5.0-pyhd8ed1ab_1.conda#e9dcbce5f45f9ee500e728ae58b605b6 @@ -79,16 +79,16 @@ https://conda.anaconda.org/conda-forge/noarch/setuptools-75.6.0-pyhff2d567_1.con https://conda.anaconda.org/conda-forge/noarch/six-1.17.0-pyhd8ed1ab_0.conda#a451d576819089b0d672f18768be0f65 https://conda.anaconda.org/conda-forge/osx-64/tbb-2021.13.0-hb890de9_1.conda#284892942cdddfded53d090050b639a5 https://conda.anaconda.org/conda-forge/noarch/threadpoolctl-3.5.0-pyhc1e730c_0.conda#df68d78237980a159bd7149f33c0e8fd -https://conda.anaconda.org/conda-forge/noarch/toml-0.10.2-pyhd8ed1ab_0.tar.bz2#f832c45a477c78bebd107098db465095 +https://conda.anaconda.org/conda-forge/noarch/toml-0.10.2-pyhd8ed1ab_1.conda#b0dd904de08b7db706167240bf37b164 https://conda.anaconda.org/conda-forge/noarch/tomli-2.2.1-pyhd8ed1ab_1.conda#ac944244f1fed2eb49bae07193ae8215 https://conda.anaconda.org/conda-forge/osx-64/tornado-6.4.2-py313h63b0ddb_0.conda#74a3a14f82dc65fa19f4fd4e2eb8da93 https://conda.anaconda.org/conda-forge/osx-64/ccache-4.10.1-hee5fd93_0.conda#09898bb80e196695cea9e07402cff215 https://conda.anaconda.org/conda-forge/osx-64/cctools_osx-64-1010.6-hea4301f_2.conda#70260b63386f080de1aa175dea5d57ac https://conda.anaconda.org/conda-forge/osx-64/clang-17-17.0.6-default_hb173f14_7.conda#809e36447b1bfb87ed1b7fb46339561a https://conda.anaconda.org/conda-forge/osx-64/coverage-7.6.9-py313h717bdf5_0.conda#31f9f00b93e0a0c1fea6a5e94bcf0008 -https://conda.anaconda.org/conda-forge/osx-64/fonttools-4.55.2-py313h717bdf5_0.conda#d001bd52565c4e57cc36c25aac78bf03 +https://conda.anaconda.org/conda-forge/osx-64/fonttools-4.55.3-py313h717bdf5_0.conda#a9d214f3df927b0b3b2d3654cbc20801 https://conda.anaconda.org/conda-forge/osx-64/gfortran_impl_osx-64-13.2.0-h2bc304d_3.conda#57aa4cb95277a27aa0a1834ed97be45b -https://conda.anaconda.org/conda-forge/noarch/joblib-1.4.2-pyhd8ed1ab_0.conda#25df261d4523d9f9783bcdb7208d872f +https://conda.anaconda.org/conda-forge/noarch/joblib-1.4.2-pyhd8ed1ab_1.conda#bf8243ee348f3a10a14ed0cae323e0c1 https://conda.anaconda.org/conda-forge/osx-64/ld64-951.9-h0a3eb4e_2.conda#c198062cf84f2e797996ac156daffa9e https://conda.anaconda.org/conda-forge/noarch/meson-1.6.0-pyhd8ed1ab_1.conda#59d45dbe1b0a123966266340b579d366 https://conda.anaconda.org/conda-forge/osx-64/mkl-2023.2.0-h54c2260_50500.conda#0a342ccdc79e4fcd359245ac51941e7b @@ -116,10 +116,10 @@ https://conda.anaconda.org/conda-forge/osx-64/pandas-2.2.3-py313h38cdd20_1.conda https://conda.anaconda.org/conda-forge/osx-64/scipy-1.14.1-py313hd641537_2.conda#761f4433e80b2daed4d050da787db155 https://conda.anaconda.org/conda-forge/osx-64/blas-2.120-mkl.conda#b041a7677a412f3d925d8208936cb1e2 https://conda.anaconda.org/conda-forge/osx-64/clang_impl_osx-64-17.0.6-h1af8efd_23.conda#90132dd643d402883e4fbd8f0527e152 -https://conda.anaconda.org/conda-forge/osx-64/matplotlib-base-3.9.3-py313he981572_0.conda#f32773584f0db10dcd02e88271a645eb +https://conda.anaconda.org/conda-forge/osx-64/matplotlib-base-3.9.4-py313he981572_0.conda#a57f187cdbb574df39fada4ec356c039 https://conda.anaconda.org/conda-forge/osx-64/pyamg-5.2.1-py313h0322a6a_1.conda#4bda5182eeaef3d2017a2ec625802e1a https://conda.anaconda.org/conda-forge/osx-64/clang_osx-64-17.0.6-h7e5c614_23.conda#615b86de1eb0162b7fa77bb8cbf57f1d -https://conda.anaconda.org/conda-forge/osx-64/matplotlib-3.9.3-py313habf4b1d_0.conda#2a492d5f99ab3ca997a55f8a2d702cd0 +https://conda.anaconda.org/conda-forge/osx-64/matplotlib-3.9.4-py313habf4b1d_0.conda#1c88d27f3b45edb6e1b4ff4e4d79a0ad https://conda.anaconda.org/conda-forge/osx-64/c-compiler-1.8.0-hfc4bf79_1.conda#d6e3cf55128335736c8d4bb86e73c191 https://conda.anaconda.org/conda-forge/osx-64/clangxx_impl_osx-64-17.0.6-hc3430b7_23.conda#b724718bfe53f93e782fe944ec58029e https://conda.anaconda.org/conda-forge/osx-64/gfortran_osx-64-13.2.0-h18f7dce_1.conda#71d59c1ae3fea7a97154ff0e20b38df3 diff --git a/build_tools/azure/pylatest_conda_mkl_no_openmp_osx-64_conda.lock b/build_tools/azure/pylatest_conda_mkl_no_openmp_osx-64_conda.lock index 979572b3b7ec0..b8094d2a71e70 100644 --- a/build_tools/azure/pylatest_conda_mkl_no_openmp_osx-64_conda.lock +++ b/build_tools/azure/pylatest_conda_mkl_no_openmp_osx-64_conda.lock @@ -17,7 +17,7 @@ https://repo.anaconda.com/pkgs/main/noarch/tzdata-2024b-h04d1e81_0.conda#9be6947 https://repo.anaconda.com/pkgs/main/osx-64/xz-5.4.6-h6c40b1e_1.conda#b40d69768d28133d8be1843def4f82f5 https://repo.anaconda.com/pkgs/main/osx-64/zlib-1.2.13-h4b97444_1.conda#38e35f7c817fac0973034bfce6706ec2 https://repo.anaconda.com/pkgs/main/osx-64/ccache-3.7.9-hf120daa_0.conda#a01515a32e721c51d631283f991bc8ea -https://repo.anaconda.com/pkgs/main/osx-64/expat-2.6.3-h6d0c2b6_0.conda#7cfb1a4651369640118e6ee80198e682 +https://repo.anaconda.com/pkgs/main/osx-64/expat-2.6.4-h6d0c2b6_0.conda#337f85e792486001ba7aed0fa2f93e64 https://repo.anaconda.com/pkgs/main/osx-64/intel-openmp-2023.1.0-ha357a0b_43548.conda#ba8a89ffe593eb88e4c01334753c40c3 https://repo.anaconda.com/pkgs/main/osx-64/lerc-3.0-he9d5cce_0.conda#aec2c3dbef836849c9260f05be04f3db https://repo.anaconda.com/pkgs/main/osx-64/libbrotlidec-1.0.9-h6c40b1e_8.conda#6338cd7779e614fc16d835990e627e04 @@ -38,8 +38,8 @@ https://repo.anaconda.com/pkgs/main/osx-64/sqlite-3.45.3-h6c40b1e_0.conda#2edf90 https://repo.anaconda.com/pkgs/main/osx-64/zstd-1.5.6-h138b38a_0.conda#f4d15d7d0054d39e6a24fe8d7d1e37c5 https://repo.anaconda.com/pkgs/main/osx-64/brotli-1.0.9-h6c40b1e_8.conda#10f89677a3898d0113dc354adf643df3 https://repo.anaconda.com/pkgs/main/osx-64/libtiff-4.5.1-hcec6c5f_0.conda#e127a800ffd9d300ed7d5e1b026944ec -https://repo.anaconda.com/pkgs/main/osx-64/python-3.12.7-hcd54a6c_0.conda#6eabc1d6b0c0a5dcbf5adfa79f18b95e -https://repo.anaconda.com/pkgs/main/osx-64/coverage-7.6.1-py312h46256e1_0.conda#08c49d882d5749d2d34385050584f014 +https://repo.anaconda.com/pkgs/main/osx-64/python-3.12.8-hcd54a6c_0.conda#54c4f4421ae085eb9e9d63643c272cf3 +https://repo.anaconda.com/pkgs/main/osx-64/coverage-7.6.9-py312h46256e1_0.conda#f8c1547bbf522a600ee795901240a7b0 https://repo.anaconda.com/pkgs/main/noarch/cycler-0.11.0-pyhd3eb1b0_0.conda#f5e365d2cdb66d547eb8c3ab93843aab https://repo.anaconda.com/pkgs/main/noarch/execnet-2.1.1-pyhd3eb1b0_0.conda#b3cb797432ee4657d5907b91a5dc65ad https://repo.anaconda.com/pkgs/main/noarch/iniconfig-1.1.1-pyhd3eb1b0_0.tar.bz2#e40edff2c5708f342cef43c7f280c507 @@ -57,7 +57,7 @@ https://repo.anaconda.com/pkgs/main/osx-64/pytz-2024.1-py312hecd8cb5_0.conda#2b2 https://repo.anaconda.com/pkgs/main/osx-64/setuptools-75.1.0-py312hecd8cb5_0.conda#3e59d1f40cba32a613a20b2ebdcf2c07 https://repo.anaconda.com/pkgs/main/noarch/six-1.16.0-pyhd3eb1b0_1.conda#34586824d411d36af2fa40e799c172d0 https://repo.anaconda.com/pkgs/main/noarch/toml-0.10.2-pyhd3eb1b0_0.conda#cda05f5f6d8509529d1a2743288d197a -https://repo.anaconda.com/pkgs/main/osx-64/tornado-6.4.1-py312h46256e1_0.conda#ff2efd781e1b1af38284aeda9d676d42 +https://repo.anaconda.com/pkgs/main/osx-64/tornado-6.4.2-py312h46256e1_0.conda#6b41d7d8a2bf93ae3fc512202b14a9ec https://repo.anaconda.com/pkgs/main/osx-64/unicodedata2-15.1.0-py312h6c40b1e_0.conda#65bd2cb787fc99662d9bb6e6520c5826 https://repo.anaconda.com/pkgs/main/osx-64/wheel-0.44.0-py312hecd8cb5_0.conda#bc98874d00f71c3f6f654d0316174d17 https://repo.anaconda.com/pkgs/main/osx-64/fonttools-4.51.0-py312h6c40b1e_0.conda#8f55fa86b73e8a7f4403503f9b7a9959 diff --git a/build_tools/azure/pylatest_pip_openblas_pandas_linux-64_conda.lock b/build_tools/azure/pylatest_pip_openblas_pandas_linux-64_conda.lock index 45f266928eecb..3ea3ec3e17a3e 100644 --- a/build_tools/azure/pylatest_pip_openblas_pandas_linux-64_conda.lock +++ b/build_tools/azure/pylatest_pip_openblas_pandas_linux-64_conda.lock @@ -12,7 +12,7 @@ https://repo.anaconda.com/pkgs/main/linux-64/libstdcxx-ng-11.2.0-h1234567_1.cond https://repo.anaconda.com/pkgs/main/linux-64/_openmp_mutex-5.1-1_gnu.conda#71d281e9c2192cb3fa425655a8defb85 https://repo.anaconda.com/pkgs/main/linux-64/libgcc-ng-11.2.0-h1234567_1.conda#a87728dabf3151fb9cfa990bd2eb0464 https://repo.anaconda.com/pkgs/main/linux-64/bzip2-1.0.8-h5eee18b_6.conda#f21a3ff51c1b271977f53ce956a69297 -https://repo.anaconda.com/pkgs/main/linux-64/expat-2.6.3-h6a678d5_0.conda#5e184279ccb8b85331093305cb548f5c +https://repo.anaconda.com/pkgs/main/linux-64/expat-2.6.4-h6a678d5_0.conda#3ec804f5b85a66e64b262cc2341dd004 https://repo.anaconda.com/pkgs/main/linux-64/libffi-3.4.4-h6a678d5_1.conda#70646cc713f0c43926cfdcfe9b695fe0 https://repo.anaconda.com/pkgs/main/linux-64/libmpdec-4.0.0-h5eee18b_0.conda#feb10f42b1a7b523acbf85461be41a3e https://repo.anaconda.com/pkgs/main/linux-64/libuuid-1.41.5-h5eee18b_0.conda#4a6a2354414c9080327274aa514e5299 @@ -24,21 +24,21 @@ https://repo.anaconda.com/pkgs/main/linux-64/ccache-3.7.9-hfe4627d_0.conda#bef6f https://repo.anaconda.com/pkgs/main/linux-64/readline-8.2-h5eee18b_0.conda#be42180685cce6e6b0329201d9f48efb https://repo.anaconda.com/pkgs/main/linux-64/tk-8.6.14-h39e8969_0.conda#78dbc5e3c69143ebc037fc5d5b22e597 https://repo.anaconda.com/pkgs/main/linux-64/sqlite-3.45.3-h5eee18b_0.conda#acf93d6aceb74d6110e20b44cc45939e -https://repo.anaconda.com/pkgs/main/linux-64/python-3.13.0-hf623796_100_cp313.conda#39dace58d617c330efddfd8c27b6da04 +https://repo.anaconda.com/pkgs/main/linux-64/python-3.13.1-hf623796_100_cp313.conda#9159d14122892f226415ae401c2d12bd https://repo.anaconda.com/pkgs/main/linux-64/setuptools-75.1.0-py313h06a4308_0.conda#93277f023374c43e49b1081438de1798 https://repo.anaconda.com/pkgs/main/linux-64/wheel-0.44.0-py313h06a4308_0.conda#0d8e57ed81bb23b971817beeb3d49606 https://repo.anaconda.com/pkgs/main/linux-64/pip-24.2-py313h06a4308_0.conda#59f806485e89cb8721847b5857f6df2b # pip alabaster @ https://files.pythonhosted.org/packages/7e/b3/6b4067be973ae96ba0d615946e314c5ae35f9f993eca561b356540bb0c2b/alabaster-1.0.0-py3-none-any.whl#sha256=fc6786402dc3fcb2de3cabd5fe455a2db534b371124f1f21de8731783dec828b # pip array-api-compat @ https://files.pythonhosted.org/packages/13/1d/2b2d33635de5dbf5e703114c11f1129394e68be16cc4dc5ccc2021a17f7b/array_api_compat-1.9.1-py3-none-any.whl#sha256=41a2703a662832d21619359ddddc5c0449876871f6c01e108c335f2a9432df94 # pip babel @ https://files.pythonhosted.org/packages/ed/20/bc79bc575ba2e2a7f70e8a1155618bb1301eaa5132a8271373a6903f73f8/babel-2.16.0-py3-none-any.whl#sha256=368b5b98b37c06b7daf6696391c3240c938b37767d4584413e8438c5c435fa8b -# pip certifi @ https://files.pythonhosted.org/packages/12/90/3c9ff0512038035f59d279fddeb79f5f1eccd8859f06d6163c58798b9487/certifi-2024.8.30-py3-none-any.whl#sha256=922820b53db7a7257ffbda3f597266d435245903d80737e34f8a45ff3e3230d8 +# pip certifi @ https://files.pythonhosted.org/packages/a5/32/8f6669fc4798494966bf446c8c4a162e0b5d893dff088afddf76414f70e1/certifi-2024.12.14-py3-none-any.whl#sha256=1275f7a45be9464efc1173084eaa30f866fe2e47d389406136d332ed4967ec56 # pip charset-normalizer @ https://files.pythonhosted.org/packages/2b/c9/1c8fe3ce05d30c87eff498592c89015b19fade13df42850aafae09e94f35/charset_normalizer-3.4.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl#sha256=4796efc4faf6b53a18e3d46343535caed491776a22af773f366534056c4e1fbc # pip coverage @ https://files.pythonhosted.org/packages/9f/79/6c7a800913a9dd23ac8c8da133ebb556771a5a3d4df36b46767b1baffd35/coverage-7.6.9-cp313-cp313-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl#sha256=3c026eb44f744acaa2bda7493dad903aa5bf5fc4f2554293a798d5606710055d # pip cycler @ https://files.pythonhosted.org/packages/e7/05/c19819d5e3d95294a6f5947fb9b9629efb316b96de511b418c53d245aae6/cycler-0.12.1-py3-none-any.whl#sha256=85cef7cff222d8644161529808465972e51340599459b8ac3ccbac5a854e0d30 # pip cython @ https://files.pythonhosted.org/packages/1c/ae/d520f3cd94a8926bc47275a968e51bbc669a28f27a058cdfc5c3081fbbf7/Cython-3.0.11-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl#sha256=9c02361af9bfa10ff1ccf967fc75159e56b1c8093caf565739ed77a559c1f29f # pip docutils @ https://files.pythonhosted.org/packages/8f/d7/9322c609343d929e75e7e5e6255e614fcc67572cfd083959cdef3b7aad79/docutils-0.21.2-py3-none-any.whl#sha256=dafca5b9e384f0e419294eb4d2ff9fa826435bf15f15b7bd45723e8ad76811b2 # pip execnet @ https://files.pythonhosted.org/packages/43/09/2aea36ff60d16dd8879bdb2f5b3ee0ba8d08cbbdcdfe870e695ce3784385/execnet-2.1.1-py3-none-any.whl#sha256=26dee51f1b80cebd6d0ca8e74dd8745419761d3bef34163928cbebbdc4749fdc -# pip fonttools @ https://files.pythonhosted.org/packages/a2/3a/5bbe1b2a01f6bdf911aca48941eb317a678b50fccf63a27298289af79023/fonttools-4.55.2-cp313-cp313-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl#sha256=9b1726872e09268bbedb14dc02e58b7ea31ecdd1204c6073eda4911746b44797 +# pip fonttools @ https://files.pythonhosted.org/packages/d2/6c/a7066afc19db0705a12efd812e19c32cde2b9514eb714659522f2ebd60b6/fonttools-4.55.3-cp313-cp313-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl#sha256=859c358ebf41db18fb72342d3080bce67c02b39e86b9fbcf1610cca14984841b # pip idna @ https://files.pythonhosted.org/packages/76/c6/c88e154df9c4e1a2a66ccf0005a88dfb2650c1dffb6f5ce603dfbd452ce3/idna-3.10-py3-none-any.whl#sha256=946d195a0d259cbba61165e88e65941f16e9b36ea6ddb97f00452bae8b1287d3 # pip imagesize @ https://files.pythonhosted.org/packages/ff/62/85c4c919272577931d407be5ba5d71c20f0b616d31a0befe0ae45bb79abd/imagesize-1.4.1-py2.py3-none-any.whl#sha256=0d8d18d08f840c19d0ee7ca1fd82490fdc3729b7ac93f49870406ddde8ef8d8b # pip iniconfig @ https://files.pythonhosted.org/packages/ef/a6/62565a6e1cf69e10f5727360368e451d4b7f58beeac6173dc9db836a5b46/iniconfig-2.0.0-py3-none-any.whl#sha256=b6a85871a79d2e3b22d2d1b94ac2824226a63c6b741c88f7ae975f18b6778374 @@ -47,7 +47,7 @@ https://repo.anaconda.com/pkgs/main/linux-64/pip-24.2-py313h06a4308_0.conda#59f8 # pip markupsafe @ https://files.pythonhosted.org/packages/0c/91/96cf928db8236f1bfab6ce15ad070dfdd02ed88261c2afafd4b43575e9e9/MarkupSafe-3.0.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl#sha256=15ab75ef81add55874e7ab7055e9c397312385bd9ced94920f2802310c930396 # pip meson @ https://files.pythonhosted.org/packages/76/73/3dc4edc855c9988ff05ea5590f5c7bda72b6e0d138b2ddc1fab92a1f242f/meson-1.6.0-py3-none-any.whl#sha256=234a45f9206c6ee33b473ec1baaef359d20c0b89a71871d58c65a6db6d98fe74 # pip networkx @ https://files.pythonhosted.org/packages/b9/54/dd730b32ea14ea797530a4479b2ed46a6fb250f682a9cfb997e968bf0261/networkx-3.4.2-py3-none-any.whl#sha256=df5d4365b724cf81b8c6a7312509d0c22386097011ad1abe274afd5e9d3bbc5f -# pip ninja @ https://files.pythonhosted.org/packages/62/54/787bb70e6af2f1b1853af9bab62a5e7cb35b957d72daf253b7f3c653c005/ninja-1.11.1.2-py3-none-manylinux_2_12_x86_64.manylinux2010_x86_64.whl#sha256=33d258809c8eda81f9d80e18a081a6eef3215e5fd1ba8902400d786641994e89 +# pip ninja @ https://files.pythonhosted.org/packages/6b/35/a8e38d54768e67324e365e2a41162be298f51ec93e6bd4b18d237d7250d8/ninja-1.11.1.3-py3-none-manylinux_2_12_x86_64.manylinux2010_x86_64.whl#sha256=a27e78ca71316c8654965ee94b286a98c83877bfebe2607db96897bbfe458af0 # pip numpy @ https://files.pythonhosted.org/packages/df/54/13535f74391dbe5f479ceed96f1403267be302c840040700d4fd66688089/numpy-2.2.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl#sha256=a7d41d1612c1a82b64697e894b75db6758d4f21c3ec069d841e60ebe54b5b571 # pip packaging @ https://files.pythonhosted.org/packages/88/ef/eb23f262cca3c0c4eb7ab1933c3b1f03d021f2c48f54763065b6f0e321be/packaging-24.2-py3-none-any.whl#sha256=09abb1bccd265c01f4a3aa3f7a7db064b36514d2cba19a2f694fe6150451a759 # pip pillow @ https://files.pythonhosted.org/packages/44/ae/7e4f6662a9b1cb5f92b9cc9cab8321c381ffbee309210940e57432a4063a/pillow-11.0.0-cp313-cp313-manylinux_2_28_x86_64.whl#sha256=c6a660307ca9d4867caa8d9ca2c2658ab685de83792d1876274991adec7b93fa @@ -77,14 +77,14 @@ https://repo.anaconda.com/pkgs/main/linux-64/pip-24.2-py313h06a4308_0.conda#59f8 # pip python-dateutil @ https://files.pythonhosted.org/packages/ec/57/56b9bcc3c9c6a792fcbaf139543cee77261f3651ca9da0c93f5c1221264b/python_dateutil-2.9.0.post0-py2.py3-none-any.whl#sha256=a8b2bc7bffae282281c8140a97d3aa9c14da0b136dfe83f850eea9a5f7470427 # pip requests @ https://files.pythonhosted.org/packages/f9/9b/335f9764261e915ed497fcdeb11df5dfd6f7bf257d4a6a2a686d80da4d54/requests-2.32.3-py3-none-any.whl#sha256=70761cfe03c773ceb22aa2f671b4757976145175cdfca038c02654d061d6dcc6 # pip scipy @ https://files.pythonhosted.org/packages/56/46/2449e6e51e0d7c3575f289f6acb7f828938eaab8874dbccfeb0cd2b71a27/scipy-1.14.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl#sha256=5149e3fd2d686e42144a093b206aef01932a0059c2a33ddfa67f5f035bdfe13e -# pip tifffile @ https://files.pythonhosted.org/packages/50/0a/435d5d7ec64d1c8b422ac9ebe42d2f3b2ac0b3f8a56f5c04dd0f3b7ba83c/tifffile-2024.9.20-py3-none-any.whl#sha256=c54dc85bc1065d972cb8a6ffb3181389d597876aa80177933459733e4ed243dd +# pip tifffile @ https://files.pythonhosted.org/packages/d8/1e/76cbc758f6865a9da18001ac70d1a4154603b71e233f704401fc7d62493e/tifffile-2024.12.12-py3-none-any.whl#sha256=6ff0f196a46a75c8c0661c70995e06ea4d08a81fe343193e69f1673f4807d508 # pip lightgbm @ https://files.pythonhosted.org/packages/4e/19/1b928cad70a4e1a3e2c37d5417ca2182510f2451eaadb6c91cd9ec692cae/lightgbm-4.5.0-py3-none-manylinux_2_28_x86_64.whl#sha256=960a0e7c077de0ca3053f1325d3edfc92ea815acf5176adcacdea0f635aeef9b -# pip matplotlib @ https://files.pythonhosted.org/packages/29/09/146a17d37e32313507f11ac984e65311f2d5805d731eb981d4f70eb928dc/matplotlib-3.9.3-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl#sha256=6be0ba61f6ff2e6b68e4270fb63b6813c9e7dec3d15fc3a93f47480444fd72f0 +# pip matplotlib @ https://files.pythonhosted.org/packages/ea/3a/bab9deb4fb199c05e9100f94d7f1c702f78d3241e6a71b784d2b88d7bebd/matplotlib-3.10.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl#sha256=ad2e15300530c1a94c63cfa546e3b7864bd18ea2901317bae8bbf06a5ade6dcf # pip meson-python @ https://files.pythonhosted.org/packages/7d/ec/40c0ddd29ef4daa6689a2b9c5ced47d5b58fa54ae149b19e9a97f4979c8c/meson_python-0.17.1-py3-none-any.whl#sha256=30a75c52578ef14aff8392677b09c39346e0a24d2b2c6204b8ed30583c11269c # pip pandas @ https://files.pythonhosted.org/packages/e8/31/aa8da88ca0eadbabd0a639788a6da13bb2ff6edbbb9f29aa786450a30a91/pandas-2.2.3-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl#sha256=f3a255b2c19987fbbe62a9dfd6cff7ff2aa9ccab3fc75218fd4b7530f01efa24 # pip pyamg @ https://files.pythonhosted.org/packages/cd/a7/0df731cbfb09e73979a1a032fc7bc5be0eba617d798b998a0f887afe8ade/pyamg-5.2.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl#sha256=6999b351ab969c79faacb81faa74c0fa9682feeff3954979212872a3ee40c298 # pip pytest-cov @ https://files.pythonhosted.org/packages/36/3b/48e79f2cd6a61dbbd4807b4ed46cb564b4fd50a76166b1c4ea5c1d9e2371/pytest_cov-6.0.0-py3-none-any.whl#sha256=eee6f1b9e61008bd34975a4d5bab25801eb31898b032dd55addc93e96fcaaa35 # pip pytest-xdist @ https://files.pythonhosted.org/packages/6d/82/1d96bf03ee4c0fdc3c0cbe61470070e659ca78dc0086fb88b66c185e2449/pytest_xdist-3.6.1-py3-none-any.whl#sha256=9ed4adfb68a016610848639bb7e02c9352d5d9f03d04809919e2dafc3be4cca7 -# pip scikit-image @ https://files.pythonhosted.org/packages/5d/c5/bcd66bf5aae5587d3b4b69c74bee30889c46c9778e858942ce93a030e1f3/scikit_image-0.24.0.tar.gz#sha256=5d16efe95da8edbeb363e0c4157b99becbd650a60b77f6e3af5768b66cf007ab +# pip scikit-image @ https://files.pythonhosted.org/packages/8c/d2/84d658db2abecac5f7225213a69d211d95157e8fa155b4e017903549a922/scikit_image-0.25.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl#sha256=0fe2f05cda852a5f90872054dd3709e9c4e670fc7332aef169867944e1b37431 # pip sphinx @ https://files.pythonhosted.org/packages/26/60/1ddff83a56d33aaf6f10ec8ce84b4c007d9368b21008876fceda7e7381ef/sphinx-8.1.3-py3-none-any.whl#sha256=09719015511837b76bf6e03e42eb7595ac8c2e41eeb9c29c5b755c6b677992a2 # pip numpydoc @ https://files.pythonhosted.org/packages/6c/45/56d99ba9366476cd8548527667f01869279cedb9e66b28eb4dfb27701679/numpydoc-1.8.0-py3-none-any.whl#sha256=72024c7fd5e17375dec3608a27c03303e8ad00c81292667955c6fea7a3ccf541 diff --git a/build_tools/azure/pymin_conda_forge_mkl_win-64_conda.lock b/build_tools/azure/pymin_conda_forge_mkl_win-64_conda.lock index 51a7d1928dadf..39674348ea61b 100644 --- a/build_tools/azure/pymin_conda_forge_mkl_win-64_conda.lock +++ b/build_tools/azure/pymin_conda_forge_mkl_win-64_conda.lock @@ -2,7 +2,7 @@ # platform: win-64 # input_hash: ea607aaeb7b1d1f8a1f821a9f505b3601083a218ec4763e2d72d3d3d800e718c @EXPLICIT -https://conda.anaconda.org/conda-forge/win-64/ca-certificates-2024.8.30-h56e8100_0.conda#4c4fd67c18619be5aa65dc5b6c72e490 +https://conda.anaconda.org/conda-forge/win-64/ca-certificates-2024.12.14-h56e8100_0.conda#cb2eaeb88549ddb27af533eccf9a45c1 https://conda.anaconda.org/conda-forge/noarch/font-ttf-dejavu-sans-mono-2.37-hab24e00_0.tar.bz2#0c96522c6bdaed4b1566d11387caaf45 https://conda.anaconda.org/conda-forge/noarch/font-ttf-inconsolata-3.000-h77eed37_0.tar.bz2#34893075a5c9e55cdafac56607368fc6 https://conda.anaconda.org/conda-forge/noarch/font-ttf-source-code-pro-2.038-h77eed37_0.tar.bz2#4d59c254e01d9cde7957100457e2d5fb @@ -32,7 +32,7 @@ https://conda.anaconda.org/conda-forge/win-64/libffi-3.4.2-h8ffe710_5.tar.bz2#2c https://conda.anaconda.org/conda-forge/win-64/libiconv-1.17-hcfcfb64_2.conda#e1eb10b1cca179f2baa3601e4efc8712 https://conda.anaconda.org/conda-forge/win-64/libjpeg-turbo-3.0.0-hcfcfb64_1.conda#3f1b948619c45b1ca714d60c7389092c https://conda.anaconda.org/conda-forge/win-64/liblzma-5.6.3-h2466b09_1.conda#015b9c0bd1eef60729ab577a38aaf0b5 -https://conda.anaconda.org/conda-forge/win-64/libsqlite-3.47.0-h2466b09_1.conda#5b1f36012cc3d09c4eb9f24ad0e2c379 +https://conda.anaconda.org/conda-forge/win-64/libsqlite-3.47.2-h67fdade_0.conda#ff00095330e0d35a16bd3bdbd1a2d3e7 https://conda.anaconda.org/conda-forge/win-64/libwebp-base-1.4.0-hcfcfb64_0.conda#abd61d0ab127ec5cd68f62c2969e6f34 https://conda.anaconda.org/conda-forge/win-64/libzlib-1.3.1-h2466b09_2.conda#41fbfac52c601159df6c01f875de31b9 https://conda.anaconda.org/conda-forge/win-64/ninja-1.12.1-hc790b64_0.conda#a557dde55343e03c68cd7e29e7f87279 @@ -49,7 +49,6 @@ https://conda.anaconda.org/conda-forge/win-64/libpng-1.6.44-h3ca93ac_0.conda#639 https://conda.anaconda.org/conda-forge/win-64/libxml2-2.13.5-he286e8c_1.conda#77eaa84f90fc90643c5a0be0aa9bdd1b https://conda.anaconda.org/conda-forge/win-64/pcre2-10.44-h3d7b363_2.conda#a3a3baddcfb8c80db84bec3cb7746fb8 https://conda.anaconda.org/conda-forge/win-64/python-3.9.21-h37870fc_1_cpython.conda#436316266ec1b6c23065b398e43d3a44 -https://conda.anaconda.org/conda-forge/win-64/zlib-1.3.1-h2466b09_2.conda#be60c4e8efa55fddc17b4131aa47acbd https://conda.anaconda.org/conda-forge/win-64/zstd-1.5.6-h0ea2cb4_0.conda#9a17230f95733c04dc40a2b1e5491d74 https://conda.anaconda.org/conda-forge/win-64/brotli-bin-1.1.0-h2466b09_2.conda#d22534a9be5771fc58eb7564947f669d https://conda.anaconda.org/conda-forge/noarch/certifi-2024.8.30-pyhd8ed1ab_0.conda#12f7d00853807b0531775e9be891cb11 @@ -75,49 +74,49 @@ https://conda.anaconda.org/conda-forge/noarch/pyparsing-3.2.0-pyhd8ed1ab_2.conda https://conda.anaconda.org/conda-forge/noarch/setuptools-75.6.0-pyhff2d567_1.conda#fc80f7995e396cbaeabd23cf46c413dc https://conda.anaconda.org/conda-forge/noarch/six-1.17.0-pyhd8ed1ab_0.conda#a451d576819089b0d672f18768be0f65 https://conda.anaconda.org/conda-forge/noarch/threadpoolctl-3.5.0-pyhc1e730c_0.conda#df68d78237980a159bd7149f33c0e8fd -https://conda.anaconda.org/conda-forge/noarch/toml-0.10.2-pyhd8ed1ab_0.tar.bz2#f832c45a477c78bebd107098db465095 +https://conda.anaconda.org/conda-forge/noarch/toml-0.10.2-pyhd8ed1ab_1.conda#b0dd904de08b7db706167240bf37b164 https://conda.anaconda.org/conda-forge/noarch/tomli-2.2.1-pyhd8ed1ab_1.conda#ac944244f1fed2eb49bae07193ae8215 https://conda.anaconda.org/conda-forge/win-64/tornado-6.4.2-py39ha55e580_0.conda#96e4fc4c6aaaa23d99bf1ed008e7b1e1 https://conda.anaconda.org/conda-forge/win-64/unicodedata2-15.1.0-py39ha55e580_1.conda#7b7e5732092b9a635440ec939e45651d https://conda.anaconda.org/conda-forge/noarch/wheel-0.45.1-pyhd8ed1ab_1.conda#75cb7132eb58d97896e173ef12ac9986 -https://conda.anaconda.org/conda-forge/win-64/xorg-libxau-1.0.11-h0e40799_1.conda#ca66d6f8fe86dd53664e8de5087ef6b1 +https://conda.anaconda.org/conda-forge/win-64/xorg-libxau-1.0.12-h0e40799_0.conda#2ffbfae4548098297c033228256eb96e https://conda.anaconda.org/conda-forge/win-64/xorg-libxdmcp-1.1.5-h0e40799_0.conda#8393c0f7e7870b4eb45553326f81f0ff https://conda.anaconda.org/conda-forge/noarch/zipp-3.21.0-pyhd8ed1ab_1.conda#0c3cc595284c5e8f0f9900a9b228a332 https://conda.anaconda.org/conda-forge/win-64/brotli-1.1.0-h2466b09_2.conda#378f1c9421775dfe644731cb121c8979 https://conda.anaconda.org/conda-forge/win-64/coverage-7.6.9-py39hf73967f_0.conda#30eda386561c7e6b4ab15fe08d9b2835 https://conda.anaconda.org/conda-forge/win-64/fontconfig-2.15.0-h765892d_1.conda#9bb0026a2131b09404c59c4290c697cd https://conda.anaconda.org/conda-forge/noarch/importlib_resources-6.4.5-pyhd8ed1ab_1.conda#15798fa69312d433af690c8c42b3fb36 -https://conda.anaconda.org/conda-forge/noarch/joblib-1.4.2-pyhd8ed1ab_0.conda#25df261d4523d9f9783bcdb7208d872f +https://conda.anaconda.org/conda-forge/noarch/joblib-1.4.2-pyhd8ed1ab_1.conda#bf8243ee348f3a10a14ed0cae323e0c1 https://conda.anaconda.org/conda-forge/win-64/lcms2-2.16-h67d730c_0.conda#d3592435917b62a8becff3a60db674f6 https://conda.anaconda.org/conda-forge/win-64/libgfortran-14.2.0-h719f0c7_1.conda#bd709ec903eeb030208c78e4c35691d6 https://conda.anaconda.org/conda-forge/win-64/libxcb-1.17.0-h0e4246c_0.conda#a69bbf778a462da324489976c84cfc8c https://conda.anaconda.org/conda-forge/noarch/meson-1.6.0-pyhd8ed1ab_1.conda#59d45dbe1b0a123966266340b579d366 -https://conda.anaconda.org/conda-forge/win-64/openjpeg-2.5.2-h3d672ee_0.conda#7e7099ad94ac3b599808950cec30ad4e +https://conda.anaconda.org/conda-forge/win-64/openjpeg-2.5.3-h4d64b90_0.conda#fc050366dd0b8313eb797ed1ffef3a29 https://conda.anaconda.org/conda-forge/noarch/pip-24.3.1-pyh8b19718_0.conda#5dd546fe99b44fda83963d15f84263b7 https://conda.anaconda.org/conda-forge/noarch/pyproject-metadata-0.9.0-pyhd8ed1ab_1.conda#1239146a53a383a84633800294120f17 https://conda.anaconda.org/conda-forge/noarch/pytest-8.3.4-pyhd8ed1ab_1.conda#799ed216dc6af62520f32aa39bc1c2bb https://conda.anaconda.org/conda-forge/noarch/python-dateutil-2.9.0.post0-pyhff2d567_1.conda#5ba79d7c71f03c678c8ead841f347d6e https://conda.anaconda.org/conda-forge/win-64/tbb-2021.13.0-h62715c5_1.conda#9190dd0a23d925f7602f9628b3aed511 -https://conda.anaconda.org/conda-forge/win-64/cairo-1.18.2-h5782bbf_0.conda#7282222777c47b6e426a2f001cc33621 -https://conda.anaconda.org/conda-forge/win-64/fonttools-4.55.2-py39hf73967f_0.conda#187c4c7c9ef2072b0098d5f910c83c16 +https://conda.anaconda.org/conda-forge/win-64/cairo-1.18.2-h5782bbf_1.conda#63ff2bf400dde4fad0bed56debee5c16 +https://conda.anaconda.org/conda-forge/win-64/fonttools-4.55.3-py39hf73967f_0.conda#05d4d4ec2568580b33399ef7e11e4134 https://conda.anaconda.org/conda-forge/noarch/importlib-resources-6.4.5-pyhd8ed1ab_1.conda#59561d9b70f9df3b884c29910eba6593 https://conda.anaconda.org/conda-forge/noarch/meson-python-0.17.1-pyh70fd9c4_1.conda#7a02679229c6c2092571b4c025055440 https://conda.anaconda.org/conda-forge/win-64/mkl-2024.2.2-h66d3029_14.conda#f011e7cc21918dc9d1efe0209e27fa16 https://conda.anaconda.org/conda-forge/win-64/pillow-11.0.0-py39h5ee314c_0.conda#0c57206c5215a7e56414ce0332805226 https://conda.anaconda.org/conda-forge/noarch/pytest-cov-6.0.0-pyhd8ed1ab_1.conda#79963c319d1be62c8fd3e34555816e01 https://conda.anaconda.org/conda-forge/noarch/pytest-xdist-3.6.1-pyhd8ed1ab_1.conda#59aad4fb37cabc0bacc73cf344612ddd -https://conda.anaconda.org/conda-forge/win-64/harfbuzz-9.0.0-h2bedf89_1.conda#254f119aaed2c0be271c1114ae18d09b +https://conda.anaconda.org/conda-forge/win-64/harfbuzz-10.1.0-ha6ce084_0.conda#ad1da267c13505dbcc7fb9f0d21f24ae https://conda.anaconda.org/conda-forge/win-64/libblas-3.9.0-25_win64_mkl.conda#499208e81242efb6e5abc7366c91c816 https://conda.anaconda.org/conda-forge/win-64/mkl-devel-2024.2.2-h57928b3_14.conda#ecc2c244eff5cb6289b6db5e0401c0aa https://conda.anaconda.org/conda-forge/win-64/libcblas-3.9.0-25_win64_mkl.conda#3ed189ba03a9888a8013aaee0d67c49d https://conda.anaconda.org/conda-forge/win-64/liblapack-3.9.0-25_win64_mkl.conda#f716ef84564c574e8e74ae725f5d5f93 -https://conda.anaconda.org/conda-forge/win-64/qt6-main-6.8.0-hfb098fa_0.conda#053046ca73b71bbcc81c6dc114264d24 +https://conda.anaconda.org/conda-forge/win-64/qt6-main-6.8.1-h1259614_1.conda#2b5d5b1943a7e3be2c6e2f3b9f00ba15 https://conda.anaconda.org/conda-forge/win-64/liblapacke-3.9.0-25_win64_mkl.conda#d59fc46f1e1c2f3cf38a08a0a76ffee5 https://conda.anaconda.org/conda-forge/win-64/numpy-2.0.2-py39h60232e0_1.conda#d8801e13476c0ae89e410307fbc5a612 -https://conda.anaconda.org/conda-forge/win-64/pyside6-6.8.0.2-py39h0285922_0.conda#07b75557409b6bdbaf723b1bc020afb5 +https://conda.anaconda.org/conda-forge/win-64/pyside6-6.8.1-py39h0285922_0.conda#a8d806c618d9ae1836b56e0771ee6abe https://conda.anaconda.org/conda-forge/win-64/blas-devel-3.9.0-25_win64_mkl.conda#b3c40599e865dac087085b596fbbf4ad https://conda.anaconda.org/conda-forge/win-64/contourpy-1.3.0-py39h2b77a98_2.conda#37f8619ee96710220ead6bb386b9b24b https://conda.anaconda.org/conda-forge/win-64/scipy-1.13.1-py39h1a10956_0.conda#9f8e571406af04d2f5fdcbecec704505 https://conda.anaconda.org/conda-forge/win-64/blas-2.125-mkl.conda#186eeb4e8ba0a5944775e04f241fc02a -https://conda.anaconda.org/conda-forge/win-64/matplotlib-base-3.9.3-py39h5376392_0.conda#c5e475d09dbb0f136818c5fc4b3b2117 -https://conda.anaconda.org/conda-forge/win-64/matplotlib-3.9.3-py39hcbf5309_0.conda#d038f7716b0e2869e404b48aaf190fef +https://conda.anaconda.org/conda-forge/win-64/matplotlib-base-3.9.4-py39h5376392_0.conda#5424884b703d67e412584ed241f0a9b1 +https://conda.anaconda.org/conda-forge/win-64/matplotlib-3.9.4-py39hcbf5309_0.conda#61326dfe02e88b609166814c47316063 diff --git a/build_tools/azure/pymin_conda_forge_openblas_min_dependencies_linux-64_conda.lock b/build_tools/azure/pymin_conda_forge_openblas_min_dependencies_linux-64_conda.lock index 37bf61bdc91f1..90462012aa8e2 100644 --- a/build_tools/azure/pymin_conda_forge_openblas_min_dependencies_linux-64_conda.lock +++ b/build_tools/azure/pymin_conda_forge_openblas_min_dependencies_linux-64_conda.lock @@ -3,7 +3,7 @@ # input_hash: da804213459d72ef5fa344326a71a64386dfb5085c8e0b582527e8337cecca32 @EXPLICIT https://conda.anaconda.org/conda-forge/linux-64/_libgcc_mutex-0.1-conda_forge.tar.bz2#d7c89558ba9fa0495403155b64376d81 -https://conda.anaconda.org/conda-forge/linux-64/ca-certificates-2024.8.30-hbcca054_0.conda#c27d1c142233b5bc9ca570c6e2e0c244 +https://conda.anaconda.org/conda-forge/linux-64/ca-certificates-2024.12.14-hbcca054_0.conda#720523eb0d6a9b0f6120c16b2aa4e7de https://conda.anaconda.org/conda-forge/noarch/font-ttf-dejavu-sans-mono-2.37-hab24e00_0.tar.bz2#0c96522c6bdaed4b1566d11387caaf45 https://conda.anaconda.org/conda-forge/noarch/font-ttf-inconsolata-3.000-h77eed37_0.tar.bz2#34893075a5c9e55cdafac56607368fc6 https://conda.anaconda.org/conda-forge/noarch/font-ttf-source-code-pro-2.038-h77eed37_0.tar.bz2#4d59c254e01d9cde7957100457e2d5fb @@ -28,11 +28,9 @@ https://conda.anaconda.org/conda-forge/linux-64/libstdcxx-14.2.0-hc0a3c3a_1.cond https://conda.anaconda.org/conda-forge/linux-64/libzlib-1.3.1-hb9d3cd8_2.conda#edb0dca6bc32e4f4789199455a1dbeb8 https://conda.anaconda.org/conda-forge/linux-64/openssl-3.4.0-hb9d3cd8_0.conda#23cc74f77eb99315c0360ec3533147a9 https://conda.anaconda.org/conda-forge/linux-64/pthread-stubs-0.4-hb9d3cd8_1002.conda#b3c17d95b5a10c6e64a21fa17573e70e -https://conda.anaconda.org/conda-forge/linux-64/xorg-libice-1.1.1-hb9d3cd8_1.conda#19608a9656912805b2b9a2f6bd257b04 -https://conda.anaconda.org/conda-forge/linux-64/xorg-libxau-1.0.11-hb9d3cd8_1.conda#77cbc488235ebbaab2b6e912d3934bae +https://conda.anaconda.org/conda-forge/linux-64/xorg-libice-1.1.2-hb9d3cd8_0.conda#fb901ff28063514abb6046c9ec2c4a45 +https://conda.anaconda.org/conda-forge/linux-64/xorg-libxau-1.0.12-hb9d3cd8_0.conda#f6ebe2cb3f82ba6c057dde5d9debe4f7 https://conda.anaconda.org/conda-forge/linux-64/xorg-libxdmcp-1.1.5-hb9d3cd8_0.conda#8035c64cb77ed555e3f150b7b3972480 -https://conda.anaconda.org/conda-forge/linux-64/xorg-xf86vidmodeproto-2.3.1-hb9d3cd8_1005.conda#1c08f67e3406550eef135e17263f8154 -https://conda.anaconda.org/conda-forge/linux-64/xorg-xorgproto-2024.1-hb9d3cd8_1.conda#7c21106b851ec72c037b162c216d8f05 https://conda.anaconda.org/conda-forge/linux-64/attr-2.5.1-h166bdaf_1.tar.bz2#d9c69a24ad678ffce24c6543a0176b00 https://conda.anaconda.org/conda-forge/linux-64/bzip2-1.0.8-h4bc722e_7.conda#62ee74e96c5ebb0af99386de58cf9553 https://conda.anaconda.org/conda-forge/linux-64/expat-2.6.4-h5888daf_0.conda#1d6afef758879ef5ee78127eb4cd2c4a @@ -52,20 +50,19 @@ https://conda.anaconda.org/conda-forge/linux-64/libogg-1.3.5-h4ab18f5_0.conda#60 https://conda.anaconda.org/conda-forge/linux-64/libopus-1.3.1-h7f98852_1.tar.bz2#15345e56d527b330e1cacbdf58676e8f https://conda.anaconda.org/conda-forge/linux-64/libpciaccess-0.18-hd590300_0.conda#48f4330bfcd959c3cfb704d424903c82 https://conda.anaconda.org/conda-forge/linux-64/libpng-1.6.44-hadc24fc_0.conda#f4cc49d7aa68316213e4b12be35308d1 -https://conda.anaconda.org/conda-forge/linux-64/libsqlite-3.47.0-hadc24fc_1.conda#b6f02b52a174e612e89548f4663ce56a +https://conda.anaconda.org/conda-forge/linux-64/libsqlite-3.47.2-hee588c1_0.conda#b58da17db24b6e08bcbf8fed2fb8c915 https://conda.anaconda.org/conda-forge/linux-64/libstdcxx-ng-14.2.0-h4852527_1.conda#8371ac6457591af2cf6159439c1fd051 https://conda.anaconda.org/conda-forge/linux-64/libuuid-2.38.1-h0b41bf4_0.conda#40b61aab5c7ba9ff276c41cfffe6b80b https://conda.anaconda.org/conda-forge/linux-64/libwebp-base-1.4.0-hd590300_0.conda#b26e8aa824079e1be0294e7152ca4559 https://conda.anaconda.org/conda-forge/linux-64/libxcb-1.17.0-h8a09558_0.conda#92ed62436b625154323d40d5f2f11dd7 https://conda.anaconda.org/conda-forge/linux-64/libxcrypt-4.4.36-hd590300_1.conda#5aa797f8787fe7a17d1b0821485b5adc -https://conda.anaconda.org/conda-forge/linux-64/lz4-c-1.10.0-h5888daf_0.conda#af825462e69e44c88d628549ad59cfeb +https://conda.anaconda.org/conda-forge/linux-64/lz4-c-1.10.0-h5888daf_1.conda#9de5350a85c4a20c685259b889aa6393 https://conda.anaconda.org/conda-forge/linux-64/mpg123-1.32.9-hc50e24c_0.conda#c7f302fd11eeb0987a6a5e1f3aed6a21 https://conda.anaconda.org/conda-forge/linux-64/mysql-common-9.0.1-h266115a_3.conda#9411c61ff1070b5e065b32840c39faa5 https://conda.anaconda.org/conda-forge/linux-64/ncurses-6.5-he02047a_1.conda#70caf8bb6cf39a0b6b7efc885f51c0fe https://conda.anaconda.org/conda-forge/linux-64/nspr-4.36-h5888daf_0.conda#de9cd5bca9e4918527b9b72b6e2e1409 https://conda.anaconda.org/conda-forge/linux-64/pixman-0.44.2-h29eaf8c_0.conda#5e2a7acfa2c24188af39e7944e1b3604 https://conda.anaconda.org/conda-forge/linux-64/tk-8.6.13-noxft_h4845f30_101.conda#d453b98d9c83e71da0741bb0ff4d76bc -https://conda.anaconda.org/conda-forge/linux-64/zlib-1.3.1-hb9d3cd8_2.conda#c9f075ab2f33b3bbee9e62d4ad0a6cd8 https://conda.anaconda.org/conda-forge/linux-64/freetype-2.12.1-h267a509_2.conda#9ae35c3d96db2c94ce0cef86efdfa2cb https://conda.anaconda.org/conda-forge/linux-64/graphite2-1.3.13-h59595ed_1003.conda#f87c7b7c2cb45f323ffbce941c78ab7c https://conda.anaconda.org/conda-forge/linux-64/icu-75.1-he02047a_0.conda#8b189310083baabfb622af68fd9d3ae3 @@ -86,7 +83,7 @@ https://conda.anaconda.org/conda-forge/linux-64/xcb-util-0.4.1-hb711507_2.conda# https://conda.anaconda.org/conda-forge/linux-64/xcb-util-keysyms-0.4.1-hb711507_0.conda#ad748ccca349aec3e91743e08b5e2b50 https://conda.anaconda.org/conda-forge/linux-64/xcb-util-renderutil-0.3.10-hb711507_0.conda#0e0cbe0564d03a99afd5fd7b362feecd https://conda.anaconda.org/conda-forge/linux-64/xcb-util-wm-0.4.2-hb711507_0.conda#608e0ef8256b81d04456e8d211eee3e8 -https://conda.anaconda.org/conda-forge/linux-64/xorg-libsm-1.2.4-he73a12e_1.conda#05a8ea5f446de33006171a7afe6ae857 +https://conda.anaconda.org/conda-forge/linux-64/xorg-libsm-1.2.5-he73a12e_0.conda#4c3e9fab69804ec6077697922d70c6e2 https://conda.anaconda.org/conda-forge/linux-64/xorg-libx11-1.8.10-h4f16b4b_1.conda#125f34a17d7b4bea418a83904ea82ea6 https://conda.anaconda.org/conda-forge/linux-64/zstd-1.5.6-ha6fb4c9_0.conda#4d056880988120e29d75bfff282e0f45 https://conda.anaconda.org/conda-forge/linux-64/fontconfig-2.15.0-h7e30c49_1.conda#8f5b0b297b59e1ac160ad4beec99dbee @@ -105,8 +102,8 @@ https://conda.anaconda.org/conda-forge/linux-64/xcb-util-image-0.4.0-hb711507_2. https://conda.anaconda.org/conda-forge/linux-64/xkeyboard-config-2.43-hb9d3cd8_0.conda#f725c7425d6d7c15e31f3b99a88ea02f https://conda.anaconda.org/conda-forge/linux-64/xorg-libxext-1.3.6-hb9d3cd8_0.conda#febbab7d15033c913d53c7a2c102309d https://conda.anaconda.org/conda-forge/linux-64/xorg-libxfixes-6.0.1-hb9d3cd8_0.conda#4bdb303603e9821baf5fe5fdff1dc8f8 -https://conda.anaconda.org/conda-forge/linux-64/xorg-libxrender-0.9.11-hb9d3cd8_1.conda#a7a49a8b85122b49214798321e2e96b4 -https://conda.anaconda.org/conda-forge/linux-64/cairo-1.18.0-hebfffa5_3.conda#fceaedf1cdbcb02df9699a0d9b005292 +https://conda.anaconda.org/conda-forge/linux-64/xorg-libxrender-0.9.12-hb9d3cd8_0.conda#96d57aba173e878a2089d5638016dc5e +https://conda.anaconda.org/conda-forge/linux-64/cairo-1.18.2-h3394656_1.conda#b34c2833a1f56db610aeb27f206d800d https://conda.anaconda.org/conda-forge/linux-64/ccache-4.10.1-h065aff2_0.conda#d6b48c138e0c8170a6fe9c136e063540 https://conda.anaconda.org/conda-forge/noarch/certifi-2024.8.30-pyhd8ed1ab_0.conda#12f7d00853807b0531775e9be891cb11 https://conda.anaconda.org/conda-forge/noarch/colorama-0.4.6-pyhd8ed1ab_1.conda#962b9857ee8e7018c22f2776ffa0b2d7 @@ -127,7 +124,7 @@ https://conda.anaconda.org/conda-forge/linux-64/libgl-1.7.0-ha4b6fd6_2.conda#928 https://conda.anaconda.org/conda-forge/linux-64/libllvm19-19.1.5-ha7bfdaf_0.conda#76f3749eda7b24816aacd55b9f31447a https://conda.anaconda.org/conda-forge/linux-64/libxkbcommon-1.7.0-h2c5496b_1.conda#e2eaefa4de2b7237af7c907b8bbc760a https://conda.anaconda.org/conda-forge/linux-64/openblas-0.3.25-pthreads_h7a3da1a_0.conda#87661673941b5e702275fdf0fc095ad0 -https://conda.anaconda.org/conda-forge/linux-64/openjpeg-2.5.2-h488ebb8_0.conda#7f2e286780f072ed750df46dc2631138 +https://conda.anaconda.org/conda-forge/linux-64/openjpeg-2.5.3-h5fbd93e_0.conda#9e5816bc95d285c115a3ebc2f8563564 https://conda.anaconda.org/conda-forge/noarch/packaging-24.2-pyhd8ed1ab_2.conda#3bfed7e6228ebf2f7b9eaa47f1b4e2aa https://conda.anaconda.org/conda-forge/noarch/pluggy-1.5.0-pyhd8ed1ab_1.conda#e9dcbce5f45f9ee500e728ae58b605b6 https://conda.anaconda.org/conda-forge/noarch/ply-3.11-pyhd8ed1ab_3.conda#fd5062942bfa1b0bd5e0d2a4397b099e @@ -136,16 +133,16 @@ https://conda.anaconda.org/conda-forge/noarch/pytz-2024.2-pyhd8ed1ab_1.conda#f26 https://conda.anaconda.org/conda-forge/linux-64/setuptools-59.8.0-py39hf3d152e_1.tar.bz2#4252d0c211566a9f65149ba7f6e87aa4 https://conda.anaconda.org/conda-forge/noarch/six-1.17.0-pyhd8ed1ab_0.conda#a451d576819089b0d672f18768be0f65 https://conda.anaconda.org/conda-forge/noarch/threadpoolctl-3.1.0-pyh8a188c0_0.tar.bz2#a2995ee828f65687ac5b1e71a2ab1e0c -https://conda.anaconda.org/conda-forge/noarch/toml-0.10.2-pyhd8ed1ab_0.tar.bz2#f832c45a477c78bebd107098db465095 +https://conda.anaconda.org/conda-forge/noarch/toml-0.10.2-pyhd8ed1ab_1.conda#b0dd904de08b7db706167240bf37b164 https://conda.anaconda.org/conda-forge/noarch/tomli-2.2.1-pyhd8ed1ab_1.conda#ac944244f1fed2eb49bae07193ae8215 https://conda.anaconda.org/conda-forge/linux-64/tornado-6.4.2-py39h8cd3c5a_0.conda#ebfd05ae1501660e995a8b6bbe02a391 https://conda.anaconda.org/conda-forge/noarch/typing_extensions-4.12.2-pyha770c72_1.conda#d17f13df8b65464ca316cbc000a3cb64 https://conda.anaconda.org/conda-forge/noarch/wheel-0.45.1-pyhd8ed1ab_1.conda#75cb7132eb58d97896e173ef12ac9986 https://conda.anaconda.org/conda-forge/linux-64/xorg-libxdamage-1.1.6-hb9d3cd8_0.conda#b5fcc7172d22516e1f965490e65e33a4 -https://conda.anaconda.org/conda-forge/linux-64/xorg-libxxf86vm-1.1.5-hb9d3cd8_4.conda#7da9007c0582712c4bad4131f89c8372 +https://conda.anaconda.org/conda-forge/linux-64/xorg-libxxf86vm-1.1.6-hb9d3cd8_0.conda#5efa5fa6243a622445fdfd72aee15efa https://conda.anaconda.org/conda-forge/linux-64/coverage-7.6.9-py39h9399b63_0.conda#a04d17fe73417952d7686fd1ff067bbd https://conda.anaconda.org/conda-forge/linux-64/glib-2.82.2-h44428e9_0.conda#f19f985ab043e8843045410f3b99de8a -https://conda.anaconda.org/conda-forge/linux-64/harfbuzz-9.0.0-hda332d3_1.conda#76b32dcf243444aea9c6b804bcfa40b8 +https://conda.anaconda.org/conda-forge/linux-64/harfbuzz-10.1.0-h0b3b770_0.conda#ab1d7d56034814f4c3ed9f69f8c68806 https://conda.anaconda.org/conda-forge/noarch/joblib-1.2.0-pyhd8ed1ab_0.tar.bz2#7583652522d71ad78ba536bba06940eb https://conda.anaconda.org/conda-forge/linux-64/libcblas-3.9.0-20_linux64_openblas.conda#36d486d72ab64ffea932329a1d3729a3 https://conda.anaconda.org/conda-forge/linux-64/libclang-cpp19.1-19.1.5-default_hb5137d0_0.conda#ec8649c89988d8a443c252c20f259b72 @@ -178,6 +175,6 @@ https://conda.anaconda.org/conda-forge/linux-64/pulseaudio-client-17.0-hb77b528_ https://conda.anaconda.org/conda-forge/linux-64/scipy-1.6.0-py39hee8e79c_0.tar.bz2#3afcb78281836e61351a2924f3230060 https://conda.anaconda.org/conda-forge/linux-64/blas-2.120-openblas.conda#c8f6916a81a340650078171b1d852574 https://conda.anaconda.org/conda-forge/linux-64/pyamg-4.2.3-py39hac2352c_1.tar.bz2#6fb0628d6195d8b6caa2422d09296399 -https://conda.anaconda.org/conda-forge/linux-64/qt-main-5.15.15-h796de64_1.conda#b63b4dcf67c300daa7ce5918eb9c1654 +https://conda.anaconda.org/conda-forge/linux-64/qt-main-5.15.15-hc3cb62f_2.conda#eadc22e45a87c8d5c71670d9ec956aba https://conda.anaconda.org/conda-forge/linux-64/pyqt-5.15.9-py39h52134e7_5.conda#e1f148e57d071b09187719df86f513c1 https://conda.anaconda.org/conda-forge/linux-64/matplotlib-3.3.4-py39hf3d152e_0.tar.bz2#cbaec993375a908bbe506dc7328d747c diff --git a/build_tools/azure/pymin_conda_forge_openblas_ubuntu_2204_linux-64_conda.lock b/build_tools/azure/pymin_conda_forge_openblas_ubuntu_2204_linux-64_conda.lock index c6825e6e777d1..1c2cf1235d609 100644 --- a/build_tools/azure/pymin_conda_forge_openblas_ubuntu_2204_linux-64_conda.lock +++ b/build_tools/azure/pymin_conda_forge_openblas_ubuntu_2204_linux-64_conda.lock @@ -3,7 +3,7 @@ # input_hash: 3974f9847d888a2fd37ba5fcfb76cb09bba4c9b84b6200932500fc94e3b0c4ae @EXPLICIT https://conda.anaconda.org/conda-forge/linux-64/_libgcc_mutex-0.1-conda_forge.tar.bz2#d7c89558ba9fa0495403155b64376d81 -https://conda.anaconda.org/conda-forge/linux-64/ca-certificates-2024.8.30-hbcca054_0.conda#c27d1c142233b5bc9ca570c6e2e0c244 +https://conda.anaconda.org/conda-forge/linux-64/ca-certificates-2024.12.14-hbcca054_0.conda#720523eb0d6a9b0f6120c16b2aa4e7de https://conda.anaconda.org/conda-forge/noarch/font-ttf-dejavu-sans-mono-2.37-hab24e00_0.tar.bz2#0c96522c6bdaed4b1566d11387caaf45 https://conda.anaconda.org/conda-forge/noarch/font-ttf-inconsolata-3.000-h77eed37_0.tar.bz2#34893075a5c9e55cdafac56607368fc6 https://conda.anaconda.org/conda-forge/noarch/font-ttf-source-code-pro-2.038-h77eed37_0.tar.bz2#4d59c254e01d9cde7957100457e2d5fb @@ -30,10 +30,9 @@ https://conda.anaconda.org/conda-forge/linux-64/libstdcxx-14.2.0-hc0a3c3a_1.cond https://conda.anaconda.org/conda-forge/linux-64/libzlib-1.3.1-hb9d3cd8_2.conda#edb0dca6bc32e4f4789199455a1dbeb8 https://conda.anaconda.org/conda-forge/linux-64/openssl-3.4.0-hb9d3cd8_0.conda#23cc74f77eb99315c0360ec3533147a9 https://conda.anaconda.org/conda-forge/linux-64/pthread-stubs-0.4-hb9d3cd8_1002.conda#b3c17d95b5a10c6e64a21fa17573e70e -https://conda.anaconda.org/conda-forge/linux-64/xorg-libice-1.1.1-hb9d3cd8_1.conda#19608a9656912805b2b9a2f6bd257b04 -https://conda.anaconda.org/conda-forge/linux-64/xorg-libxau-1.0.11-hb9d3cd8_1.conda#77cbc488235ebbaab2b6e912d3934bae +https://conda.anaconda.org/conda-forge/linux-64/xorg-libice-1.1.2-hb9d3cd8_0.conda#fb901ff28063514abb6046c9ec2c4a45 +https://conda.anaconda.org/conda-forge/linux-64/xorg-libxau-1.0.12-hb9d3cd8_0.conda#f6ebe2cb3f82ba6c057dde5d9debe4f7 https://conda.anaconda.org/conda-forge/linux-64/xorg-libxdmcp-1.1.5-hb9d3cd8_0.conda#8035c64cb77ed555e3f150b7b3972480 -https://conda.anaconda.org/conda-forge/linux-64/xorg-xorgproto-2024.1-hb9d3cd8_1.conda#7c21106b851ec72c037b162c216d8f05 https://conda.anaconda.org/conda-forge/linux-64/bzip2-1.0.8-h4bc722e_7.conda#62ee74e96c5ebb0af99386de58cf9553 https://conda.anaconda.org/conda-forge/linux-64/expat-2.6.4-h5888daf_0.conda#1d6afef758879ef5ee78127eb4cd2c4a https://conda.anaconda.org/conda-forge/linux-64/keyutils-1.6.1-h166bdaf_0.tar.bz2#30186d27e2c9fa62b45fb1476b7200e3 @@ -47,7 +46,7 @@ https://conda.anaconda.org/conda-forge/linux-64/libnsl-2.0.1-hd590300_0.conda#30 https://conda.anaconda.org/conda-forge/linux-64/libntlm-1.4-h7f98852_1002.tar.bz2#e728e874159b042d92b90238a3cb0dc2 https://conda.anaconda.org/conda-forge/linux-64/libpciaccess-0.18-hd590300_0.conda#48f4330bfcd959c3cfb704d424903c82 https://conda.anaconda.org/conda-forge/linux-64/libpng-1.6.44-hadc24fc_0.conda#f4cc49d7aa68316213e4b12be35308d1 -https://conda.anaconda.org/conda-forge/linux-64/libsqlite-3.47.0-hadc24fc_1.conda#b6f02b52a174e612e89548f4663ce56a +https://conda.anaconda.org/conda-forge/linux-64/libsqlite-3.47.2-hee588c1_0.conda#b58da17db24b6e08bcbf8fed2fb8c915 https://conda.anaconda.org/conda-forge/linux-64/libstdcxx-ng-14.2.0-h4852527_1.conda#8371ac6457591af2cf6159439c1fd051 https://conda.anaconda.org/conda-forge/linux-64/libuuid-2.38.1-h0b41bf4_0.conda#40b61aab5c7ba9ff276c41cfffe6b80b https://conda.anaconda.org/conda-forge/linux-64/libwebp-base-1.4.0-hd590300_0.conda#b26e8aa824079e1be0294e7152ca4559 @@ -57,7 +56,6 @@ https://conda.anaconda.org/conda-forge/linux-64/mysql-common-9.0.1-h266115a_3.co https://conda.anaconda.org/conda-forge/linux-64/ncurses-6.5-he02047a_1.conda#70caf8bb6cf39a0b6b7efc885f51c0fe https://conda.anaconda.org/conda-forge/linux-64/pixman-0.44.2-h29eaf8c_0.conda#5e2a7acfa2c24188af39e7944e1b3604 https://conda.anaconda.org/conda-forge/linux-64/tk-8.6.13-noxft_h4845f30_101.conda#d453b98d9c83e71da0741bb0ff4d76bc -https://conda.anaconda.org/conda-forge/linux-64/zlib-1.3.1-hb9d3cd8_2.conda#c9f075ab2f33b3bbee9e62d4ad0a6cd8 https://conda.anaconda.org/conda-forge/linux-64/brotli-bin-1.1.0-hb9d3cd8_2.conda#c63b5e52939e795ba8d26e35d767a843 https://conda.anaconda.org/conda-forge/linux-64/double-conversion-3.3.0-h59595ed_0.conda#c2f83a5ddadadcdb08fe05863295ee97 https://conda.anaconda.org/conda-forge/linux-64/freetype-2.12.1-h267a509_2.conda#9ae35c3d96db2c94ce0cef86efdfa2cb @@ -77,7 +75,7 @@ https://conda.anaconda.org/conda-forge/linux-64/xcb-util-0.4.1-hb711507_2.conda# https://conda.anaconda.org/conda-forge/linux-64/xcb-util-keysyms-0.4.1-hb711507_0.conda#ad748ccca349aec3e91743e08b5e2b50 https://conda.anaconda.org/conda-forge/linux-64/xcb-util-renderutil-0.3.10-hb711507_0.conda#0e0cbe0564d03a99afd5fd7b362feecd https://conda.anaconda.org/conda-forge/linux-64/xcb-util-wm-0.4.2-hb711507_0.conda#608e0ef8256b81d04456e8d211eee3e8 -https://conda.anaconda.org/conda-forge/linux-64/xorg-libsm-1.2.4-he73a12e_1.conda#05a8ea5f446de33006171a7afe6ae857 +https://conda.anaconda.org/conda-forge/linux-64/xorg-libsm-1.2.5-he73a12e_0.conda#4c3e9fab69804ec6077697922d70c6e2 https://conda.anaconda.org/conda-forge/linux-64/xorg-libx11-1.8.10-h4f16b4b_1.conda#125f34a17d7b4bea418a83904ea82ea6 https://conda.anaconda.org/conda-forge/linux-64/zstd-1.5.6-ha6fb4c9_0.conda#4d056880988120e29d75bfff282e0f45 https://conda.anaconda.org/conda-forge/linux-64/brotli-1.1.0-hb9d3cd8_2.conda#98514fe74548d768907ce7a13f680e8f @@ -96,10 +94,10 @@ https://conda.anaconda.org/conda-forge/linux-64/xcb-util-image-0.4.0-hb711507_2. https://conda.anaconda.org/conda-forge/linux-64/xkeyboard-config-2.43-hb9d3cd8_0.conda#f725c7425d6d7c15e31f3b99a88ea02f https://conda.anaconda.org/conda-forge/linux-64/xorg-libxext-1.3.6-hb9d3cd8_0.conda#febbab7d15033c913d53c7a2c102309d https://conda.anaconda.org/conda-forge/linux-64/xorg-libxfixes-6.0.1-hb9d3cd8_0.conda#4bdb303603e9821baf5fe5fdff1dc8f8 -https://conda.anaconda.org/conda-forge/linux-64/xorg-libxrender-0.9.11-hb9d3cd8_1.conda#a7a49a8b85122b49214798321e2e96b4 +https://conda.anaconda.org/conda-forge/linux-64/xorg-libxrender-0.9.12-hb9d3cd8_0.conda#96d57aba173e878a2089d5638016dc5e https://conda.anaconda.org/conda-forge/noarch/alabaster-0.7.16-pyhd8ed1ab_0.conda#def531a3ac77b7fb8c21d17bb5d0badb https://conda.anaconda.org/conda-forge/linux-64/brotli-python-1.1.0-py39hf88036b_2.conda#8ea5af6ac902f1a4429190970d9099ce -https://conda.anaconda.org/conda-forge/linux-64/cairo-1.18.0-hebfffa5_3.conda#fceaedf1cdbcb02df9699a0d9b005292 +https://conda.anaconda.org/conda-forge/linux-64/cairo-1.18.2-h3394656_1.conda#b34c2833a1f56db610aeb27f206d800d https://conda.anaconda.org/conda-forge/linux-64/ccache-4.10.1-h065aff2_0.conda#d6b48c138e0c8170a6fe9c136e063540 https://conda.anaconda.org/conda-forge/noarch/certifi-2024.8.30-pyhd8ed1ab_0.conda#12f7d00853807b0531775e9be891cb11 https://conda.anaconda.org/conda-forge/noarch/charset-normalizer-3.4.0-pyhd8ed1ab_1.conda#6581a17bba6b948bb60130026404a9d6 @@ -127,7 +125,7 @@ https://conda.anaconda.org/conda-forge/linux-64/libxkbcommon-1.7.0-h2c5496b_1.co https://conda.anaconda.org/conda-forge/linux-64/libxslt-1.1.39-h76b75d6_0.conda#e71f31f8cfb0a91439f2086fc8aa0461 https://conda.anaconda.org/conda-forge/linux-64/markupsafe-3.0.2-py39h9399b63_1.conda#7821f0938aa629b9f17efd98c300a487 https://conda.anaconda.org/conda-forge/noarch/munkres-1.1.4-pyh9f0ad1d_0.tar.bz2#2ba8498c1018c1e9c61eb99b973dfe19 -https://conda.anaconda.org/conda-forge/linux-64/openjpeg-2.5.2-h488ebb8_0.conda#7f2e286780f072ed750df46dc2631138 +https://conda.anaconda.org/conda-forge/linux-64/openjpeg-2.5.3-h5fbd93e_0.conda#9e5816bc95d285c115a3ebc2f8563564 https://conda.anaconda.org/conda-forge/noarch/packaging-24.2-pyhd8ed1ab_2.conda#3bfed7e6228ebf2f7b9eaa47f1b4e2aa https://conda.anaconda.org/conda-forge/noarch/pluggy-1.5.0-pyhd8ed1ab_1.conda#e9dcbce5f45f9ee500e728ae58b605b6 https://conda.anaconda.org/conda-forge/noarch/pycparser-2.22-pyh29332c3_1.conda#12c566707c80111f9799308d9e265aef @@ -139,7 +137,7 @@ https://conda.anaconda.org/conda-forge/noarch/pytz-2024.1-pyhd8ed1ab_0.conda#3ee https://conda.anaconda.org/conda-forge/noarch/setuptools-75.6.0-pyhff2d567_1.conda#fc80f7995e396cbaeabd23cf46c413dc https://conda.anaconda.org/conda-forge/noarch/six-1.17.0-pyhd8ed1ab_0.conda#a451d576819089b0d672f18768be0f65 https://conda.anaconda.org/conda-forge/noarch/snowballstemmer-2.2.0-pyhd8ed1ab_0.tar.bz2#4d22a9315e78c6827f806065957d566e -https://conda.anaconda.org/conda-forge/noarch/sphinxcontrib-jsmath-1.0.1-pyhd8ed1ab_0.conda#da1d979339e2714c30a8e806a33ec087 +https://conda.anaconda.org/conda-forge/noarch/sphinxcontrib-jsmath-1.0.1-pyhd8ed1ab_1.conda#fa839b5ff59e192f411ccc7dae6588bb https://conda.anaconda.org/conda-forge/noarch/tabulate-0.9.0-pyhd8ed1ab_2.conda#959484a66b4b76befcddc4fa97c95567 https://conda.anaconda.org/conda-forge/noarch/threadpoolctl-3.5.0-pyhc1e730c_0.conda#df68d78237980a159bd7149f33c0e8fd https://conda.anaconda.org/conda-forge/noarch/tomli-2.2.1-pyhd8ed1ab_1.conda#ac944244f1fed2eb49bae07193ae8215 @@ -152,17 +150,17 @@ https://conda.anaconda.org/conda-forge/linux-64/xorg-libxcursor-1.2.3-hb9d3cd8_0 https://conda.anaconda.org/conda-forge/linux-64/xorg-libxdamage-1.1.6-hb9d3cd8_0.conda#b5fcc7172d22516e1f965490e65e33a4 https://conda.anaconda.org/conda-forge/linux-64/xorg-libxi-1.8.2-hb9d3cd8_0.conda#17dcc85db3c7886650b8908b183d6876 https://conda.anaconda.org/conda-forge/linux-64/xorg-libxrandr-1.5.4-hb9d3cd8_0.conda#2de7f99d6581a4a7adbff607b5c278ca -https://conda.anaconda.org/conda-forge/linux-64/xorg-libxxf86vm-1.1.5-hb9d3cd8_4.conda#7da9007c0582712c4bad4131f89c8372 +https://conda.anaconda.org/conda-forge/linux-64/xorg-libxxf86vm-1.1.6-hb9d3cd8_0.conda#5efa5fa6243a622445fdfd72aee15efa https://conda.anaconda.org/conda-forge/noarch/zipp-3.21.0-pyhd8ed1ab_1.conda#0c3cc595284c5e8f0f9900a9b228a332 https://conda.anaconda.org/conda-forge/noarch/babel-2.16.0-pyhd8ed1ab_1.conda#3e23f7db93ec14c80525257d8affac28 https://conda.anaconda.org/conda-forge/linux-64/cffi-1.17.1-py39h15c3d72_0.conda#7e61b8777f42e00b08ff059f9e8ebc44 -https://conda.anaconda.org/conda-forge/linux-64/fonttools-4.55.2-py39h9399b63_0.conda#9dd7204c1c96d90bc143724b1fb2fe63 +https://conda.anaconda.org/conda-forge/linux-64/fonttools-4.55.3-py39h9399b63_0.conda#5f2545dc0944d6ffb9ce7750ab2a702f https://conda.anaconda.org/conda-forge/noarch/h2-4.1.0-pyhd8ed1ab_1.conda#825927dc7b0f287ef8d4d0011bb113b1 https://conda.anaconda.org/conda-forge/linux-64/harfbuzz-9.0.0-hda332d3_1.conda#76b32dcf243444aea9c6b804bcfa40b8 https://conda.anaconda.org/conda-forge/noarch/importlib-metadata-8.5.0-pyha770c72_1.conda#315607a3030ad5d5227e76e0733798ff https://conda.anaconda.org/conda-forge/noarch/importlib_resources-6.4.5-pyhd8ed1ab_1.conda#15798fa69312d433af690c8c42b3fb36 https://conda.anaconda.org/conda-forge/noarch/jinja2-3.1.4-pyhd8ed1ab_1.conda#08cce3151bde4ecad7885bd9fb647532 -https://conda.anaconda.org/conda-forge/noarch/joblib-1.4.2-pyhd8ed1ab_0.conda#25df261d4523d9f9783bcdb7208d872f +https://conda.anaconda.org/conda-forge/noarch/joblib-1.4.2-pyhd8ed1ab_1.conda#bf8243ee348f3a10a14ed0cae323e0c1 https://conda.anaconda.org/conda-forge/linux-64/libclang-cpp19.1-19.1.5-default_hb5137d0_0.conda#ec8649c89988d8a443c252c20f259b72 https://conda.anaconda.org/conda-forge/linux-64/libclang13-19.1.5-default_h9c6a7e4_0.conda#a3a5997b6b47373f0c1608d8503eb4e6 https://conda.anaconda.org/conda-forge/linux-64/liblapacke-3.9.0-25_linux64_openblas.conda#8f5ead31b3a168aedd488b8a87736c41 @@ -185,17 +183,17 @@ https://conda.anaconda.org/conda-forge/noarch/pytest-xdist-3.6.1-pyhd8ed1ab_1.co https://conda.anaconda.org/conda-forge/linux-64/scipy-1.13.1-py39haf93ffa_0.conda#492a2cd65862d16a4aaf535ae9ccb761 https://conda.anaconda.org/conda-forge/linux-64/zstandard-0.23.0-py39h08a7858_1.conda#cd9fa334e11886738f17254f52210bc3 https://conda.anaconda.org/conda-forge/linux-64/blas-2.125-openblas.conda#0c46b8a31a587738befc587dd8e52558 -https://conda.anaconda.org/conda-forge/linux-64/matplotlib-base-3.9.3-py39h16632d1_0.conda#93aa7d8c91f38dd494134f009cd0860c +https://conda.anaconda.org/conda-forge/linux-64/matplotlib-base-3.9.4-py39h16632d1_0.conda#f149592d52f9c1ab1bfe3dc055458e13 https://conda.anaconda.org/conda-forge/linux-64/pyamg-5.2.1-py39hf59e57a_1.conda#720dbce3188cecd95fc26525394d1e65 -https://conda.anaconda.org/conda-forge/linux-64/qt6-main-6.8.0-h6e8976b_0.conda#6d1c5d2d904d24c17cbb538a95855a4e +https://conda.anaconda.org/conda-forge/linux-64/qt6-main-6.8.1-h9d28a51_0.conda#7e8e17c44e7af62c77de7a0158afc35c https://conda.anaconda.org/conda-forge/noarch/urllib3-2.2.3-pyhd8ed1ab_1.conda#4a2d8ef7c37b8808c5b9b750501fffce -https://conda.anaconda.org/conda-forge/linux-64/pyside6-6.8.0.2-py39h0383914_0.conda#b93573a620eb5396f0196e6267490738 +https://conda.anaconda.org/conda-forge/linux-64/pyside6-6.8.1-py39h0383914_0.conda#45e71bee7ab5236b01ec50343d70b15e https://conda.anaconda.org/conda-forge/noarch/requests-2.32.3-pyhd8ed1ab_1.conda#a9b9368f3701a417eac9edbcae7cb737 -https://conda.anaconda.org/conda-forge/linux-64/matplotlib-3.9.3-py39hf3d152e_0.conda#1bcbea7bd5b0aea3a6a8195f82d01d43 +https://conda.anaconda.org/conda-forge/linux-64/matplotlib-3.9.4-py39hf3d152e_0.conda#922f2edd2f9ff0a95c83eb781bacad5e https://conda.anaconda.org/conda-forge/noarch/numpydoc-1.8.0-pyhd8ed1ab_1.conda#5af206d64d18d6c8dfb3122b4d9e643b -https://conda.anaconda.org/conda-forge/noarch/sphinxcontrib-applehelp-2.0.0-pyhd8ed1ab_0.conda#9075bd8c033f0257122300db914e49c9 -https://conda.anaconda.org/conda-forge/noarch/sphinxcontrib-devhelp-2.0.0-pyhd8ed1ab_0.conda#b3bcc38c471ebb738854f52a36059b48 -https://conda.anaconda.org/conda-forge/noarch/sphinxcontrib-htmlhelp-2.1.0-pyhd8ed1ab_0.conda#e25640d692c02e8acfff0372f547e940 -https://conda.anaconda.org/conda-forge/noarch/sphinxcontrib-qthelp-2.0.0-pyhd8ed1ab_0.conda#d6e5ea5fe00164ac6c2dcc5d76a42192 +https://conda.anaconda.org/conda-forge/noarch/sphinxcontrib-applehelp-2.0.0-pyhd8ed1ab_1.conda#16e3f039c0aa6446513e94ab18a8784b +https://conda.anaconda.org/conda-forge/noarch/sphinxcontrib-devhelp-2.0.0-pyhd8ed1ab_1.conda#910f28a05c178feba832f842155cbfff +https://conda.anaconda.org/conda-forge/noarch/sphinxcontrib-htmlhelp-2.1.0-pyhd8ed1ab_1.conda#e9fb3fe8a5b758b4aff187d434f94f03 +https://conda.anaconda.org/conda-forge/noarch/sphinxcontrib-qthelp-2.0.0-pyhd8ed1ab_1.conda#00534ebcc0375929b45c3039b5ba7636 https://conda.anaconda.org/conda-forge/noarch/sphinx-7.4.7-pyhd8ed1ab_0.conda#c568e260463da2528ecfd7c5a0b41bbd -https://conda.anaconda.org/conda-forge/noarch/sphinxcontrib-serializinghtml-1.1.10-pyhd8ed1ab_0.conda#e507335cb4ca9cff4c3d0fa9cdab255e +https://conda.anaconda.org/conda-forge/noarch/sphinxcontrib-serializinghtml-1.1.10-pyhd8ed1ab_1.conda#3bc61f7161d28137797e038263c04c54 diff --git a/build_tools/azure/ubuntu_atlas_lock.txt b/build_tools/azure/ubuntu_atlas_lock.txt index 93bc5cafc691f..3a48ce31e82e8 100644 --- a/build_tools/azure/ubuntu_atlas_lock.txt +++ b/build_tools/azure/ubuntu_atlas_lock.txt @@ -18,7 +18,7 @@ meson==1.6.0 # via meson-python meson-python==0.17.1 # via -r build_tools/azure/ubuntu_atlas_requirements.txt -ninja==1.11.1.2 +ninja==1.11.1.3 # via -r build_tools/azure/ubuntu_atlas_requirements.txt packaging==24.2 # via diff --git a/build_tools/circle/doc_linux-64_conda.lock b/build_tools/circle/doc_linux-64_conda.lock index 81af504142739..a4cb11b0a78c7 100644 --- a/build_tools/circle/doc_linux-64_conda.lock +++ b/build_tools/circle/doc_linux-64_conda.lock @@ -3,7 +3,7 @@ # input_hash: b96afbd150db7ab25e05a34ca1f5ca90f8b1e2fcd993f870601b7376eb9f39d2 @EXPLICIT https://conda.anaconda.org/conda-forge/linux-64/_libgcc_mutex-0.1-conda_forge.tar.bz2#d7c89558ba9fa0495403155b64376d81 -https://conda.anaconda.org/conda-forge/linux-64/ca-certificates-2024.8.30-hbcca054_0.conda#c27d1c142233b5bc9ca570c6e2e0c244 +https://conda.anaconda.org/conda-forge/linux-64/ca-certificates-2024.12.14-hbcca054_0.conda#720523eb0d6a9b0f6120c16b2aa4e7de https://conda.anaconda.org/conda-forge/noarch/font-ttf-dejavu-sans-mono-2.37-hab24e00_0.tar.bz2#0c96522c6bdaed4b1566d11387caaf45 https://conda.anaconda.org/conda-forge/noarch/font-ttf-inconsolata-3.000-h77eed37_0.tar.bz2#34893075a5c9e55cdafac56607368fc6 https://conda.anaconda.org/conda-forge/noarch/font-ttf-source-code-pro-2.038-h77eed37_0.tar.bz2#4d59c254e01d9cde7957100457e2d5fb @@ -38,10 +38,9 @@ https://conda.anaconda.org/conda-forge/linux-64/libstdcxx-14.2.0-hc0a3c3a_1.cond https://conda.anaconda.org/conda-forge/linux-64/libzlib-1.3.1-hb9d3cd8_2.conda#edb0dca6bc32e4f4789199455a1dbeb8 https://conda.anaconda.org/conda-forge/linux-64/openssl-3.4.0-hb9d3cd8_0.conda#23cc74f77eb99315c0360ec3533147a9 https://conda.anaconda.org/conda-forge/linux-64/pthread-stubs-0.4-hb9d3cd8_1002.conda#b3c17d95b5a10c6e64a21fa17573e70e -https://conda.anaconda.org/conda-forge/linux-64/xorg-libice-1.1.1-hb9d3cd8_1.conda#19608a9656912805b2b9a2f6bd257b04 -https://conda.anaconda.org/conda-forge/linux-64/xorg-libxau-1.0.11-hb9d3cd8_1.conda#77cbc488235ebbaab2b6e912d3934bae +https://conda.anaconda.org/conda-forge/linux-64/xorg-libice-1.1.2-hb9d3cd8_0.conda#fb901ff28063514abb6046c9ec2c4a45 +https://conda.anaconda.org/conda-forge/linux-64/xorg-libxau-1.0.12-hb9d3cd8_0.conda#f6ebe2cb3f82ba6c057dde5d9debe4f7 https://conda.anaconda.org/conda-forge/linux-64/xorg-libxdmcp-1.1.5-hb9d3cd8_0.conda#8035c64cb77ed555e3f150b7b3972480 -https://conda.anaconda.org/conda-forge/linux-64/xorg-xorgproto-2024.1-hb9d3cd8_1.conda#7c21106b851ec72c037b162c216d8f05 https://conda.anaconda.org/conda-forge/linux-64/bzip2-1.0.8-h4bc722e_7.conda#62ee74e96c5ebb0af99386de58cf9553 https://conda.anaconda.org/conda-forge/linux-64/dav1d-1.2.1-hd590300_0.conda#418c6ca5929a611cbd69204907a83995 https://conda.anaconda.org/conda-forge/linux-64/expat-2.6.4-h5888daf_0.conda#1d6afef758879ef5ee78127eb4cd2c4a @@ -59,13 +58,13 @@ https://conda.anaconda.org/conda-forge/linux-64/libntlm-1.4-h7f98852_1002.tar.bz https://conda.anaconda.org/conda-forge/linux-64/libpciaccess-0.18-hd590300_0.conda#48f4330bfcd959c3cfb704d424903c82 https://conda.anaconda.org/conda-forge/linux-64/libpng-1.6.44-hadc24fc_0.conda#f4cc49d7aa68316213e4b12be35308d1 https://conda.anaconda.org/conda-forge/linux-64/libsanitizer-13.3.0-heb74ff8_1.conda#c4cb22f270f501f5c59a122dc2adf20a -https://conda.anaconda.org/conda-forge/linux-64/libsqlite-3.47.0-hadc24fc_1.conda#b6f02b52a174e612e89548f4663ce56a +https://conda.anaconda.org/conda-forge/linux-64/libsqlite-3.47.2-hee588c1_0.conda#b58da17db24b6e08bcbf8fed2fb8c915 https://conda.anaconda.org/conda-forge/linux-64/libstdcxx-ng-14.2.0-h4852527_1.conda#8371ac6457591af2cf6159439c1fd051 https://conda.anaconda.org/conda-forge/linux-64/libuuid-2.38.1-h0b41bf4_0.conda#40b61aab5c7ba9ff276c41cfffe6b80b https://conda.anaconda.org/conda-forge/linux-64/libwebp-base-1.4.0-hd590300_0.conda#b26e8aa824079e1be0294e7152ca4559 https://conda.anaconda.org/conda-forge/linux-64/libxcb-1.17.0-h8a09558_0.conda#92ed62436b625154323d40d5f2f11dd7 https://conda.anaconda.org/conda-forge/linux-64/libxcrypt-4.4.36-hd590300_1.conda#5aa797f8787fe7a17d1b0821485b5adc -https://conda.anaconda.org/conda-forge/linux-64/lz4-c-1.10.0-h5888daf_0.conda#af825462e69e44c88d628549ad59cfeb +https://conda.anaconda.org/conda-forge/linux-64/lz4-c-1.10.0-h5888daf_1.conda#9de5350a85c4a20c685259b889aa6393 https://conda.anaconda.org/conda-forge/linux-64/mysql-common-9.0.1-h266115a_3.conda#9411c61ff1070b5e065b32840c39faa5 https://conda.anaconda.org/conda-forge/linux-64/ncurses-6.5-he02047a_1.conda#70caf8bb6cf39a0b6b7efc885f51c0fe https://conda.anaconda.org/conda-forge/linux-64/pixman-0.44.2-h29eaf8c_0.conda#5e2a7acfa2c24188af39e7944e1b3604 @@ -74,7 +73,6 @@ https://conda.anaconda.org/conda-forge/linux-64/snappy-1.2.1-h8bd8927_1.conda#3b https://conda.anaconda.org/conda-forge/linux-64/svt-av1-2.3.0-h5888daf_0.conda#355898d24394b2af353eb96358db9fdd https://conda.anaconda.org/conda-forge/linux-64/tk-8.6.13-noxft_h4845f30_101.conda#d453b98d9c83e71da0741bb0ff4d76bc https://conda.anaconda.org/conda-forge/linux-64/zfp-1.0.1-h5888daf_2.conda#e0409515c467b87176b070bff5d9442e -https://conda.anaconda.org/conda-forge/linux-64/zlib-1.3.1-hb9d3cd8_2.conda#c9f075ab2f33b3bbee9e62d4ad0a6cd8 https://conda.anaconda.org/conda-forge/linux-64/zlib-ng-2.2.2-h5888daf_0.conda#135fd3c66bccad3d2254f50f9809e86a https://conda.anaconda.org/conda-forge/linux-64/aom-3.9.1-hac33072_0.conda#346722a0be40f6edc53f12640d301338 https://conda.anaconda.org/conda-forge/linux-64/brotli-bin-1.1.0-hb9d3cd8_2.conda#c63b5e52939e795ba8d26e35d767a843 @@ -101,7 +99,7 @@ https://conda.anaconda.org/conda-forge/linux-64/xcb-util-0.4.1-hb711507_2.conda# https://conda.anaconda.org/conda-forge/linux-64/xcb-util-keysyms-0.4.1-hb711507_0.conda#ad748ccca349aec3e91743e08b5e2b50 https://conda.anaconda.org/conda-forge/linux-64/xcb-util-renderutil-0.3.10-hb711507_0.conda#0e0cbe0564d03a99afd5fd7b362feecd https://conda.anaconda.org/conda-forge/linux-64/xcb-util-wm-0.4.2-hb711507_0.conda#608e0ef8256b81d04456e8d211eee3e8 -https://conda.anaconda.org/conda-forge/linux-64/xorg-libsm-1.2.4-he73a12e_1.conda#05a8ea5f446de33006171a7afe6ae857 +https://conda.anaconda.org/conda-forge/linux-64/xorg-libsm-1.2.5-he73a12e_0.conda#4c3e9fab69804ec6077697922d70c6e2 https://conda.anaconda.org/conda-forge/linux-64/xorg-libx11-1.8.10-h4f16b4b_1.conda#125f34a17d7b4bea418a83904ea82ea6 https://conda.anaconda.org/conda-forge/linux-64/zstd-1.5.6-ha6fb4c9_0.conda#4d056880988120e29d75bfff282e0f45 https://conda.anaconda.org/conda-forge/linux-64/blosc-1.21.6-he440d0b_1.conda#2c2fae981fd2afd00812c92ac47d023d @@ -127,12 +125,12 @@ https://conda.anaconda.org/conda-forge/linux-64/xcb-util-image-0.4.0-hb711507_2. https://conda.anaconda.org/conda-forge/linux-64/xkeyboard-config-2.43-hb9d3cd8_0.conda#f725c7425d6d7c15e31f3b99a88ea02f https://conda.anaconda.org/conda-forge/linux-64/xorg-libxext-1.3.6-hb9d3cd8_0.conda#febbab7d15033c913d53c7a2c102309d https://conda.anaconda.org/conda-forge/linux-64/xorg-libxfixes-6.0.1-hb9d3cd8_0.conda#4bdb303603e9821baf5fe5fdff1dc8f8 -https://conda.anaconda.org/conda-forge/linux-64/xorg-libxrender-0.9.11-hb9d3cd8_1.conda#a7a49a8b85122b49214798321e2e96b4 +https://conda.anaconda.org/conda-forge/linux-64/xorg-libxrender-0.9.12-hb9d3cd8_0.conda#96d57aba173e878a2089d5638016dc5e https://conda.anaconda.org/conda-forge/noarch/alabaster-0.7.16-pyhd8ed1ab_0.conda#def531a3ac77b7fb8c21d17bb5d0badb https://conda.anaconda.org/conda-forge/linux-64/brotli-python-1.1.0-py39hf88036b_2.conda#8ea5af6ac902f1a4429190970d9099ce https://conda.anaconda.org/conda-forge/linux-64/brunsli-0.1-h9c3ff4c_0.tar.bz2#c1ac6229d0bfd14f8354ff9ad2a26cad https://conda.anaconda.org/conda-forge/linux-64/c-compiler-1.8.0-h2b85faf_1.conda#fa7b3bf2965b9d74a81a0702d9bb49ee -https://conda.anaconda.org/conda-forge/linux-64/cairo-1.18.0-hebfffa5_3.conda#fceaedf1cdbcb02df9699a0d9b005292 +https://conda.anaconda.org/conda-forge/linux-64/cairo-1.18.2-h3394656_1.conda#b34c2833a1f56db610aeb27f206d800d https://conda.anaconda.org/conda-forge/noarch/certifi-2024.8.30-pyhd8ed1ab_0.conda#12f7d00853807b0531775e9be891cb11 https://conda.anaconda.org/conda-forge/noarch/charset-normalizer-3.4.0-pyhd8ed1ab_1.conda#6581a17bba6b948bb60130026404a9d6 https://conda.anaconda.org/conda-forge/noarch/click-8.1.7-unix_pyh707e725_1.conda#cb8e52f28f5e592598190c562e7b5bf1 @@ -165,7 +163,7 @@ https://conda.anaconda.org/conda-forge/linux-64/libxslt-1.1.39-h76b75d6_0.conda# https://conda.anaconda.org/conda-forge/linux-64/markupsafe-3.0.2-py39h9399b63_1.conda#7821f0938aa629b9f17efd98c300a487 https://conda.anaconda.org/conda-forge/noarch/munkres-1.1.4-pyh9f0ad1d_0.tar.bz2#2ba8498c1018c1e9c61eb99b973dfe19 https://conda.anaconda.org/conda-forge/noarch/networkx-3.2.1-pyhd8ed1ab_0.conda#425fce3b531bed6ec3c74fab3e5f0a1c -https://conda.anaconda.org/conda-forge/linux-64/openjpeg-2.5.2-h488ebb8_0.conda#7f2e286780f072ed750df46dc2631138 +https://conda.anaconda.org/conda-forge/linux-64/openjpeg-2.5.3-h5fbd93e_0.conda#9e5816bc95d285c115a3ebc2f8563564 https://conda.anaconda.org/conda-forge/noarch/packaging-24.2-pyhd8ed1ab_2.conda#3bfed7e6228ebf2f7b9eaa47f1b4e2aa https://conda.anaconda.org/conda-forge/noarch/platformdirs-4.3.6-pyhd8ed1ab_1.conda#577852c7e53901ddccc7e6a9959ddebe https://conda.anaconda.org/conda-forge/noarch/pluggy-1.5.0-pyhd8ed1ab_1.conda#e9dcbce5f45f9ee500e728ae58b605b6 @@ -180,7 +178,7 @@ https://conda.anaconda.org/conda-forge/noarch/setuptools-75.6.0-pyhff2d567_1.con https://conda.anaconda.org/conda-forge/noarch/six-1.17.0-pyhd8ed1ab_0.conda#a451d576819089b0d672f18768be0f65 https://conda.anaconda.org/conda-forge/noarch/snowballstemmer-2.2.0-pyhd8ed1ab_0.tar.bz2#4d22a9315e78c6827f806065957d566e https://conda.anaconda.org/conda-forge/noarch/soupsieve-2.5-pyhd8ed1ab_1.conda#3f144b2c34f8cb5a9abd9ed23a39c561 -https://conda.anaconda.org/conda-forge/noarch/sphinxcontrib-jsmath-1.0.1-pyhd8ed1ab_0.conda#da1d979339e2714c30a8e806a33ec087 +https://conda.anaconda.org/conda-forge/noarch/sphinxcontrib-jsmath-1.0.1-pyhd8ed1ab_1.conda#fa839b5ff59e192f411ccc7dae6588bb https://conda.anaconda.org/conda-forge/noarch/tabulate-0.9.0-pyhd8ed1ab_2.conda#959484a66b4b76befcddc4fa97c95567 https://conda.anaconda.org/conda-forge/noarch/tenacity-9.0.0-pyhd8ed1ab_1.conda#a09f66fe95a54a92172e56a4a97ba271 https://conda.anaconda.org/conda-forge/noarch/threadpoolctl-3.5.0-pyhc1e730c_0.conda#df68d78237980a159bd7149f33c0e8fd @@ -195,21 +193,21 @@ https://conda.anaconda.org/conda-forge/linux-64/xorg-libxcursor-1.2.3-hb9d3cd8_0 https://conda.anaconda.org/conda-forge/linux-64/xorg-libxdamage-1.1.6-hb9d3cd8_0.conda#b5fcc7172d22516e1f965490e65e33a4 https://conda.anaconda.org/conda-forge/linux-64/xorg-libxi-1.8.2-hb9d3cd8_0.conda#17dcc85db3c7886650b8908b183d6876 https://conda.anaconda.org/conda-forge/linux-64/xorg-libxrandr-1.5.4-hb9d3cd8_0.conda#2de7f99d6581a4a7adbff607b5c278ca -https://conda.anaconda.org/conda-forge/linux-64/xorg-libxxf86vm-1.1.5-hb9d3cd8_4.conda#7da9007c0582712c4bad4131f89c8372 +https://conda.anaconda.org/conda-forge/linux-64/xorg-libxxf86vm-1.1.6-hb9d3cd8_0.conda#5efa5fa6243a622445fdfd72aee15efa https://conda.anaconda.org/conda-forge/noarch/zipp-3.21.0-pyhd8ed1ab_1.conda#0c3cc595284c5e8f0f9900a9b228a332 https://conda.anaconda.org/conda-forge/noarch/accessible-pygments-0.0.5-pyhd8ed1ab_0.conda#1bb1ef9806a9a20872434f58b3e7fc1a https://conda.anaconda.org/conda-forge/noarch/babel-2.16.0-pyhd8ed1ab_1.conda#3e23f7db93ec14c80525257d8affac28 https://conda.anaconda.org/conda-forge/noarch/beautifulsoup4-4.12.3-pyha770c72_1.conda#d48f7e9fdec44baf6d1da416fe402b04 https://conda.anaconda.org/conda-forge/linux-64/cffi-1.17.1-py39h15c3d72_0.conda#7e61b8777f42e00b08ff059f9e8ebc44 https://conda.anaconda.org/conda-forge/linux-64/cxx-compiler-1.8.0-h1a2810e_1.conda#3bb4907086d7187bf01c8bec397ffa5e -https://conda.anaconda.org/conda-forge/linux-64/fonttools-4.55.2-py39h9399b63_0.conda#9dd7204c1c96d90bc143724b1fb2fe63 +https://conda.anaconda.org/conda-forge/linux-64/fonttools-4.55.3-py39h9399b63_0.conda#5f2545dc0944d6ffb9ce7750ab2a702f https://conda.anaconda.org/conda-forge/linux-64/fortran-compiler-1.8.0-h36df796_1.conda#6b57750841d53ade8d3b47eafe53dd9f https://conda.anaconda.org/conda-forge/noarch/h2-4.1.0-pyhd8ed1ab_1.conda#825927dc7b0f287ef8d4d0011bb113b1 https://conda.anaconda.org/conda-forge/linux-64/harfbuzz-9.0.0-hda332d3_1.conda#76b32dcf243444aea9c6b804bcfa40b8 https://conda.anaconda.org/conda-forge/noarch/importlib-metadata-8.5.0-pyha770c72_1.conda#315607a3030ad5d5227e76e0733798ff https://conda.anaconda.org/conda-forge/noarch/importlib_resources-6.4.5-pyhd8ed1ab_1.conda#15798fa69312d433af690c8c42b3fb36 https://conda.anaconda.org/conda-forge/noarch/jinja2-3.1.4-pyhd8ed1ab_1.conda#08cce3151bde4ecad7885bd9fb647532 -https://conda.anaconda.org/conda-forge/noarch/joblib-1.4.2-pyhd8ed1ab_0.conda#25df261d4523d9f9783bcdb7208d872f +https://conda.anaconda.org/conda-forge/noarch/joblib-1.4.2-pyhd8ed1ab_1.conda#bf8243ee348f3a10a14ed0cae323e0c1 https://conda.anaconda.org/conda-forge/linux-64/libclang-cpp19.1-19.1.5-default_hb5137d0_0.conda#ec8649c89988d8a443c252c20f259b72 https://conda.anaconda.org/conda-forge/linux-64/libclang13-19.1.5-default_h9c6a7e4_0.conda#a3a5997b6b47373f0c1608d8503eb4e6 https://conda.anaconda.org/conda-forge/linux-64/liblapacke-3.9.0-25_linux64_openblas.conda#8f5ead31b3a168aedd488b8a87736c41 @@ -219,7 +217,7 @@ https://conda.anaconda.org/conda-forge/linux-64/numpy-2.0.2-py39h9cb892a_1.conda https://conda.anaconda.org/conda-forge/linux-64/openldap-2.6.9-he970967_0.conda#ca2de8bbdc871bce41dbf59e51324165 https://conda.anaconda.org/conda-forge/linux-64/pillow-11.0.0-py39h538c539_0.conda#a2bafdf8ae51c9eb6e5be684cfcedd60 https://conda.anaconda.org/conda-forge/noarch/pip-24.3.1-pyh8b19718_0.conda#5dd546fe99b44fda83963d15f84263b7 -https://conda.anaconda.org/conda-forge/noarch/plotly-5.24.1-pyhd8ed1ab_0.conda#81bb643d6c3ab4cbeaf724e9d68d0a6a +https://conda.anaconda.org/conda-forge/noarch/plotly-5.24.1-pyhd8ed1ab_1.conda#71ac632876630091c81c50a05ec5e030 https://conda.anaconda.org/conda-forge/noarch/pyproject-metadata-0.9.0-pyhd8ed1ab_1.conda#1239146a53a383a84633800294120f17 https://conda.anaconda.org/conda-forge/noarch/pytest-8.3.4-pyhd8ed1ab_1.conda#799ed216dc6af62520f32aa39bc1c2bb https://conda.anaconda.org/conda-forge/noarch/python-dateutil-2.9.0.post0-pyhff2d567_1.conda#5ba79d7c71f03c678c8ead841f347d6e @@ -234,28 +232,28 @@ https://conda.anaconda.org/conda-forge/noarch/lazy-loader-0.4-pyhd8ed1ab_2.conda https://conda.anaconda.org/conda-forge/linux-64/libpq-17.2-h3b95a9b_1.conda#37724d8bae042345a19ca1a25dde786b https://conda.anaconda.org/conda-forge/noarch/meson-python-0.17.1-pyh70fd9c4_1.conda#7a02679229c6c2092571b4c025055440 https://conda.anaconda.org/conda-forge/linux-64/pandas-2.2.3-py39h3b40f6f_1.conda#d07f482720066758dad87cf90b3de111 -https://conda.anaconda.org/conda-forge/noarch/patsy-1.0.1-pyhff2d567_0.conda#a97b9c7586cedcf4a0a158ef3479975c -https://conda.anaconda.org/conda-forge/linux-64/polars-1.16.0-py39h74f158a_0.conda#4794afe0c773e554c795eed445064161 +https://conda.anaconda.org/conda-forge/noarch/patsy-1.0.1-pyhd8ed1ab_1.conda#ee23fabfd0a8c6b8d6f3729b47b2859d +https://conda.anaconda.org/conda-forge/linux-64/polars-1.17.1-py39h0cd0d40_0.conda#61d726e861b268c5d128465645b565f6 https://conda.anaconda.org/conda-forge/noarch/pytest-xdist-3.6.1-pyhd8ed1ab_1.conda#59aad4fb37cabc0bacc73cf344612ddd https://conda.anaconda.org/conda-forge/linux-64/pywavelets-1.6.0-py39hd92a3bb_0.conda#32e26e16f60c568b17a82e3033a4d309 https://conda.anaconda.org/conda-forge/linux-64/scipy-1.13.1-py39haf93ffa_0.conda#492a2cd65862d16a4aaf535ae9ccb761 https://conda.anaconda.org/conda-forge/linux-64/zstandard-0.23.0-py39h08a7858_1.conda#cd9fa334e11886738f17254f52210bc3 https://conda.anaconda.org/conda-forge/linux-64/blas-2.125-openblas.conda#0c46b8a31a587738befc587dd8e52558 https://conda.anaconda.org/conda-forge/noarch/lazy_loader-0.4-pyhd8ed1ab_2.conda#bb0230917e2473c77d615104dbe8a49d -https://conda.anaconda.org/conda-forge/linux-64/matplotlib-base-3.9.3-py39h16632d1_0.conda#93aa7d8c91f38dd494134f009cd0860c +https://conda.anaconda.org/conda-forge/linux-64/matplotlib-base-3.9.4-py39h16632d1_0.conda#f149592d52f9c1ab1bfe3dc055458e13 https://conda.anaconda.org/conda-forge/linux-64/pyamg-5.2.1-py39hf59e57a_1.conda#720dbce3188cecd95fc26525394d1e65 -https://conda.anaconda.org/conda-forge/linux-64/qt6-main-6.8.0-h6e8976b_0.conda#6d1c5d2d904d24c17cbb538a95855a4e +https://conda.anaconda.org/conda-forge/linux-64/qt6-main-6.8.1-h9d28a51_0.conda#7e8e17c44e7af62c77de7a0158afc35c https://conda.anaconda.org/conda-forge/linux-64/statsmodels-0.14.4-py39hf3d9206_0.conda#f633ed7c19e120b9e6c0efb79f20a53f https://conda.anaconda.org/conda-forge/noarch/tifffile-2024.6.18-pyhd8ed1ab_0.conda#7c3077529bfe3b86f9425d526d73bd24 https://conda.anaconda.org/conda-forge/noarch/towncrier-24.8.0-pyhd8ed1ab_0.conda#02190423152df62fda1cde3d9527b882 https://conda.anaconda.org/conda-forge/noarch/urllib3-2.2.3-pyhd8ed1ab_1.conda#4a2d8ef7c37b8808c5b9b750501fffce -https://conda.anaconda.org/conda-forge/linux-64/pyside6-6.8.0.2-py39h0383914_0.conda#b93573a620eb5396f0196e6267490738 +https://conda.anaconda.org/conda-forge/linux-64/pyside6-6.8.1-py39h0383914_0.conda#45e71bee7ab5236b01ec50343d70b15e https://conda.anaconda.org/conda-forge/noarch/requests-2.32.3-pyhd8ed1ab_1.conda#a9b9368f3701a417eac9edbcae7cb737 https://conda.anaconda.org/conda-forge/linux-64/scikit-image-0.24.0-py39h3b40f6f_3.conda#63666cfacc4dc32c8b2ff49705988f92 -https://conda.anaconda.org/conda-forge/noarch/seaborn-base-0.13.2-pyhd8ed1ab_2.conda#b713b116feaf98acdba93ad4d7f90ca1 -https://conda.anaconda.org/conda-forge/linux-64/matplotlib-3.9.3-py39hf3d152e_0.conda#1bcbea7bd5b0aea3a6a8195f82d01d43 +https://conda.anaconda.org/conda-forge/noarch/seaborn-base-0.13.2-pyhd8ed1ab_3.conda#fd96da444e81f9e6fcaac38590f3dd42 +https://conda.anaconda.org/conda-forge/linux-64/matplotlib-3.9.4-py39hf3d152e_0.conda#922f2edd2f9ff0a95c83eb781bacad5e https://conda.anaconda.org/conda-forge/noarch/pooch-1.8.2-pyhd8ed1ab_1.conda#b3e783e8e8ed7577cf0b6dee37d1fbac -https://conda.anaconda.org/conda-forge/noarch/seaborn-0.13.2-hd8ed1ab_2.conda#a79d8797f62715255308d92d3a91ef2e +https://conda.anaconda.org/conda-forge/noarch/seaborn-0.13.2-hd8ed1ab_3.conda#62afb877ca2c2b4b6f9ecb37320085b6 https://conda.anaconda.org/conda-forge/noarch/numpydoc-1.8.0-pyhd8ed1ab_1.conda#5af206d64d18d6c8dfb3122b4d9e643b https://conda.anaconda.org/conda-forge/noarch/pydata-sphinx-theme-0.16.0-pyhd8ed1ab_0.conda#344261b0e77f5d2faaffb4eac225eeb7 https://conda.anaconda.org/conda-forge/noarch/sphinx-copybutton-0.5.2-pyhd8ed1ab_0.conda#ac832cc43adc79118cf6e23f1f9b8995 @@ -263,12 +261,12 @@ https://conda.anaconda.org/conda-forge/noarch/sphinx-design-0.6.1-pyhd8ed1ab_1.c https://conda.anaconda.org/conda-forge/noarch/sphinx-gallery-0.18.0-pyhd8ed1ab_0.conda#dc78276cbf5ec23e4b959d1bbd9caadb https://conda.anaconda.org/conda-forge/noarch/sphinx-prompt-1.4.0-pyhd8ed1ab_0.tar.bz2#88ee91e8679603f2a5bd036d52919cc2 https://conda.anaconda.org/conda-forge/noarch/sphinx-remove-toctrees-1.0.0.post1-pyhd8ed1ab_0.conda#6dee8412218288a17f99f2cfffab334d -https://conda.anaconda.org/conda-forge/noarch/sphinxcontrib-applehelp-2.0.0-pyhd8ed1ab_0.conda#9075bd8c033f0257122300db914e49c9 -https://conda.anaconda.org/conda-forge/noarch/sphinxcontrib-devhelp-2.0.0-pyhd8ed1ab_0.conda#b3bcc38c471ebb738854f52a36059b48 -https://conda.anaconda.org/conda-forge/noarch/sphinxcontrib-htmlhelp-2.1.0-pyhd8ed1ab_0.conda#e25640d692c02e8acfff0372f547e940 -https://conda.anaconda.org/conda-forge/noarch/sphinxcontrib-qthelp-2.0.0-pyhd8ed1ab_0.conda#d6e5ea5fe00164ac6c2dcc5d76a42192 +https://conda.anaconda.org/conda-forge/noarch/sphinxcontrib-applehelp-2.0.0-pyhd8ed1ab_1.conda#16e3f039c0aa6446513e94ab18a8784b +https://conda.anaconda.org/conda-forge/noarch/sphinxcontrib-devhelp-2.0.0-pyhd8ed1ab_1.conda#910f28a05c178feba832f842155cbfff +https://conda.anaconda.org/conda-forge/noarch/sphinxcontrib-htmlhelp-2.1.0-pyhd8ed1ab_1.conda#e9fb3fe8a5b758b4aff187d434f94f03 +https://conda.anaconda.org/conda-forge/noarch/sphinxcontrib-qthelp-2.0.0-pyhd8ed1ab_1.conda#00534ebcc0375929b45c3039b5ba7636 https://conda.anaconda.org/conda-forge/noarch/sphinx-7.4.7-pyhd8ed1ab_0.conda#c568e260463da2528ecfd7c5a0b41bbd -https://conda.anaconda.org/conda-forge/noarch/sphinxcontrib-serializinghtml-1.1.10-pyhd8ed1ab_0.conda#e507335cb4ca9cff4c3d0fa9cdab255e +https://conda.anaconda.org/conda-forge/noarch/sphinxcontrib-serializinghtml-1.1.10-pyhd8ed1ab_1.conda#3bc61f7161d28137797e038263c04c54 https://conda.anaconda.org/conda-forge/noarch/sphinxext-opengraph-0.9.1-pyhd8ed1ab_0.conda#286283e05a1eff606f55e7cd70f6d7f7 # pip attrs @ https://files.pythonhosted.org/packages/6a/21/5b6702a7f963e95456c0de2d495f67bf5fd62840ac655dc451586d23d39a/attrs-24.2.0-py3-none-any.whl#sha256=81921eb96de3191c8258c199618104dd27ac608d9366f5e35d011eae1867ede2 # pip cloudpickle @ https://files.pythonhosted.org/packages/48/41/e1d85ca3cab0b674e277c8c4f678cf66a91cd2cecf93df94353a606fe0db/cloudpickle-3.1.0-py3-none-any.whl#sha256=fe11acda67f61aaaec473e3afe030feb131d78a43461b718185363384f1ba12e @@ -285,7 +283,6 @@ https://conda.anaconda.org/conda-forge/noarch/sphinxext-opengraph-0.9.1-pyhd8ed1 # pip pkginfo @ https://files.pythonhosted.org/packages/21/11/4af184fbd8ae13daa13953212b27a212f4e63772ca8a0dd84d08b60ed206/pkginfo-1.12.0-py3-none-any.whl#sha256=dcd589c9be4da8973eceffa247733c144812759aa67eaf4bbf97016a02f39088 # pip prometheus-client @ https://files.pythonhosted.org/packages/ff/c2/ab7d37426c179ceb9aeb109a85cda8948bb269b7561a0be870cc656eefe4/prometheus_client-0.21.1-py3-none-any.whl#sha256=594b45c410d6f4f8888940fe80b5cc2521b305a1fafe1c58609ef715a001f301 # pip ptyprocess @ https://files.pythonhosted.org/packages/22/a6/858897256d0deac81a172289110f31629fc4cee19b6f01283303e18c8db3/ptyprocess-0.7.0-py2.py3-none-any.whl#sha256=4b41f3967fce3af57cc7e94b888626c18bf37a083e3651ca8feeb66d492fef35 -# pip python-json-logger @ https://files.pythonhosted.org/packages/35/a6/145655273568ee78a581e734cf35beb9e33a370b29c5d3c8fee3744de29f/python_json_logger-2.0.7-py3-none-any.whl#sha256=f380b826a991ebbe3de4d897aeec42760035ac760345e57b812938dc8b35e2bd # pip pyyaml @ https://files.pythonhosted.org/packages/3d/32/e7bd8535d22ea2874cef6a81021ba019474ace0d13a4819c2a4bce79bd6a/PyYAML-6.0.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl#sha256=3b1fdb9dc17f5a7677423d508ab4f243a726dea51fa5e70992e59a7411c89d19 # pip rfc3986-validator @ https://files.pythonhosted.org/packages/9e/51/17023c0f8f1869d8806b979a2bffa3f861f26a3f1a66b094288323fba52f/rfc3986_validator-0.1.1-py2.py3-none-any.whl#sha256=2f235c432ef459970b4306369336b9d5dbdda31b510ca1e327636e01f528bfa9 # pip rpds-py @ https://files.pythonhosted.org/packages/93/f5/c1c772364570d35b98ba64f36ec90c3c6d0b932bc4d8b9b4efef6dc64b07/rpds_py-0.22.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl#sha256=0c150c7a61ed4a4f4955a96626574e9baf1adf772c2fb61ef6a5027e52803543 @@ -303,6 +300,7 @@ https://conda.anaconda.org/conda-forge/noarch/sphinxext-opengraph-0.9.1-pyhd8ed1 # pip bleach @ https://files.pythonhosted.org/packages/fc/55/96142937f66150805c25c4d0f31ee4132fd33497753400734f9dfdcbdc66/bleach-6.2.0-py3-none-any.whl#sha256=117d9c6097a7c3d22fd578fcd8d35ff1e125df6736f554da4e432fdd63f31e5e # pip doit @ https://files.pythonhosted.org/packages/44/83/a2960d2c975836daa629a73995134fd86520c101412578c57da3d2aa71ee/doit-0.36.0-py3-none-any.whl#sha256=ebc285f6666871b5300091c26eafdff3de968a6bd60ea35dd1e3fc6f2e32479a # pip jupyter-core @ https://files.pythonhosted.org/packages/c9/fb/108ecd1fe961941959ad0ee4e12ee7b8b1477247f30b1fdfd83ceaf017f0/jupyter_core-5.7.2-py3-none-any.whl#sha256=4f7315d2f6b4bcf2e3e7cb6e46772eba760ae459cd1f59d29eb57b0a01bd7409 +# pip python-json-logger @ https://files.pythonhosted.org/packages/c3/be/a84e771466c68a33eda7efb5a274e4045dfb6ae3dc846ac153b62e14e7bd/python_json_logger-3.2.0-py3-none-any.whl#sha256=d73522ddcfc6d0461394120feaddea9025dc64bf804d96357dd42fa878cc5fe8 # pip pyzmq @ https://files.pythonhosted.org/packages/6e/bd/3ff3e1172f12f55769793a3a334e956ec2886805ebfb2f64756b6b5c6a1a/pyzmq-26.2.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl#sha256=05590cdbc6b902101d0e65d6a4780af14dc22914cc6ab995d99b85af45362cc9 # pip referencing @ https://files.pythonhosted.org/packages/b7/59/2056f61236782a2c86b33906c025d4f4a0b17be0161b63b70fd9e8775d36/referencing-0.35.1-py3-none-any.whl#sha256=eda6d3234d62814d1c64e305c1331c9a3a6132da475ab6382eaa997b21ee75de # pip rfc3339-validator @ https://files.pythonhosted.org/packages/7b/44/4e421b96b67b2daff264473f7465db72fbdf36a07e05494f50300cc7b0c6/rfc3339_validator-0.1.4-py2.py3-none-any.whl#sha256=24f6ec1eda14ef823da9e36ec7113124b39c04d50a4d3d3a3c2859577e7791fa @@ -316,7 +314,7 @@ https://conda.anaconda.org/conda-forge/noarch/sphinxext-opengraph-0.9.1-pyhd8ed1 # pip jupyter-server-terminals @ https://files.pythonhosted.org/packages/07/2d/2b32cdbe8d2a602f697a649798554e4f072115438e92249624e532e8aca6/jupyter_server_terminals-0.5.3-py3-none-any.whl#sha256=41ee0d7dc0ebf2809c668e0fc726dfaf258fcd3e769568996ca731b6194ae9aa # pip jupyterlite-core @ https://files.pythonhosted.org/packages/ff/51/0812a39260335c708c6f150e66e5d0ff2adcc40885f0a8b7244639286960/jupyterlite_core-0.4.5-py3-none-any.whl#sha256=2c30b815b0699d50160bfec35ff612295f8518ac66cf52acd7bfe41aa42ce0be # pip jsonschema @ https://files.pythonhosted.org/packages/69/4a/4f9dbeb84e8850557c02365a0eee0649abe5eb1d84af92a25731c6c0f922/jsonschema-4.23.0-py3-none-any.whl#sha256=fbadb6f8b144a8f8cf9f0b89ba94501d143e50411a1278633f56a7acf7fd5566 -# pip jupyterlite-pyodide-kernel @ https://files.pythonhosted.org/packages/ca/4c/42bb232529ad3b11db6d87de6accb3a9daeafc0fdf5892ff047ee842e0a8/jupyterlite_pyodide_kernel-0.4.4-py3-none-any.whl#sha256=5569843bad0d1d4e5f2a61b093d325cd9113a6e5ac761395a28cfd483a370290 +# pip jupyterlite-pyodide-kernel @ https://files.pythonhosted.org/packages/28/ff/087be7ea8eeba323f7447981270ef55e5d5a08727254b59936fa6f5bb76f/jupyterlite_pyodide_kernel-0.4.5-py3-none-any.whl#sha256=9aebec13d94e2eb3a0bb23f5d86ac34bb6b71e4f7b74518ba62e378e4d3da01b # pip jupyter-events @ https://files.pythonhosted.org/packages/a5/94/059180ea70a9a326e1815176b2370da56376da347a796f8c4f0b830208ef/jupyter_events-0.10.0-py3-none-any.whl#sha256=4b72130875e59d57716d327ea70d3ebc3af1944d3717e5a498b8a06c6c159960 # pip nbformat @ https://files.pythonhosted.org/packages/a9/82/0340caa499416c78e5d8f5f05947ae4bc3cba53c9f038ab6e9ed964e22f1/nbformat-5.10.4-py3-none-any.whl#sha256=3b48d6c8fbca4b299bf3982ea7db1af21580e4fec269ad087b9e81588891200b # pip nbclient @ https://files.pythonhosted.org/packages/26/1a/ed6d1299b1a00c1af4a033fdee565f533926d819e084caf0d2832f6f87c6/nbclient-0.10.1-py3-none-any.whl#sha256=949019b9240d66897e442888cfb618f69ef23dc71c01cb5fced8499c2cfc084d diff --git a/build_tools/circle/doc_min_dependencies_linux-64_conda.lock b/build_tools/circle/doc_min_dependencies_linux-64_conda.lock index 8324a3fd856e4..9927919f62f2d 100644 --- a/build_tools/circle/doc_min_dependencies_linux-64_conda.lock +++ b/build_tools/circle/doc_min_dependencies_linux-64_conda.lock @@ -3,7 +3,7 @@ # input_hash: 4fd19c6cc3ab292f8b0a9bd29e5d6cd82a9527f9584eb9ad03dec32454ef1840 @EXPLICIT https://conda.anaconda.org/conda-forge/linux-64/_libgcc_mutex-0.1-conda_forge.tar.bz2#d7c89558ba9fa0495403155b64376d81 -https://conda.anaconda.org/conda-forge/linux-64/ca-certificates-2024.8.30-hbcca054_0.conda#c27d1c142233b5bc9ca570c6e2e0c244 +https://conda.anaconda.org/conda-forge/linux-64/ca-certificates-2024.12.14-hbcca054_0.conda#720523eb0d6a9b0f6120c16b2aa4e7de https://conda.anaconda.org/conda-forge/noarch/font-ttf-dejavu-sans-mono-2.37-hab24e00_0.tar.bz2#0c96522c6bdaed4b1566d11387caaf45 https://conda.anaconda.org/conda-forge/noarch/font-ttf-inconsolata-3.000-h77eed37_0.tar.bz2#34893075a5c9e55cdafac56607368fc6 https://conda.anaconda.org/conda-forge/noarch/font-ttf-source-code-pro-2.038-h77eed37_0.tar.bz2#4d59c254e01d9cde7957100457e2d5fb @@ -38,11 +38,9 @@ https://conda.anaconda.org/conda-forge/linux-64/libstdcxx-14.2.0-hc0a3c3a_1.cond https://conda.anaconda.org/conda-forge/linux-64/libzlib-1.3.1-hb9d3cd8_2.conda#edb0dca6bc32e4f4789199455a1dbeb8 https://conda.anaconda.org/conda-forge/linux-64/openssl-3.4.0-hb9d3cd8_0.conda#23cc74f77eb99315c0360ec3533147a9 https://conda.anaconda.org/conda-forge/linux-64/pthread-stubs-0.4-hb9d3cd8_1002.conda#b3c17d95b5a10c6e64a21fa17573e70e -https://conda.anaconda.org/conda-forge/linux-64/xorg-libice-1.1.1-hb9d3cd8_1.conda#19608a9656912805b2b9a2f6bd257b04 -https://conda.anaconda.org/conda-forge/linux-64/xorg-libxau-1.0.11-hb9d3cd8_1.conda#77cbc488235ebbaab2b6e912d3934bae +https://conda.anaconda.org/conda-forge/linux-64/xorg-libice-1.1.2-hb9d3cd8_0.conda#fb901ff28063514abb6046c9ec2c4a45 +https://conda.anaconda.org/conda-forge/linux-64/xorg-libxau-1.0.12-hb9d3cd8_0.conda#f6ebe2cb3f82ba6c057dde5d9debe4f7 https://conda.anaconda.org/conda-forge/linux-64/xorg-libxdmcp-1.1.5-hb9d3cd8_0.conda#8035c64cb77ed555e3f150b7b3972480 -https://conda.anaconda.org/conda-forge/linux-64/xorg-xf86vidmodeproto-2.3.1-hb9d3cd8_1005.conda#1c08f67e3406550eef135e17263f8154 -https://conda.anaconda.org/conda-forge/linux-64/xorg-xorgproto-2024.1-hb9d3cd8_1.conda#7c21106b851ec72c037b162c216d8f05 https://conda.anaconda.org/conda-forge/linux-64/attr-2.5.1-h166bdaf_1.tar.bz2#d9c69a24ad678ffce24c6543a0176b00 https://conda.anaconda.org/conda-forge/linux-64/bzip2-1.0.8-h4bc722e_7.conda#62ee74e96c5ebb0af99386de58cf9553 https://conda.anaconda.org/conda-forge/linux-64/dav1d-1.2.1-hd590300_0.conda#418c6ca5929a611cbd69204907a83995 @@ -68,13 +66,13 @@ https://conda.anaconda.org/conda-forge/linux-64/libopus-1.3.1-h7f98852_1.tar.bz2 https://conda.anaconda.org/conda-forge/linux-64/libpciaccess-0.18-hd590300_0.conda#48f4330bfcd959c3cfb704d424903c82 https://conda.anaconda.org/conda-forge/linux-64/libpng-1.6.44-hadc24fc_0.conda#f4cc49d7aa68316213e4b12be35308d1 https://conda.anaconda.org/conda-forge/linux-64/libsanitizer-13.3.0-heb74ff8_1.conda#c4cb22f270f501f5c59a122dc2adf20a -https://conda.anaconda.org/conda-forge/linux-64/libsqlite-3.47.0-hadc24fc_1.conda#b6f02b52a174e612e89548f4663ce56a +https://conda.anaconda.org/conda-forge/linux-64/libsqlite-3.47.2-hee588c1_0.conda#b58da17db24b6e08bcbf8fed2fb8c915 https://conda.anaconda.org/conda-forge/linux-64/libstdcxx-ng-14.2.0-h4852527_1.conda#8371ac6457591af2cf6159439c1fd051 https://conda.anaconda.org/conda-forge/linux-64/libuuid-2.38.1-h0b41bf4_0.conda#40b61aab5c7ba9ff276c41cfffe6b80b https://conda.anaconda.org/conda-forge/linux-64/libwebp-base-1.4.0-hd590300_0.conda#b26e8aa824079e1be0294e7152ca4559 https://conda.anaconda.org/conda-forge/linux-64/libxcb-1.17.0-h8a09558_0.conda#92ed62436b625154323d40d5f2f11dd7 https://conda.anaconda.org/conda-forge/linux-64/libxcrypt-4.4.36-hd590300_1.conda#5aa797f8787fe7a17d1b0821485b5adc -https://conda.anaconda.org/conda-forge/linux-64/lz4-c-1.10.0-h5888daf_0.conda#af825462e69e44c88d628549ad59cfeb +https://conda.anaconda.org/conda-forge/linux-64/lz4-c-1.10.0-h5888daf_1.conda#9de5350a85c4a20c685259b889aa6393 https://conda.anaconda.org/conda-forge/linux-64/mpg123-1.32.9-hc50e24c_0.conda#c7f302fd11eeb0987a6a5e1f3aed6a21 https://conda.anaconda.org/conda-forge/linux-64/mysql-common-9.0.1-h266115a_3.conda#9411c61ff1070b5e065b32840c39faa5 https://conda.anaconda.org/conda-forge/linux-64/ncurses-6.5-he02047a_1.conda#70caf8bb6cf39a0b6b7efc885f51c0fe @@ -86,7 +84,6 @@ https://conda.anaconda.org/conda-forge/linux-64/svt-av1-2.3.0-h5888daf_0.conda#3 https://conda.anaconda.org/conda-forge/linux-64/tk-8.6.13-noxft_h4845f30_101.conda#d453b98d9c83e71da0741bb0ff4d76bc https://conda.anaconda.org/conda-forge/linux-64/yaml-0.2.5-h7f98852_2.tar.bz2#4cb3ad778ec2d5a7acbdf254eb1c42ae https://conda.anaconda.org/conda-forge/linux-64/zfp-1.0.1-h5888daf_2.conda#e0409515c467b87176b070bff5d9442e -https://conda.anaconda.org/conda-forge/linux-64/zlib-1.3.1-hb9d3cd8_2.conda#c9f075ab2f33b3bbee9e62d4ad0a6cd8 https://conda.anaconda.org/conda-forge/linux-64/zlib-ng-2.2.2-h5888daf_0.conda#135fd3c66bccad3d2254f50f9809e86a https://conda.anaconda.org/conda-forge/linux-64/aom-3.9.1-hac33072_0.conda#346722a0be40f6edc53f12640d301338 https://conda.anaconda.org/conda-forge/linux-64/brotli-bin-1.1.0-hb9d3cd8_2.conda#c63b5e52939e795ba8d26e35d767a843 @@ -115,7 +112,7 @@ https://conda.anaconda.org/conda-forge/linux-64/xcb-util-0.4.1-hb711507_2.conda# https://conda.anaconda.org/conda-forge/linux-64/xcb-util-keysyms-0.4.1-hb711507_0.conda#ad748ccca349aec3e91743e08b5e2b50 https://conda.anaconda.org/conda-forge/linux-64/xcb-util-renderutil-0.3.10-hb711507_0.conda#0e0cbe0564d03a99afd5fd7b362feecd https://conda.anaconda.org/conda-forge/linux-64/xcb-util-wm-0.4.2-hb711507_0.conda#608e0ef8256b81d04456e8d211eee3e8 -https://conda.anaconda.org/conda-forge/linux-64/xorg-libsm-1.2.4-he73a12e_1.conda#05a8ea5f446de33006171a7afe6ae857 +https://conda.anaconda.org/conda-forge/linux-64/xorg-libsm-1.2.5-he73a12e_0.conda#4c3e9fab69804ec6077697922d70c6e2 https://conda.anaconda.org/conda-forge/linux-64/xorg-libx11-1.8.10-h4f16b4b_1.conda#125f34a17d7b4bea418a83904ea82ea6 https://conda.anaconda.org/conda-forge/linux-64/zstd-1.5.6-ha6fb4c9_0.conda#4d056880988120e29d75bfff282e0f45 https://conda.anaconda.org/conda-forge/linux-64/blosc-1.21.6-he440d0b_1.conda#2c2fae981fd2afd00812c92ac47d023d @@ -141,13 +138,13 @@ https://conda.anaconda.org/conda-forge/linux-64/xcb-util-image-0.4.0-hb711507_2. https://conda.anaconda.org/conda-forge/linux-64/xkeyboard-config-2.43-hb9d3cd8_0.conda#f725c7425d6d7c15e31f3b99a88ea02f https://conda.anaconda.org/conda-forge/linux-64/xorg-libxext-1.3.6-hb9d3cd8_0.conda#febbab7d15033c913d53c7a2c102309d https://conda.anaconda.org/conda-forge/linux-64/xorg-libxfixes-6.0.1-hb9d3cd8_0.conda#4bdb303603e9821baf5fe5fdff1dc8f8 -https://conda.anaconda.org/conda-forge/linux-64/xorg-libxrender-0.9.11-hb9d3cd8_1.conda#a7a49a8b85122b49214798321e2e96b4 +https://conda.anaconda.org/conda-forge/linux-64/xorg-libxrender-0.9.12-hb9d3cd8_0.conda#96d57aba173e878a2089d5638016dc5e https://conda.anaconda.org/conda-forge/noarch/alabaster-0.7.16-pyhd8ed1ab_0.conda#def531a3ac77b7fb8c21d17bb5d0badb -https://conda.anaconda.org/conda-forge/noarch/appdirs-1.4.4-pyh9f0ad1d_0.tar.bz2#5f095bc6454094e96f146491fd03633b +https://conda.anaconda.org/conda-forge/noarch/appdirs-1.4.4-pyhd8ed1ab_1.conda#f4e90937bbfc3a4a92539545a37bb448 https://conda.anaconda.org/conda-forge/linux-64/brotli-python-1.1.0-py39hf88036b_2.conda#8ea5af6ac902f1a4429190970d9099ce https://conda.anaconda.org/conda-forge/linux-64/brunsli-0.1-h9c3ff4c_0.tar.bz2#c1ac6229d0bfd14f8354ff9ad2a26cad https://conda.anaconda.org/conda-forge/linux-64/c-compiler-1.8.0-h2b85faf_1.conda#fa7b3bf2965b9d74a81a0702d9bb49ee -https://conda.anaconda.org/conda-forge/linux-64/cairo-1.18.0-hebfffa5_3.conda#fceaedf1cdbcb02df9699a0d9b005292 +https://conda.anaconda.org/conda-forge/linux-64/cairo-1.18.2-h3394656_1.conda#b34c2833a1f56db610aeb27f206d800d https://conda.anaconda.org/conda-forge/noarch/certifi-2024.8.30-pyhd8ed1ab_0.conda#12f7d00853807b0531775e9be891cb11 https://conda.anaconda.org/conda-forge/noarch/charset-normalizer-3.4.0-pyhd8ed1ab_1.conda#6581a17bba6b948bb60130026404a9d6 https://conda.anaconda.org/conda-forge/noarch/click-8.1.7-unix_pyh707e725_1.conda#cb8e52f28f5e592598190c562e7b5bf1 @@ -182,7 +179,7 @@ https://conda.anaconda.org/conda-forge/linux-64/libxkbcommon-1.7.0-h2c5496b_1.co https://conda.anaconda.org/conda-forge/noarch/locket-1.0.0-pyhd8ed1ab_0.tar.bz2#91e27ef3d05cc772ce627e51cff111c4 https://conda.anaconda.org/conda-forge/linux-64/markupsafe-3.0.2-py39h9399b63_1.conda#7821f0938aa629b9f17efd98c300a487 https://conda.anaconda.org/conda-forge/noarch/networkx-3.2-pyhd8ed1ab_0.conda#cec8cc498664cc00a070676aa89e69a7 -https://conda.anaconda.org/conda-forge/linux-64/openjpeg-2.5.2-h488ebb8_0.conda#7f2e286780f072ed750df46dc2631138 +https://conda.anaconda.org/conda-forge/linux-64/openjpeg-2.5.3-h5fbd93e_0.conda#9e5816bc95d285c115a3ebc2f8563564 https://conda.anaconda.org/conda-forge/noarch/packaging-24.2-pyhd8ed1ab_2.conda#3bfed7e6228ebf2f7b9eaa47f1b4e2aa https://conda.anaconda.org/conda-forge/noarch/pluggy-1.5.0-pyhd8ed1ab_1.conda#e9dcbce5f45f9ee500e728ae58b605b6 https://conda.anaconda.org/conda-forge/noarch/ply-3.11-pyhd8ed1ab_3.conda#fd5062942bfa1b0bd5e0d2a4397b099e @@ -197,32 +194,32 @@ https://conda.anaconda.org/conda-forge/linux-64/setuptools-59.8.0-py39hf3d152e_1 https://conda.anaconda.org/conda-forge/noarch/six-1.17.0-pyhd8ed1ab_0.conda#a451d576819089b0d672f18768be0f65 https://conda.anaconda.org/conda-forge/noarch/snowballstemmer-2.2.0-pyhd8ed1ab_0.tar.bz2#4d22a9315e78c6827f806065957d566e https://conda.anaconda.org/conda-forge/noarch/soupsieve-2.5-pyhd8ed1ab_1.conda#3f144b2c34f8cb5a9abd9ed23a39c561 -https://conda.anaconda.org/conda-forge/noarch/sphinxcontrib-jsmath-1.0.1-pyhd8ed1ab_0.conda#da1d979339e2714c30a8e806a33ec087 +https://conda.anaconda.org/conda-forge/noarch/sphinxcontrib-jsmath-1.0.1-pyhd8ed1ab_1.conda#fa839b5ff59e192f411ccc7dae6588bb https://conda.anaconda.org/conda-forge/noarch/tenacity-9.0.0-pyhd8ed1ab_1.conda#a09f66fe95a54a92172e56a4a97ba271 https://conda.anaconda.org/conda-forge/noarch/threadpoolctl-3.5.0-pyhc1e730c_0.conda#df68d78237980a159bd7149f33c0e8fd -https://conda.anaconda.org/conda-forge/noarch/toml-0.10.2-pyhd8ed1ab_0.tar.bz2#f832c45a477c78bebd107098db465095 +https://conda.anaconda.org/conda-forge/noarch/toml-0.10.2-pyhd8ed1ab_1.conda#b0dd904de08b7db706167240bf37b164 https://conda.anaconda.org/conda-forge/noarch/tomli-2.2.1-pyhd8ed1ab_1.conda#ac944244f1fed2eb49bae07193ae8215 -https://conda.anaconda.org/conda-forge/noarch/toolz-1.0.0-pyhd8ed1ab_0.conda#34feccdd4177f2d3d53c73fc44fd9a37 +https://conda.anaconda.org/conda-forge/noarch/toolz-1.0.0-pyhd8ed1ab_1.conda#40d0ed782a8aaa16ef248e68c06c168d https://conda.anaconda.org/conda-forge/linux-64/tornado-6.4.2-py39h8cd3c5a_0.conda#ebfd05ae1501660e995a8b6bbe02a391 https://conda.anaconda.org/conda-forge/noarch/typing_extensions-4.12.2-pyha770c72_1.conda#d17f13df8b65464ca316cbc000a3cb64 https://conda.anaconda.org/conda-forge/noarch/wheel-0.45.1-pyhd8ed1ab_1.conda#75cb7132eb58d97896e173ef12ac9986 https://conda.anaconda.org/conda-forge/linux-64/xorg-libxdamage-1.1.6-hb9d3cd8_0.conda#b5fcc7172d22516e1f965490e65e33a4 -https://conda.anaconda.org/conda-forge/linux-64/xorg-libxxf86vm-1.1.5-hb9d3cd8_4.conda#7da9007c0582712c4bad4131f89c8372 +https://conda.anaconda.org/conda-forge/linux-64/xorg-libxxf86vm-1.1.6-hb9d3cd8_0.conda#5efa5fa6243a622445fdfd72aee15efa https://conda.anaconda.org/conda-forge/noarch/zipp-3.21.0-pyhd8ed1ab_1.conda#0c3cc595284c5e8f0f9900a9b228a332 https://conda.anaconda.org/conda-forge/noarch/accessible-pygments-0.0.5-pyhd8ed1ab_0.conda#1bb1ef9806a9a20872434f58b3e7fc1a https://conda.anaconda.org/conda-forge/noarch/babel-2.16.0-pyhd8ed1ab_1.conda#3e23f7db93ec14c80525257d8affac28 https://conda.anaconda.org/conda-forge/noarch/beautifulsoup4-4.12.3-pyha770c72_1.conda#d48f7e9fdec44baf6d1da416fe402b04 https://conda.anaconda.org/conda-forge/linux-64/cffi-1.17.1-py39h15c3d72_0.conda#7e61b8777f42e00b08ff059f9e8ebc44 https://conda.anaconda.org/conda-forge/linux-64/cxx-compiler-1.8.0-h1a2810e_1.conda#3bb4907086d7187bf01c8bec397ffa5e -https://conda.anaconda.org/conda-forge/linux-64/cytoolz-1.0.0-py39h8cd3c5a_1.conda#7a98e8be85fb0ce5531cac253ca95497 +https://conda.anaconda.org/conda-forge/linux-64/cytoolz-1.0.1-py39h8cd3c5a_0.conda#6a86bebd04e7ecd773208e774aa3a58d https://conda.anaconda.org/conda-forge/linux-64/fortran-compiler-1.8.0-h36df796_1.conda#6b57750841d53ade8d3b47eafe53dd9f https://conda.anaconda.org/conda-forge/linux-64/glib-2.82.2-h44428e9_0.conda#f19f985ab043e8843045410f3b99de8a https://conda.anaconda.org/conda-forge/noarch/h2-4.1.0-pyhd8ed1ab_1.conda#825927dc7b0f287ef8d4d0011bb113b1 -https://conda.anaconda.org/conda-forge/linux-64/harfbuzz-9.0.0-hda332d3_1.conda#76b32dcf243444aea9c6b804bcfa40b8 +https://conda.anaconda.org/conda-forge/linux-64/harfbuzz-10.1.0-h0b3b770_0.conda#ab1d7d56034814f4c3ed9f69f8c68806 https://conda.anaconda.org/conda-forge/noarch/importlib-metadata-8.5.0-pyha770c72_1.conda#315607a3030ad5d5227e76e0733798ff https://conda.anaconda.org/conda-forge/noarch/importlib_resources-6.4.5-pyhd8ed1ab_1.conda#15798fa69312d433af690c8c42b3fb36 https://conda.anaconda.org/conda-forge/noarch/jinja2-3.1.4-pyhd8ed1ab_1.conda#08cce3151bde4ecad7885bd9fb647532 -https://conda.anaconda.org/conda-forge/noarch/joblib-1.4.2-pyhd8ed1ab_0.conda#25df261d4523d9f9783bcdb7208d872f +https://conda.anaconda.org/conda-forge/noarch/joblib-1.4.2-pyhd8ed1ab_1.conda#bf8243ee348f3a10a14ed0cae323e0c1 https://conda.anaconda.org/conda-forge/linux-64/libclang-cpp19.1-19.1.5-default_hb5137d0_0.conda#ec8649c89988d8a443c252c20f259b72 https://conda.anaconda.org/conda-forge/linux-64/libclang13-19.1.5-default_h9c6a7e4_0.conda#a3a5997b6b47373f0c1608d8503eb4e6 https://conda.anaconda.org/conda-forge/linux-64/libflac-1.4.3-h59595ed_0.conda#ee48bf17cc83a00f59ca1494d5646869 @@ -258,7 +255,7 @@ https://conda.anaconda.org/conda-forge/noarch/towncrier-24.8.0-pyhd8ed1ab_0.cond https://conda.anaconda.org/conda-forge/noarch/urllib3-2.2.3-pyhd8ed1ab_1.conda#4a2d8ef7c37b8808c5b9b750501fffce https://conda.anaconda.org/conda-forge/linux-64/libcblas-3.9.0-25_linux64_mkl.conda#e48aeb4ab1a293f621fe995959f1d32f https://conda.anaconda.org/conda-forge/linux-64/liblapack-3.9.0-25_linux64_mkl.conda#d5afbe3777c594434e4de6481254e99c -https://conda.anaconda.org/conda-forge/linux-64/qt-main-5.15.15-h796de64_1.conda#b63b4dcf67c300daa7ce5918eb9c1654 +https://conda.anaconda.org/conda-forge/linux-64/qt-main-5.15.15-hc3cb62f_2.conda#eadc22e45a87c8d5c71670d9ec956aba https://conda.anaconda.org/conda-forge/noarch/requests-2.32.3-pyhd8ed1ab_1.conda#a9b9368f3701a417eac9edbcae7cb737 https://conda.anaconda.org/conda-forge/linux-64/liblapacke-3.9.0-25_linux64_mkl.conda#cbddb4169d3d24b13b308403b45f401e https://conda.anaconda.org/conda-forge/linux-64/numpy-1.19.5-py39hd249d9e_3.tar.bz2#0cf333996ebdeeba8d1c8c1c0ee9eff9 @@ -269,7 +266,7 @@ https://conda.anaconda.org/conda-forge/linux-64/imagecodecs-2024.9.22-py39h96614 https://conda.anaconda.org/conda-forge/noarch/imageio-2.36.1-pyh12aca89_1.conda#84d5a2f075c861a8f98afd2842f7eb6e https://conda.anaconda.org/conda-forge/linux-64/matplotlib-base-3.3.4-py39h2fa2bec_0.tar.bz2#9ec0b2186fab9121c54f4844f93ee5b7 https://conda.anaconda.org/conda-forge/linux-64/pandas-1.1.5-py39hde0f152_0.tar.bz2#79fc4b5b3a865b90dd3701cecf1ad33c -https://conda.anaconda.org/conda-forge/noarch/patsy-1.0.1-pyhff2d567_0.conda#a97b9c7586cedcf4a0a158ef3479975c +https://conda.anaconda.org/conda-forge/noarch/patsy-1.0.1-pyhd8ed1ab_1.conda#ee23fabfd0a8c6b8d6f3729b47b2859d https://conda.anaconda.org/conda-forge/linux-64/polars-0.20.30-py39ha963410_0.conda#322084e8890afc27fcca6df7a528df25 https://conda.anaconda.org/conda-forge/linux-64/pywavelets-1.6.0-py39hd92a3bb_0.conda#32e26e16f60c568b17a82e3033a4d309 https://conda.anaconda.org/conda-forge/linux-64/scipy-1.6.0-py39hee8e79c_0.tar.bz2#3afcb78281836e61351a2924f3230060 @@ -288,12 +285,12 @@ https://conda.anaconda.org/conda-forge/noarch/sphinx-design-0.6.0-pyhd8ed1ab_0.c https://conda.anaconda.org/conda-forge/noarch/sphinx-gallery-0.17.1-pyhd8ed1ab_0.conda#0adfccc6e7269a29a63c1c8ee3c6d8ba https://conda.anaconda.org/conda-forge/noarch/sphinx-prompt-1.4.0-pyhd8ed1ab_0.tar.bz2#88ee91e8679603f2a5bd036d52919cc2 https://conda.anaconda.org/conda-forge/noarch/sphinx-remove-toctrees-1.0.0.post1-pyhd8ed1ab_0.conda#6dee8412218288a17f99f2cfffab334d -https://conda.anaconda.org/conda-forge/noarch/sphinxcontrib-applehelp-2.0.0-pyhd8ed1ab_0.conda#9075bd8c033f0257122300db914e49c9 -https://conda.anaconda.org/conda-forge/noarch/sphinxcontrib-devhelp-2.0.0-pyhd8ed1ab_0.conda#b3bcc38c471ebb738854f52a36059b48 -https://conda.anaconda.org/conda-forge/noarch/sphinxcontrib-htmlhelp-2.1.0-pyhd8ed1ab_0.conda#e25640d692c02e8acfff0372f547e940 -https://conda.anaconda.org/conda-forge/noarch/sphinxcontrib-qthelp-2.0.0-pyhd8ed1ab_0.conda#d6e5ea5fe00164ac6c2dcc5d76a42192 +https://conda.anaconda.org/conda-forge/noarch/sphinxcontrib-applehelp-2.0.0-pyhd8ed1ab_1.conda#16e3f039c0aa6446513e94ab18a8784b +https://conda.anaconda.org/conda-forge/noarch/sphinxcontrib-devhelp-2.0.0-pyhd8ed1ab_1.conda#910f28a05c178feba832f842155cbfff +https://conda.anaconda.org/conda-forge/noarch/sphinxcontrib-htmlhelp-2.1.0-pyhd8ed1ab_1.conda#e9fb3fe8a5b758b4aff187d434f94f03 +https://conda.anaconda.org/conda-forge/noarch/sphinxcontrib-qthelp-2.0.0-pyhd8ed1ab_1.conda#00534ebcc0375929b45c3039b5ba7636 https://conda.anaconda.org/conda-forge/noarch/sphinx-7.3.7-pyhd8ed1ab_0.conda#7b1465205e28d75d2c0e1a868ee00a67 -https://conda.anaconda.org/conda-forge/noarch/sphinxcontrib-serializinghtml-1.1.10-pyhd8ed1ab_0.conda#e507335cb4ca9cff4c3d0fa9cdab255e +https://conda.anaconda.org/conda-forge/noarch/sphinxcontrib-serializinghtml-1.1.10-pyhd8ed1ab_1.conda#3bc61f7161d28137797e038263c04c54 # pip libsass @ https://files.pythonhosted.org/packages/fd/5a/eb5b62641df0459a3291fc206cf5bd669c0feed7814dded8edef4ade8512/libsass-0.23.0-cp38-abi3-manylinux_2_5_x86_64.manylinux1_x86_64.whl#sha256=4a218406d605f325d234e4678bd57126a66a88841cb95bee2caeafdc6f138306 # pip sphinxcontrib-sass @ https://files.pythonhosted.org/packages/2e/87/7c2eb08e3ca1d6baae32c0a5e005330fe1cec93a36aa085e714c3b3a3c7d/sphinxcontrib_sass-0.3.4-py2.py3-none-any.whl#sha256=a0c79a44ae8b8935c02dc340ebe40c9e002c839331201c899dc93708970c355a # pip sphinxext-opengraph @ https://files.pythonhosted.org/packages/92/0a/970b80b4fa1feeb6deb6f2e22d4cb14e388b27b315a1afdb9db930ff91a4/sphinxext_opengraph-0.9.1-py3-none-any.whl#sha256=b3b230cc6a5b5189139df937f0d9c7b23c7c204493b22646273687969dcb760e From 3ec5a18f1688cd74b956c34b0acb84b86bb043ec Mon Sep 17 00:00:00 2001 From: scikit-learn-bot Date: Mon, 16 Dec 2024 10:41:05 +0100 Subject: [PATCH 107/159] :lock: :robot: CI Update lock files for cirrus-arm CI build(s) :lock: :robot: (#30486) MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit Co-authored-by: Lock file bot Co-authored-by: Loïc Estève --- ...pymin_conda_forge_linux-aarch64_conda.lock | 32 +++++++++---------- 1 file changed, 15 insertions(+), 17 deletions(-) diff --git a/build_tools/cirrus/pymin_conda_forge_linux-aarch64_conda.lock b/build_tools/cirrus/pymin_conda_forge_linux-aarch64_conda.lock index e627bfbbeb7ae..907b7b50356bf 100644 --- a/build_tools/cirrus/pymin_conda_forge_linux-aarch64_conda.lock +++ b/build_tools/cirrus/pymin_conda_forge_linux-aarch64_conda.lock @@ -2,7 +2,7 @@ # platform: linux-aarch64 # input_hash: 2d8c526ab7c0c2f0ca509bfec3f035e5bd33b8096f194f0747f167c8aff66383 @EXPLICIT -https://conda.anaconda.org/conda-forge/linux-aarch64/ca-certificates-2024.8.30-hcefe29a_0.conda#70e57e8f59d2c98f86b49c69e5074be5 +https://conda.anaconda.org/conda-forge/linux-aarch64/ca-certificates-2024.12.14-hcefe29a_0.conda#83b4ad1e6dc14df5891f3fcfdeb44351 https://conda.anaconda.org/conda-forge/noarch/font-ttf-dejavu-sans-mono-2.37-hab24e00_0.tar.bz2#0c96522c6bdaed4b1566d11387caaf45 https://conda.anaconda.org/conda-forge/noarch/font-ttf-inconsolata-3.000-h77eed37_0.tar.bz2#34893075a5c9e55cdafac56607368fc6 https://conda.anaconda.org/conda-forge/noarch/font-ttf-source-code-pro-2.038-h77eed37_0.tar.bz2#4d59c254e01d9cde7957100457e2d5fb @@ -29,10 +29,9 @@ https://conda.anaconda.org/conda-forge/linux-aarch64/libstdcxx-14.2.0-h3f4de04_1 https://conda.anaconda.org/conda-forge/linux-aarch64/libzlib-1.3.1-h86ecc28_2.conda#08aad7cbe9f5a6b460d0976076b6ae64 https://conda.anaconda.org/conda-forge/linux-aarch64/openssl-3.4.0-h86ecc28_0.conda#b2f202b5bddafac824eb610b65dde98f https://conda.anaconda.org/conda-forge/linux-aarch64/pthread-stubs-0.4-h86ecc28_1002.conda#bb5a90c93e3bac3d5690acf76b4a6386 -https://conda.anaconda.org/conda-forge/linux-aarch64/xorg-libice-1.1.1-h57736b2_1.conda#99a9c8245a1cc6dacd292ffeca39425f -https://conda.anaconda.org/conda-forge/linux-aarch64/xorg-libxau-1.0.11-h86ecc28_1.conda#c5f72a733c461aa7785518d29b997cc8 +https://conda.anaconda.org/conda-forge/linux-aarch64/xorg-libice-1.1.2-h86ecc28_0.conda#c8d8ec3e00cd0fd8a231789b91a7c5b7 +https://conda.anaconda.org/conda-forge/linux-aarch64/xorg-libxau-1.0.12-h86ecc28_0.conda#d5397424399a66d33c80b1f2345a36a6 https://conda.anaconda.org/conda-forge/linux-aarch64/xorg-libxdmcp-1.1.5-h57736b2_0.conda#25a5a7b797fe6e084e04ffe2db02fc62 -https://conda.anaconda.org/conda-forge/linux-aarch64/xorg-xorgproto-2024.1-h86ecc28_1.conda#91cef7867bf2b47f614597b59705ff56 https://conda.anaconda.org/conda-forge/linux-aarch64/bzip2-1.0.8-h68df207_7.conda#56398c28220513b9ea13d7b450acfb20 https://conda.anaconda.org/conda-forge/linux-aarch64/expat-2.6.4-h5ad3122_0.conda#e8f1d587055376ea2419cc78696abd0b https://conda.anaconda.org/conda-forge/linux-aarch64/keyutils-1.6.1-h4e544f5_0.tar.bz2#1f24853e59c68892452ef94ddd8afd4b @@ -46,7 +45,7 @@ https://conda.anaconda.org/conda-forge/linux-aarch64/libnsl-2.0.1-h31becfc_0.con https://conda.anaconda.org/conda-forge/linux-aarch64/libntlm-1.4-hf897c2e_1002.tar.bz2#835c7c4137821de5c309f4266a51ba89 https://conda.anaconda.org/conda-forge/linux-aarch64/libpciaccess-0.18-h31becfc_0.conda#6d48179630f00e8c9ad9e30879ce1e54 https://conda.anaconda.org/conda-forge/linux-aarch64/libpng-1.6.44-hc4a20ef_0.conda#5d25802b25fcc7419fa13e21affaeb3a -https://conda.anaconda.org/conda-forge/linux-aarch64/libsqlite-3.47.0-hc4a20ef_1.conda#a6b185aac10d08028340858f77231b23 +https://conda.anaconda.org/conda-forge/linux-aarch64/libsqlite-3.47.2-h5eb1b54_0.conda#d4bf59f8783a4a66c0aec568f6de3ff4 https://conda.anaconda.org/conda-forge/linux-aarch64/libstdcxx-ng-14.2.0-hf1166c9_1.conda#0e75771b8a03afae5a2c6ce71bc733f5 https://conda.anaconda.org/conda-forge/linux-aarch64/libuuid-2.38.1-hb4cce97_0.conda#000e30b09db0b7c775b21695dff30969 https://conda.anaconda.org/conda-forge/linux-aarch64/libwebp-base-1.4.0-h31becfc_0.conda#5fd7ab3e5f382c70607fbac6335e6e19 @@ -56,7 +55,6 @@ https://conda.anaconda.org/conda-forge/linux-aarch64/mysql-common-9.0.1-h3f5c77f https://conda.anaconda.org/conda-forge/linux-aarch64/ncurses-6.5-hcccb83c_1.conda#91d49c85cacd92caa40cf375ef72a25d https://conda.anaconda.org/conda-forge/linux-aarch64/pixman-0.44.2-h86a87f0_0.conda#95689fc369832398e82d17c56ff5df8a https://conda.anaconda.org/conda-forge/linux-aarch64/tk-8.6.13-h194ca79_0.conda#f75105e0585851f818e0009dd1dde4dc -https://conda.anaconda.org/conda-forge/linux-aarch64/zlib-1.3.1-h86ecc28_2.conda#bc230abb5d21b63ff4799b0e75204783 https://conda.anaconda.org/conda-forge/linux-aarch64/brotli-bin-1.1.0-h86ecc28_2.conda#7d48b185fe1f722f8cda4539bb931f85 https://conda.anaconda.org/conda-forge/linux-aarch64/double-conversion-3.3.0-h2f0025b_0.conda#3b34b29f68d60abc1ce132b87f5a213c https://conda.anaconda.org/conda-forge/linux-aarch64/freetype-2.12.1-hf0a5ef3_2.conda#a5ab74c5bd158c3d5532b66d8d83d907 @@ -76,7 +74,7 @@ https://conda.anaconda.org/conda-forge/linux-aarch64/xcb-util-0.4.1-h5c728e9_2.c https://conda.anaconda.org/conda-forge/linux-aarch64/xcb-util-keysyms-0.4.1-h5c728e9_0.conda#57ca8564599ddf8b633c4ea6afee6f3a https://conda.anaconda.org/conda-forge/linux-aarch64/xcb-util-renderutil-0.3.10-h5c728e9_0.conda#7beeda4223c5484ef72d89fb66b7e8c1 https://conda.anaconda.org/conda-forge/linux-aarch64/xcb-util-wm-0.4.2-h5c728e9_0.conda#f14dcda6894722e421da2b7dcffb0b78 -https://conda.anaconda.org/conda-forge/linux-aarch64/xorg-libsm-1.2.4-hbac51e1_1.conda#18655ac9fc6624db89b33a89fed51c5f +https://conda.anaconda.org/conda-forge/linux-aarch64/xorg-libsm-1.2.5-h0808dbd_0.conda#3983c253f53f67a9d8710fc96646950f https://conda.anaconda.org/conda-forge/linux-aarch64/xorg-libx11-1.8.10-hca56bd8_1.conda#6e3e980940b26a060e553266ae0181a9 https://conda.anaconda.org/conda-forge/linux-aarch64/zstd-1.5.6-h02f22dd_0.conda#be8d5f8cf21aed237b8b182ea86b3dd6 https://conda.anaconda.org/conda-forge/linux-aarch64/brotli-1.1.0-h86ecc28_2.conda#5094acc34eb173f74205c0b55f0dd4a4 @@ -95,8 +93,8 @@ https://conda.anaconda.org/conda-forge/linux-aarch64/xcb-util-image-0.4.0-h5c728 https://conda.anaconda.org/conda-forge/linux-aarch64/xkeyboard-config-2.43-h86ecc28_0.conda#a809b8e3776fbc05696c82f8cf6f5a92 https://conda.anaconda.org/conda-forge/linux-aarch64/xorg-libxext-1.3.6-h57736b2_0.conda#bd1e86dd8aa3afd78a4bfdb4ef918165 https://conda.anaconda.org/conda-forge/linux-aarch64/xorg-libxfixes-6.0.1-h57736b2_0.conda#78f8715c002cc66991d7c11e3cf66039 -https://conda.anaconda.org/conda-forge/linux-aarch64/xorg-libxrender-0.9.11-h57736b2_1.conda#19fb476dc5cdd51b67719a6342fab237 -https://conda.anaconda.org/conda-forge/linux-aarch64/cairo-1.18.0-hdb1a16f_3.conda#080659f02bf2202c57f1cda4f9e51f21 +https://conda.anaconda.org/conda-forge/linux-aarch64/xorg-libxrender-0.9.12-h86ecc28_0.conda#ae2c2dd0e2d38d249887727db2af960e +https://conda.anaconda.org/conda-forge/linux-aarch64/cairo-1.18.2-h83712da_1.conda#e7b46975d2c9a4666da0e9bb8a087f28 https://conda.anaconda.org/conda-forge/linux-aarch64/ccache-4.10.1-ha3bccff_0.conda#7cd24a038d2727b5e6377975237a6cfa https://conda.anaconda.org/conda-forge/noarch/certifi-2024.8.30-pyhd8ed1ab_0.conda#12f7d00853807b0531775e9be891cb11 https://conda.anaconda.org/conda-forge/noarch/colorama-0.4.6-pyhd8ed1ab_1.conda#962b9857ee8e7018c22f2776ffa0b2d7 @@ -117,7 +115,7 @@ https://conda.anaconda.org/conda-forge/linux-aarch64/libllvm19-19.1.5-h2edbd07_0 https://conda.anaconda.org/conda-forge/linux-aarch64/libxkbcommon-1.7.0-h46f2afe_1.conda#78a24e611ab9c09c518f519be49c2e46 https://conda.anaconda.org/conda-forge/linux-aarch64/libxslt-1.1.39-h1cc9640_0.conda#13e1d3f9188e85c6d59a98651aced002 https://conda.anaconda.org/conda-forge/noarch/munkres-1.1.4-pyh9f0ad1d_0.tar.bz2#2ba8498c1018c1e9c61eb99b973dfe19 -https://conda.anaconda.org/conda-forge/linux-aarch64/openjpeg-2.5.2-h0d9d63b_0.conda#fd2898519e839d5ceb778343f39a3176 +https://conda.anaconda.org/conda-forge/linux-aarch64/openjpeg-2.5.3-h3f56577_0.conda#04231368e4af50d11184b50e14250993 https://conda.anaconda.org/conda-forge/noarch/packaging-24.2-pyhd8ed1ab_2.conda#3bfed7e6228ebf2f7b9eaa47f1b4e2aa https://conda.anaconda.org/conda-forge/noarch/pluggy-1.5.0-pyhd8ed1ab_1.conda#e9dcbce5f45f9ee500e728ae58b605b6 https://conda.anaconda.org/conda-forge/noarch/pyparsing-3.2.0-pyhd8ed1ab_2.conda#4c05a2bcf87bb495512374143b57cf28 @@ -134,12 +132,12 @@ https://conda.anaconda.org/conda-forge/linux-aarch64/xorg-libxcursor-1.2.3-h86ec https://conda.anaconda.org/conda-forge/linux-aarch64/xorg-libxdamage-1.1.6-h86ecc28_0.conda#d5773c4e4d64428d7ddaa01f6f845dc7 https://conda.anaconda.org/conda-forge/linux-aarch64/xorg-libxi-1.8.2-h57736b2_0.conda#eeee3bdb31c6acde2b81ad1b8c287087 https://conda.anaconda.org/conda-forge/linux-aarch64/xorg-libxrandr-1.5.4-h86ecc28_0.conda#dd3e74283a082381aa3860312e3c721e -https://conda.anaconda.org/conda-forge/linux-aarch64/xorg-libxxf86vm-1.1.5-h57736b2_4.conda#82fa1f5642ef7ac7172e295327ce20e2 +https://conda.anaconda.org/conda-forge/linux-aarch64/xorg-libxxf86vm-1.1.6-h86ecc28_0.conda#d745faa2d7c15092652e40a22bb261ed https://conda.anaconda.org/conda-forge/noarch/zipp-3.21.0-pyhd8ed1ab_1.conda#0c3cc595284c5e8f0f9900a9b228a332 -https://conda.anaconda.org/conda-forge/linux-aarch64/fonttools-4.55.2-py39hbebea31_0.conda#1476a4666ad3f055af36ae3003eb4873 +https://conda.anaconda.org/conda-forge/linux-aarch64/fonttools-4.55.3-py39hbebea31_0.conda#c885be0a33c5c0c56e345db57815c8d2 https://conda.anaconda.org/conda-forge/linux-aarch64/harfbuzz-9.0.0-hbf49d6b_1.conda#ceb458f664cab8550fcd74fff26451db https://conda.anaconda.org/conda-forge/noarch/importlib_resources-6.4.5-pyhd8ed1ab_1.conda#15798fa69312d433af690c8c42b3fb36 -https://conda.anaconda.org/conda-forge/noarch/joblib-1.4.2-pyhd8ed1ab_0.conda#25df261d4523d9f9783bcdb7208d872f +https://conda.anaconda.org/conda-forge/noarch/joblib-1.4.2-pyhd8ed1ab_1.conda#bf8243ee348f3a10a14ed0cae323e0c1 https://conda.anaconda.org/conda-forge/linux-aarch64/libclang-cpp19.1-19.1.5-default_he324ac1_0.conda#4dc511a04b2c13ccc5273038c18f1fa0 https://conda.anaconda.org/conda-forge/linux-aarch64/libclang13-19.1.5-default_h4390ef5_0.conda#616a4e906ea6196eae03f2ced5adea63 https://conda.anaconda.org/conda-forge/linux-aarch64/liblapacke-3.9.0-25_linuxaarch64_openblas.conda#1e68063075954830f707b41dab6c7fd8 @@ -160,7 +158,7 @@ https://conda.anaconda.org/conda-forge/noarch/meson-python-0.17.1-pyh70fd9c4_1.c https://conda.anaconda.org/conda-forge/noarch/pytest-xdist-3.6.1-pyhd8ed1ab_1.conda#59aad4fb37cabc0bacc73cf344612ddd https://conda.anaconda.org/conda-forge/linux-aarch64/scipy-1.13.1-py39hb921187_0.conda#1aac9080de661e03d286f18fb71e5240 https://conda.anaconda.org/conda-forge/linux-aarch64/blas-2.125-openblas.conda#dfbaf914827bc38dda840c90231c91df -https://conda.anaconda.org/conda-forge/linux-aarch64/matplotlib-base-3.9.3-py39hd333c8e_0.conda#c1129c276d7ed9c1191406a55d289d56 -https://conda.anaconda.org/conda-forge/linux-aarch64/qt6-main-6.8.0-h666f7c6_0.conda#1c50a44d681075eff85d0332624c927e -https://conda.anaconda.org/conda-forge/linux-aarch64/pyside6-6.8.0.2-py39h51c6ee1_0.conda#c130c84c26696485a720d85bd530e992 -https://conda.anaconda.org/conda-forge/linux-aarch64/matplotlib-3.9.3-py39ha65689a_0.conda#c991e8a7690e2f39a54b250cf751511b +https://conda.anaconda.org/conda-forge/linux-aarch64/matplotlib-base-3.9.4-py39hd333c8e_0.conda#d3c00b185510462fe6c3829f06bbfc82 +https://conda.anaconda.org/conda-forge/linux-aarch64/qt6-main-6.8.1-h0d3cc05_0.conda#2ed5cc4f5abc62d505b9a89a00f1dca8 +https://conda.anaconda.org/conda-forge/linux-aarch64/pyside6-6.8.1-py39h51c6ee1_0.conda#ba98ca3cd6725e007a6ca0870e8212dd +https://conda.anaconda.org/conda-forge/linux-aarch64/matplotlib-3.9.4-py39ha65689a_0.conda#3694fc225c2b4ef3943e74c81c43307d From bd76910df53c1458f41f5acf7d2d1dd2a8571026 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Lo=C3=AFc=20Est=C3=A8ve?= Date: Wed, 18 Dec 2024 03:57:00 +0100 Subject: [PATCH 108/159] CI Install PyTorch from conda-forge channel rather than pytorch (#30497) Co-authored-by: scikit-learn-bot --- .github/workflows/cuda-ci.yml | 2 +- ...a_forge_cuda_array-api_linux-64_conda.lock | 100 +++++++----------- ...ge_cuda_array-api_linux-64_environment.yml | 3 +- .../update_environments_and_lock_files.py | 4 +- 4 files changed, 44 insertions(+), 65 deletions(-) diff --git a/.github/workflows/cuda-ci.yml b/.github/workflows/cuda-ci.yml index ad00e0717a1bf..59c86f15926b1 100644 --- a/.github/workflows/cuda-ci.yml +++ b/.github/workflows/cuda-ci.yml @@ -71,6 +71,6 @@ jobs: conda activate sklearn python -c "import sklearn; sklearn.show_versions()" - SCIPY_ARRAY_API=1 pytest --pyargs sklearn -k 'array_api' + SCIPY_ARRAY_API=1 pytest --pyargs sklearn -k 'array_api' -v # Run in /home/runner to not load sklearn from the checkout repo working-directory: /home/runner diff --git a/build_tools/github/pylatest_conda_forge_cuda_array-api_linux-64_conda.lock b/build_tools/github/pylatest_conda_forge_cuda_array-api_linux-64_conda.lock index bdebc0d648176..c1d1995430d7b 100644 --- a/build_tools/github/pylatest_conda_forge_cuda_array-api_linux-64_conda.lock +++ b/build_tools/github/pylatest_conda_forge_cuda_array-api_linux-64_conda.lock @@ -1,41 +1,39 @@ # Generated by conda-lock. # platform: linux-64 -# input_hash: 7044e24fc9243a244c265e4b8c44e1304a8f55cd0cfa2d036ead6f92921d624e +# input_hash: ad3ced8bfb037ba949d6129ec446e3900b4e9a23f87df881b5804d13539972c9 @EXPLICIT https://conda.anaconda.org/conda-forge/linux-64/_libgcc_mutex-0.1-conda_forge.tar.bz2#d7c89558ba9fa0495403155b64376d81 https://conda.anaconda.org/conda-forge/linux-64/ca-certificates-2024.12.14-hbcca054_0.conda#720523eb0d6a9b0f6120c16b2aa4e7de -https://conda.anaconda.org/conda-forge/noarch/cuda-version-12.4-h3060b56_3.conda#c9a3fe8b957176e1a8452c6f3431b0d8 +https://conda.anaconda.org/conda-forge/noarch/cuda-version-11.8-h70ddcb2_3.conda#670f0e1593b8c1d84f57ad5fe5256799 https://conda.anaconda.org/conda-forge/noarch/font-ttf-dejavu-sans-mono-2.37-hab24e00_0.tar.bz2#0c96522c6bdaed4b1566d11387caaf45 https://conda.anaconda.org/conda-forge/noarch/font-ttf-inconsolata-3.000-h77eed37_0.tar.bz2#34893075a5c9e55cdafac56607368fc6 https://conda.anaconda.org/conda-forge/noarch/font-ttf-source-code-pro-2.038-h77eed37_0.tar.bz2#4d59c254e01d9cde7957100457e2d5fb https://conda.anaconda.org/conda-forge/noarch/font-ttf-ubuntu-0.83-h77eed37_3.conda#49023d73832ef61042f6a237cb2687e7 -https://conda.anaconda.org/conda-forge/linux-64/mkl-include-2022.1.0-h84fe81f_915.tar.bz2#2dcd1acca05c11410d4494d7fc7dfa2a +https://conda.anaconda.org/conda-forge/noarch/kernel-headers_linux-64-3.10.0-he073ed8_18.conda#ad8527bf134a90e1c9ed35fa0b64318c https://conda.anaconda.org/conda-forge/linux-64/python_abi-3.12-5_cp312.conda#0424ae29b104430108f5218a66db7260 -https://conda.anaconda.org/pytorch/noarch/pytorch-mutex-1.0-cuda.tar.bz2#a948316e36fb5b11223b3fcfa93f8358 https://conda.anaconda.org/conda-forge/noarch/tzdata-2024b-hc8b5060_0.conda#8ac3367aafb1cc0a068483c580af8015 -https://conda.anaconda.org/conda-forge/noarch/cuda-cccl_linux-64-12.4.127-ha770c72_2.conda#357fbcd43f1296b02d6738a2295abc24 -https://conda.anaconda.org/conda-forge/noarch/cuda-cudart-static_linux-64-12.4.127-h85509e4_2.conda#0b0522d8685968f25370d5c36bb9fba3 -https://conda.anaconda.org/conda-forge/noarch/cuda-cudart_linux-64-12.4.127-h85509e4_2.conda#329163110a96514802e9e64d971edf43 https://conda.anaconda.org/conda-forge/noarch/fonts-conda-forge-1-0.tar.bz2#f766549260d6815b0c52253f1fb1bb29 https://conda.anaconda.org/conda-forge/linux-64/ld_impl_linux-64-2.43-h712a8e2_2.conda#048b02e3962f066da18efe3a21b77672 https://conda.anaconda.org/conda-forge/linux-64/libglvnd-1.7.0-ha4b6fd6_2.conda#434ca7e50e40f4918ab701e3facd59a0 -https://conda.anaconda.org/conda-forge/noarch/cuda-cudart-dev_linux-64-12.4.127-h85509e4_2.conda#12039deb2a3f103f5756831702bf29fc +https://conda.anaconda.org/conda-forge/linux-64/llvm-openmp-19.1.5-h024ca30_0.conda#dc90d15c25a57f641f0b84c271e4761e +https://conda.anaconda.org/conda-forge/noarch/sysroot_linux-64-2.17-h4a8ded7_18.conda#0ea96f90a10838f58412aa84fdd9df09 +https://conda.anaconda.org/conda-forge/linux-64/_openmp_mutex-4.5-2_kmp_llvm.tar.bz2#562b26ba2e19059551a811e72ab7f793 https://conda.anaconda.org/conda-forge/noarch/fonts-conda-ecosystem-1-0.tar.bz2#fee5683a3f04bd15cbd8318b096a27ab https://conda.anaconda.org/conda-forge/linux-64/libegl-1.7.0-ha4b6fd6_2.conda#c151d5eb730e9b7480e6d48c0fc44048 https://conda.anaconda.org/conda-forge/linux-64/libopengl-1.7.0-ha4b6fd6_2.conda#7df50d44d4a14d6c31a2c54f2cd92157 -https://conda.anaconda.org/conda-forge/linux-64/_openmp_mutex-4.5-2_kmp_llvm.tar.bz2#562b26ba2e19059551a811e72ab7f793 https://conda.anaconda.org/conda-forge/linux-64/libgcc-14.2.0-h77fa898_1.conda#3cb76c3f10d3bc7f1105b2fc9db984df https://conda.anaconda.org/conda-forge/linux-64/alsa-lib-1.2.13-hb9d3cd8_0.conda#ae1370588aa6a5157c34c73e9bbb36a0 https://conda.anaconda.org/conda-forge/linux-64/aws-c-common-0.10.6-hb9d3cd8_0.conda#d7d4680337a14001b0e043e96529409b https://conda.anaconda.org/conda-forge/linux-64/c-ares-1.34.4-hb9d3cd8_0.conda#e2775acf57efd5af15b8e3d1d74d72d3 https://conda.anaconda.org/conda-forge/linux-64/libbrotlicommon-1.1.0-hb9d3cd8_2.conda#41b599ed2b02abcfdd84302bff174b23 -https://conda.anaconda.org/conda-forge/linux-64/libdeflate-1.22-hb9d3cd8_0.conda#b422943d5d772b7cc858b36ad2a92db5 +https://conda.anaconda.org/conda-forge/linux-64/libdeflate-1.23-h4ddbbb0_0.conda#8dfae1d2e74767e9ce36d5fa0d8605db https://conda.anaconda.org/conda-forge/linux-64/libexpat-2.6.4-h5888daf_0.conda#db833e03127376d461e1e13e76f09b6c https://conda.anaconda.org/conda-forge/linux-64/libgcc-ng-14.2.0-h69a702a_1.conda#e39480b9ca41323497b05492a63bc35b https://conda.anaconda.org/conda-forge/linux-64/libgfortran5-14.2.0-hd5240d6_1.conda#9822b874ea29af082e5d36098d25427d https://conda.anaconda.org/conda-forge/linux-64/liblzma-5.6.3-hb9d3cd8_1.conda#2ecf2f1c7e4e21fcfe6423a51a992d84 https://conda.anaconda.org/conda-forge/linux-64/libstdcxx-14.2.0-hc0a3c3a_1.conda#234a5554c53625688d51062645337328 https://conda.anaconda.org/conda-forge/linux-64/libutf8proc-2.9.0-hb9d3cd8_1.conda#1e936bd23d737aac62a18e9a1e7f8b18 +https://conda.anaconda.org/conda-forge/linux-64/libuv-1.49.2-hb9d3cd8_0.conda#070e3c9ddab77e38799d5c30b109c633 https://conda.anaconda.org/conda-forge/linux-64/libzlib-1.3.1-hb9d3cd8_2.conda#edb0dca6bc32e4f4789199455a1dbeb8 https://conda.anaconda.org/conda-forge/linux-64/openssl-3.4.0-hb9d3cd8_0.conda#23cc74f77eb99315c0360ec3533147a9 https://conda.anaconda.org/conda-forge/linux-64/pthread-stubs-0.4-hb9d3cd8_1002.conda#b3c17d95b5a10c6e64a21fa17573e70e @@ -70,22 +68,17 @@ https://conda.anaconda.org/conda-forge/linux-64/libuuid-2.38.1-h0b41bf4_0.conda# https://conda.anaconda.org/conda-forge/linux-64/libwebp-base-1.4.0-hd590300_0.conda#b26e8aa824079e1be0294e7152ca4559 https://conda.anaconda.org/conda-forge/linux-64/libxcb-1.17.0-h8a09558_0.conda#92ed62436b625154323d40d5f2f11dd7 https://conda.anaconda.org/conda-forge/linux-64/libxcrypt-4.4.36-hd590300_1.conda#5aa797f8787fe7a17d1b0821485b5adc -https://conda.anaconda.org/conda-forge/linux-64/llvm-openmp-15.0.7-h0cdce71_0.conda#589c9a3575a050b583241c3d688ad9aa https://conda.anaconda.org/conda-forge/linux-64/lz4-c-1.10.0-h5888daf_1.conda#9de5350a85c4a20c685259b889aa6393 https://conda.anaconda.org/conda-forge/linux-64/mysql-common-9.0.1-h266115a_3.conda#9411c61ff1070b5e065b32840c39faa5 https://conda.anaconda.org/conda-forge/linux-64/ncurses-6.5-he02047a_1.conda#70caf8bb6cf39a0b6b7efc885f51c0fe -https://conda.anaconda.org/conda-forge/linux-64/opencl-headers-2024.10.24-h5888daf_0.conda#3ba02cce423fdac1a8582bd6bb189359 https://conda.anaconda.org/conda-forge/linux-64/pixman-0.44.2-h29eaf8c_0.conda#5e2a7acfa2c24188af39e7944e1b3604 https://conda.anaconda.org/conda-forge/linux-64/s2n-1.5.9-h0fd0ee4_0.conda#f472432f3753c5ca763d2497e2ea30bf +https://conda.anaconda.org/conda-forge/linux-64/sleef-3.7-h1b44611_2.conda#4792f3259c6fdc0b730563a85b211dc0 https://conda.anaconda.org/conda-forge/linux-64/snappy-1.2.1-h8bd8927_1.conda#3b3e64af585eadfb52bb90b553db5edf https://conda.anaconda.org/conda-forge/linux-64/tk-8.6.13-noxft_h4845f30_101.conda#d453b98d9c83e71da0741bb0ff4d76bc -https://conda.anaconda.org/conda-forge/linux-64/yaml-0.2.5-h7f98852_2.tar.bz2#4cb3ad778ec2d5a7acbdf254eb1c42ae https://conda.anaconda.org/conda-forge/linux-64/aws-c-io-0.15.3-hbf5b6a4_4.conda#ad3a6713063c18b9232c48e89ada03ac https://conda.anaconda.org/conda-forge/linux-64/brotli-bin-1.1.0-hb9d3cd8_2.conda#c63b5e52939e795ba8d26e35d767a843 -https://conda.anaconda.org/conda-forge/linux-64/cuda-cudart-12.4.127-he02047a_2.conda#a748faa52331983fc3adcc3b116fe0e4 -https://conda.anaconda.org/conda-forge/linux-64/cuda-cupti-12.4.127-he02047a_2.conda#46422ef1b1161fb180027e50c598ecd0 -https://conda.anaconda.org/conda-forge/linux-64/cuda-nvrtc-12.4.127-he02047a_2.conda#80baf6262f4a1a0dde42d85aaa393402 -https://conda.anaconda.org/conda-forge/linux-64/cuda-nvtx-12.4.127-he02047a_2.conda#656a004b6e44f50ce71c65cab0d429b4 +https://conda.anaconda.org/conda-forge/linux-64/cudatoolkit-11.8.0-h4ba93d1_13.conda#eb43f5f1f16e2fad2eba22219c3e499b https://conda.anaconda.org/conda-forge/linux-64/double-conversion-3.3.0-h59595ed_0.conda#c2f83a5ddadadcdb08fe05863295ee97 https://conda.anaconda.org/conda-forge/linux-64/freetype-2.12.1-h267a509_2.conda#9ae35c3d96db2c94ce0cef86efdfa2cb https://conda.anaconda.org/conda-forge/linux-64/glog-0.7.1-hbabe93e_0.conda#ff862eebdfeb2fd048ae9dc92510baca @@ -94,22 +87,16 @@ https://conda.anaconda.org/conda-forge/linux-64/graphite2-1.3.13-h59595ed_1003.c https://conda.anaconda.org/conda-forge/linux-64/icu-75.1-he02047a_0.conda#8b189310083baabfb622af68fd9d3ae3 https://conda.anaconda.org/conda-forge/linux-64/lerc-4.0.0-h27087fc_0.tar.bz2#76bbff344f0134279f225174e9064c8f https://conda.anaconda.org/conda-forge/linux-64/libcrc32c-1.1.2-h9c3ff4c_0.tar.bz2#c965a5aa0d5c1c37ffc62dff36e28400 -https://conda.anaconda.org/conda-forge/linux-64/libcufft-11.2.1.3-he02047a_2.conda#d2641a67c207946ef96f1328c4a8e8ed -https://conda.anaconda.org/conda-forge/linux-64/libcufile-1.9.1.3-he02047a_2.conda#a051267bcb1912467c81d802a7d3465e -https://conda.anaconda.org/conda-forge/linux-64/libcurand-10.3.5.147-he02047a_2.conda#9c4886d513fd477df88d411cd274c202 https://conda.anaconda.org/conda-forge/linux-64/libdrm-2.4.124-hb9d3cd8_0.conda#8bc89311041d7fcb510238cf0848ccae https://conda.anaconda.org/conda-forge/linux-64/libedit-3.1.20191231-he28a2e2_2.tar.bz2#4d331e44109e3f0e19b4cb8f9b82f3e1 https://conda.anaconda.org/conda-forge/linux-64/libgfortran-ng-14.2.0-h69a702a_1.conda#0a7f4cd238267c88e5d69f7826a407eb https://conda.anaconda.org/conda-forge/linux-64/libnghttp2-1.64.0-h161d5f1_0.conda#19e57602824042dfd0446292ef90488b -https://conda.anaconda.org/conda-forge/linux-64/libnpp-12.2.5.30-he02047a_2.conda#a96a1edd18bee676cf2dcca251d3d6a4 -https://conda.anaconda.org/conda-forge/linux-64/libnvfatbin-12.4.127-he02047a_2.conda#d746b76642b4ac6e40f1219405672beb -https://conda.anaconda.org/conda-forge/linux-64/libnvjitlink-12.4.127-he02047a_2.conda#303845d6c48bf4185dc4138634650468 -https://conda.anaconda.org/conda-forge/linux-64/libnvjpeg-12.3.1.117-he02047a_2.conda#8f3ed0e41a4b505de40b4f96f4bfb0fa +https://conda.anaconda.org/conda-forge/linux-64/libopenblas-0.3.28-pthreads_h94d23a6_1.conda#62857b389e42b36b686331bec0922050 https://conda.anaconda.org/conda-forge/linux-64/libprotobuf-5.28.2-h5b01275_0.conda#ab0bff36363bec94720275a681af8b83 https://conda.anaconda.org/conda-forge/linux-64/libre2-11-2024.07.02-hbbce691_1.conda#2124de47357b7a516c0a3efd8f88c143 https://conda.anaconda.org/conda-forge/linux-64/libthrift-0.21.0-h0e7cc3e_0.conda#dcb95c0a98ba9ff737f7ae482aef7833 +https://conda.anaconda.org/conda-forge/linux-64/nccl-2.23.4.1-h03a54cd_3.conda#5ea398a88c7271b2e3ec56cd33da424f https://conda.anaconda.org/conda-forge/linux-64/ninja-1.12.1-h297d8ca_0.conda#3aa1c7e292afeff25a0091ddd7c69b72 -https://conda.anaconda.org/conda-forge/linux-64/ocl-icd-2.3.2-hb9d3cd8_2.conda#2e8d2b469559d6b2cb6fd4b34f9c8d7f https://conda.anaconda.org/conda-forge/linux-64/pcre2-10.44-hba22ea6_2.conda#df359c09c41cd186fffb93a2d87aa6f5 https://conda.anaconda.org/conda-forge/linux-64/qhull-2020.2-h434a139_5.conda#353823361b1d27eb3960efb076dfcaf6 https://conda.anaconda.org/conda-forge/linux-64/readline-8.2-h8228510_1.conda#47d31b792659ce70f470b5c82fdfb7a4 @@ -124,18 +111,18 @@ https://conda.anaconda.org/conda-forge/linux-64/zstd-1.5.6-ha6fb4c9_0.conda#4d05 https://conda.anaconda.org/conda-forge/linux-64/aws-c-event-stream-0.5.0-h7959bf6_11.conda#9b3fb60fe57925a92f399bc3fc42eccf https://conda.anaconda.org/conda-forge/linux-64/aws-c-http-0.9.2-hefd7a92_4.conda#5ce4df662d32d3123ea8da15571b6f51 https://conda.anaconda.org/conda-forge/linux-64/brotli-1.1.0-hb9d3cd8_2.conda#98514fe74548d768907ce7a13f680e8f -https://conda.anaconda.org/conda-forge/linux-64/cuda-opencl-12.4.127-he02047a_1.conda#1e98deda07c14d26c80d124cf0eb011a +https://conda.anaconda.org/conda-forge/linux-64/cudnn-9.3.0.75-h50b6be5_1.conda#660be3f87f4cd47853bedaebce9ec76e https://conda.anaconda.org/conda-forge/linux-64/fontconfig-2.15.0-h7e30c49_1.conda#8f5b0b297b59e1ac160ad4beec99dbee https://conda.anaconda.org/conda-forge/linux-64/krb5-1.21.3-h659f571_0.conda#3f43953b7d3fb3aaa1d0d0723d91e368 -https://conda.anaconda.org/conda-forge/linux-64/libcublas-12.4.5.8-he02047a_2.conda#d446adae085aa1ff37c44b69988a6f06 -https://conda.anaconda.org/conda-forge/linux-64/libcusparse-12.3.1.170-he02047a_2.conda#1c4c7ff54dc5b947f2ab8f5ff8a28dae +https://conda.anaconda.org/conda-forge/linux-64/libblas-3.9.0-25_linux64_openblas.conda#8ea26d42ca88ec5258802715fe1ee10b https://conda.anaconda.org/conda-forge/linux-64/libglib-2.82.2-h2ff4ddf_0.conda#13e8e54035ddd2b91875ba399f0f7c04 https://conda.anaconda.org/conda-forge/linux-64/libglx-1.7.0-ha4b6fd6_2.conda#c8013e438185f33b13814c5c488acd5c https://conda.anaconda.org/conda-forge/linux-64/libhiredis-1.0.2-h2cc385e_0.tar.bz2#b34907d3a81a3cd8095ee83d174c074a -https://conda.anaconda.org/conda-forge/linux-64/libtiff-4.7.0-hc4654cb_2.conda#be54fb40ea32e8fe9dbaa94d4528b57e +https://conda.anaconda.org/conda-forge/linux-64/libtiff-4.7.0-hd9ff511_3.conda#0ea6510969e1296cc19966fad481f6de https://conda.anaconda.org/conda-forge/linux-64/libxml2-2.13.5-h8d12d68_1.conda#1a21e49e190d1ffe58531a81b6e400e1 https://conda.anaconda.org/conda-forge/linux-64/mpfr-4.2.1-h90cbb55_3.conda#2eeb50cab6652538eee8fc0bc3340c81 https://conda.anaconda.org/conda-forge/linux-64/mysql-libs-9.0.1-he0572af_3.conda#dd9da69dd4c2bf798c0b8bd4786cafb5 +https://conda.anaconda.org/conda-forge/linux-64/openblas-0.3.28-pthreads_h6ec200e_1.conda#8fe5d50db07e92519cc639cb0aef9b1b https://conda.anaconda.org/conda-forge/linux-64/orc-2.0.3-h97ab989_1.conda#2f46eae652623114e112df13fae311cf https://conda.anaconda.org/conda-forge/linux-64/python-3.12.8-h9e4cc4f_1_cpython.conda#7fd2fd79436d9b473812f14e86746844 https://conda.anaconda.org/conda-forge/linux-64/re2-2024.07.02-h77b4e00_1.conda#01093ff37c1b5e6bf9f17c0116747d11 @@ -149,7 +136,6 @@ https://conda.anaconda.org/conda-forge/linux-64/aws-c-auth-0.8.0-hb921021_15.con https://conda.anaconda.org/conda-forge/linux-64/aws-c-mqtt-0.11.0-h11f4f37_12.conda#96c3e0221fa2da97619ee82faa341a73 https://conda.anaconda.org/conda-forge/linux-64/cairo-1.18.2-h3394656_1.conda#b34c2833a1f56db610aeb27f206d800d https://conda.anaconda.org/conda-forge/linux-64/ccache-4.10.1-h065aff2_0.conda#d6b48c138e0c8170a6fe9c136e063540 -https://conda.anaconda.org/conda-forge/noarch/certifi-2024.8.30-pyhd8ed1ab_0.conda#12f7d00853807b0531775e9be891cb11 https://conda.anaconda.org/conda-forge/noarch/colorama-0.4.6-pyhd8ed1ab_1.conda#962b9857ee8e7018c22f2776ffa0b2d7 https://conda.anaconda.org/conda-forge/noarch/cpython-3.12.8-py312hd8ed1ab_1.conda#caa04d37126e82822468d6bdf50f5ebd https://conda.anaconda.org/conda-forge/noarch/cycler-0.12.1-pyhd8ed1ab_1.conda#44600c4667a319d67dbe0681fc0bc833 @@ -160,15 +146,17 @@ https://conda.anaconda.org/conda-forge/noarch/exceptiongroup-1.2.2-pyhd8ed1ab_1. https://conda.anaconda.org/conda-forge/noarch/execnet-2.1.1-pyhd8ed1ab_1.conda#a71efeae2c160f6789900ba2631a2c90 https://conda.anaconda.org/conda-forge/linux-64/fastrlock-0.8.2-py312h30efb56_2.conda#7065ec5a4909f925e305b77e505b0aec https://conda.anaconda.org/conda-forge/noarch/filelock-3.16.1-pyhd8ed1ab_1.conda#d692e9ba6f92dc51484bf3477e36ce7c +https://conda.anaconda.org/conda-forge/noarch/fsspec-2024.10.0-pyhd8ed1ab_1.conda#906fe13095e734cb413b57a49116cdc8 https://conda.anaconda.org/conda-forge/noarch/iniconfig-2.0.0-pyhd8ed1ab_1.conda#6837f3eff7dcea42ecd714ce1ac2b108 https://conda.anaconda.org/conda-forge/linux-64/kiwisolver-1.4.7-py312h68727a3_0.conda#444266743652a4f1538145e9362f6d3b https://conda.anaconda.org/conda-forge/linux-64/lcms2-2.16-hb7c19ff_0.conda#51bb7010fc86f70eee639b4bb7a894f5 +https://conda.anaconda.org/conda-forge/linux-64/libcblas-3.9.0-25_linux64_openblas.conda#5dbd1b0fc0d01ec5e0e1fbe667281a11 https://conda.anaconda.org/conda-forge/linux-64/libcups-2.3.3-h4637d8d_4.conda#d4529f4dff3057982a7617c7ac58fde3 https://conda.anaconda.org/conda-forge/linux-64/libcurl-8.11.1-h332b0f4_0.conda#2b3e0081006dc21e8bf53a91c83a055c -https://conda.anaconda.org/conda-forge/linux-64/libcusolver-11.6.1.9-he02047a_2.conda#9f6877f8936be962f598db5e9b8efc51 https://conda.anaconda.org/conda-forge/linux-64/libgl-1.7.0-ha4b6fd6_2.conda#928b8be80851f5d8ffb016f9c81dae7a https://conda.anaconda.org/conda-forge/linux-64/libgrpc-1.67.1-hc2c308b_0.conda#4606a4647bfe857e3cfe21ca12ac3afb https://conda.anaconda.org/conda-forge/linux-64/libhwloc-2.11.2-default_h0d58e46_1001.conda#804ca9e91bcaea0824a341d55b1684f2 +https://conda.anaconda.org/conda-forge/linux-64/liblapack-3.9.0-25_linux64_openblas.conda#4dc03a53fc69371a6158d0ed37214cd3 https://conda.anaconda.org/conda-forge/linux-64/libllvm19-19.1.5-ha7bfdaf_0.conda#76f3749eda7b24816aacd55b9f31447a https://conda.anaconda.org/conda-forge/linux-64/libxkbcommon-1.7.0-h2c5496b_1.conda#e2eaefa4de2b7237af7c907b8bbc760a https://conda.anaconda.org/conda-forge/linux-64/libxslt-1.1.39-h76b75d6_0.conda#e71f31f8cfb0a91439f2086fc8aa0461 @@ -179,11 +167,11 @@ https://conda.anaconda.org/conda-forge/noarch/munkres-1.1.4-pyh9f0ad1d_0.tar.bz2 https://conda.anaconda.org/conda-forge/noarch/networkx-3.4.2-pyh267e887_2.conda#fd40bf7f7f4bc4b647dc8512053d9873 https://conda.anaconda.org/conda-forge/linux-64/openjpeg-2.5.3-h5fbd93e_0.conda#9e5816bc95d285c115a3ebc2f8563564 https://conda.anaconda.org/conda-forge/noarch/packaging-24.2-pyhd8ed1ab_2.conda#3bfed7e6228ebf2f7b9eaa47f1b4e2aa +https://conda.anaconda.org/conda-forge/noarch/pip-24.3.1-pyh145f28c_1.conda#04b95993de18684b24bb742ffe0e90a8 https://conda.anaconda.org/conda-forge/noarch/pluggy-1.5.0-pyhd8ed1ab_1.conda#e9dcbce5f45f9ee500e728ae58b605b6 https://conda.anaconda.org/conda-forge/noarch/pyparsing-3.2.0-pyhd8ed1ab_2.conda#4c05a2bcf87bb495512374143b57cf28 https://conda.anaconda.org/conda-forge/noarch/python-tzdata-2024.2-pyhd8ed1ab_1.conda#c0def296b2f6d2dd7b030c2a7f66bb1f https://conda.anaconda.org/conda-forge/noarch/pytz-2024.1-pyhd8ed1ab_0.conda#3eeeeb9e4827ace8c0c1419c85d590ad -https://conda.anaconda.org/conda-forge/linux-64/pyyaml-6.0.2-py312h66e93f0_1.conda#549e5930e768548a89c23f595dac5a95 https://conda.anaconda.org/conda-forge/noarch/setuptools-75.6.0-pyhff2d567_1.conda#fc80f7995e396cbaeabd23cf46c413dc https://conda.anaconda.org/conda-forge/noarch/six-1.17.0-pyhd8ed1ab_0.conda#a451d576819089b0d672f18768be0f65 https://conda.anaconda.org/conda-forge/noarch/threadpoolctl-3.5.0-pyhc1e730c_0.conda#df68d78237980a159bd7149f33c0e8fd @@ -192,7 +180,6 @@ https://conda.anaconda.org/conda-forge/noarch/tomli-2.2.1-pyhd8ed1ab_1.conda#ac9 https://conda.anaconda.org/conda-forge/linux-64/tornado-6.4.2-py312h66e93f0_0.conda#e417822cb989e80a0d2b1b576fdd1657 https://conda.anaconda.org/conda-forge/noarch/typing_extensions-4.12.2-pyha770c72_1.conda#d17f13df8b65464ca316cbc000a3cb64 https://conda.anaconda.org/conda-forge/linux-64/unicodedata2-15.1.0-py312h66e93f0_1.conda#588486a61153f94c7c13816f7069e440 -https://conda.anaconda.org/conda-forge/noarch/wheel-0.45.1-pyhd8ed1ab_1.conda#75cb7132eb58d97896e173ef12ac9986 https://conda.anaconda.org/conda-forge/linux-64/xcb-util-cursor-0.1.5-hb9d3cd8_0.conda#eb44b3b6deb1cab08d72cb61686fe64c https://conda.anaconda.org/conda-forge/linux-64/xorg-libxcomposite-0.4.6-hb9d3cd8_2.conda#d3c295b50f092ab525ffe3c2aa4b7413 https://conda.anaconda.org/conda-forge/linux-64/xorg-libxcursor-1.2.3-hb9d3cd8_0.conda#2ccd714aa2242315acaf0a67faea780b @@ -203,7 +190,6 @@ https://conda.anaconda.org/conda-forge/linux-64/xorg-libxxf86vm-1.1.6-hb9d3cd8_0 https://conda.anaconda.org/conda-forge/linux-64/aws-c-s3-0.7.7-hf454442_0.conda#947c82025693bebd557f782bb5d6b469 https://conda.anaconda.org/conda-forge/linux-64/azure-core-cpp-1.14.0-h5cfcd09_0.conda#0a8838771cc2e985cd295e01ae83baf1 https://conda.anaconda.org/conda-forge/linux-64/coverage-7.6.9-py312h178313f_0.conda#a6a5f52f8260983b0aaeebcebf558a3e -https://conda.anaconda.org/conda-forge/linux-64/cuda-libraries-12.4.1-ha770c72_1.conda#6bb3f998485d4344a7539e0b218b3fc1 https://conda.anaconda.org/conda-forge/linux-64/fonttools-4.55.3-py312h178313f_0.conda#968104bfe69e21fadeb30edd9c3785f9 https://conda.anaconda.org/conda-forge/linux-64/gmpy2-2.1.5-py312h7201bc8_3.conda#673ef4d6611f5b4ca7b5c1f8c65a38dc https://conda.anaconda.org/conda-forge/linux-64/harfbuzz-9.0.0-hda332d3_1.conda#76b32dcf243444aea9c6b804bcfa40b8 @@ -212,56 +198,52 @@ https://conda.anaconda.org/conda-forge/noarch/joblib-1.4.2-pyhd8ed1ab_1.conda#bf https://conda.anaconda.org/conda-forge/linux-64/libclang-cpp19.1-19.1.5-default_hb5137d0_0.conda#ec8649c89988d8a443c252c20f259b72 https://conda.anaconda.org/conda-forge/linux-64/libclang13-19.1.5-default_h9c6a7e4_0.conda#a3a5997b6b47373f0c1608d8503eb4e6 https://conda.anaconda.org/conda-forge/linux-64/libgoogle-cloud-2.32.0-h804f50b_0.conda#3d96df4d6b1c88455e05b94ce8a14a53 -https://conda.anaconda.org/conda-forge/noarch/meson-1.6.0-pyhd8ed1ab_1.conda#59d45dbe1b0a123966266340b579d366 +https://conda.anaconda.org/conda-forge/linux-64/liblapacke-3.9.0-25_linux64_openblas.conda#8f5ead31b3a168aedd488b8a87736c41 +https://conda.anaconda.org/conda-forge/linux-64/libmagma-2.8.0-h9ddd185_1.conda#2ed47b19940065845dae91ee58ef7957 +https://conda.anaconda.org/conda-forge/noarch/meson-1.6.1-pyhd8ed1ab_0.conda#0062fb0a7f5da474705d0ce626de12f4 +https://conda.anaconda.org/conda-forge/linux-64/numpy-2.2.0-py312h7e784f5_0.conda#c9e9a81299192e77428f40711a4fb00d https://conda.anaconda.org/conda-forge/linux-64/openldap-2.6.9-he970967_0.conda#ca2de8bbdc871bce41dbf59e51324165 https://conda.anaconda.org/conda-forge/linux-64/pillow-11.0.0-py312h7b63e92_0.conda#385f46a4df6f97892503a841121a9acf -https://conda.anaconda.org/conda-forge/noarch/pip-24.3.1-pyh8b19718_0.conda#5dd546fe99b44fda83963d15f84263b7 https://conda.anaconda.org/conda-forge/noarch/pyproject-metadata-0.9.0-pyhd8ed1ab_1.conda#1239146a53a383a84633800294120f17 https://conda.anaconda.org/conda-forge/noarch/pytest-8.3.4-pyhd8ed1ab_1.conda#799ed216dc6af62520f32aa39bc1c2bb https://conda.anaconda.org/conda-forge/noarch/python-dateutil-2.9.0.post0-pyhff2d567_1.conda#5ba79d7c71f03c678c8ead841f347d6e https://conda.anaconda.org/conda-forge/linux-64/tbb-2021.13.0-hceb3a55_1.conda#ba7726b8df7b9d34ea80e82b097a4893 https://conda.anaconda.org/conda-forge/linux-64/xorg-libxtst-1.2.5-hb9d3cd8_3.conda#7bbe9a0cc0df0ac5f5a8ad6d6a11af2f +https://conda.anaconda.org/conda-forge/noarch/array-api-strict-2.2-pyhd8ed1ab_0.conda#5f8d3e0f6b42318772d0f1cdddfe3025 https://conda.anaconda.org/conda-forge/linux-64/aws-crt-cpp-0.29.7-hd92328a_7.conda#02b95564257d5c3db9c06beccf711f95 https://conda.anaconda.org/conda-forge/linux-64/azure-identity-cpp-1.10.0-h113e628_0.conda#73f73f60854f325a55f1d31459f2ab73 https://conda.anaconda.org/conda-forge/linux-64/azure-storage-common-cpp-12.8.0-h736e048_1.conda#13de36be8de3ae3f05ba127631599213 -https://conda.anaconda.org/conda-forge/noarch/cuda-runtime-12.4.1-ha804496_0.conda#48829f4ef6005ae8d4867b99168ff2b8 +https://conda.anaconda.org/conda-forge/linux-64/blas-devel-3.9.0-25_linux64_openblas.conda#02c516384c77f5a7b4d03ed6c0412c57 +https://conda.anaconda.org/conda-forge/linux-64/contourpy-1.3.1-py312h68727a3_0.conda#f5fbba0394ee45e9a64a73c2a994126a +https://conda.anaconda.org/conda-forge/linux-64/cupy-core-13.3.0-py312haa09b14_2.conda#565acd25611fce8f002b9ed10bd07165 https://conda.anaconda.org/conda-forge/linux-64/libgoogle-cloud-storage-2.32.0-h0121fbd_0.conda#877a5ec0431a5af83bf0cd0522bfe661 +https://conda.anaconda.org/conda-forge/linux-64/libmagma_sparse-2.8.0-h9ddd185_0.conda#f4eb3cfeaf9d91e72d5b2b8706bf059f https://conda.anaconda.org/conda-forge/linux-64/libpq-17.2-h3b95a9b_1.conda#37724d8bae042345a19ca1a25dde786b https://conda.anaconda.org/conda-forge/noarch/meson-python-0.17.1-pyh70fd9c4_1.conda#7a02679229c6c2092571b4c025055440 -https://conda.anaconda.org/conda-forge/linux-64/mkl-2022.1.0-h84fe81f_915.tar.bz2#b9c8f925797a93dbff45e1626b025a6b +https://conda.anaconda.org/conda-forge/linux-64/mkl-2024.2.2-ha957f24_16.conda#1459379c79dda834673426504d52b319 +https://conda.anaconda.org/conda-forge/linux-64/pandas-2.2.3-py312hf9745cd_1.conda#8bce4f6caaf8c5448c7ac86d87e26b4b +https://conda.anaconda.org/conda-forge/linux-64/polars-1.17.1-py312hda0fa55_0.conda#7ac74b8f85b43224508108f850617dad https://conda.anaconda.org/conda-forge/noarch/pytest-cov-6.0.0-pyhd8ed1ab_1.conda#79963c319d1be62c8fd3e34555816e01 https://conda.anaconda.org/conda-forge/noarch/pytest-xdist-3.6.1-pyhd8ed1ab_1.conda#59aad4fb37cabc0bacc73cf344612ddd +https://conda.anaconda.org/conda-forge/linux-64/scipy-1.14.1-py312h62794b6_2.conda#94688dd449f6c092e5f951780235aca1 https://conda.anaconda.org/conda-forge/noarch/sympy-1.13.3-pyh2585a3b_104.conda#68085d736d2b2f54498832b65059875d https://conda.anaconda.org/conda-forge/linux-64/aws-sdk-cpp-1.11.458-hc430e4a_4.conda#aeefac461bea1f126653c1285cf5af08 https://conda.anaconda.org/conda-forge/linux-64/azure-storage-blobs-cpp-12.13.0-h3cf044e_1.conda#7eb66060455c7a47d9dcdbfa9f46579b -https://conda.anaconda.org/conda-forge/linux-64/libblas-3.9.0-16_linux64_mkl.tar.bz2#85f61af03fd291dae33150ffe89dc09a -https://conda.anaconda.org/conda-forge/linux-64/mkl-devel-2022.1.0-ha770c72_916.tar.bz2#69ba49e445f87aea2cba343a71a35ca2 -https://conda.anaconda.org/pytorch/linux-64/pytorch-cuda-12.4-hc786d27_7.tar.bz2#06635b1bbf5e2fef4a8b9b282500cd7b +https://conda.anaconda.org/conda-forge/linux-64/blas-2.125-openblas.conda#0c46b8a31a587738befc587dd8e52558 +https://conda.anaconda.org/conda-forge/linux-64/cupy-13.3.0-py312h8e83189_2.conda#75f6ffc66a1f05ce4f09e83511c9d852 +https://conda.anaconda.org/conda-forge/linux-64/libtorch-2.5.1-cuda118_hb34f2e8_303.conda#da799bf557ff6376a1a58f40bddfb293 +https://conda.anaconda.org/conda-forge/linux-64/matplotlib-base-3.10.0-py312hd3ec401_0.conda#c27a17a8c54c0d35cf83bbc0de8f7f77 +https://conda.anaconda.org/conda-forge/linux-64/pyamg-5.2.1-py312hc39e661_1.conda#372efc32220f0dfb603e5b31ffaefa23 https://conda.anaconda.org/conda-forge/linux-64/qt6-main-6.8.1-h9d28a51_0.conda#7e8e17c44e7af62c77de7a0158afc35c https://conda.anaconda.org/conda-forge/linux-64/azure-storage-files-datalake-cpp-12.12.0-ha633028_1.conda#7c1980f89dd41b097549782121a73490 -https://conda.anaconda.org/conda-forge/linux-64/libcblas-3.9.0-16_linux64_mkl.tar.bz2#361bf757b95488de76c4f123805742d3 -https://conda.anaconda.org/conda-forge/linux-64/liblapack-3.9.0-16_linux64_mkl.tar.bz2#a2f166748917d6d6e4707841ca1f519e https://conda.anaconda.org/conda-forge/linux-64/pyside6-6.8.1-py312h91f0f75_0.conda#0b7900a6d6f6c441acad5e9ab51001ab +https://conda.anaconda.org/conda-forge/linux-64/pytorch-2.5.1-cuda118_py312h919e71f_303.conda#f2fd2356f07999ac24b84b097bb96749 https://conda.anaconda.org/conda-forge/linux-64/libarrow-18.1.0-h44a453e_6_cpu.conda#2cf6d608d6e66506f69797d5c6944c35 -https://conda.anaconda.org/conda-forge/linux-64/liblapacke-3.9.0-16_linux64_mkl.tar.bz2#44ccc4d4dca6a8d57fa17442bc64b5a1 -https://conda.anaconda.org/conda-forge/linux-64/numpy-2.2.0-py312h7e784f5_0.conda#c9e9a81299192e77428f40711a4fb00d -https://conda.anaconda.org/conda-forge/noarch/array-api-strict-2.2-pyhd8ed1ab_0.conda#5f8d3e0f6b42318772d0f1cdddfe3025 -https://conda.anaconda.org/conda-forge/linux-64/blas-devel-3.9.0-16_linux64_mkl.tar.bz2#3f92c1c9e1c0e183462c5071aa02cae1 -https://conda.anaconda.org/conda-forge/linux-64/contourpy-1.3.1-py312h68727a3_0.conda#f5fbba0394ee45e9a64a73c2a994126a -https://conda.anaconda.org/conda-forge/linux-64/cupy-core-13.3.0-py312h1acd1a8_2.conda#15e9530e87664584a6b409ecdf5c9264 +https://conda.anaconda.org/conda-forge/linux-64/matplotlib-3.10.0-py312h7900ff3_0.conda#89cde9791e6f6355266e7d4455207a5b +https://conda.anaconda.org/conda-forge/linux-64/pytorch-gpu-2.5.1-cuda126hf7c78f0_303.conda#afaf760e55725108ae78ed41198c49bb https://conda.anaconda.org/conda-forge/linux-64/libarrow-acero-18.1.0-hcb10f89_6_cpu.conda#143f9288b64759a6427563f058c62f2b https://conda.anaconda.org/conda-forge/linux-64/libparquet-18.1.0-h081d1f1_6_cpu.conda#68788df49ce7480187eb6387f15b2b67 -https://conda.anaconda.org/conda-forge/linux-64/pandas-2.2.3-py312hf9745cd_1.conda#8bce4f6caaf8c5448c7ac86d87e26b4b -https://conda.anaconda.org/conda-forge/linux-64/polars-1.17.1-py312hda0fa55_0.conda#7ac74b8f85b43224508108f850617dad https://conda.anaconda.org/conda-forge/linux-64/pyarrow-core-18.1.0-py312h01725c0_0_cpu.conda#ee80934a6c280ff8635f8db5dec11e04 -https://conda.anaconda.org/conda-forge/linux-64/scipy-1.14.1-py312h62794b6_2.conda#94688dd449f6c092e5f951780235aca1 -https://conda.anaconda.org/conda-forge/linux-64/blas-2.116-mkl.tar.bz2#c196a26abf6b4f132c88828ab7c2231c -https://conda.anaconda.org/conda-forge/linux-64/cupy-13.3.0-py312h7d319b9_2.conda#009ef049020fef7d1541183d52fab5a9 https://conda.anaconda.org/conda-forge/linux-64/libarrow-dataset-18.1.0-hcb10f89_6_cpu.conda#20ca46a6bc714a6ab189d5b3f46e66d8 -https://conda.anaconda.org/conda-forge/linux-64/matplotlib-base-3.9.4-py312hd3ec401_0.conda#b39b563d1a75c7b9b623e2a2b42d9e6d -https://conda.anaconda.org/conda-forge/linux-64/pyamg-5.2.1-py312hc39e661_1.conda#372efc32220f0dfb603e5b31ffaefa23 https://conda.anaconda.org/conda-forge/linux-64/libarrow-substrait-18.1.0-h3ee7192_6_cpu.conda#aa313b3168caf98d00b3753f5ba27650 -https://conda.anaconda.org/conda-forge/linux-64/matplotlib-3.9.4-py312h7900ff3_0.conda#2b1df96ad1f394cb0d3e67a930ac19c0 https://conda.anaconda.org/conda-forge/linux-64/pyarrow-18.1.0-py312h7900ff3_0.conda#ac65b70df28687c6af4270923c020bdd -https://conda.anaconda.org/pytorch/linux-64/pytorch-2.5.1-py3.12_cuda12.4_cudnn9.1.0_0.tar.bz2#42164c6ce8e563c20a542686a8b9b964 -https://conda.anaconda.org/pytorch/linux-64/torchtriton-3.1.0-py312.tar.bz2#bb4b2d07cb6b9b476e78740c08ba69fe diff --git a/build_tools/github/pylatest_conda_forge_cuda_array-api_linux-64_environment.yml b/build_tools/github/pylatest_conda_forge_cuda_array-api_linux-64_environment.yml index e2ffb1429aa1d..130627b9b7f7b 100644 --- a/build_tools/github/pylatest_conda_forge_cuda_array-api_linux-64_environment.yml +++ b/build_tools/github/pylatest_conda_forge_cuda_array-api_linux-64_environment.yml @@ -25,8 +25,7 @@ dependencies: - pytest-cov - coverage - ccache - - pytorch::pytorch - - pytorch-cuda + - pytorch-gpu - polars - pyarrow - cupy diff --git a/build_tools/update_environments_and_lock_files.py b/build_tools/update_environments_and_lock_files.py index 1c9869cc6be0a..829b35ff204ae 100644 --- a/build_tools/update_environments_and_lock_files.py +++ b/build_tools/update_environments_and_lock_files.py @@ -100,9 +100,7 @@ def remove_from(alist, to_remove): "conda_dependencies": common_dependencies + [ "ccache", - # Make sure pytorch comes from the pytorch channel and not conda-forge - "pytorch::pytorch", - "pytorch-cuda", + "pytorch-gpu", "polars", "pyarrow", "cupy", From 24ffd96993f0e948aa72338e27e09a57dec08381 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Lo=C3=AFc=20Est=C3=A8ve?= Date: Wed, 18 Dec 2024 07:05:01 +0100 Subject: [PATCH 109/159] FIX Fix device detection when array API dispatch is disabled (#30454) Co-authored-by: Olivier Grisel Co-authored-by: Omar Salman --- .../sklearn.metrics/30454.fix.rst | 3 ++ sklearn/metrics/tests/test_common.py | 34 +++++++++++++++++++ sklearn/utils/_array_api.py | 13 +++++-- sklearn/utils/estimator_checks.py | 34 +++++++++++++++++++ sklearn/utils/tests/test_array_api.py | 33 +++++++++++------- 5 files changed, 102 insertions(+), 15 deletions(-) create mode 100644 doc/whats_new/upcoming_changes/sklearn.metrics/30454.fix.rst diff --git a/doc/whats_new/upcoming_changes/sklearn.metrics/30454.fix.rst b/doc/whats_new/upcoming_changes/sklearn.metrics/30454.fix.rst new file mode 100644 index 0000000000000..a53850e324e90 --- /dev/null +++ b/doc/whats_new/upcoming_changes/sklearn.metrics/30454.fix.rst @@ -0,0 +1,3 @@ +- Fix regression when scikit-learn metric called on PyTorch CPU tensors would + raise an error (with array API dispatch disabled which is the default). + By :user:`Loïc Estève ` diff --git a/sklearn/metrics/tests/test_common.py b/sklearn/metrics/tests/test_common.py index fa13426c7a68a..feaefb4204973 100644 --- a/sklearn/metrics/tests/test_common.py +++ b/sklearn/metrics/tests/test_common.py @@ -1817,6 +1817,40 @@ def check_array_api_metric( if isinstance(multioutput, np.ndarray): metric_kwargs["multioutput"] = xp.asarray(multioutput, device=device) + # When array API dispatch is disabled, and np.asarray works (for example PyTorch + # with CPU device), calling the metric function with such numpy compatible inputs + # should work (albeit by implicitly converting to numpy arrays instead of + # dispatching to the array library). + try: + np.asarray(a_xp) + np.asarray(b_xp) + numpy_as_array_works = True + except TypeError: + # PyTorch with CUDA device and CuPy raise TypeError consistently. + # Exception type may need to be updated in the future for other + # libraries. + numpy_as_array_works = False + + if numpy_as_array_works: + metric_xp = metric(a_xp, b_xp, **metric_kwargs) + assert_allclose( + metric_xp, + metric_np, + atol=_atol_for_type(dtype_name), + ) + metric_xp_mixed_1 = metric(a_np, b_xp, **metric_kwargs) + assert_allclose( + metric_xp_mixed_1, + metric_np, + atol=_atol_for_type(dtype_name), + ) + metric_xp_mixed_2 = metric(a_xp, b_np, **metric_kwargs) + assert_allclose( + metric_xp_mixed_2, + metric_np, + atol=_atol_for_type(dtype_name), + ) + with config_context(array_api_dispatch=True): metric_xp = metric(a_xp, b_xp, **metric_kwargs) diff --git a/sklearn/utils/_array_api.py b/sklearn/utils/_array_api.py index e380a2311355e..e8e0aa3db1fc0 100644 --- a/sklearn/utils/_array_api.py +++ b/sklearn/utils/_array_api.py @@ -130,10 +130,17 @@ def _check_array_api_dispatch(array_api_dispatch): def _single_array_device(array): """Hardware device where the array data resides on.""" - if isinstance(array, (numpy.ndarray, numpy.generic)) or not hasattr( - array, "device" + if ( + isinstance(array, (numpy.ndarray, numpy.generic)) + or not hasattr(array, "device") + # When array API dispatch is disabled, we expect the scikit-learn code + # to use np.asarray so that the resulting NumPy array will implicitly use the + # CPU. In this case, scikit-learn should stay as device neutral as possible, + # hence the use of `device=None` which is accepted by all libraries, before + # and after the expected conversion to NumPy via np.asarray. + or not get_config()["array_api_dispatch"] ): - return "cpu" + return None else: return array.device diff --git a/sklearn/utils/estimator_checks.py b/sklearn/utils/estimator_checks.py index 7416216dda520..f68fd8d091119 100644 --- a/sklearn/utils/estimator_checks.py +++ b/sklearn/utils/estimator_checks.py @@ -1113,6 +1113,40 @@ def check_array_api_input( "transform", ) + try: + np.asarray(X_xp) + np.asarray(y_xp) + # TODO There are a few errors in SearchCV with array-api-strict because + # we end up doing X[train_indices] where X is an array-api-strict array + # and train_indices is a numpy array. array-api-strict insists + # train_indices should be an array-api-strict array. On the other hand, + # all the array API libraries (PyTorch, jax, CuPy) accept indexing with a + # numpy array. This is probably not worth doing anything about for + # now since array-api-strict seems a bit too strict ... + numpy_asarray_works = xp.__name__ != "array_api_strict" + + except TypeError: + # PyTorch with CUDA device and CuPy raise TypeError consistently. + # Exception type may need to be updated in the future for other + # libraries. + numpy_asarray_works = False + + if numpy_asarray_works: + # In this case, array_api_dispatch is disabled and we rely on np.asarray + # being called to convert the non-NumPy inputs to NumPy arrays when needed. + est_fitted_with_as_array = clone(est).fit(X_xp, y_xp) + # We only do a smoke test for now, in order to avoid complicating the + # test function even further. + for method_name in methods: + method = getattr(est_fitted_with_as_array, method_name, None) + if method is None: + continue + + if method_name == "score": + method(X_xp, y_xp) + else: + method(X_xp) + for method_name in methods: method = getattr(est, method_name, None) if method is None: diff --git a/sklearn/utils/tests/test_array_api.py b/sklearn/utils/tests/test_array_api.py index 82b6a7df557e5..d76ef4838e37e 100644 --- a/sklearn/utils/tests/test_array_api.py +++ b/sklearn/utils/tests/test_array_api.py @@ -248,6 +248,7 @@ def test_device_none_if_no_input(): assert device(None, "name") is None +@skip_if_array_api_compat_not_configured def test_device_inspection(): class Device: def __init__(self, name): @@ -273,18 +274,26 @@ def __init__(self, device_name): with pytest.raises(TypeError): hash(Array("device").device) - # Test raise if on different devices + # If array API dispatch is disabled the device should be ignored. Erroring + # early for different devices would prevent the np.asarray conversion to + # happen. For example, `r2_score(np.ones(5), torch.ones(5))` should work + # fine with array API disabled. + assert device(Array("cpu"), Array("mygpu")) is None + + # Test that ValueError is raised if on different devices and array API dispatch is + # enabled. err_msg = "Input arrays use different devices: cpu, mygpu" - with pytest.raises(ValueError, match=err_msg): - device(Array("cpu"), Array("mygpu")) + with config_context(array_api_dispatch=True): + with pytest.raises(ValueError, match=err_msg): + device(Array("cpu"), Array("mygpu")) - # Test expected value is returned otherwise - array1 = Array("device") - array2 = Array("device") + # Test expected value is returned otherwise + array1 = Array("device") + array2 = Array("device") - assert array1.device == device(array1) - assert array1.device == device(array1, array2) - assert array1.device == device(array1, array1, array2) + assert array1.device == device(array1) + assert array1.device == device(array1, array2) + assert array1.device == device(array1, array1, array2) # TODO: add cupy to the list of libraries once the the following upstream issue @@ -553,7 +562,7 @@ def test_get_namespace_and_device(): namespace, is_array_api, device = get_namespace_and_device(some_torch_tensor) assert namespace is get_namespace(some_numpy_array)[0] assert not is_array_api - assert device.type == "cpu" + assert device is None # Otherwise, expose the torch namespace and device via array API compat # wrapper. @@ -621,8 +630,8 @@ def test_sparse_device(csr_container, dispatch): try: with config_context(array_api_dispatch=dispatch): assert device(a, b) is None - assert device(a, numpy.array([1])) == "cpu" + assert device(a, numpy.array([1])) is None assert get_namespace_and_device(a, b)[2] is None - assert get_namespace_and_device(a, numpy.array([1]))[2] == "cpu" + assert get_namespace_and_device(a, numpy.array([1]))[2] is None except ImportError: raise SkipTest("array_api_compat is not installed") From 6989709db158b1c41b74eb706262eca19591aaf9 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Lo=C3=AFc=20Est=C3=A8ve?= Date: Wed, 18 Dec 2024 16:22:53 +0100 Subject: [PATCH 110/159] DOC Mention that IsolationForest n_jobs is only for fit and not predict (#30501) --- sklearn/ensemble/_iforest.py | 22 +++++++++++----------- 1 file changed, 11 insertions(+), 11 deletions(-) diff --git a/sklearn/ensemble/_iforest.py b/sklearn/ensemble/_iforest.py index 2195646ae855c..15ab0d6b382eb 100644 --- a/sklearn/ensemble/_iforest.py +++ b/sklearn/ensemble/_iforest.py @@ -22,7 +22,6 @@ from ..utils.parallel import Parallel, delayed from ..utils.validation import _num_samples, check_is_fitted, validate_data from ._bagging import BaseBagging -from ._base import _partition_estimators __all__ = ["IsolationForest"] @@ -120,10 +119,9 @@ class IsolationForest(OutlierMixin, BaseBagging): is performed. n_jobs : int, default=None - The number of jobs to run in parallel for both :meth:`fit` and - :meth:`predict`. ``None`` means 1 unless in a - :obj:`joblib.parallel_backend` context. ``-1`` means using all - processors. See :term:`Glossary ` for more details. + The number of jobs to run in parallel for :meth:`fit`. ``None`` means 1 + unless in a :obj:`joblib.parallel_backend` context. ``-1`` means using + all processors. See :term:`Glossary ` for more details. random_state : int, RandomState instance or None, default=None Controls the pseudo-randomness of the selection of the feature @@ -596,14 +594,16 @@ def _compute_score_samples(self, X, subsample_features): average_path_length_max_samples = _average_path_length([self._max_samples]) - # Note: using joblib.parallel_backend allows for setting the number of jobs - # separately from the n_jobs parameter specified during fit. This is useful for - # parallelizing the computation of the scores, which will not require a high - # n_jobs value for e.g. < 1k samples. - n_jobs, _, _ = _partition_estimators(self.n_estimators, None) + # Note: we use default n_jobs value, i.e. sequential computation, which + # we expect to be more performant that parallelizing for small number + # of samples, e.g. < 1k samples. Default n_jobs value can be overriden + # by using joblib.parallel_backend context manager around + # ._compute_score_samples. Using a higher n_jobs may speed up the + # computation of the scores, e.g. for > 1k samples. See + # https://github.com/scikit-learn/scikit-learn/pull/28622 for more + # details. lock = threading.Lock() Parallel( - n_jobs=n_jobs, verbose=self.verbose, require="sharedmem", )( From 06fd465b2852533b98b6b48eedeeecb84f4c6bdc Mon Sep 17 00:00:00 2001 From: "Christine P. Chai" Date: Wed, 18 Dec 2024 18:19:55 -0800 Subject: [PATCH 111/159] corrected a typo in FAQ (#30500) --- doc/faq.rst | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/doc/faq.rst b/doc/faq.rst index 0139aac376098..18132c7ad3095 100644 --- a/doc/faq.rst +++ b/doc/faq.rst @@ -137,7 +137,7 @@ See :ref:`adding_graphical_models`. Will you add GPU support? ^^^^^^^^^^^^^^^^^^^^^^^^^ -Adding GPU support by default would introduce heavy harware-specific software +Adding GPU support by default would introduce heavy hardware-specific software dependencies and existing algorithms would need to be reimplemented. This would make it both harder for the average user to install scikit-learn and harder for the developers to maintain the code. From 5517accba1ad1e8364f998ee6ff8c00ffeb54ec2 Mon Sep 17 00:00:00 2001 From: Camille Troillard Date: Thu, 19 Dec 2024 03:22:03 +0100 Subject: [PATCH 112/159] DOC removed reference to closed issue (#30499) --- doc/modules/impute.rst | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/doc/modules/impute.rst b/doc/modules/impute.rst index 1431f26132338..fbbb0a68acf9b 100644 --- a/doc/modules/impute.rst +++ b/doc/modules/impute.rst @@ -110,9 +110,9 @@ imputation round are returned. This estimator is still **experimental** for now: default parameters or details of behaviour might change without any deprecation cycle. Resolving the following issues would help stabilize :class:`IterativeImputer`: - convergence criteria (:issue:`14338`), default estimators (:issue:`13286`), - and use of random state (:issue:`15611`). To use it, you need to explicitly - import ``enable_iterative_imputer``. + convergence criteria (:issue:`14338`) and default estimators + (:issue:`13286`). To use it, you need to explicitly import + ``enable_iterative_imputer``. :: From 07075dc78e5f70bcf3757ee148426a006c226b24 Mon Sep 17 00:00:00 2001 From: Umberto Fasci <48659857+UmbertoFasci@users.noreply.github.com> Date: Wed, 18 Dec 2024 23:01:52 -0600 Subject: [PATCH 113/159] DOC Update math font in SGD formulation (#30510) --- doc/modules/sgd.rst | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/doc/modules/sgd.rst b/doc/modules/sgd.rst index 824ed4dc1ca13..e44be05d69df9 100644 --- a/doc/modules/sgd.rst +++ b/doc/modules/sgd.rst @@ -402,7 +402,7 @@ We describe here the mathematical details of the SGD procedure. A good overview with convergence rates can be found in [#6]_. Given a set of training examples :math:`(x_1, y_1), \ldots, (x_n, y_n)` where -:math:`x_i \in \mathbf{R}^m` and :math:`y_i \in \mathcal{R}` (:math:`y_i \in +:math:`x_i \in \mathbf{R}^m` and :math:`y_i \in \mathbf{R}` (:math:`y_i \in {-1, 1}` for classification), our goal is to learn a linear scoring function :math:`f(x) = w^T x + b` with model parameters :math:`w \in \mathbf{R}^m` and intercept :math:`b \in \mathbf{R}`. In order to make predictions for binary From fc273a0a476dc670d59c842f58dce3632142710f Mon Sep 17 00:00:00 2001 From: scikit-learn-bot Date: Mon, 23 Dec 2024 08:47:27 +0100 Subject: [PATCH 114/159] :lock: :robot: CI Update lock files for cirrus-arm CI build(s) :lock: :robot: (#30530) Co-authored-by: Lock file bot --- ...pymin_conda_forge_linux-aarch64_conda.lock | 32 +++++++++---------- 1 file changed, 16 insertions(+), 16 deletions(-) diff --git a/build_tools/cirrus/pymin_conda_forge_linux-aarch64_conda.lock b/build_tools/cirrus/pymin_conda_forge_linux-aarch64_conda.lock index 907b7b50356bf..dc990948c8650 100644 --- a/build_tools/cirrus/pymin_conda_forge_linux-aarch64_conda.lock +++ b/build_tools/cirrus/pymin_conda_forge_linux-aarch64_conda.lock @@ -9,7 +9,7 @@ https://conda.anaconda.org/conda-forge/noarch/font-ttf-source-code-pro-2.038-h77 https://conda.anaconda.org/conda-forge/noarch/font-ttf-ubuntu-0.83-h77eed37_3.conda#49023d73832ef61042f6a237cb2687e7 https://conda.anaconda.org/conda-forge/linux-aarch64/ld_impl_linux-aarch64-2.43-h80caac9_2.conda#fcbde5ea19d55468953bf588770c0501 https://conda.anaconda.org/conda-forge/linux-aarch64/libglvnd-1.7.0-hd24410f_2.conda#9e115653741810778c9a915a2f8439e7 -https://conda.anaconda.org/conda-forge/linux-aarch64/llvm-openmp-19.1.5-h013ceaa_0.conda#261f657fa0930dd263ef4da9c6a77af5 +https://conda.anaconda.org/conda-forge/linux-aarch64/llvm-openmp-19.1.6-h013ceaa_0.conda#8d79254b1ef223cc37202f09508078d8 https://conda.anaconda.org/conda-forge/linux-aarch64/python_abi-3.9-5_cp39.conda#2d2843f11ec622f556137d72d9c72d89 https://conda.anaconda.org/conda-forge/noarch/tzdata-2024b-hc8b5060_0.conda#8ac3367aafb1cc0a068483c580af8015 https://conda.anaconda.org/conda-forge/linux-aarch64/_openmp_mutex-4.5-2_kmp_llvm.tar.bz2#98a1185182fec3c434069fa74e6473d6 @@ -20,12 +20,13 @@ https://conda.anaconda.org/conda-forge/noarch/fonts-conda-ecosystem-1-0.tar.bz2# https://conda.anaconda.org/conda-forge/linux-aarch64/libgcc-14.2.0-he277a41_1.conda#511b511c5445e324066c3377481bcab8 https://conda.anaconda.org/conda-forge/linux-aarch64/alsa-lib-1.2.13-h86ecc28_0.conda#f643bb02c4bbcfe7de161a8ca5df530b https://conda.anaconda.org/conda-forge/linux-aarch64/libbrotlicommon-1.1.0-h86ecc28_2.conda#3ee026955c688f551a9999840cff4c67 -https://conda.anaconda.org/conda-forge/linux-aarch64/libdeflate-1.22-h86ecc28_0.conda#ff6a44e8b1707d02be2fe9a36ea88d4a +https://conda.anaconda.org/conda-forge/linux-aarch64/libdeflate-1.23-h5e3c512_0.conda#7e7ca2607b11b180120cefc2354fc0cb https://conda.anaconda.org/conda-forge/linux-aarch64/libexpat-2.6.4-h5ad3122_0.conda#f1b3fab36861b3ce945a13f0dfdfc688 https://conda.anaconda.org/conda-forge/linux-aarch64/libgcc-ng-14.2.0-he9431aa_1.conda#0694c249c61469f2c0f7e2990782af21 https://conda.anaconda.org/conda-forge/linux-aarch64/libgfortran5-14.2.0-hb6113d0_1.conda#fc068e11b10e18f184e027782baa12b6 https://conda.anaconda.org/conda-forge/linux-aarch64/liblzma-5.6.3-h86ecc28_1.conda#eb08b903681f9f2432c320e8ed626723 https://conda.anaconda.org/conda-forge/linux-aarch64/libstdcxx-14.2.0-h3f4de04_1.conda#37f489acd39e22b623d2d1e5ac6d195c +https://conda.anaconda.org/conda-forge/linux-aarch64/libwebp-base-1.5.0-h0886dbf_0.conda#95ef4a689b8cc1b7e18b53784d88f96b https://conda.anaconda.org/conda-forge/linux-aarch64/libzlib-1.3.1-h86ecc28_2.conda#08aad7cbe9f5a6b460d0976076b6ae64 https://conda.anaconda.org/conda-forge/linux-aarch64/openssl-3.4.0-h86ecc28_0.conda#b2f202b5bddafac824eb610b65dde98f https://conda.anaconda.org/conda-forge/linux-aarch64/pthread-stubs-0.4-h86ecc28_1002.conda#bb5a90c93e3bac3d5690acf76b4a6386 @@ -48,7 +49,6 @@ https://conda.anaconda.org/conda-forge/linux-aarch64/libpng-1.6.44-hc4a20ef_0.co https://conda.anaconda.org/conda-forge/linux-aarch64/libsqlite-3.47.2-h5eb1b54_0.conda#d4bf59f8783a4a66c0aec568f6de3ff4 https://conda.anaconda.org/conda-forge/linux-aarch64/libstdcxx-ng-14.2.0-hf1166c9_1.conda#0e75771b8a03afae5a2c6ce71bc733f5 https://conda.anaconda.org/conda-forge/linux-aarch64/libuuid-2.38.1-hb4cce97_0.conda#000e30b09db0b7c775b21695dff30969 -https://conda.anaconda.org/conda-forge/linux-aarch64/libwebp-base-1.4.0-h31becfc_0.conda#5fd7ab3e5f382c70607fbac6335e6e19 https://conda.anaconda.org/conda-forge/linux-aarch64/libxcb-1.17.0-h262b8f6_0.conda#cd14ee5cca2464a425b1dbfc24d90db2 https://conda.anaconda.org/conda-forge/linux-aarch64/libxcrypt-4.4.36-h31becfc_1.conda#b4df5d7d4b63579d081fd3a4cf99740e https://conda.anaconda.org/conda-forge/linux-aarch64/mysql-common-9.0.1-h3f5c77f_3.conda#38eee60dc5b5bec65da4ed0ca9841f30 @@ -80,11 +80,11 @@ https://conda.anaconda.org/conda-forge/linux-aarch64/zstd-1.5.6-h02f22dd_0.conda https://conda.anaconda.org/conda-forge/linux-aarch64/brotli-1.1.0-h86ecc28_2.conda#5094acc34eb173f74205c0b55f0dd4a4 https://conda.anaconda.org/conda-forge/linux-aarch64/fontconfig-2.15.0-h8dda3cd_1.conda#112b71b6af28b47c624bcbeefeea685b https://conda.anaconda.org/conda-forge/linux-aarch64/krb5-1.21.3-h50a48e9_0.conda#29c10432a2ca1472b53f299ffb2ffa37 -https://conda.anaconda.org/conda-forge/linux-aarch64/libblas-3.9.0-25_linuxaarch64_openblas.conda#f9b8a4a955ed2d0b68b1f453abcc1c9e +https://conda.anaconda.org/conda-forge/linux-aarch64/libblas-3.9.0-26_linuxaarch64_openblas.conda#8d900b7079a00969d70305e9aad550b7 https://conda.anaconda.org/conda-forge/linux-aarch64/libglib-2.82.2-hc486b8e_0.conda#47f6d85fe47b865e56c539f2ba5f4dad https://conda.anaconda.org/conda-forge/linux-aarch64/libglx-1.7.0-hd24410f_2.conda#1d4269e233636148696a67e2d30dad2a https://conda.anaconda.org/conda-forge/linux-aarch64/libhiredis-1.0.2-h05efe27_0.tar.bz2#a87f068744fd20334cd41489eb163bee -https://conda.anaconda.org/conda-forge/linux-aarch64/libtiff-4.7.0-hca96517_2.conda#278dcef6d1ea28c04109c3f5dea126cb +https://conda.anaconda.org/conda-forge/linux-aarch64/libtiff-4.7.0-h88f7998_3.conda#36a0ea4a173338c8725dc0807e99cf22 https://conda.anaconda.org/conda-forge/linux-aarch64/libxml2-2.13.5-h2e0c361_1.conda#63410f85031930cde371dfe0ee89109a https://conda.anaconda.org/conda-forge/linux-aarch64/mysql-libs-9.0.1-h11569fd_3.conda#0b70a85c661a9891f39d8e9aab98b118 https://conda.anaconda.org/conda-forge/linux-aarch64/openblas-0.3.28-pthreads_h3a8cbd8_1.conda#d36b4f01d28df4f90c7e37adb8e9adb5 @@ -96,7 +96,7 @@ https://conda.anaconda.org/conda-forge/linux-aarch64/xorg-libxfixes-6.0.1-h57736 https://conda.anaconda.org/conda-forge/linux-aarch64/xorg-libxrender-0.9.12-h86ecc28_0.conda#ae2c2dd0e2d38d249887727db2af960e https://conda.anaconda.org/conda-forge/linux-aarch64/cairo-1.18.2-h83712da_1.conda#e7b46975d2c9a4666da0e9bb8a087f28 https://conda.anaconda.org/conda-forge/linux-aarch64/ccache-4.10.1-ha3bccff_0.conda#7cd24a038d2727b5e6377975237a6cfa -https://conda.anaconda.org/conda-forge/noarch/certifi-2024.8.30-pyhd8ed1ab_0.conda#12f7d00853807b0531775e9be891cb11 +https://conda.anaconda.org/conda-forge/noarch/certifi-2024.12.14-pyhd8ed1ab_0.conda#6feb87357ecd66733be3279f16a8c400 https://conda.anaconda.org/conda-forge/noarch/colorama-0.4.6-pyhd8ed1ab_1.conda#962b9857ee8e7018c22f2776ffa0b2d7 https://conda.anaconda.org/conda-forge/noarch/cycler-0.12.1-pyhd8ed1ab_1.conda#44600c4667a319d67dbe0681fc0bc833 https://conda.anaconda.org/conda-forge/linux-aarch64/cyrus-sasl-2.1.27-hf6b2984_7.conda#7a85d417c8acd7a5215c082c5b9219e5 @@ -107,11 +107,11 @@ https://conda.anaconda.org/conda-forge/noarch/execnet-2.1.1-pyhd8ed1ab_1.conda#a https://conda.anaconda.org/conda-forge/noarch/iniconfig-2.0.0-pyhd8ed1ab_1.conda#6837f3eff7dcea42ecd714ce1ac2b108 https://conda.anaconda.org/conda-forge/linux-aarch64/kiwisolver-1.4.7-py39h78c8b8d_0.conda#8dc5516dd121089f14c1a557ecec3224 https://conda.anaconda.org/conda-forge/linux-aarch64/lcms2-2.16-h922389a_0.conda#ffdd8267a04c515e7ce69c727b051414 -https://conda.anaconda.org/conda-forge/linux-aarch64/libcblas-3.9.0-25_linuxaarch64_openblas.conda#db6af51123c67814572a8c25542cb368 +https://conda.anaconda.org/conda-forge/linux-aarch64/libcblas-3.9.0-26_linuxaarch64_openblas.conda#d77f943ae4083f3aeddca698f2d28262 https://conda.anaconda.org/conda-forge/linux-aarch64/libcups-2.3.3-h405e4a8_4.conda#d42c670b0c96c1795fd859d5e0275a55 https://conda.anaconda.org/conda-forge/linux-aarch64/libgl-1.7.0-hd24410f_2.conda#0d00176464ebb25af83d40736a2cd3bb -https://conda.anaconda.org/conda-forge/linux-aarch64/liblapack-3.9.0-25_linuxaarch64_openblas.conda#0eb74e81de46454960bde9e44e7ee378 -https://conda.anaconda.org/conda-forge/linux-aarch64/libllvm19-19.1.5-h2edbd07_0.conda#9d5a091ca50b24c40c429f2dfe9a1bf9 +https://conda.anaconda.org/conda-forge/linux-aarch64/liblapack-3.9.0-26_linuxaarch64_openblas.conda#a5d4e18876393633da62fd8492c00156 +https://conda.anaconda.org/conda-forge/linux-aarch64/libllvm19-19.1.6-h2edbd07_0.conda#9e755607ec3a05f5ca9eba87abc76d65 https://conda.anaconda.org/conda-forge/linux-aarch64/libxkbcommon-1.7.0-h46f2afe_1.conda#78a24e611ab9c09c518f519be49c2e46 https://conda.anaconda.org/conda-forge/linux-aarch64/libxslt-1.1.39-h1cc9640_0.conda#13e1d3f9188e85c6d59a98651aced002 https://conda.anaconda.org/conda-forge/noarch/munkres-1.1.4-pyh9f0ad1d_0.tar.bz2#2ba8498c1018c1e9c61eb99b973dfe19 @@ -138,26 +138,26 @@ https://conda.anaconda.org/conda-forge/linux-aarch64/fonttools-4.55.3-py39hbebea https://conda.anaconda.org/conda-forge/linux-aarch64/harfbuzz-9.0.0-hbf49d6b_1.conda#ceb458f664cab8550fcd74fff26451db https://conda.anaconda.org/conda-forge/noarch/importlib_resources-6.4.5-pyhd8ed1ab_1.conda#15798fa69312d433af690c8c42b3fb36 https://conda.anaconda.org/conda-forge/noarch/joblib-1.4.2-pyhd8ed1ab_1.conda#bf8243ee348f3a10a14ed0cae323e0c1 -https://conda.anaconda.org/conda-forge/linux-aarch64/libclang-cpp19.1-19.1.5-default_he324ac1_0.conda#4dc511a04b2c13ccc5273038c18f1fa0 -https://conda.anaconda.org/conda-forge/linux-aarch64/libclang13-19.1.5-default_h4390ef5_0.conda#616a4e906ea6196eae03f2ced5adea63 -https://conda.anaconda.org/conda-forge/linux-aarch64/liblapacke-3.9.0-25_linuxaarch64_openblas.conda#1e68063075954830f707b41dab6c7fd8 -https://conda.anaconda.org/conda-forge/noarch/meson-1.6.0-pyhd8ed1ab_1.conda#59d45dbe1b0a123966266340b579d366 +https://conda.anaconda.org/conda-forge/linux-aarch64/libclang-cpp19.1-19.1.6-default_he324ac1_0.conda#2f399a5612317660f5c98f6cb634829b +https://conda.anaconda.org/conda-forge/linux-aarch64/libclang13-19.1.6-default_h4390ef5_0.conda#b3aa0944c1ae4277c0b2d23dfadc13da +https://conda.anaconda.org/conda-forge/linux-aarch64/liblapacke-3.9.0-26_linuxaarch64_openblas.conda#a5250ad700e86a8764947dc850abe973 +https://conda.anaconda.org/conda-forge/noarch/meson-1.6.1-pyhd8ed1ab_0.conda#0062fb0a7f5da474705d0ce626de12f4 https://conda.anaconda.org/conda-forge/linux-aarch64/numpy-2.0.2-py39h4a34e27_1.conda#fe586ddf9512644add97b0526129ed95 https://conda.anaconda.org/conda-forge/linux-aarch64/openldap-2.6.9-h30c48ee_0.conda#c07822a5de65ce9797b9afa257faa917 https://conda.anaconda.org/conda-forge/linux-aarch64/pillow-11.0.0-py39hb20fde8_0.conda#78cdfe29a452feee8c5bd689c2c871bd -https://conda.anaconda.org/conda-forge/noarch/pip-24.3.1-pyh8b19718_0.conda#5dd546fe99b44fda83963d15f84263b7 +https://conda.anaconda.org/conda-forge/noarch/pip-24.3.1-pyh8b19718_2.conda#04e691b9fadd93a8a9fad87a81d4fd8f https://conda.anaconda.org/conda-forge/noarch/pyproject-metadata-0.9.0-pyhd8ed1ab_1.conda#1239146a53a383a84633800294120f17 https://conda.anaconda.org/conda-forge/noarch/pytest-8.3.4-pyhd8ed1ab_1.conda#799ed216dc6af62520f32aa39bc1c2bb https://conda.anaconda.org/conda-forge/noarch/python-dateutil-2.9.0.post0-pyhff2d567_1.conda#5ba79d7c71f03c678c8ead841f347d6e https://conda.anaconda.org/conda-forge/linux-aarch64/xorg-libxtst-1.2.5-h57736b2_3.conda#c05698071b5c8e0da82a282085845860 -https://conda.anaconda.org/conda-forge/linux-aarch64/blas-devel-3.9.0-25_linuxaarch64_openblas.conda#32539a9b9e09140a83e987edf3c09926 +https://conda.anaconda.org/conda-forge/linux-aarch64/blas-devel-3.9.0-26_linuxaarch64_openblas.conda#d955d2b75f044b9d1bd4ef83f0d840e7 https://conda.anaconda.org/conda-forge/linux-aarch64/contourpy-1.3.0-py39hbd2ca3f_2.conda#57fa6811a7a80c5641e373408389bc5a https://conda.anaconda.org/conda-forge/noarch/importlib-resources-6.4.5-pyhd8ed1ab_1.conda#59561d9b70f9df3b884c29910eba6593 https://conda.anaconda.org/conda-forge/linux-aarch64/libpq-17.2-hd56632b_1.conda#2113425a121b0aa65dc87728ed5601ac https://conda.anaconda.org/conda-forge/noarch/meson-python-0.17.1-pyh70fd9c4_1.conda#7a02679229c6c2092571b4c025055440 https://conda.anaconda.org/conda-forge/noarch/pytest-xdist-3.6.1-pyhd8ed1ab_1.conda#59aad4fb37cabc0bacc73cf344612ddd https://conda.anaconda.org/conda-forge/linux-aarch64/scipy-1.13.1-py39hb921187_0.conda#1aac9080de661e03d286f18fb71e5240 -https://conda.anaconda.org/conda-forge/linux-aarch64/blas-2.125-openblas.conda#dfbaf914827bc38dda840c90231c91df +https://conda.anaconda.org/conda-forge/linux-aarch64/blas-2.126-openblas.conda#b98894367755d9a81f6e90ef2bcff0a6 https://conda.anaconda.org/conda-forge/linux-aarch64/matplotlib-base-3.9.4-py39hd333c8e_0.conda#d3c00b185510462fe6c3829f06bbfc82 https://conda.anaconda.org/conda-forge/linux-aarch64/qt6-main-6.8.1-h0d3cc05_0.conda#2ed5cc4f5abc62d505b9a89a00f1dca8 https://conda.anaconda.org/conda-forge/linux-aarch64/pyside6-6.8.1-py39h51c6ee1_0.conda#ba98ca3cd6725e007a6ca0870e8212dd From 1c76c8cac5028425079c01805ad16c470ff04548 Mon Sep 17 00:00:00 2001 From: scikit-learn-bot Date: Mon, 23 Dec 2024 08:47:57 +0100 Subject: [PATCH 115/159] :lock: :robot: CI Update lock files for scipy-dev CI build(s) :lock: :robot: (#30531) Co-authored-by: Lock file bot --- .../azure/pylatest_pip_scipy_dev_linux-64_conda.lock | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/build_tools/azure/pylatest_pip_scipy_dev_linux-64_conda.lock b/build_tools/azure/pylatest_pip_scipy_dev_linux-64_conda.lock index 187f7f8afbe06..f2f5c4773953a 100644 --- a/build_tools/azure/pylatest_pip_scipy_dev_linux-64_conda.lock +++ b/build_tools/azure/pylatest_pip_scipy_dev_linux-64_conda.lock @@ -39,7 +39,7 @@ https://repo.anaconda.com/pkgs/main/linux-64/pip-24.2-py313h06a4308_0.conda#59f8 # pip imagesize @ https://files.pythonhosted.org/packages/ff/62/85c4c919272577931d407be5ba5d71c20f0b616d31a0befe0ae45bb79abd/imagesize-1.4.1-py2.py3-none-any.whl#sha256=0d8d18d08f840c19d0ee7ca1fd82490fdc3729b7ac93f49870406ddde8ef8d8b # pip iniconfig @ https://files.pythonhosted.org/packages/ef/a6/62565a6e1cf69e10f5727360368e451d4b7f58beeac6173dc9db836a5b46/iniconfig-2.0.0-py3-none-any.whl#sha256=b6a85871a79d2e3b22d2d1b94ac2824226a63c6b741c88f7ae975f18b6778374 # pip markupsafe @ https://files.pythonhosted.org/packages/0c/91/96cf928db8236f1bfab6ce15ad070dfdd02ed88261c2afafd4b43575e9e9/MarkupSafe-3.0.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl#sha256=15ab75ef81add55874e7ab7055e9c397312385bd9ced94920f2802310c930396 -# pip meson @ https://files.pythonhosted.org/packages/76/73/3dc4edc855c9988ff05ea5590f5c7bda72b6e0d138b2ddc1fab92a1f242f/meson-1.6.0-py3-none-any.whl#sha256=234a45f9206c6ee33b473ec1baaef359d20c0b89a71871d58c65a6db6d98fe74 +# pip meson @ https://files.pythonhosted.org/packages/d2/f3/9d53c24a7113e08879b14117f83e7105251e6ecf7e03bb7c04926888db9c/meson-1.6.1-py3-none-any.whl#sha256=3f41f6b03df56bb76836cc33c94e1a404c3584d48b3259540794a60a21fad1f9 # pip ninja @ https://files.pythonhosted.org/packages/6b/35/a8e38d54768e67324e365e2a41162be298f51ec93e6bd4b18d237d7250d8/ninja-1.11.1.3-py3-none-manylinux_2_12_x86_64.manylinux2010_x86_64.whl#sha256=a27e78ca71316c8654965ee94b286a98c83877bfebe2607db96897bbfe458af0 # pip packaging @ https://files.pythonhosted.org/packages/88/ef/eb23f262cca3c0c4eb7ab1933c3b1f03d021f2c48f54763065b6f0e321be/packaging-24.2-py3-none-any.whl#sha256=09abb1bccd265c01f4a3aa3f7a7db064b36514d2cba19a2f694fe6150451a759 # pip platformdirs @ https://files.pythonhosted.org/packages/3c/a6/bc1012356d8ece4d66dd75c4b9fc6c1f6650ddd5991e421177d9f8f671be/platformdirs-4.3.6-py3-none-any.whl#sha256=73e575e1408ab8103900836b97580d5307456908a03e92031bab39e4554cc3fb @@ -55,8 +55,8 @@ https://repo.anaconda.com/pkgs/main/linux-64/pip-24.2-py313h06a4308_0.conda#59f8 # pip sphinxcontrib-serializinghtml @ https://files.pythonhosted.org/packages/52/a7/d2782e4e3f77c8450f727ba74a8f12756d5ba823d81b941f1b04da9d033a/sphinxcontrib_serializinghtml-2.0.0-py3-none-any.whl#sha256=6e2cb0eef194e10c27ec0023bfeb25badbbb5868244cf5bc5bdc04e4464bf331 # pip tabulate @ https://files.pythonhosted.org/packages/40/44/4a5f08c96eb108af5cb50b41f76142f0afa346dfa99d5296fe7202a11854/tabulate-0.9.0-py3-none-any.whl#sha256=024ca478df22e9340661486f85298cff5f6dcdba14f3813e8830015b9ed1948f # pip threadpoolctl @ https://files.pythonhosted.org/packages/4b/2c/ffbf7a134b9ab11a67b0cf0726453cedd9c5043a4fe7a35d1cefa9a1bcfb/threadpoolctl-3.5.0-py3-none-any.whl#sha256=56c1e26c150397e58c4926da8eeee87533b1e32bef131bd4bf6a2f45f3185467 -# pip urllib3 @ https://files.pythonhosted.org/packages/ce/d9/5f4c13cecde62396b0d3fe530a50ccea91e7dfc1ccf0e09c228841bb5ba8/urllib3-2.2.3-py3-none-any.whl#sha256=ca899ca043dcb1bafa3e262d73aa25c465bfb49e0bd9dd5d59f1d0acba2f8fac -# pip jinja2 @ https://files.pythonhosted.org/packages/31/80/3a54838c3fb461f6fec263ebf3a3a41771bd05190238de3486aae8540c36/jinja2-3.1.4-py3-none-any.whl#sha256=bc5dd2abb727a5319567b7a813e6a2e7318c39f4f487cfe6c89c6f9c7d25197d +# pip urllib3 @ https://files.pythonhosted.org/packages/c8/19/4ec628951a74043532ca2cf5d97b7b14863931476d117c471e8e2b1eb39f/urllib3-2.3.0-py3-none-any.whl#sha256=1cee9ad369867bfdbbb48b7dd50374c0967a0bb7710050facf0dd6911440e3df +# pip jinja2 @ https://files.pythonhosted.org/packages/bd/0f/2ba5fbcd631e3e88689309dbe978c5769e883e4b84ebfe7da30b43275c5a/jinja2-3.1.5-py3-none-any.whl#sha256=aba0f4dc9ed8013c424088f68a5c226f7d6097ed89b246d7749c2ec4175c6adb # pip pyproject-metadata @ https://files.pythonhosted.org/packages/e8/61/9dd3e68d2b6aa40a5fc678662919be3c3a7bf22cba5a6b4437619b77e156/pyproject_metadata-0.9.0-py3-none-any.whl#sha256=fc862aab066a2e87734333293b0af5845fe8ac6cb69c451a41551001e923be0b # pip pytest @ https://files.pythonhosted.org/packages/11/92/76a1c94d3afee238333bc0a42b82935dd8f9cf8ce9e336ff87ee14d9e1cf/pytest-8.3.4-py3-none-any.whl#sha256=50e16d954148559c9a74109af1eaf0c945ba2d8f30f0a3d3335edde19788b6f6 # pip python-dateutil @ https://files.pythonhosted.org/packages/ec/57/56b9bcc3c9c6a792fcbaf139543cee77261f3651ca9da0c93f5c1221264b/python_dateutil-2.9.0.post0-py2.py3-none-any.whl#sha256=a8b2bc7bffae282281c8140a97d3aa9c14da0b136dfe83f850eea9a5f7470427 From 12399b6c39f777e4e5252145e4cc5d37ee5cbb92 Mon Sep 17 00:00:00 2001 From: scikit-learn-bot Date: Mon, 23 Dec 2024 08:48:22 +0100 Subject: [PATCH 116/159] :lock: :robot: CI Update lock files for free-threaded CI build(s) :lock: :robot: (#30532) Co-authored-by: Lock file bot --- .../azure/pylatest_free_threaded_linux-64_conda.lock | 12 ++++++------ 1 file changed, 6 insertions(+), 6 deletions(-) diff --git a/build_tools/azure/pylatest_free_threaded_linux-64_conda.lock b/build_tools/azure/pylatest_free_threaded_linux-64_conda.lock index 49ffdb88340ec..30453d12b9bb8 100644 --- a/build_tools/azure/pylatest_free_threaded_linux-64_conda.lock +++ b/build_tools/azure/pylatest_free_threaded_linux-64_conda.lock @@ -31,7 +31,7 @@ https://conda.anaconda.org/conda-forge/linux-64/libopenblas-0.3.28-pthreads_h94d https://conda.anaconda.org/conda-forge/linux-64/ninja-1.12.1-h297d8ca_0.conda#3aa1c7e292afeff25a0091ddd7c69b72 https://conda.anaconda.org/conda-forge/linux-64/readline-8.2-h8228510_1.conda#47d31b792659ce70f470b5c82fdfb7a4 https://conda.anaconda.org/conda-forge/linux-64/zstd-1.5.6-ha6fb4c9_0.conda#4d056880988120e29d75bfff282e0f45 -https://conda.anaconda.org/conda-forge/linux-64/libblas-3.9.0-25_linux64_openblas.conda#8ea26d42ca88ec5258802715fe1ee10b +https://conda.anaconda.org/conda-forge/linux-64/libblas-3.9.0-26_linux64_openblas.conda#ac52800af2e0c0e7dac770b435ce768a https://conda.anaconda.org/conda-forge/linux-64/libhiredis-1.0.2-h2cc385e_0.tar.bz2#b34907d3a81a3cd8095ee83d174c074a https://conda.anaconda.org/conda-forge/linux-64/python-3.13.1-h9a34b6e_2_cp313t.conda#f0659443f1e7eae7f7606583fde56397 https://conda.anaconda.org/conda-forge/linux-64/ccache-4.10.1-h065aff2_0.conda#d6b48c138e0c8170a6fe9c136e063540 @@ -40,17 +40,17 @@ https://conda.anaconda.org/conda-forge/noarch/cpython-3.13.1-py313hd8ed1ab_2.con https://conda.anaconda.org/conda-forge/noarch/exceptiongroup-1.2.2-pyhd8ed1ab_1.conda#a16662747cdeb9abbac74d0057cc976e https://conda.anaconda.org/conda-forge/noarch/execnet-2.1.1-pyhd8ed1ab_1.conda#a71efeae2c160f6789900ba2631a2c90 https://conda.anaconda.org/conda-forge/noarch/iniconfig-2.0.0-pyhd8ed1ab_1.conda#6837f3eff7dcea42ecd714ce1ac2b108 -https://conda.anaconda.org/conda-forge/linux-64/libcblas-3.9.0-25_linux64_openblas.conda#5dbd1b0fc0d01ec5e0e1fbe667281a11 -https://conda.anaconda.org/conda-forge/linux-64/liblapack-3.9.0-25_linux64_openblas.conda#4dc03a53fc69371a6158d0ed37214cd3 +https://conda.anaconda.org/conda-forge/linux-64/libcblas-3.9.0-26_linux64_openblas.conda#ebcc5f37a435aa3c19640533c82f8d76 +https://conda.anaconda.org/conda-forge/linux-64/liblapack-3.9.0-26_linux64_openblas.conda#3792604c43695d6a273bc5faaac47d48 https://conda.anaconda.org/conda-forge/noarch/packaging-24.2-pyhd8ed1ab_2.conda#3bfed7e6228ebf2f7b9eaa47f1b4e2aa -https://conda.anaconda.org/conda-forge/noarch/pip-24.3.1-pyh145f28c_0.conda#ca3afe2d7b893a8c8cdf489d30a2b1a3 +https://conda.anaconda.org/conda-forge/noarch/pip-24.3.1-pyh145f28c_2.conda#76601b0ccfe1fe13a21a5f8813cb38de https://conda.anaconda.org/conda-forge/noarch/pluggy-1.5.0-pyhd8ed1ab_1.conda#e9dcbce5f45f9ee500e728ae58b605b6 https://conda.anaconda.org/conda-forge/noarch/setuptools-75.6.0-pyhff2d567_1.conda#fc80f7995e396cbaeabd23cf46c413dc https://conda.anaconda.org/conda-forge/noarch/threadpoolctl-3.5.0-pyhc1e730c_0.conda#df68d78237980a159bd7149f33c0e8fd https://conda.anaconda.org/conda-forge/noarch/tomli-2.2.1-pyhd8ed1ab_1.conda#ac944244f1fed2eb49bae07193ae8215 https://conda.anaconda.org/conda-forge/noarch/joblib-1.4.2-pyhd8ed1ab_1.conda#bf8243ee348f3a10a14ed0cae323e0c1 -https://conda.anaconda.org/conda-forge/noarch/meson-1.6.0-pyhd8ed1ab_1.conda#59d45dbe1b0a123966266340b579d366 -https://conda.anaconda.org/conda-forge/linux-64/numpy-2.2.0-py313h151ba9f_0.conda#d9fc5df93c4e7eee55012d5e0e7a7803 +https://conda.anaconda.org/conda-forge/noarch/meson-1.6.1-pyhd8ed1ab_0.conda#0062fb0a7f5da474705d0ce626de12f4 +https://conda.anaconda.org/conda-forge/linux-64/numpy-2.2.1-py313h151ba9f_0.conda#7dff61c6e719aa5c1ac9a00595c8e9b2 https://conda.anaconda.org/conda-forge/noarch/pyproject-metadata-0.9.0-pyhd8ed1ab_1.conda#1239146a53a383a84633800294120f17 https://conda.anaconda.org/conda-forge/noarch/pytest-8.3.4-pyhd8ed1ab_1.conda#799ed216dc6af62520f32aa39bc1c2bb https://conda.anaconda.org/conda-forge/noarch/python-freethreading-3.13.1-h92d6c8b_2.conda#8618c8e664359e801165606d1c5cf10e From c3f1c4eb9aa4a91eaced982fbcd82b9fe8282d8d Mon Sep 17 00:00:00 2001 From: scikit-learn-bot Date: Mon, 23 Dec 2024 08:48:52 +0100 Subject: [PATCH 117/159] :lock: :robot: CI Update lock files for array-api CI build(s) :lock: :robot: (#30533) Co-authored-by: Lock file bot --- ...a_forge_cuda_array-api_linux-64_conda.lock | 41 ++++++++++--------- 1 file changed, 21 insertions(+), 20 deletions(-) diff --git a/build_tools/github/pylatest_conda_forge_cuda_array-api_linux-64_conda.lock b/build_tools/github/pylatest_conda_forge_cuda_array-api_linux-64_conda.lock index c1d1995430d7b..7137da203dda7 100644 --- a/build_tools/github/pylatest_conda_forge_cuda_array-api_linux-64_conda.lock +++ b/build_tools/github/pylatest_conda_forge_cuda_array-api_linux-64_conda.lock @@ -15,7 +15,7 @@ https://conda.anaconda.org/conda-forge/noarch/tzdata-2024b-hc8b5060_0.conda#8ac3 https://conda.anaconda.org/conda-forge/noarch/fonts-conda-forge-1-0.tar.bz2#f766549260d6815b0c52253f1fb1bb29 https://conda.anaconda.org/conda-forge/linux-64/ld_impl_linux-64-2.43-h712a8e2_2.conda#048b02e3962f066da18efe3a21b77672 https://conda.anaconda.org/conda-forge/linux-64/libglvnd-1.7.0-ha4b6fd6_2.conda#434ca7e50e40f4918ab701e3facd59a0 -https://conda.anaconda.org/conda-forge/linux-64/llvm-openmp-19.1.5-h024ca30_0.conda#dc90d15c25a57f641f0b84c271e4761e +https://conda.anaconda.org/conda-forge/linux-64/llvm-openmp-19.1.6-h024ca30_0.conda#96e42ccbd3c067c1713ff5f2d2169247 https://conda.anaconda.org/conda-forge/noarch/sysroot_linux-64-2.17-h4a8ded7_18.conda#0ea96f90a10838f58412aa84fdd9df09 https://conda.anaconda.org/conda-forge/linux-64/_openmp_mutex-4.5-2_kmp_llvm.tar.bz2#562b26ba2e19059551a811e72ab7f793 https://conda.anaconda.org/conda-forge/noarch/fonts-conda-ecosystem-1-0.tar.bz2#fee5683a3f04bd15cbd8318b096a27ab @@ -31,9 +31,11 @@ https://conda.anaconda.org/conda-forge/linux-64/libexpat-2.6.4-h5888daf_0.conda# https://conda.anaconda.org/conda-forge/linux-64/libgcc-ng-14.2.0-h69a702a_1.conda#e39480b9ca41323497b05492a63bc35b https://conda.anaconda.org/conda-forge/linux-64/libgfortran5-14.2.0-hd5240d6_1.conda#9822b874ea29af082e5d36098d25427d https://conda.anaconda.org/conda-forge/linux-64/liblzma-5.6.3-hb9d3cd8_1.conda#2ecf2f1c7e4e21fcfe6423a51a992d84 +https://conda.anaconda.org/conda-forge/linux-64/libntlm-1.8-hb9d3cd8_0.conda#7c7927b404672409d9917d49bff5f2d6 https://conda.anaconda.org/conda-forge/linux-64/libstdcxx-14.2.0-hc0a3c3a_1.conda#234a5554c53625688d51062645337328 https://conda.anaconda.org/conda-forge/linux-64/libutf8proc-2.9.0-hb9d3cd8_1.conda#1e936bd23d737aac62a18e9a1e7f8b18 https://conda.anaconda.org/conda-forge/linux-64/libuv-1.49.2-hb9d3cd8_0.conda#070e3c9ddab77e38799d5c30b109c633 +https://conda.anaconda.org/conda-forge/linux-64/libwebp-base-1.5.0-h851e524_0.conda#63f790534398730f59e1b899c3644d4a https://conda.anaconda.org/conda-forge/linux-64/libzlib-1.3.1-hb9d3cd8_2.conda#edb0dca6bc32e4f4789199455a1dbeb8 https://conda.anaconda.org/conda-forge/linux-64/openssl-3.4.0-hb9d3cd8_0.conda#23cc74f77eb99315c0360ec3533147a9 https://conda.anaconda.org/conda-forge/linux-64/pthread-stubs-0.4-hb9d3cd8_1002.conda#b3c17d95b5a10c6e64a21fa17573e70e @@ -58,25 +60,23 @@ https://conda.anaconda.org/conda-forge/linux-64/libgfortran-14.2.0-h69a702a_1.co https://conda.anaconda.org/conda-forge/linux-64/libiconv-1.17-hd590300_2.conda#d66573916ffcf376178462f1b61c941e https://conda.anaconda.org/conda-forge/linux-64/libjpeg-turbo-3.0.0-hd590300_1.conda#ea25936bb4080d843790b586850f82b8 https://conda.anaconda.org/conda-forge/linux-64/libnsl-2.0.1-hd590300_0.conda#30fd6e37fe21f86f4bd26d6ee73eeec7 -https://conda.anaconda.org/conda-forge/linux-64/libntlm-1.4-h7f98852_1002.tar.bz2#e728e874159b042d92b90238a3cb0dc2 https://conda.anaconda.org/conda-forge/linux-64/libpciaccess-0.18-hd590300_0.conda#48f4330bfcd959c3cfb704d424903c82 https://conda.anaconda.org/conda-forge/linux-64/libpng-1.6.44-hadc24fc_0.conda#f4cc49d7aa68316213e4b12be35308d1 https://conda.anaconda.org/conda-forge/linux-64/libsqlite-3.47.2-hee588c1_0.conda#b58da17db24b6e08bcbf8fed2fb8c915 https://conda.anaconda.org/conda-forge/linux-64/libssh2-1.11.1-hf672d98_0.conda#be2de152d8073ef1c01b7728475f2fe7 https://conda.anaconda.org/conda-forge/linux-64/libstdcxx-ng-14.2.0-h4852527_1.conda#8371ac6457591af2cf6159439c1fd051 https://conda.anaconda.org/conda-forge/linux-64/libuuid-2.38.1-h0b41bf4_0.conda#40b61aab5c7ba9ff276c41cfffe6b80b -https://conda.anaconda.org/conda-forge/linux-64/libwebp-base-1.4.0-hd590300_0.conda#b26e8aa824079e1be0294e7152ca4559 https://conda.anaconda.org/conda-forge/linux-64/libxcb-1.17.0-h8a09558_0.conda#92ed62436b625154323d40d5f2f11dd7 https://conda.anaconda.org/conda-forge/linux-64/libxcrypt-4.4.36-hd590300_1.conda#5aa797f8787fe7a17d1b0821485b5adc https://conda.anaconda.org/conda-forge/linux-64/lz4-c-1.10.0-h5888daf_1.conda#9de5350a85c4a20c685259b889aa6393 https://conda.anaconda.org/conda-forge/linux-64/mysql-common-9.0.1-h266115a_3.conda#9411c61ff1070b5e065b32840c39faa5 https://conda.anaconda.org/conda-forge/linux-64/ncurses-6.5-he02047a_1.conda#70caf8bb6cf39a0b6b7efc885f51c0fe https://conda.anaconda.org/conda-forge/linux-64/pixman-0.44.2-h29eaf8c_0.conda#5e2a7acfa2c24188af39e7944e1b3604 -https://conda.anaconda.org/conda-forge/linux-64/s2n-1.5.9-h0fd0ee4_0.conda#f472432f3753c5ca763d2497e2ea30bf +https://conda.anaconda.org/conda-forge/linux-64/s2n-1.5.10-hb5b8611_0.conda#999f3673f2a011f59287f2969e3749e4 https://conda.anaconda.org/conda-forge/linux-64/sleef-3.7-h1b44611_2.conda#4792f3259c6fdc0b730563a85b211dc0 https://conda.anaconda.org/conda-forge/linux-64/snappy-1.2.1-h8bd8927_1.conda#3b3e64af585eadfb52bb90b553db5edf https://conda.anaconda.org/conda-forge/linux-64/tk-8.6.13-noxft_h4845f30_101.conda#d453b98d9c83e71da0741bb0ff4d76bc -https://conda.anaconda.org/conda-forge/linux-64/aws-c-io-0.15.3-hbf5b6a4_4.conda#ad3a6713063c18b9232c48e89ada03ac +https://conda.anaconda.org/conda-forge/linux-64/aws-c-io-0.15.3-h831e299_5.conda#80dd9f0ddf935290d1dc00ec75ff3023 https://conda.anaconda.org/conda-forge/linux-64/brotli-bin-1.1.0-hb9d3cd8_2.conda#c63b5e52939e795ba8d26e35d767a843 https://conda.anaconda.org/conda-forge/linux-64/cudatoolkit-11.8.0-h4ba93d1_13.conda#eb43f5f1f16e2fad2eba22219c3e499b https://conda.anaconda.org/conda-forge/linux-64/double-conversion-3.3.0-h59595ed_0.conda#c2f83a5ddadadcdb08fe05863295ee97 @@ -114,7 +114,7 @@ https://conda.anaconda.org/conda-forge/linux-64/brotli-1.1.0-hb9d3cd8_2.conda#98 https://conda.anaconda.org/conda-forge/linux-64/cudnn-9.3.0.75-h50b6be5_1.conda#660be3f87f4cd47853bedaebce9ec76e https://conda.anaconda.org/conda-forge/linux-64/fontconfig-2.15.0-h7e30c49_1.conda#8f5b0b297b59e1ac160ad4beec99dbee https://conda.anaconda.org/conda-forge/linux-64/krb5-1.21.3-h659f571_0.conda#3f43953b7d3fb3aaa1d0d0723d91e368 -https://conda.anaconda.org/conda-forge/linux-64/libblas-3.9.0-25_linux64_openblas.conda#8ea26d42ca88ec5258802715fe1ee10b +https://conda.anaconda.org/conda-forge/linux-64/libblas-3.9.0-26_linux64_openblas.conda#ac52800af2e0c0e7dac770b435ce768a https://conda.anaconda.org/conda-forge/linux-64/libglib-2.82.2-h2ff4ddf_0.conda#13e8e54035ddd2b91875ba399f0f7c04 https://conda.anaconda.org/conda-forge/linux-64/libglx-1.7.0-ha4b6fd6_2.conda#c8013e438185f33b13814c5c488acd5c https://conda.anaconda.org/conda-forge/linux-64/libhiredis-1.0.2-h2cc385e_0.tar.bz2#b34907d3a81a3cd8095ee83d174c074a @@ -144,20 +144,20 @@ https://conda.anaconda.org/conda-forge/linux-64/cython-3.0.11-py312h8fd2918_3.co https://conda.anaconda.org/conda-forge/linux-64/dbus-1.13.6-h5008d03_3.tar.bz2#ecfff944ba3960ecb334b9a2663d708d https://conda.anaconda.org/conda-forge/noarch/exceptiongroup-1.2.2-pyhd8ed1ab_1.conda#a16662747cdeb9abbac74d0057cc976e https://conda.anaconda.org/conda-forge/noarch/execnet-2.1.1-pyhd8ed1ab_1.conda#a71efeae2c160f6789900ba2631a2c90 -https://conda.anaconda.org/conda-forge/linux-64/fastrlock-0.8.2-py312h30efb56_2.conda#7065ec5a4909f925e305b77e505b0aec +https://conda.anaconda.org/conda-forge/linux-64/fastrlock-0.8.3-py312h6edf5ed_1.conda#2e401040f77cf54d8d5e1f0417dcf0b2 https://conda.anaconda.org/conda-forge/noarch/filelock-3.16.1-pyhd8ed1ab_1.conda#d692e9ba6f92dc51484bf3477e36ce7c -https://conda.anaconda.org/conda-forge/noarch/fsspec-2024.10.0-pyhd8ed1ab_1.conda#906fe13095e734cb413b57a49116cdc8 +https://conda.anaconda.org/conda-forge/noarch/fsspec-2024.12.0-pyhd8ed1ab_0.conda#e041ad4c43ab5e10c74587f95378ebc7 https://conda.anaconda.org/conda-forge/noarch/iniconfig-2.0.0-pyhd8ed1ab_1.conda#6837f3eff7dcea42ecd714ce1ac2b108 https://conda.anaconda.org/conda-forge/linux-64/kiwisolver-1.4.7-py312h68727a3_0.conda#444266743652a4f1538145e9362f6d3b https://conda.anaconda.org/conda-forge/linux-64/lcms2-2.16-hb7c19ff_0.conda#51bb7010fc86f70eee639b4bb7a894f5 -https://conda.anaconda.org/conda-forge/linux-64/libcblas-3.9.0-25_linux64_openblas.conda#5dbd1b0fc0d01ec5e0e1fbe667281a11 +https://conda.anaconda.org/conda-forge/linux-64/libcblas-3.9.0-26_linux64_openblas.conda#ebcc5f37a435aa3c19640533c82f8d76 https://conda.anaconda.org/conda-forge/linux-64/libcups-2.3.3-h4637d8d_4.conda#d4529f4dff3057982a7617c7ac58fde3 https://conda.anaconda.org/conda-forge/linux-64/libcurl-8.11.1-h332b0f4_0.conda#2b3e0081006dc21e8bf53a91c83a055c https://conda.anaconda.org/conda-forge/linux-64/libgl-1.7.0-ha4b6fd6_2.conda#928b8be80851f5d8ffb016f9c81dae7a https://conda.anaconda.org/conda-forge/linux-64/libgrpc-1.67.1-hc2c308b_0.conda#4606a4647bfe857e3cfe21ca12ac3afb https://conda.anaconda.org/conda-forge/linux-64/libhwloc-2.11.2-default_h0d58e46_1001.conda#804ca9e91bcaea0824a341d55b1684f2 -https://conda.anaconda.org/conda-forge/linux-64/liblapack-3.9.0-25_linux64_openblas.conda#4dc03a53fc69371a6158d0ed37214cd3 -https://conda.anaconda.org/conda-forge/linux-64/libllvm19-19.1.5-ha7bfdaf_0.conda#76f3749eda7b24816aacd55b9f31447a +https://conda.anaconda.org/conda-forge/linux-64/liblapack-3.9.0-26_linux64_openblas.conda#3792604c43695d6a273bc5faaac47d48 +https://conda.anaconda.org/conda-forge/linux-64/libllvm19-19.1.6-ha7bfdaf_0.conda#ec6abc65eefc96cba8443b2716dcc43b https://conda.anaconda.org/conda-forge/linux-64/libxkbcommon-1.7.0-h2c5496b_1.conda#e2eaefa4de2b7237af7c907b8bbc760a https://conda.anaconda.org/conda-forge/linux-64/libxslt-1.1.39-h76b75d6_0.conda#e71f31f8cfb0a91439f2086fc8aa0461 https://conda.anaconda.org/conda-forge/linux-64/markupsafe-3.0.2-py312h178313f_1.conda#eb227c3e0bf58f5bd69c0532b157975b @@ -167,7 +167,6 @@ https://conda.anaconda.org/conda-forge/noarch/munkres-1.1.4-pyh9f0ad1d_0.tar.bz2 https://conda.anaconda.org/conda-forge/noarch/networkx-3.4.2-pyh267e887_2.conda#fd40bf7f7f4bc4b647dc8512053d9873 https://conda.anaconda.org/conda-forge/linux-64/openjpeg-2.5.3-h5fbd93e_0.conda#9e5816bc95d285c115a3ebc2f8563564 https://conda.anaconda.org/conda-forge/noarch/packaging-24.2-pyhd8ed1ab_2.conda#3bfed7e6228ebf2f7b9eaa47f1b4e2aa -https://conda.anaconda.org/conda-forge/noarch/pip-24.3.1-pyh145f28c_1.conda#04b95993de18684b24bb742ffe0e90a8 https://conda.anaconda.org/conda-forge/noarch/pluggy-1.5.0-pyhd8ed1ab_1.conda#e9dcbce5f45f9ee500e728ae58b605b6 https://conda.anaconda.org/conda-forge/noarch/pyparsing-3.2.0-pyhd8ed1ab_2.conda#4c05a2bcf87bb495512374143b57cf28 https://conda.anaconda.org/conda-forge/noarch/python-tzdata-2024.2-pyhd8ed1ab_1.conda#c0def296b2f6d2dd7b030c2a7f66bb1f @@ -180,6 +179,7 @@ https://conda.anaconda.org/conda-forge/noarch/tomli-2.2.1-pyhd8ed1ab_1.conda#ac9 https://conda.anaconda.org/conda-forge/linux-64/tornado-6.4.2-py312h66e93f0_0.conda#e417822cb989e80a0d2b1b576fdd1657 https://conda.anaconda.org/conda-forge/noarch/typing_extensions-4.12.2-pyha770c72_1.conda#d17f13df8b65464ca316cbc000a3cb64 https://conda.anaconda.org/conda-forge/linux-64/unicodedata2-15.1.0-py312h66e93f0_1.conda#588486a61153f94c7c13816f7069e440 +https://conda.anaconda.org/conda-forge/noarch/wheel-0.45.1-pyhd8ed1ab_1.conda#75cb7132eb58d97896e173ef12ac9986 https://conda.anaconda.org/conda-forge/linux-64/xcb-util-cursor-0.1.5-hb9d3cd8_0.conda#eb44b3b6deb1cab08d72cb61686fe64c https://conda.anaconda.org/conda-forge/linux-64/xorg-libxcomposite-0.4.6-hb9d3cd8_2.conda#d3c295b50f092ab525ffe3c2aa4b7413 https://conda.anaconda.org/conda-forge/linux-64/xorg-libxcursor-1.2.3-hb9d3cd8_0.conda#2ccd714aa2242315acaf0a67faea780b @@ -193,27 +193,28 @@ https://conda.anaconda.org/conda-forge/linux-64/coverage-7.6.9-py312h178313f_0.c https://conda.anaconda.org/conda-forge/linux-64/fonttools-4.55.3-py312h178313f_0.conda#968104bfe69e21fadeb30edd9c3785f9 https://conda.anaconda.org/conda-forge/linux-64/gmpy2-2.1.5-py312h7201bc8_3.conda#673ef4d6611f5b4ca7b5c1f8c65a38dc https://conda.anaconda.org/conda-forge/linux-64/harfbuzz-9.0.0-hda332d3_1.conda#76b32dcf243444aea9c6b804bcfa40b8 -https://conda.anaconda.org/conda-forge/noarch/jinja2-3.1.4-pyhd8ed1ab_1.conda#08cce3151bde4ecad7885bd9fb647532 +https://conda.anaconda.org/conda-forge/noarch/jinja2-3.1.5-pyhd8ed1ab_0.conda#2752a6ed44105bfb18c9bef1177d9dcd https://conda.anaconda.org/conda-forge/noarch/joblib-1.4.2-pyhd8ed1ab_1.conda#bf8243ee348f3a10a14ed0cae323e0c1 -https://conda.anaconda.org/conda-forge/linux-64/libclang-cpp19.1-19.1.5-default_hb5137d0_0.conda#ec8649c89988d8a443c252c20f259b72 -https://conda.anaconda.org/conda-forge/linux-64/libclang13-19.1.5-default_h9c6a7e4_0.conda#a3a5997b6b47373f0c1608d8503eb4e6 +https://conda.anaconda.org/conda-forge/linux-64/libclang-cpp19.1-19.1.6-default_hb5137d0_0.conda#9caebd39281536bf6bcb32f665dd4fbf +https://conda.anaconda.org/conda-forge/linux-64/libclang13-19.1.6-default_h9c6a7e4_0.conda#e1d2936c320083f1c520c3a17372521c https://conda.anaconda.org/conda-forge/linux-64/libgoogle-cloud-2.32.0-h804f50b_0.conda#3d96df4d6b1c88455e05b94ce8a14a53 -https://conda.anaconda.org/conda-forge/linux-64/liblapacke-3.9.0-25_linux64_openblas.conda#8f5ead31b3a168aedd488b8a87736c41 +https://conda.anaconda.org/conda-forge/linux-64/liblapacke-3.9.0-26_linux64_openblas.conda#7b8b7732fb4786c00cf9b67d1d69445c https://conda.anaconda.org/conda-forge/linux-64/libmagma-2.8.0-h9ddd185_1.conda#2ed47b19940065845dae91ee58ef7957 https://conda.anaconda.org/conda-forge/noarch/meson-1.6.1-pyhd8ed1ab_0.conda#0062fb0a7f5da474705d0ce626de12f4 -https://conda.anaconda.org/conda-forge/linux-64/numpy-2.2.0-py312h7e784f5_0.conda#c9e9a81299192e77428f40711a4fb00d +https://conda.anaconda.org/conda-forge/linux-64/numpy-2.2.1-py312h7e784f5_0.conda#6159cab400b61f38579a7692be5e630a https://conda.anaconda.org/conda-forge/linux-64/openldap-2.6.9-he970967_0.conda#ca2de8bbdc871bce41dbf59e51324165 https://conda.anaconda.org/conda-forge/linux-64/pillow-11.0.0-py312h7b63e92_0.conda#385f46a4df6f97892503a841121a9acf +https://conda.anaconda.org/conda-forge/noarch/pip-24.3.1-pyh8b19718_2.conda#04e691b9fadd93a8a9fad87a81d4fd8f https://conda.anaconda.org/conda-forge/noarch/pyproject-metadata-0.9.0-pyhd8ed1ab_1.conda#1239146a53a383a84633800294120f17 https://conda.anaconda.org/conda-forge/noarch/pytest-8.3.4-pyhd8ed1ab_1.conda#799ed216dc6af62520f32aa39bc1c2bb https://conda.anaconda.org/conda-forge/noarch/python-dateutil-2.9.0.post0-pyhff2d567_1.conda#5ba79d7c71f03c678c8ead841f347d6e https://conda.anaconda.org/conda-forge/linux-64/tbb-2021.13.0-hceb3a55_1.conda#ba7726b8df7b9d34ea80e82b097a4893 https://conda.anaconda.org/conda-forge/linux-64/xorg-libxtst-1.2.5-hb9d3cd8_3.conda#7bbe9a0cc0df0ac5f5a8ad6d6a11af2f -https://conda.anaconda.org/conda-forge/noarch/array-api-strict-2.2-pyhd8ed1ab_0.conda#5f8d3e0f6b42318772d0f1cdddfe3025 +https://conda.anaconda.org/conda-forge/noarch/array-api-strict-2.2-pyhd8ed1ab_1.conda#02e7a32986412d3aaf97095d17120757 https://conda.anaconda.org/conda-forge/linux-64/aws-crt-cpp-0.29.7-hd92328a_7.conda#02b95564257d5c3db9c06beccf711f95 https://conda.anaconda.org/conda-forge/linux-64/azure-identity-cpp-1.10.0-h113e628_0.conda#73f73f60854f325a55f1d31459f2ab73 https://conda.anaconda.org/conda-forge/linux-64/azure-storage-common-cpp-12.8.0-h736e048_1.conda#13de36be8de3ae3f05ba127631599213 -https://conda.anaconda.org/conda-forge/linux-64/blas-devel-3.9.0-25_linux64_openblas.conda#02c516384c77f5a7b4d03ed6c0412c57 +https://conda.anaconda.org/conda-forge/linux-64/blas-devel-3.9.0-26_linux64_openblas.conda#da61c3ef2fbe100b0613cbc2b01b502d https://conda.anaconda.org/conda-forge/linux-64/contourpy-1.3.1-py312h68727a3_0.conda#f5fbba0394ee45e9a64a73c2a994126a https://conda.anaconda.org/conda-forge/linux-64/cupy-core-13.3.0-py312haa09b14_2.conda#565acd25611fce8f002b9ed10bd07165 https://conda.anaconda.org/conda-forge/linux-64/libgoogle-cloud-storage-2.32.0-h0121fbd_0.conda#877a5ec0431a5af83bf0cd0522bfe661 @@ -229,7 +230,7 @@ https://conda.anaconda.org/conda-forge/linux-64/scipy-1.14.1-py312h62794b6_2.con https://conda.anaconda.org/conda-forge/noarch/sympy-1.13.3-pyh2585a3b_104.conda#68085d736d2b2f54498832b65059875d https://conda.anaconda.org/conda-forge/linux-64/aws-sdk-cpp-1.11.458-hc430e4a_4.conda#aeefac461bea1f126653c1285cf5af08 https://conda.anaconda.org/conda-forge/linux-64/azure-storage-blobs-cpp-12.13.0-h3cf044e_1.conda#7eb66060455c7a47d9dcdbfa9f46579b -https://conda.anaconda.org/conda-forge/linux-64/blas-2.125-openblas.conda#0c46b8a31a587738befc587dd8e52558 +https://conda.anaconda.org/conda-forge/linux-64/blas-2.126-openblas.conda#057a3d8aebeae33d971bc66ee08cbf61 https://conda.anaconda.org/conda-forge/linux-64/cupy-13.3.0-py312h8e83189_2.conda#75f6ffc66a1f05ce4f09e83511c9d852 https://conda.anaconda.org/conda-forge/linux-64/libtorch-2.5.1-cuda118_hb34f2e8_303.conda#da799bf557ff6376a1a58f40bddfb293 https://conda.anaconda.org/conda-forge/linux-64/matplotlib-base-3.10.0-py312hd3ec401_0.conda#c27a17a8c54c0d35cf83bbc0de8f7f77 From 5a09fe7f1ab459108a20bbc41947cfac4e5c9341 Mon Sep 17 00:00:00 2001 From: scikit-learn-bot Date: Mon, 23 Dec 2024 08:49:36 +0100 Subject: [PATCH 118/159] :lock: :robot: CI Update lock files for main CI build(s) :lock: :robot: (#30534) Co-authored-by: Lock file bot --- build_tools/azure/debian_32bit_lock.txt | 2 +- ...latest_conda_forge_mkl_linux-64_conda.lock | 49 ++++++----- ...pylatest_conda_forge_mkl_osx-64_conda.lock | 21 +++-- ...test_conda_mkl_no_openmp_osx-64_conda.lock | 14 ++-- ...st_pip_openblas_pandas_linux-64_conda.lock | 8 +- .../pymin_conda_forge_mkl_win-64_conda.lock | 34 ++++---- ...nblas_min_dependencies_linux-64_conda.lock | 22 ++--- ...e_openblas_ubuntu_2204_linux-64_conda.lock | 38 ++++----- build_tools/azure/ubuntu_atlas_lock.txt | 2 +- build_tools/circle/doc_linux-64_conda.lock | 68 ++++++++-------- .../doc_min_dependencies_linux-64_conda.lock | 81 +++++++++---------- 11 files changed, 167 insertions(+), 172 deletions(-) diff --git a/build_tools/azure/debian_32bit_lock.txt b/build_tools/azure/debian_32bit_lock.txt index b9168a394eb47..dbd218846d571 100644 --- a/build_tools/azure/debian_32bit_lock.txt +++ b/build_tools/azure/debian_32bit_lock.txt @@ -12,7 +12,7 @@ iniconfig==2.0.0 # via pytest joblib==1.4.2 # via -r build_tools/azure/debian_32bit_requirements.txt -meson==1.6.0 +meson==1.6.1 # via meson-python meson-python==0.17.1 # via -r build_tools/azure/debian_32bit_requirements.txt diff --git a/build_tools/azure/pylatest_conda_forge_mkl_linux-64_conda.lock b/build_tools/azure/pylatest_conda_forge_mkl_linux-64_conda.lock index 6939e68df7889..f2ff7c56fa71c 100644 --- a/build_tools/azure/pylatest_conda_forge_mkl_linux-64_conda.lock +++ b/build_tools/azure/pylatest_conda_forge_mkl_linux-64_conda.lock @@ -14,7 +14,7 @@ https://conda.anaconda.org/conda-forge/noarch/tzdata-2024b-hc8b5060_0.conda#8ac3 https://conda.anaconda.org/conda-forge/noarch/fonts-conda-forge-1-0.tar.bz2#f766549260d6815b0c52253f1fb1bb29 https://conda.anaconda.org/conda-forge/linux-64/ld_impl_linux-64-2.43-h712a8e2_2.conda#048b02e3962f066da18efe3a21b77672 https://conda.anaconda.org/conda-forge/linux-64/libglvnd-1.7.0-ha4b6fd6_2.conda#434ca7e50e40f4918ab701e3facd59a0 -https://conda.anaconda.org/conda-forge/linux-64/llvm-openmp-19.1.5-h024ca30_0.conda#dc90d15c25a57f641f0b84c271e4761e +https://conda.anaconda.org/conda-forge/linux-64/llvm-openmp-19.1.6-h024ca30_0.conda#96e42ccbd3c067c1713ff5f2d2169247 https://conda.anaconda.org/conda-forge/linux-64/_openmp_mutex-4.5-2_kmp_llvm.tar.bz2#562b26ba2e19059551a811e72ab7f793 https://conda.anaconda.org/conda-forge/noarch/fonts-conda-ecosystem-1-0.tar.bz2#fee5683a3f04bd15cbd8318b096a27ab https://conda.anaconda.org/conda-forge/linux-64/libegl-1.7.0-ha4b6fd6_2.conda#c151d5eb730e9b7480e6d48c0fc44048 @@ -24,14 +24,16 @@ https://conda.anaconda.org/conda-forge/linux-64/alsa-lib-1.2.13-hb9d3cd8_0.conda https://conda.anaconda.org/conda-forge/linux-64/aws-c-common-0.10.6-hb9d3cd8_0.conda#d7d4680337a14001b0e043e96529409b https://conda.anaconda.org/conda-forge/linux-64/c-ares-1.34.4-hb9d3cd8_0.conda#e2775acf57efd5af15b8e3d1d74d72d3 https://conda.anaconda.org/conda-forge/linux-64/libbrotlicommon-1.1.0-hb9d3cd8_2.conda#41b599ed2b02abcfdd84302bff174b23 -https://conda.anaconda.org/conda-forge/linux-64/libdeflate-1.22-hb9d3cd8_0.conda#b422943d5d772b7cc858b36ad2a92db5 +https://conda.anaconda.org/conda-forge/linux-64/libdeflate-1.23-h4ddbbb0_0.conda#8dfae1d2e74767e9ce36d5fa0d8605db https://conda.anaconda.org/conda-forge/linux-64/libexpat-2.6.4-h5888daf_0.conda#db833e03127376d461e1e13e76f09b6c https://conda.anaconda.org/conda-forge/linux-64/libgcc-ng-14.2.0-h69a702a_1.conda#e39480b9ca41323497b05492a63bc35b https://conda.anaconda.org/conda-forge/linux-64/libgfortran5-14.2.0-hd5240d6_1.conda#9822b874ea29af082e5d36098d25427d https://conda.anaconda.org/conda-forge/linux-64/liblzma-5.6.3-hb9d3cd8_1.conda#2ecf2f1c7e4e21fcfe6423a51a992d84 +https://conda.anaconda.org/conda-forge/linux-64/libntlm-1.8-hb9d3cd8_0.conda#7c7927b404672409d9917d49bff5f2d6 https://conda.anaconda.org/conda-forge/linux-64/libstdcxx-14.2.0-hc0a3c3a_1.conda#234a5554c53625688d51062645337328 https://conda.anaconda.org/conda-forge/linux-64/libutf8proc-2.9.0-hb9d3cd8_1.conda#1e936bd23d737aac62a18e9a1e7f8b18 https://conda.anaconda.org/conda-forge/linux-64/libuv-1.49.2-hb9d3cd8_0.conda#070e3c9ddab77e38799d5c30b109c633 +https://conda.anaconda.org/conda-forge/linux-64/libwebp-base-1.5.0-h851e524_0.conda#63f790534398730f59e1b899c3644d4a https://conda.anaconda.org/conda-forge/linux-64/libzlib-1.3.1-hb9d3cd8_2.conda#edb0dca6bc32e4f4789199455a1dbeb8 https://conda.anaconda.org/conda-forge/linux-64/openssl-3.4.0-hb9d3cd8_0.conda#23cc74f77eb99315c0360ec3533147a9 https://conda.anaconda.org/conda-forge/linux-64/pthread-stubs-0.4-hb9d3cd8_1002.conda#b3c17d95b5a10c6e64a21fa17573e70e @@ -56,24 +58,22 @@ https://conda.anaconda.org/conda-forge/linux-64/libgfortran-14.2.0-h69a702a_1.co https://conda.anaconda.org/conda-forge/linux-64/libiconv-1.17-hd590300_2.conda#d66573916ffcf376178462f1b61c941e https://conda.anaconda.org/conda-forge/linux-64/libjpeg-turbo-3.0.0-hd590300_1.conda#ea25936bb4080d843790b586850f82b8 https://conda.anaconda.org/conda-forge/linux-64/libmpdec-4.0.0-h4bc722e_0.conda#aeb98fdeb2e8f25d43ef71fbacbeec80 -https://conda.anaconda.org/conda-forge/linux-64/libntlm-1.4-h7f98852_1002.tar.bz2#e728e874159b042d92b90238a3cb0dc2 https://conda.anaconda.org/conda-forge/linux-64/libpciaccess-0.18-hd590300_0.conda#48f4330bfcd959c3cfb704d424903c82 https://conda.anaconda.org/conda-forge/linux-64/libpng-1.6.44-hadc24fc_0.conda#f4cc49d7aa68316213e4b12be35308d1 https://conda.anaconda.org/conda-forge/linux-64/libsqlite-3.47.2-hee588c1_0.conda#b58da17db24b6e08bcbf8fed2fb8c915 https://conda.anaconda.org/conda-forge/linux-64/libssh2-1.11.1-hf672d98_0.conda#be2de152d8073ef1c01b7728475f2fe7 https://conda.anaconda.org/conda-forge/linux-64/libstdcxx-ng-14.2.0-h4852527_1.conda#8371ac6457591af2cf6159439c1fd051 https://conda.anaconda.org/conda-forge/linux-64/libuuid-2.38.1-h0b41bf4_0.conda#40b61aab5c7ba9ff276c41cfffe6b80b -https://conda.anaconda.org/conda-forge/linux-64/libwebp-base-1.4.0-hd590300_0.conda#b26e8aa824079e1be0294e7152ca4559 https://conda.anaconda.org/conda-forge/linux-64/libxcb-1.17.0-h8a09558_0.conda#92ed62436b625154323d40d5f2f11dd7 https://conda.anaconda.org/conda-forge/linux-64/lz4-c-1.10.0-h5888daf_1.conda#9de5350a85c4a20c685259b889aa6393 https://conda.anaconda.org/conda-forge/linux-64/mysql-common-9.0.1-h266115a_3.conda#9411c61ff1070b5e065b32840c39faa5 https://conda.anaconda.org/conda-forge/linux-64/ncurses-6.5-he02047a_1.conda#70caf8bb6cf39a0b6b7efc885f51c0fe https://conda.anaconda.org/conda-forge/linux-64/pixman-0.44.2-h29eaf8c_0.conda#5e2a7acfa2c24188af39e7944e1b3604 -https://conda.anaconda.org/conda-forge/linux-64/s2n-1.5.9-h0fd0ee4_0.conda#f472432f3753c5ca763d2497e2ea30bf +https://conda.anaconda.org/conda-forge/linux-64/s2n-1.5.10-hb5b8611_0.conda#999f3673f2a011f59287f2969e3749e4 https://conda.anaconda.org/conda-forge/linux-64/sleef-3.7-h1b44611_2.conda#4792f3259c6fdc0b730563a85b211dc0 https://conda.anaconda.org/conda-forge/linux-64/snappy-1.2.1-h8bd8927_1.conda#3b3e64af585eadfb52bb90b553db5edf https://conda.anaconda.org/conda-forge/linux-64/tk-8.6.13-noxft_h4845f30_101.conda#d453b98d9c83e71da0741bb0ff4d76bc -https://conda.anaconda.org/conda-forge/linux-64/aws-c-io-0.15.3-hbf5b6a4_4.conda#ad3a6713063c18b9232c48e89ada03ac +https://conda.anaconda.org/conda-forge/linux-64/aws-c-io-0.15.3-h831e299_5.conda#80dd9f0ddf935290d1dc00ec75ff3023 https://conda.anaconda.org/conda-forge/linux-64/brotli-bin-1.1.0-hb9d3cd8_2.conda#c63b5e52939e795ba8d26e35d767a843 https://conda.anaconda.org/conda-forge/linux-64/double-conversion-3.3.0-h59595ed_0.conda#c2f83a5ddadadcdb08fe05863295ee97 https://conda.anaconda.org/conda-forge/linux-64/freetype-2.12.1-h267a509_2.conda#9ae35c3d96db2c94ce0cef86efdfa2cb @@ -110,7 +110,7 @@ https://conda.anaconda.org/conda-forge/linux-64/krb5-1.21.3-h659f571_0.conda#3f4 https://conda.anaconda.org/conda-forge/linux-64/libglib-2.82.2-h2ff4ddf_0.conda#13e8e54035ddd2b91875ba399f0f7c04 https://conda.anaconda.org/conda-forge/linux-64/libglx-1.7.0-ha4b6fd6_2.conda#c8013e438185f33b13814c5c488acd5c https://conda.anaconda.org/conda-forge/linux-64/libhiredis-1.0.2-h2cc385e_0.tar.bz2#b34907d3a81a3cd8095ee83d174c074a -https://conda.anaconda.org/conda-forge/linux-64/libtiff-4.7.0-hc4654cb_2.conda#be54fb40ea32e8fe9dbaa94d4528b57e +https://conda.anaconda.org/conda-forge/linux-64/libtiff-4.7.0-hd9ff511_3.conda#0ea6510969e1296cc19966fad481f6de https://conda.anaconda.org/conda-forge/linux-64/libxml2-2.13.5-h8d12d68_1.conda#1a21e49e190d1ffe58531a81b6e400e1 https://conda.anaconda.org/conda-forge/linux-64/mpfr-4.2.1-h90cbb55_3.conda#2eeb50cab6652538eee8fc0bc3340c81 https://conda.anaconda.org/conda-forge/linux-64/mysql-libs-9.0.1-he0572af_3.conda#dd9da69dd4c2bf798c0b8bd4786cafb5 @@ -127,7 +127,6 @@ https://conda.anaconda.org/conda-forge/linux-64/aws-c-auth-0.8.0-hb921021_15.con https://conda.anaconda.org/conda-forge/linux-64/aws-c-mqtt-0.11.0-h11f4f37_12.conda#96c3e0221fa2da97619ee82faa341a73 https://conda.anaconda.org/conda-forge/linux-64/cairo-1.18.2-h3394656_1.conda#b34c2833a1f56db610aeb27f206d800d https://conda.anaconda.org/conda-forge/linux-64/ccache-4.10.1-h065aff2_0.conda#d6b48c138e0c8170a6fe9c136e063540 -https://conda.anaconda.org/conda-forge/noarch/certifi-2024.8.30-pyhd8ed1ab_0.conda#12f7d00853807b0531775e9be891cb11 https://conda.anaconda.org/conda-forge/noarch/colorama-0.4.6-pyhd8ed1ab_1.conda#962b9857ee8e7018c22f2776ffa0b2d7 https://conda.anaconda.org/conda-forge/noarch/cpython-3.13.1-py313hd8ed1ab_102.conda#03f9b71509b4a492d7da023bf825ebbd https://conda.anaconda.org/conda-forge/noarch/cycler-0.12.1-pyhd8ed1ab_1.conda#44600c4667a319d67dbe0681fc0bc833 @@ -137,7 +136,7 @@ https://conda.anaconda.org/conda-forge/linux-64/dbus-1.13.6-h5008d03_3.tar.bz2#e https://conda.anaconda.org/conda-forge/noarch/exceptiongroup-1.2.2-pyhd8ed1ab_1.conda#a16662747cdeb9abbac74d0057cc976e https://conda.anaconda.org/conda-forge/noarch/execnet-2.1.1-pyhd8ed1ab_1.conda#a71efeae2c160f6789900ba2631a2c90 https://conda.anaconda.org/conda-forge/noarch/filelock-3.16.1-pyhd8ed1ab_1.conda#d692e9ba6f92dc51484bf3477e36ce7c -https://conda.anaconda.org/conda-forge/noarch/fsspec-2024.10.0-pyhd8ed1ab_1.conda#906fe13095e734cb413b57a49116cdc8 +https://conda.anaconda.org/conda-forge/noarch/fsspec-2024.12.0-pyhd8ed1ab_0.conda#e041ad4c43ab5e10c74587f95378ebc7 https://conda.anaconda.org/conda-forge/noarch/iniconfig-2.0.0-pyhd8ed1ab_1.conda#6837f3eff7dcea42ecd714ce1ac2b108 https://conda.anaconda.org/conda-forge/linux-64/kiwisolver-1.4.7-py313h33d0bda_0.conda#9862d13a5e466273d5a4738cffcb8d6c https://conda.anaconda.org/conda-forge/linux-64/lcms2-2.16-hb7c19ff_0.conda#51bb7010fc86f70eee639b4bb7a894f5 @@ -146,7 +145,7 @@ https://conda.anaconda.org/conda-forge/linux-64/libcurl-8.11.1-h332b0f4_0.conda# https://conda.anaconda.org/conda-forge/linux-64/libgl-1.7.0-ha4b6fd6_2.conda#928b8be80851f5d8ffb016f9c81dae7a https://conda.anaconda.org/conda-forge/linux-64/libgrpc-1.67.1-hc2c308b_0.conda#4606a4647bfe857e3cfe21ca12ac3afb https://conda.anaconda.org/conda-forge/linux-64/libhwloc-2.11.2-default_h0d58e46_1001.conda#804ca9e91bcaea0824a341d55b1684f2 -https://conda.anaconda.org/conda-forge/linux-64/libllvm19-19.1.5-ha7bfdaf_0.conda#76f3749eda7b24816aacd55b9f31447a +https://conda.anaconda.org/conda-forge/linux-64/libllvm19-19.1.6-ha7bfdaf_0.conda#ec6abc65eefc96cba8443b2716dcc43b https://conda.anaconda.org/conda-forge/linux-64/libxkbcommon-1.7.0-h2c5496b_1.conda#e2eaefa4de2b7237af7c907b8bbc760a https://conda.anaconda.org/conda-forge/linux-64/libxslt-1.1.39-h76b75d6_0.conda#e71f31f8cfb0a91439f2086fc8aa0461 https://conda.anaconda.org/conda-forge/linux-64/markupsafe-3.0.2-py313h8060acc_1.conda#21b62c55924f01b6eef6827167b46acb @@ -156,7 +155,7 @@ https://conda.anaconda.org/conda-forge/noarch/munkres-1.1.4-pyh9f0ad1d_0.tar.bz2 https://conda.anaconda.org/conda-forge/noarch/networkx-3.4.2-pyh267e887_2.conda#fd40bf7f7f4bc4b647dc8512053d9873 https://conda.anaconda.org/conda-forge/linux-64/openjpeg-2.5.3-h5fbd93e_0.conda#9e5816bc95d285c115a3ebc2f8563564 https://conda.anaconda.org/conda-forge/noarch/packaging-24.2-pyhd8ed1ab_2.conda#3bfed7e6228ebf2f7b9eaa47f1b4e2aa -https://conda.anaconda.org/conda-forge/noarch/pip-24.3.1-pyh145f28c_0.conda#ca3afe2d7b893a8c8cdf489d30a2b1a3 +https://conda.anaconda.org/conda-forge/noarch/pip-24.3.1-pyh145f28c_2.conda#76601b0ccfe1fe13a21a5f8813cb38de https://conda.anaconda.org/conda-forge/noarch/pluggy-1.5.0-pyhd8ed1ab_1.conda#e9dcbce5f45f9ee500e728ae58b605b6 https://conda.anaconda.org/conda-forge/noarch/pyparsing-3.2.0-pyhd8ed1ab_2.conda#4c05a2bcf87bb495512374143b57cf28 https://conda.anaconda.org/conda-forge/noarch/python-tzdata-2024.2-pyhd8ed1ab_1.conda#c0def296b2f6d2dd7b030c2a7f66bb1f @@ -181,12 +180,12 @@ https://conda.anaconda.org/conda-forge/linux-64/coverage-7.6.9-py313h8060acc_0.c https://conda.anaconda.org/conda-forge/linux-64/fonttools-4.55.3-py313h8060acc_0.conda#8402b3d23142194dde4af92af17b276c https://conda.anaconda.org/conda-forge/linux-64/gmpy2-2.1.5-py313h11186cd_3.conda#846a773cdc154eda7b86d7f4427432f2 https://conda.anaconda.org/conda-forge/linux-64/harfbuzz-9.0.0-hda332d3_1.conda#76b32dcf243444aea9c6b804bcfa40b8 -https://conda.anaconda.org/conda-forge/noarch/jinja2-3.1.4-pyhd8ed1ab_1.conda#08cce3151bde4ecad7885bd9fb647532 +https://conda.anaconda.org/conda-forge/noarch/jinja2-3.1.5-pyhd8ed1ab_0.conda#2752a6ed44105bfb18c9bef1177d9dcd https://conda.anaconda.org/conda-forge/noarch/joblib-1.4.2-pyhd8ed1ab_1.conda#bf8243ee348f3a10a14ed0cae323e0c1 -https://conda.anaconda.org/conda-forge/linux-64/libclang-cpp19.1-19.1.5-default_hb5137d0_0.conda#ec8649c89988d8a443c252c20f259b72 -https://conda.anaconda.org/conda-forge/linux-64/libclang13-19.1.5-default_h9c6a7e4_0.conda#a3a5997b6b47373f0c1608d8503eb4e6 +https://conda.anaconda.org/conda-forge/linux-64/libclang-cpp19.1-19.1.6-default_hb5137d0_0.conda#9caebd39281536bf6bcb32f665dd4fbf +https://conda.anaconda.org/conda-forge/linux-64/libclang13-19.1.6-default_h9c6a7e4_0.conda#e1d2936c320083f1c520c3a17372521c https://conda.anaconda.org/conda-forge/linux-64/libgoogle-cloud-2.32.0-h804f50b_0.conda#3d96df4d6b1c88455e05b94ce8a14a53 -https://conda.anaconda.org/conda-forge/noarch/meson-1.6.0-pyhd8ed1ab_1.conda#59d45dbe1b0a123966266340b579d366 +https://conda.anaconda.org/conda-forge/noarch/meson-1.6.1-pyhd8ed1ab_0.conda#0062fb0a7f5da474705d0ce626de12f4 https://conda.anaconda.org/conda-forge/linux-64/openldap-2.6.9-he970967_0.conda#ca2de8bbdc871bce41dbf59e51324165 https://conda.anaconda.org/conda-forge/linux-64/pillow-11.0.0-py313h2d7ed13_0.conda#0d95e1cda6bf9ce501e751c02561204e https://conda.anaconda.org/conda-forge/noarch/pyproject-metadata-0.9.0-pyhd8ed1ab_1.conda#1239146a53a383a84633800294120f17 @@ -206,19 +205,19 @@ https://conda.anaconda.org/conda-forge/noarch/pytest-xdist-3.6.1-pyhd8ed1ab_1.co https://conda.anaconda.org/conda-forge/noarch/sympy-1.13.3-pyh2585a3b_104.conda#68085d736d2b2f54498832b65059875d https://conda.anaconda.org/conda-forge/linux-64/aws-sdk-cpp-1.11.458-hc430e4a_4.conda#aeefac461bea1f126653c1285cf5af08 https://conda.anaconda.org/conda-forge/linux-64/azure-storage-blobs-cpp-12.13.0-h3cf044e_1.conda#7eb66060455c7a47d9dcdbfa9f46579b -https://conda.anaconda.org/conda-forge/linux-64/libblas-3.9.0-25_linux64_mkl.conda#b77ebfb548eae4d91639e2ca003662c8 +https://conda.anaconda.org/conda-forge/linux-64/libblas-3.9.0-26_linux64_mkl.conda#60463d3ec26e0860bfc7fc1547e005ef https://conda.anaconda.org/conda-forge/linux-64/mkl-devel-2024.2.2-ha770c72_16.conda#140891ea14285fc634353b31e9e40a95 https://conda.anaconda.org/conda-forge/linux-64/qt6-main-6.8.1-h9d28a51_0.conda#7e8e17c44e7af62c77de7a0158afc35c https://conda.anaconda.org/conda-forge/linux-64/azure-storage-files-datalake-cpp-12.12.0-ha633028_1.conda#7c1980f89dd41b097549782121a73490 -https://conda.anaconda.org/conda-forge/linux-64/libcblas-3.9.0-25_linux64_mkl.conda#e48aeb4ab1a293f621fe995959f1d32f -https://conda.anaconda.org/conda-forge/linux-64/liblapack-3.9.0-25_linux64_mkl.conda#d5afbe3777c594434e4de6481254e99c +https://conda.anaconda.org/conda-forge/linux-64/libcblas-3.9.0-26_linux64_mkl.conda#760c109bfe25518d6f9af51d7af8b9f3 +https://conda.anaconda.org/conda-forge/linux-64/liblapack-3.9.0-26_linux64_mkl.conda#84112111a50db59ca64153e0054fa73e https://conda.anaconda.org/conda-forge/linux-64/pyside6-6.8.1-py313h5f61773_0.conda#689386169e9c1e4879e81384de4d47e9 https://conda.anaconda.org/conda-forge/linux-64/libarrow-18.1.0-h44a453e_6_cpu.conda#2cf6d608d6e66506f69797d5c6944c35 -https://conda.anaconda.org/conda-forge/linux-64/liblapacke-3.9.0-25_linux64_mkl.conda#cbddb4169d3d24b13b308403b45f401e +https://conda.anaconda.org/conda-forge/linux-64/liblapacke-3.9.0-26_linux64_mkl.conda#ffd5d8a606a1bd0e914f276dc44b42ee https://conda.anaconda.org/conda-forge/linux-64/libtorch-2.5.1-cpu_mkl_h791ef64_106.conda#a6197137453f4365412dcbef1f403141 -https://conda.anaconda.org/conda-forge/linux-64/numpy-2.2.0-py313hb30382a_0.conda#5aa2240f061c27ddabaa2a4924c1a066 -https://conda.anaconda.org/conda-forge/noarch/array-api-strict-2.2-pyhd8ed1ab_0.conda#5f8d3e0f6b42318772d0f1cdddfe3025 -https://conda.anaconda.org/conda-forge/linux-64/blas-devel-3.9.0-25_linux64_mkl.conda#cb60caae3cb30988431d7107691bd587 +https://conda.anaconda.org/conda-forge/linux-64/numpy-2.2.1-py313hb30382a_0.conda#bacc73d89e22828efedf31fdc4b54b4e +https://conda.anaconda.org/conda-forge/noarch/array-api-strict-2.2-pyhd8ed1ab_1.conda#02e7a32986412d3aaf97095d17120757 +https://conda.anaconda.org/conda-forge/linux-64/blas-devel-3.9.0-26_linux64_mkl.conda#261acc954f47b7bf11d841ad8dd91d08 https://conda.anaconda.org/conda-forge/linux-64/contourpy-1.3.1-py313h33d0bda_0.conda#6b6768e7c585d7029f79a04cbc4cbff0 https://conda.anaconda.org/conda-forge/linux-64/libarrow-acero-18.1.0-hcb10f89_6_cpu.conda#143f9288b64759a6427563f058c62f2b https://conda.anaconda.org/conda-forge/linux-64/libparquet-18.1.0-h081d1f1_6_cpu.conda#68788df49ce7480187eb6387f15b2b67 @@ -227,11 +226,11 @@ https://conda.anaconda.org/conda-forge/linux-64/polars-1.17.1-py313hae41bca_0.co https://conda.anaconda.org/conda-forge/linux-64/pyarrow-core-18.1.0-py313he5f92c8_0_cpu.conda#5380e12f4468e891911dbbd4248b521a https://conda.anaconda.org/conda-forge/linux-64/pytorch-2.5.1-cpu_mkl_py313hf76930e_106.conda#436a5c9f320b3230e67fbe26d224d516 https://conda.anaconda.org/conda-forge/linux-64/scipy-1.14.1-py313h27c5614_2.conda#25c0eda0d2ed28962c5f3e8f7fbeace3 -https://conda.anaconda.org/conda-forge/linux-64/blas-2.125-mkl.conda#8a0ffaaae2bccf691cffdde83cb0f1a5 +https://conda.anaconda.org/conda-forge/linux-64/blas-2.126-mkl.conda#4af53f2542f5adbfc2290f084f3a99fa https://conda.anaconda.org/conda-forge/linux-64/libarrow-dataset-18.1.0-hcb10f89_6_cpu.conda#20ca46a6bc714a6ab189d5b3f46e66d8 -https://conda.anaconda.org/conda-forge/linux-64/matplotlib-base-3.9.4-py313h129903b_0.conda#50b877c205e32719e279cc78d9b4b466 +https://conda.anaconda.org/conda-forge/linux-64/matplotlib-base-3.10.0-py313h129903b_0.conda#ab5b84154e1d9e41d4f11aea76d74096 https://conda.anaconda.org/conda-forge/linux-64/pyamg-5.2.1-py313hf0ab243_1.conda#4c769bf3858f424cb2ecf952175ec600 https://conda.anaconda.org/conda-forge/linux-64/pytorch-cpu-2.5.1-cpu_mkl_hc60beec_106.conda#0e8cc9f4649cbcd439c4a6bc8166ac03 https://conda.anaconda.org/conda-forge/linux-64/libarrow-substrait-18.1.0-h3ee7192_6_cpu.conda#aa313b3168caf98d00b3753f5ba27650 -https://conda.anaconda.org/conda-forge/linux-64/matplotlib-3.9.4-py313h78bf25f_0.conda#3793e5d2148f2154bfe3303b42b67a2e +https://conda.anaconda.org/conda-forge/linux-64/matplotlib-3.10.0-py313h78bf25f_0.conda#8db95cf01990edcecf616ed65a986fde https://conda.anaconda.org/conda-forge/linux-64/pyarrow-18.1.0-py313h78bf25f_0.conda#a11d880ceedc33993c6f5c14a80ea9d3 diff --git a/build_tools/azure/pylatest_conda_forge_mkl_osx-64_conda.lock b/build_tools/azure/pylatest_conda_forge_mkl_osx-64_conda.lock index e946631f422e3..50b6cdb3b37ce 100644 --- a/build_tools/azure/pylatest_conda_forge_mkl_osx-64_conda.lock +++ b/build_tools/azure/pylatest_conda_forge_mkl_osx-64_conda.lock @@ -7,19 +7,19 @@ https://conda.anaconda.org/conda-forge/osx-64/libffi-3.4.2-h0d85af4_5.tar.bz2#cc https://conda.anaconda.org/conda-forge/noarch/libgfortran-devel_osx-64-13.2.0-h80d4556_3.conda#3a689f0d733e67828ad00eac5f3cf26e https://conda.anaconda.org/conda-forge/osx-64/libiconv-1.17-hd75f5a5_2.conda#6c3628d047e151efba7cf08c5e54d1ca https://conda.anaconda.org/conda-forge/osx-64/libjpeg-turbo-3.0.0-h0dc2134_1.conda#72507f8e3961bc968af17435060b6dd6 -https://conda.anaconda.org/conda-forge/osx-64/libwebp-base-1.4.0-h10d778d_0.conda#b2c0047ea73819d992484faacbbe1c24 https://conda.anaconda.org/conda-forge/osx-64/mkl-include-2023.2.0-h6bab518_50500.conda#835abb8ded5e26f23ea6996259c7972e https://conda.anaconda.org/conda-forge/osx-64/python_abi-3.13-5_cp313.conda#927a2186f1f997ac018d67c4eece90a6 https://conda.anaconda.org/conda-forge/noarch/tzdata-2024b-hc8b5060_0.conda#8ac3367aafb1cc0a068483c580af8015 https://conda.anaconda.org/conda-forge/osx-64/bzip2-1.0.8-hfdf4475_7.conda#7ed4301d437b59045be7e051a0308211 https://conda.anaconda.org/conda-forge/osx-64/libbrotlicommon-1.1.0-h00291cd_2.conda#58f2c4bdd56c46cc7451596e4ae68e0b -https://conda.anaconda.org/conda-forge/osx-64/libcxx-19.1.5-hf95d169_0.conda#a20d4ea6839510372d1eeb8532b09acf -https://conda.anaconda.org/conda-forge/osx-64/libdeflate-1.22-h00291cd_0.conda#a15785ccc62ae2a8febd299424081efb +https://conda.anaconda.org/conda-forge/osx-64/libcxx-19.1.6-hf95d169_1.conda#1bad6c181a0799298aad42fc5a7e98b7 +https://conda.anaconda.org/conda-forge/osx-64/libdeflate-1.23-he65b83e_0.conda#120f8f7ba6a8defb59f4253447db4bb4 https://conda.anaconda.org/conda-forge/osx-64/libexpat-2.6.4-h240833e_0.conda#20307f4049a735a78a29073be1be2626 https://conda.anaconda.org/conda-forge/osx-64/liblzma-5.6.3-hd471939_1.conda#f9e9205fed9c664421c1c09f0b90ce6d https://conda.anaconda.org/conda-forge/osx-64/libmpdec-4.0.0-hfdf4475_0.conda#ed625b2e59dff82859c23dd24774156b +https://conda.anaconda.org/conda-forge/osx-64/libwebp-base-1.5.0-h6cf52b4_0.conda#5e0cefc99a231ac46ba21e27ae44689f https://conda.anaconda.org/conda-forge/osx-64/libzlib-1.3.1-hd23fc13_2.conda#003a54a4e32b02f7355b50a837e699da -https://conda.anaconda.org/conda-forge/osx-64/llvm-openmp-19.1.5-ha54dae1_0.conda#fc0cec628a431e2f87d09e83a3a579e1 +https://conda.anaconda.org/conda-forge/osx-64/llvm-openmp-19.1.6-ha54dae1_0.conda#4fe4d62071f8a3322ffb6588b49ccbb8 https://conda.anaconda.org/conda-forge/osx-64/ncurses-6.5-hf036a51_1.conda#e102bbf8a6ceeaf429deab8032fc8977 https://conda.anaconda.org/conda-forge/osx-64/openssl-3.4.0-hd471939_0.conda#ec99d2ce0b3033a75cbad01bbc7c5b71 https://conda.anaconda.org/conda-forge/osx-64/pthread-stubs-0.4-h00291cd_1002.conda#8bcf980d2c6b17094961198284b8e862 @@ -49,11 +49,10 @@ https://conda.anaconda.org/conda-forge/osx-64/freetype-2.12.1-h60636b9_2.conda#2 https://conda.anaconda.org/conda-forge/osx-64/libgfortran-5.0.0-13_2_0_h97931a8_3.conda#0b6e23a012ee7a9a5f6b244f5a92c1d5 https://conda.anaconda.org/conda-forge/osx-64/libhwloc-2.11.2-default_h4cdd727_1001.conda#52bbb10ac083c563d00df035c94f9a63 https://conda.anaconda.org/conda-forge/osx-64/libllvm17-17.0.6-hbedff68_1.conda#fcd38f0553a99fa279fb66a5bfc2fb28 -https://conda.anaconda.org/conda-forge/osx-64/libtiff-4.7.0-hf4bdac2_2.conda#99a4153a4ee19d4902c0c08bfae4cdb4 +https://conda.anaconda.org/conda-forge/osx-64/libtiff-4.7.0-hb77a491_3.conda#6f2f9df7b093d6b33bc0c334acc7d2d9 https://conda.anaconda.org/conda-forge/osx-64/mpfr-4.2.1-haed47dc_3.conda#d511e58aaaabfc23136880d9956fa7a6 https://conda.anaconda.org/conda-forge/osx-64/python-3.13.1-h2334245_102_cp313.conda#bacdbf2fd86557ad1fb862cb2d30d821 https://conda.anaconda.org/conda-forge/osx-64/brotli-1.1.0-h00291cd_2.conda#2db0c38a7f2321c5bdaf32b181e832c7 -https://conda.anaconda.org/conda-forge/noarch/certifi-2024.8.30-pyhd8ed1ab_0.conda#12f7d00853807b0531775e9be891cb11 https://conda.anaconda.org/conda-forge/noarch/colorama-0.4.6-pyhd8ed1ab_1.conda#962b9857ee8e7018c22f2776ffa0b2d7 https://conda.anaconda.org/conda-forge/noarch/cycler-0.12.1-pyhd8ed1ab_1.conda#44600c4667a319d67dbe0681fc0bc833 https://conda.anaconda.org/conda-forge/osx-64/cython-3.0.11-py313h496bac6_3.conda#e2ff2f9b266fe869268ed4c4c97e8f34 @@ -70,7 +69,7 @@ https://conda.anaconda.org/conda-forge/osx-64/mpc-1.3.1-h9d8efa1_1.conda#0520855 https://conda.anaconda.org/conda-forge/noarch/munkres-1.1.4-pyh9f0ad1d_0.tar.bz2#2ba8498c1018c1e9c61eb99b973dfe19 https://conda.anaconda.org/conda-forge/osx-64/openjpeg-2.5.3-h7fd6d84_0.conda#025c711177fc3309228ca1a32374458d https://conda.anaconda.org/conda-forge/noarch/packaging-24.2-pyhd8ed1ab_2.conda#3bfed7e6228ebf2f7b9eaa47f1b4e2aa -https://conda.anaconda.org/conda-forge/noarch/pip-24.3.1-pyh145f28c_0.conda#ca3afe2d7b893a8c8cdf489d30a2b1a3 +https://conda.anaconda.org/conda-forge/noarch/pip-24.3.1-pyh145f28c_2.conda#76601b0ccfe1fe13a21a5f8813cb38de https://conda.anaconda.org/conda-forge/noarch/pluggy-1.5.0-pyhd8ed1ab_1.conda#e9dcbce5f45f9ee500e728ae58b605b6 https://conda.anaconda.org/conda-forge/noarch/pyparsing-3.2.0-pyhd8ed1ab_2.conda#4c05a2bcf87bb495512374143b57cf28 https://conda.anaconda.org/conda-forge/noarch/python-tzdata-2024.2-pyhd8ed1ab_1.conda#c0def296b2f6d2dd7b030c2a7f66bb1f @@ -90,7 +89,7 @@ https://conda.anaconda.org/conda-forge/osx-64/fonttools-4.55.3-py313h717bdf5_0.c https://conda.anaconda.org/conda-forge/osx-64/gfortran_impl_osx-64-13.2.0-h2bc304d_3.conda#57aa4cb95277a27aa0a1834ed97be45b https://conda.anaconda.org/conda-forge/noarch/joblib-1.4.2-pyhd8ed1ab_1.conda#bf8243ee348f3a10a14ed0cae323e0c1 https://conda.anaconda.org/conda-forge/osx-64/ld64-951.9-h0a3eb4e_2.conda#c198062cf84f2e797996ac156daffa9e -https://conda.anaconda.org/conda-forge/noarch/meson-1.6.0-pyhd8ed1ab_1.conda#59d45dbe1b0a123966266340b579d366 +https://conda.anaconda.org/conda-forge/noarch/meson-1.6.1-pyhd8ed1ab_0.conda#0062fb0a7f5da474705d0ce626de12f4 https://conda.anaconda.org/conda-forge/osx-64/mkl-2023.2.0-h54c2260_50500.conda#0a342ccdc79e4fcd359245ac51941e7b https://conda.anaconda.org/conda-forge/osx-64/pillow-11.0.0-py313h4d44d4f_0.conda#d5a3e556600840a77c61394c48ee52d9 https://conda.anaconda.org/conda-forge/noarch/pyproject-metadata-0.9.0-pyhd8ed1ab_1.conda#1239146a53a383a84633800294120f17 @@ -108,7 +107,7 @@ https://conda.anaconda.org/conda-forge/osx-64/libcblas-3.9.0-20_osx64_mkl.conda# https://conda.anaconda.org/conda-forge/osx-64/liblapack-3.9.0-20_osx64_mkl.conda#58f08e12ad487fac4a08f90ff0b87aec https://conda.anaconda.org/conda-forge/noarch/compiler-rt_osx-64-17.0.6-hf2b8a54_2.conda#98e6d83e484e42f6beebba4276e38145 https://conda.anaconda.org/conda-forge/osx-64/liblapacke-3.9.0-20_osx64_mkl.conda#124ae8e384268a8da66f1d64114a1eda -https://conda.anaconda.org/conda-forge/osx-64/numpy-2.2.0-py313h6ae94ac_0.conda#5a29107bfc566fd1d44189c30ec67380 +https://conda.anaconda.org/conda-forge/osx-64/numpy-2.2.1-py313h6ae94ac_0.conda#b2e20a8de4f49e1d55ec3e10b73840c1 https://conda.anaconda.org/conda-forge/osx-64/blas-devel-3.9.0-20_osx64_mkl.conda#cc3260179093918b801e373c6e888e02 https://conda.anaconda.org/conda-forge/osx-64/compiler-rt-17.0.6-h1020d70_2.conda#be4cb4531d4cee9df94bf752455d68de https://conda.anaconda.org/conda-forge/osx-64/contourpy-1.3.1-py313ha0b1807_0.conda#5ae850f4b044294bd7d655228fc236f9 @@ -116,10 +115,10 @@ https://conda.anaconda.org/conda-forge/osx-64/pandas-2.2.3-py313h38cdd20_1.conda https://conda.anaconda.org/conda-forge/osx-64/scipy-1.14.1-py313hd641537_2.conda#761f4433e80b2daed4d050da787db155 https://conda.anaconda.org/conda-forge/osx-64/blas-2.120-mkl.conda#b041a7677a412f3d925d8208936cb1e2 https://conda.anaconda.org/conda-forge/osx-64/clang_impl_osx-64-17.0.6-h1af8efd_23.conda#90132dd643d402883e4fbd8f0527e152 -https://conda.anaconda.org/conda-forge/osx-64/matplotlib-base-3.9.4-py313he981572_0.conda#a57f187cdbb574df39fada4ec356c039 +https://conda.anaconda.org/conda-forge/osx-64/matplotlib-base-3.10.0-py313he981572_0.conda#765ffe9ff0204c094692b08c08b2c0f4 https://conda.anaconda.org/conda-forge/osx-64/pyamg-5.2.1-py313h0322a6a_1.conda#4bda5182eeaef3d2017a2ec625802e1a https://conda.anaconda.org/conda-forge/osx-64/clang_osx-64-17.0.6-h7e5c614_23.conda#615b86de1eb0162b7fa77bb8cbf57f1d -https://conda.anaconda.org/conda-forge/osx-64/matplotlib-3.9.4-py313habf4b1d_0.conda#1c88d27f3b45edb6e1b4ff4e4d79a0ad +https://conda.anaconda.org/conda-forge/osx-64/matplotlib-3.10.0-py313habf4b1d_0.conda#a1081de6446fbd9049e1bce7d965a3ac https://conda.anaconda.org/conda-forge/osx-64/c-compiler-1.8.0-hfc4bf79_1.conda#d6e3cf55128335736c8d4bb86e73c191 https://conda.anaconda.org/conda-forge/osx-64/clangxx_impl_osx-64-17.0.6-hc3430b7_23.conda#b724718bfe53f93e782fe944ec58029e https://conda.anaconda.org/conda-forge/osx-64/gfortran_osx-64-13.2.0-h18f7dce_1.conda#71d59c1ae3fea7a97154ff0e20b38df3 diff --git a/build_tools/azure/pylatest_conda_mkl_no_openmp_osx-64_conda.lock b/build_tools/azure/pylatest_conda_mkl_no_openmp_osx-64_conda.lock index b8094d2a71e70..ef954cc247339 100644 --- a/build_tools/azure/pylatest_conda_mkl_no_openmp_osx-64_conda.lock +++ b/build_tools/azure/pylatest_conda_mkl_no_openmp_osx-64_conda.lock @@ -8,7 +8,7 @@ https://repo.anaconda.com/pkgs/main/osx-64/ca-certificates-2024.11.26-hecd8cb5_0 https://repo.anaconda.com/pkgs/main/osx-64/jpeg-9e-h46256e1_3.conda#b1d9769eac428e11f5f922531a1da2e0 https://repo.anaconda.com/pkgs/main/osx-64/libbrotlicommon-1.0.9-h6c40b1e_8.conda#8e86dfa34b08bc664b19e1499e5465b8 https://repo.anaconda.com/pkgs/main/osx-64/libcxx-14.0.6-h9765a3e_0.conda#387757bb354ae9042370452cd0fb5627 -https://repo.anaconda.com/pkgs/main/osx-64/libdeflate-1.17-hb664fd8_1.conda#b6116b8db33ea6a5b5287dae70d4a913 +https://repo.anaconda.com/pkgs/main/osx-64/libdeflate-1.22-h46256e1_0.conda#7612fb79e5e76fcd16655c7d026f4a66 https://repo.anaconda.com/pkgs/main/osx-64/libffi-3.4.4-hecd8cb5_1.conda#eb7f09ada4d95f1a26f483f1009d9286 https://repo.anaconda.com/pkgs/main/osx-64/libwebp-base-1.3.2-h46256e1_1.conda#399c11b50e6e7a6969aca9a84ea416b7 https://repo.anaconda.com/pkgs/main/osx-64/llvm-openmp-14.0.6-h0dcd299_0.conda#b5804d32b87dc61ca94561ade33d5f2d @@ -19,7 +19,7 @@ https://repo.anaconda.com/pkgs/main/osx-64/zlib-1.2.13-h4b97444_1.conda#38e35f7c https://repo.anaconda.com/pkgs/main/osx-64/ccache-3.7.9-hf120daa_0.conda#a01515a32e721c51d631283f991bc8ea https://repo.anaconda.com/pkgs/main/osx-64/expat-2.6.4-h6d0c2b6_0.conda#337f85e792486001ba7aed0fa2f93e64 https://repo.anaconda.com/pkgs/main/osx-64/intel-openmp-2023.1.0-ha357a0b_43548.conda#ba8a89ffe593eb88e4c01334753c40c3 -https://repo.anaconda.com/pkgs/main/osx-64/lerc-3.0-he9d5cce_0.conda#aec2c3dbef836849c9260f05be04f3db +https://repo.anaconda.com/pkgs/main/osx-64/lerc-4.0.0-h6d0c2b6_0.conda#824f87854c58df1525557c8639ce7f93 https://repo.anaconda.com/pkgs/main/osx-64/libbrotlidec-1.0.9-h6c40b1e_8.conda#6338cd7779e614fc16d835990e627e04 https://repo.anaconda.com/pkgs/main/osx-64/libbrotlienc-1.0.9-h6c40b1e_8.conda#2af01a7b3fdbed47ebe5c452c34e5c5d https://repo.anaconda.com/pkgs/main/osx-64/libgfortran5-11.3.0-h9dfd629_28.conda#1fa1a27ee100b1918c3021dbfa3895a3 @@ -37,7 +37,7 @@ https://repo.anaconda.com/pkgs/main/osx-64/mkl-2023.1.0-h8e150cf_43560.conda#85d https://repo.anaconda.com/pkgs/main/osx-64/sqlite-3.45.3-h6c40b1e_0.conda#2edf909b937b3aad48322c9cb2e8f1a0 https://repo.anaconda.com/pkgs/main/osx-64/zstd-1.5.6-h138b38a_0.conda#f4d15d7d0054d39e6a24fe8d7d1e37c5 https://repo.anaconda.com/pkgs/main/osx-64/brotli-1.0.9-h6c40b1e_8.conda#10f89677a3898d0113dc354adf643df3 -https://repo.anaconda.com/pkgs/main/osx-64/libtiff-4.5.1-hcec6c5f_0.conda#e127a800ffd9d300ed7d5e1b026944ec +https://repo.anaconda.com/pkgs/main/osx-64/libtiff-4.5.1-h6fa9cd1_1.conda#3d7e2cea5c733721750160acb997a90b https://repo.anaconda.com/pkgs/main/osx-64/python-3.12.8-hcd54a6c_0.conda#54c4f4421ae085eb9e9d63643c272cf3 https://repo.anaconda.com/pkgs/main/osx-64/coverage-7.6.9-py312h46256e1_0.conda#f8c1547bbf522a600ee795901240a7b0 https://repo.anaconda.com/pkgs/main/noarch/cycler-0.11.0-pyhd3eb1b0_0.conda#f5e365d2cdb66d547eb8c3ab93843aab @@ -45,11 +45,11 @@ https://repo.anaconda.com/pkgs/main/noarch/execnet-2.1.1-pyhd3eb1b0_0.conda#b3cb https://repo.anaconda.com/pkgs/main/noarch/iniconfig-1.1.1-pyhd3eb1b0_0.tar.bz2#e40edff2c5708f342cef43c7f280c507 https://repo.anaconda.com/pkgs/main/osx-64/joblib-1.4.2-py312hecd8cb5_0.conda#8ab03dfa447b4e0bfa0bd3d25930f3b6 https://repo.anaconda.com/pkgs/main/osx-64/kiwisolver-1.4.4-py312hcec6c5f_0.conda#2ba6561ddd1d05936fe74f5d118ce7dd -https://repo.anaconda.com/pkgs/main/osx-64/lcms2-2.12-hf1fd2bf_0.conda#697aba7a3308226df7a93ccfeae16ffa +https://repo.anaconda.com/pkgs/main/osx-64/lcms2-2.16-h4f63f0c_0.conda#2cd61d3449b21735ccca2e09ca2f93ef https://repo.anaconda.com/pkgs/main/osx-64/mkl-service-2.4.0-py312h6c40b1e_1.conda#b1ef860be9043b35c5e8d9388b858514 https://repo.anaconda.com/pkgs/main/osx-64/ninja-1.12.1-hecd8cb5_0.conda#ee3b660616ef0fbcbd0096a67c11c94b https://repo.anaconda.com/pkgs/main/osx-64/openjpeg-2.5.2-hbf2204d_0.conda#8463f11309271a93d615450382761470 -https://repo.anaconda.com/pkgs/main/osx-64/packaging-24.1-py312hecd8cb5_0.conda#6130dafc4d26d55e93ceab460d2a72b5 +https://repo.anaconda.com/pkgs/main/osx-64/packaging-24.2-py312hecd8cb5_0.conda#76512e47c9c37443444ef0624769f620 https://repo.anaconda.com/pkgs/main/osx-64/pluggy-1.5.0-py312hecd8cb5_0.conda#ca381e438f1dbd7986ac0fa0da70c9d8 https://repo.anaconda.com/pkgs/main/osx-64/pyparsing-3.2.0-py312hecd8cb5_0.conda#e4086daaaed13f68cc8d5b9da7db73cc https://repo.anaconda.com/pkgs/main/noarch/python-tzdata-2023.3-pyhd3eb1b0_0.conda#479c037de0186d114b9911158427624e @@ -62,7 +62,7 @@ https://repo.anaconda.com/pkgs/main/osx-64/unicodedata2-15.1.0-py312h6c40b1e_0.c https://repo.anaconda.com/pkgs/main/osx-64/wheel-0.44.0-py312hecd8cb5_0.conda#bc98874d00f71c3f6f654d0316174d17 https://repo.anaconda.com/pkgs/main/osx-64/fonttools-4.51.0-py312h6c40b1e_0.conda#8f55fa86b73e8a7f4403503f9b7a9959 https://repo.anaconda.com/pkgs/main/osx-64/numpy-base-1.26.4-py312h6f81483_0.conda#87f73efbf26ab2e2ea7c32481a71bd47 -https://repo.anaconda.com/pkgs/main/osx-64/pillow-11.0.0-py312h9c91434_0.conda#252d2dd1872e877dc8538e02fe20671e +https://repo.anaconda.com/pkgs/main/osx-64/pillow-11.0.0-py312h47bf62f_1.conda#812dc507843961e9ff4b400945a954a7 https://repo.anaconda.com/pkgs/main/osx-64/pip-24.2-py312hecd8cb5_0.conda#35119ef238299ccf29b25889fd466139 https://repo.anaconda.com/pkgs/main/osx-64/pytest-7.4.4-py312hecd8cb5_0.conda#d4dda983900b045cd27ae836cad670de https://repo.anaconda.com/pkgs/main/osx-64/python-dateutil-2.9.0post0-py312hecd8cb5_2.conda#1047dde28f78127dd9f6121e882926dd @@ -80,7 +80,7 @@ https://repo.anaconda.com/pkgs/main/osx-64/scipy-1.11.4-py312h81688c2_0.conda#7d https://repo.anaconda.com/pkgs/main/osx-64/pandas-2.2.3-py312h6d0c2b6_0.conda#84ce5b8ec4a986d13a5df17811f556a2 https://repo.anaconda.com/pkgs/main/osx-64/pyamg-4.2.3-py312h44cbcf4_0.conda#3bdc7be74087b3a5a83c520a74e1e8eb # pip cython @ https://files.pythonhosted.org/packages/58/50/fbb23239efe2183e4eaf76689270d6f5b3bbcf9be9ad1eb97cc34349e6fc/Cython-3.0.11-cp312-cp312-macosx_10_9_x86_64.whl#sha256=11996c40c32abf843ba652a6d53cb15944c88d91f91fc4e6f0028f5df8a8f8a1 -# pip meson @ https://files.pythonhosted.org/packages/76/73/3dc4edc855c9988ff05ea5590f5c7bda72b6e0d138b2ddc1fab92a1f242f/meson-1.6.0-py3-none-any.whl#sha256=234a45f9206c6ee33b473ec1baaef359d20c0b89a71871d58c65a6db6d98fe74 +# pip meson @ https://files.pythonhosted.org/packages/d2/f3/9d53c24a7113e08879b14117f83e7105251e6ecf7e03bb7c04926888db9c/meson-1.6.1-py3-none-any.whl#sha256=3f41f6b03df56bb76836cc33c94e1a404c3584d48b3259540794a60a21fad1f9 # pip threadpoolctl @ https://files.pythonhosted.org/packages/4b/2c/ffbf7a134b9ab11a67b0cf0726453cedd9c5043a4fe7a35d1cefa9a1bcfb/threadpoolctl-3.5.0-py3-none-any.whl#sha256=56c1e26c150397e58c4926da8eeee87533b1e32bef131bd4bf6a2f45f3185467 # pip pyproject-metadata @ https://files.pythonhosted.org/packages/e8/61/9dd3e68d2b6aa40a5fc678662919be3c3a7bf22cba5a6b4437619b77e156/pyproject_metadata-0.9.0-py3-none-any.whl#sha256=fc862aab066a2e87734333293b0af5845fe8ac6cb69c451a41551001e923be0b # pip meson-python @ https://files.pythonhosted.org/packages/7d/ec/40c0ddd29ef4daa6689a2b9c5ced47d5b58fa54ae149b19e9a97f4979c8c/meson_python-0.17.1-py3-none-any.whl#sha256=30a75c52578ef14aff8392677b09c39346e0a24d2b2c6204b8ed30583c11269c diff --git a/build_tools/azure/pylatest_pip_openblas_pandas_linux-64_conda.lock b/build_tools/azure/pylatest_pip_openblas_pandas_linux-64_conda.lock index 3ea3ec3e17a3e..3b6235c4871b7 100644 --- a/build_tools/azure/pylatest_pip_openblas_pandas_linux-64_conda.lock +++ b/build_tools/azure/pylatest_pip_openblas_pandas_linux-64_conda.lock @@ -45,10 +45,10 @@ https://repo.anaconda.com/pkgs/main/linux-64/pip-24.2-py313h06a4308_0.conda#59f8 # pip joblib @ https://files.pythonhosted.org/packages/91/29/df4b9b42f2be0b623cbd5e2140cafcaa2bef0759a00b7b70104dcfe2fb51/joblib-1.4.2-py3-none-any.whl#sha256=06d478d5674cbc267e7496a410ee875abd68e4340feff4490bcb7afb88060ae6 # pip kiwisolver @ https://files.pythonhosted.org/packages/39/fa/cdc0b6105d90eadc3bee525fecc9179e2b41e1ce0293caaf49cb631a6aaf/kiwisolver-1.4.7-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl#sha256=913983ad2deb14e66d83c28b632fd35ba2b825031f2fa4ca29675e665dfecbe1 # pip markupsafe @ https://files.pythonhosted.org/packages/0c/91/96cf928db8236f1bfab6ce15ad070dfdd02ed88261c2afafd4b43575e9e9/MarkupSafe-3.0.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl#sha256=15ab75ef81add55874e7ab7055e9c397312385bd9ced94920f2802310c930396 -# pip meson @ https://files.pythonhosted.org/packages/76/73/3dc4edc855c9988ff05ea5590f5c7bda72b6e0d138b2ddc1fab92a1f242f/meson-1.6.0-py3-none-any.whl#sha256=234a45f9206c6ee33b473ec1baaef359d20c0b89a71871d58c65a6db6d98fe74 +# pip meson @ https://files.pythonhosted.org/packages/d2/f3/9d53c24a7113e08879b14117f83e7105251e6ecf7e03bb7c04926888db9c/meson-1.6.1-py3-none-any.whl#sha256=3f41f6b03df56bb76836cc33c94e1a404c3584d48b3259540794a60a21fad1f9 # pip networkx @ https://files.pythonhosted.org/packages/b9/54/dd730b32ea14ea797530a4479b2ed46a6fb250f682a9cfb997e968bf0261/networkx-3.4.2-py3-none-any.whl#sha256=df5d4365b724cf81b8c6a7312509d0c22386097011ad1abe274afd5e9d3bbc5f # pip ninja @ https://files.pythonhosted.org/packages/6b/35/a8e38d54768e67324e365e2a41162be298f51ec93e6bd4b18d237d7250d8/ninja-1.11.1.3-py3-none-manylinux_2_12_x86_64.manylinux2010_x86_64.whl#sha256=a27e78ca71316c8654965ee94b286a98c83877bfebe2607db96897bbfe458af0 -# pip numpy @ https://files.pythonhosted.org/packages/df/54/13535f74391dbe5f479ceed96f1403267be302c840040700d4fd66688089/numpy-2.2.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl#sha256=a7d41d1612c1a82b64697e894b75db6758d4f21c3ec069d841e60ebe54b5b571 +# pip numpy @ https://files.pythonhosted.org/packages/f1/5a/e572284c86a59dec0871a49cd4e5351e20b9c751399d5f1d79628c0542cb/numpy-2.2.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl#sha256=f74e6fdeb9a265624ec3a3918430205dff1df7e95a230779746a6af78bc615af # pip packaging @ https://files.pythonhosted.org/packages/88/ef/eb23f262cca3c0c4eb7ab1933c3b1f03d021f2c48f54763065b6f0e321be/packaging-24.2-py3-none-any.whl#sha256=09abb1bccd265c01f4a3aa3f7a7db064b36514d2cba19a2f694fe6150451a759 # pip pillow @ https://files.pythonhosted.org/packages/44/ae/7e4f6662a9b1cb5f92b9cc9cab8321c381ffbee309210940e57432a4063a/pillow-11.0.0-cp313-cp313-manylinux_2_28_x86_64.whl#sha256=c6a660307ca9d4867caa8d9ca2c2658ab685de83792d1876274991adec7b93fa # pip pluggy @ https://files.pythonhosted.org/packages/88/5f/e351af9a41f866ac3f1fac4ca0613908d9a41741cfcf2228f4ad853b697d/pluggy-1.5.0-py3-none-any.whl#sha256=44e1ad92c8ca002de6377e165f3e0f1be63266ab4d554740532335b9d75ea669 @@ -66,11 +66,11 @@ https://repo.anaconda.com/pkgs/main/linux-64/pip-24.2-py313h06a4308_0.conda#59f8 # pip tabulate @ https://files.pythonhosted.org/packages/40/44/4a5f08c96eb108af5cb50b41f76142f0afa346dfa99d5296fe7202a11854/tabulate-0.9.0-py3-none-any.whl#sha256=024ca478df22e9340661486f85298cff5f6dcdba14f3813e8830015b9ed1948f # pip threadpoolctl @ https://files.pythonhosted.org/packages/4b/2c/ffbf7a134b9ab11a67b0cf0726453cedd9c5043a4fe7a35d1cefa9a1bcfb/threadpoolctl-3.5.0-py3-none-any.whl#sha256=56c1e26c150397e58c4926da8eeee87533b1e32bef131bd4bf6a2f45f3185467 # pip tzdata @ https://files.pythonhosted.org/packages/a6/ab/7e5f53c3b9d14972843a647d8d7a853969a58aecc7559cb3267302c94774/tzdata-2024.2-py2.py3-none-any.whl#sha256=a48093786cdcde33cad18c2555e8532f34422074448fbc874186f0abd79565cd -# pip urllib3 @ https://files.pythonhosted.org/packages/ce/d9/5f4c13cecde62396b0d3fe530a50ccea91e7dfc1ccf0e09c228841bb5ba8/urllib3-2.2.3-py3-none-any.whl#sha256=ca899ca043dcb1bafa3e262d73aa25c465bfb49e0bd9dd5d59f1d0acba2f8fac +# pip urllib3 @ https://files.pythonhosted.org/packages/c8/19/4ec628951a74043532ca2cf5d97b7b14863931476d117c471e8e2b1eb39f/urllib3-2.3.0-py3-none-any.whl#sha256=1cee9ad369867bfdbbb48b7dd50374c0967a0bb7710050facf0dd6911440e3df # pip array-api-strict @ https://files.pythonhosted.org/packages/9a/c2/a202399e3aa2e62aa15669fc95fdd7a5d63240cbf8695962c747f915a083/array_api_strict-2.2-py3-none-any.whl#sha256=577cfce66bf69701cefea85bc14b9e49e418df767b6b178bd93d22f1c1962d59 # pip contourpy @ https://files.pythonhosted.org/packages/9a/e2/30ca086c692691129849198659bf0556d72a757fe2769eb9620a27169296/contourpy-1.3.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl#sha256=3ea9924d28fc5586bf0b42d15f590b10c224117e74409dd7a0be3b62b74a501c # pip imageio @ https://files.pythonhosted.org/packages/5c/f9/f78e7f5ac8077c481bf6b43b8bc736605363034b3d5eb3ce8eb79f53f5f1/imageio-2.36.1-py3-none-any.whl#sha256=20abd2cae58e55ca1af8a8dcf43293336a59adf0391f1917bf8518633cfc2cdf -# pip jinja2 @ https://files.pythonhosted.org/packages/31/80/3a54838c3fb461f6fec263ebf3a3a41771bd05190238de3486aae8540c36/jinja2-3.1.4-py3-none-any.whl#sha256=bc5dd2abb727a5319567b7a813e6a2e7318c39f4f487cfe6c89c6f9c7d25197d +# pip jinja2 @ https://files.pythonhosted.org/packages/bd/0f/2ba5fbcd631e3e88689309dbe978c5769e883e4b84ebfe7da30b43275c5a/jinja2-3.1.5-py3-none-any.whl#sha256=aba0f4dc9ed8013c424088f68a5c226f7d6097ed89b246d7749c2ec4175c6adb # pip lazy-loader @ https://files.pythonhosted.org/packages/83/60/d497a310bde3f01cb805196ac61b7ad6dc5dcf8dce66634dc34364b20b4f/lazy_loader-0.4-py3-none-any.whl#sha256=342aa8e14d543a154047afb4ba8ef17f5563baad3fc610d7b15b213b0f119efc # pip pyproject-metadata @ https://files.pythonhosted.org/packages/e8/61/9dd3e68d2b6aa40a5fc678662919be3c3a7bf22cba5a6b4437619b77e156/pyproject_metadata-0.9.0-py3-none-any.whl#sha256=fc862aab066a2e87734333293b0af5845fe8ac6cb69c451a41551001e923be0b # pip pytest @ https://files.pythonhosted.org/packages/11/92/76a1c94d3afee238333bc0a42b82935dd8f9cf8ce9e336ff87ee14d9e1cf/pytest-8.3.4-py3-none-any.whl#sha256=50e16d954148559c9a74109af1eaf0c945ba2d8f30f0a3d3335edde19788b6f6 diff --git a/build_tools/azure/pymin_conda_forge_mkl_win-64_conda.lock b/build_tools/azure/pymin_conda_forge_mkl_win-64_conda.lock index 39674348ea61b..50445ef7b09a2 100644 --- a/build_tools/azure/pymin_conda_forge_mkl_win-64_conda.lock +++ b/build_tools/azure/pymin_conda_forge_mkl_win-64_conda.lock @@ -8,7 +8,7 @@ https://conda.anaconda.org/conda-forge/noarch/font-ttf-inconsolata-3.000-h77eed3 https://conda.anaconda.org/conda-forge/noarch/font-ttf-source-code-pro-2.038-h77eed37_0.tar.bz2#4d59c254e01d9cde7957100457e2d5fb https://conda.anaconda.org/conda-forge/noarch/font-ttf-ubuntu-0.83-h77eed37_3.conda#49023d73832ef61042f6a237cb2687e7 https://conda.anaconda.org/conda-forge/win-64/intel-openmp-2024.2.1-h57928b3_1083.conda#2d89243bfb53652c182a7c73182cce4f -https://conda.anaconda.org/conda-forge/win-64/mkl-include-2024.2.2-h66d3029_14.conda#19e51a50ba5fc6f7421f12fba6d0b775 +https://conda.anaconda.org/conda-forge/win-64/mkl-include-2024.2.2-h66d3029_15.conda#e2f516189b44b6e042199d13e7015361 https://conda.anaconda.org/conda-forge/win-64/python_abi-3.9-5_cp39.conda#86ba1bbcf9b259d1592201f3c345c810 https://conda.anaconda.org/conda-forge/noarch/tzdata-2024b-hc8b5060_0.conda#8ac3367aafb1cc0a068483c580af8015 https://conda.anaconda.org/conda-forge/win-64/ucrt-10.0.22621.0-h57928b3_1.conda#6797b005cd0f439c4c5c9ac565783700 @@ -26,14 +26,14 @@ https://conda.anaconda.org/conda-forge/win-64/graphite2-1.3.13-h63175ca_1003.con https://conda.anaconda.org/conda-forge/win-64/icu-75.1-he0c23c2_0.conda#8579b6bb8d18be7c0b27fb08adeeeb40 https://conda.anaconda.org/conda-forge/win-64/lerc-4.0.0-h63175ca_0.tar.bz2#1900cb3cab5055833cfddb0ba233b074 https://conda.anaconda.org/conda-forge/win-64/libbrotlicommon-1.1.0-h2466b09_2.conda#f7dc9a8f21d74eab46456df301da2972 -https://conda.anaconda.org/conda-forge/win-64/libdeflate-1.22-h2466b09_0.conda#a3439ce12d4e3cd887270d9436f9a4c8 +https://conda.anaconda.org/conda-forge/win-64/libdeflate-1.23-h9062f6e_0.conda#a9624935147a25b06013099d3038e467 https://conda.anaconda.org/conda-forge/win-64/libexpat-2.6.4-he0c23c2_0.conda#eb383771c680aa792feb529eaf9df82f https://conda.anaconda.org/conda-forge/win-64/libffi-3.4.2-h8ffe710_5.tar.bz2#2c96d1b6915b408893f9472569dee135 https://conda.anaconda.org/conda-forge/win-64/libiconv-1.17-hcfcfb64_2.conda#e1eb10b1cca179f2baa3601e4efc8712 https://conda.anaconda.org/conda-forge/win-64/libjpeg-turbo-3.0.0-hcfcfb64_1.conda#3f1b948619c45b1ca714d60c7389092c https://conda.anaconda.org/conda-forge/win-64/liblzma-5.6.3-h2466b09_1.conda#015b9c0bd1eef60729ab577a38aaf0b5 https://conda.anaconda.org/conda-forge/win-64/libsqlite-3.47.2-h67fdade_0.conda#ff00095330e0d35a16bd3bdbd1a2d3e7 -https://conda.anaconda.org/conda-forge/win-64/libwebp-base-1.4.0-hcfcfb64_0.conda#abd61d0ab127ec5cd68f62c2969e6f34 +https://conda.anaconda.org/conda-forge/win-64/libwebp-base-1.5.0-h3b0e114_0.conda#33f7313967072c6e6d8f865f5493c7ae https://conda.anaconda.org/conda-forge/win-64/libzlib-1.3.1-h2466b09_2.conda#41fbfac52c601159df6c01f875de31b9 https://conda.anaconda.org/conda-forge/win-64/ninja-1.12.1-hc790b64_0.conda#a557dde55343e03c68cd7e29e7f87279 https://conda.anaconda.org/conda-forge/win-64/openssl-3.4.0-h2466b09_0.conda#d0d805d9b5524a14efb51b3bff965e83 @@ -51,7 +51,7 @@ https://conda.anaconda.org/conda-forge/win-64/pcre2-10.44-h3d7b363_2.conda#a3a3b https://conda.anaconda.org/conda-forge/win-64/python-3.9.21-h37870fc_1_cpython.conda#436316266ec1b6c23065b398e43d3a44 https://conda.anaconda.org/conda-forge/win-64/zstd-1.5.6-h0ea2cb4_0.conda#9a17230f95733c04dc40a2b1e5491d74 https://conda.anaconda.org/conda-forge/win-64/brotli-bin-1.1.0-h2466b09_2.conda#d22534a9be5771fc58eb7564947f669d -https://conda.anaconda.org/conda-forge/noarch/certifi-2024.8.30-pyhd8ed1ab_0.conda#12f7d00853807b0531775e9be891cb11 +https://conda.anaconda.org/conda-forge/noarch/certifi-2024.12.14-pyhd8ed1ab_0.conda#6feb87357ecd66733be3279f16a8c400 https://conda.anaconda.org/conda-forge/noarch/colorama-0.4.6-pyhd8ed1ab_1.conda#962b9857ee8e7018c22f2776ffa0b2d7 https://conda.anaconda.org/conda-forge/noarch/cycler-0.12.1-pyhd8ed1ab_1.conda#44600c4667a319d67dbe0681fc0bc833 https://conda.anaconda.org/conda-forge/win-64/cython-3.0.11-py39h4279646_3.conda#c89d5275e2d6545ba01d6e1ce064496e @@ -60,11 +60,10 @@ https://conda.anaconda.org/conda-forge/noarch/execnet-2.1.1-pyhd8ed1ab_1.conda#a https://conda.anaconda.org/conda-forge/win-64/freetype-2.12.1-hdaf720e_2.conda#3761b23693f768dc75a8fd0a73ca053f https://conda.anaconda.org/conda-forge/noarch/iniconfig-2.0.0-pyhd8ed1ab_1.conda#6837f3eff7dcea42ecd714ce1ac2b108 https://conda.anaconda.org/conda-forge/win-64/kiwisolver-1.4.7-py39h2b77a98_0.conda#c116c25e2e36f770f065559ad2a1da73 -https://conda.anaconda.org/conda-forge/win-64/libclang13-19.1.5-default_ha5278ca_0.conda#630e19cfac398a28661914e52d8d99a0 -https://conda.anaconda.org/conda-forge/win-64/libgfortran5-14.2.0-hf020157_1.conda#294a5033b744648a2ba816b34ffd810a +https://conda.anaconda.org/conda-forge/win-64/libclang13-19.1.6-default_ha5278ca_0.conda#1cfe412982fe3a83577aa80d1e39cfb3 https://conda.anaconda.org/conda-forge/win-64/libglib-2.82.2-h7025463_0.conda#3e379c1b908a7101ecbc503def24613f https://conda.anaconda.org/conda-forge/win-64/libhwloc-2.11.2-default_ha69328c_1001.conda#b87a0ac5ab6495d8225db5dc72dd21cd -https://conda.anaconda.org/conda-forge/win-64/libtiff-4.7.0-hdefb170_2.conda#49434938b99a5ba78c9afe573d158c1e +https://conda.anaconda.org/conda-forge/win-64/libtiff-4.7.0-h797046b_3.conda#defed79ff7a9164ad40320e3f116a138 https://conda.anaconda.org/conda-forge/win-64/libxslt-1.1.39-h3df6e99_0.conda#279ee338c9b34871d578cb3c7aa68f70 https://conda.anaconda.org/conda-forge/noarch/munkres-1.1.4-pyh9f0ad1d_0.tar.bz2#2ba8498c1018c1e9c61eb99b973dfe19 https://conda.anaconda.org/conda-forge/noarch/packaging-24.2-pyhd8ed1ab_2.conda#3bfed7e6228ebf2f7b9eaa47f1b4e2aa @@ -88,11 +87,10 @@ https://conda.anaconda.org/conda-forge/win-64/fontconfig-2.15.0-h765892d_1.conda https://conda.anaconda.org/conda-forge/noarch/importlib_resources-6.4.5-pyhd8ed1ab_1.conda#15798fa69312d433af690c8c42b3fb36 https://conda.anaconda.org/conda-forge/noarch/joblib-1.4.2-pyhd8ed1ab_1.conda#bf8243ee348f3a10a14ed0cae323e0c1 https://conda.anaconda.org/conda-forge/win-64/lcms2-2.16-h67d730c_0.conda#d3592435917b62a8becff3a60db674f6 -https://conda.anaconda.org/conda-forge/win-64/libgfortran-14.2.0-h719f0c7_1.conda#bd709ec903eeb030208c78e4c35691d6 https://conda.anaconda.org/conda-forge/win-64/libxcb-1.17.0-h0e4246c_0.conda#a69bbf778a462da324489976c84cfc8c -https://conda.anaconda.org/conda-forge/noarch/meson-1.6.0-pyhd8ed1ab_1.conda#59d45dbe1b0a123966266340b579d366 +https://conda.anaconda.org/conda-forge/noarch/meson-1.6.1-pyhd8ed1ab_0.conda#0062fb0a7f5da474705d0ce626de12f4 https://conda.anaconda.org/conda-forge/win-64/openjpeg-2.5.3-h4d64b90_0.conda#fc050366dd0b8313eb797ed1ffef3a29 -https://conda.anaconda.org/conda-forge/noarch/pip-24.3.1-pyh8b19718_0.conda#5dd546fe99b44fda83963d15f84263b7 +https://conda.anaconda.org/conda-forge/noarch/pip-24.3.1-pyh8b19718_2.conda#04e691b9fadd93a8a9fad87a81d4fd8f https://conda.anaconda.org/conda-forge/noarch/pyproject-metadata-0.9.0-pyhd8ed1ab_1.conda#1239146a53a383a84633800294120f17 https://conda.anaconda.org/conda-forge/noarch/pytest-8.3.4-pyhd8ed1ab_1.conda#799ed216dc6af62520f32aa39bc1c2bb https://conda.anaconda.org/conda-forge/noarch/python-dateutil-2.9.0.post0-pyhff2d567_1.conda#5ba79d7c71f03c678c8ead841f347d6e @@ -101,22 +99,22 @@ https://conda.anaconda.org/conda-forge/win-64/cairo-1.18.2-h5782bbf_1.conda#63ff https://conda.anaconda.org/conda-forge/win-64/fonttools-4.55.3-py39hf73967f_0.conda#05d4d4ec2568580b33399ef7e11e4134 https://conda.anaconda.org/conda-forge/noarch/importlib-resources-6.4.5-pyhd8ed1ab_1.conda#59561d9b70f9df3b884c29910eba6593 https://conda.anaconda.org/conda-forge/noarch/meson-python-0.17.1-pyh70fd9c4_1.conda#7a02679229c6c2092571b4c025055440 -https://conda.anaconda.org/conda-forge/win-64/mkl-2024.2.2-h66d3029_14.conda#f011e7cc21918dc9d1efe0209e27fa16 +https://conda.anaconda.org/conda-forge/win-64/mkl-2024.2.2-h66d3029_15.conda#302dff2807f2927b3e9e0d19d60121de https://conda.anaconda.org/conda-forge/win-64/pillow-11.0.0-py39h5ee314c_0.conda#0c57206c5215a7e56414ce0332805226 https://conda.anaconda.org/conda-forge/noarch/pytest-cov-6.0.0-pyhd8ed1ab_1.conda#79963c319d1be62c8fd3e34555816e01 https://conda.anaconda.org/conda-forge/noarch/pytest-xdist-3.6.1-pyhd8ed1ab_1.conda#59aad4fb37cabc0bacc73cf344612ddd https://conda.anaconda.org/conda-forge/win-64/harfbuzz-10.1.0-ha6ce084_0.conda#ad1da267c13505dbcc7fb9f0d21f24ae -https://conda.anaconda.org/conda-forge/win-64/libblas-3.9.0-25_win64_mkl.conda#499208e81242efb6e5abc7366c91c816 -https://conda.anaconda.org/conda-forge/win-64/mkl-devel-2024.2.2-h57928b3_14.conda#ecc2c244eff5cb6289b6db5e0401c0aa -https://conda.anaconda.org/conda-forge/win-64/libcblas-3.9.0-25_win64_mkl.conda#3ed189ba03a9888a8013aaee0d67c49d -https://conda.anaconda.org/conda-forge/win-64/liblapack-3.9.0-25_win64_mkl.conda#f716ef84564c574e8e74ae725f5d5f93 +https://conda.anaconda.org/conda-forge/win-64/libblas-3.9.0-26_win64_mkl.conda#ecfe732dbad1be001826fdb7e5e891b5 +https://conda.anaconda.org/conda-forge/win-64/mkl-devel-2024.2.2-h57928b3_15.conda#a85f53093da069c7c657f090e388f3ef +https://conda.anaconda.org/conda-forge/win-64/libcblas-3.9.0-26_win64_mkl.conda#652f3adcb9d329050a325416edb14246 +https://conda.anaconda.org/conda-forge/win-64/liblapack-3.9.0-26_win64_mkl.conda#0a717f5fda7279b77bcce671b324408a https://conda.anaconda.org/conda-forge/win-64/qt6-main-6.8.1-h1259614_1.conda#2b5d5b1943a7e3be2c6e2f3b9f00ba15 -https://conda.anaconda.org/conda-forge/win-64/liblapacke-3.9.0-25_win64_mkl.conda#d59fc46f1e1c2f3cf38a08a0a76ffee5 +https://conda.anaconda.org/conda-forge/win-64/liblapacke-3.9.0-26_win64_mkl.conda#759830e09248cc0fd7fe2cbb79c83b03 https://conda.anaconda.org/conda-forge/win-64/numpy-2.0.2-py39h60232e0_1.conda#d8801e13476c0ae89e410307fbc5a612 https://conda.anaconda.org/conda-forge/win-64/pyside6-6.8.1-py39h0285922_0.conda#a8d806c618d9ae1836b56e0771ee6abe -https://conda.anaconda.org/conda-forge/win-64/blas-devel-3.9.0-25_win64_mkl.conda#b3c40599e865dac087085b596fbbf4ad +https://conda.anaconda.org/conda-forge/win-64/blas-devel-3.9.0-26_win64_mkl.conda#4cbc362151f0933b3bd77ef36cd7d646 https://conda.anaconda.org/conda-forge/win-64/contourpy-1.3.0-py39h2b77a98_2.conda#37f8619ee96710220ead6bb386b9b24b https://conda.anaconda.org/conda-forge/win-64/scipy-1.13.1-py39h1a10956_0.conda#9f8e571406af04d2f5fdcbecec704505 -https://conda.anaconda.org/conda-forge/win-64/blas-2.125-mkl.conda#186eeb4e8ba0a5944775e04f241fc02a +https://conda.anaconda.org/conda-forge/win-64/blas-2.126-mkl.conda#807534bc7c3dac2c87524a5579905c93 https://conda.anaconda.org/conda-forge/win-64/matplotlib-base-3.9.4-py39h5376392_0.conda#5424884b703d67e412584ed241f0a9b1 https://conda.anaconda.org/conda-forge/win-64/matplotlib-3.9.4-py39hcbf5309_0.conda#61326dfe02e88b609166814c47316063 diff --git a/build_tools/azure/pymin_conda_forge_openblas_min_dependencies_linux-64_conda.lock b/build_tools/azure/pymin_conda_forge_openblas_min_dependencies_linux-64_conda.lock index 90462012aa8e2..5540dd71ee103 100644 --- a/build_tools/azure/pymin_conda_forge_openblas_min_dependencies_linux-64_conda.lock +++ b/build_tools/azure/pymin_conda_forge_openblas_min_dependencies_linux-64_conda.lock @@ -13,18 +13,20 @@ https://conda.anaconda.org/conda-forge/noarch/tzdata-2024b-hc8b5060_0.conda#8ac3 https://conda.anaconda.org/conda-forge/noarch/fonts-conda-forge-1-0.tar.bz2#f766549260d6815b0c52253f1fb1bb29 https://conda.anaconda.org/conda-forge/linux-64/ld_impl_linux-64-2.43-h712a8e2_2.conda#048b02e3962f066da18efe3a21b77672 https://conda.anaconda.org/conda-forge/linux-64/libglvnd-1.7.0-ha4b6fd6_2.conda#434ca7e50e40f4918ab701e3facd59a0 -https://conda.anaconda.org/conda-forge/linux-64/llvm-openmp-19.1.5-h024ca30_0.conda#dc90d15c25a57f641f0b84c271e4761e +https://conda.anaconda.org/conda-forge/linux-64/llvm-openmp-19.1.6-h024ca30_0.conda#96e42ccbd3c067c1713ff5f2d2169247 https://conda.anaconda.org/conda-forge/linux-64/_openmp_mutex-4.5-2_kmp_llvm.tar.bz2#562b26ba2e19059551a811e72ab7f793 https://conda.anaconda.org/conda-forge/noarch/fonts-conda-ecosystem-1-0.tar.bz2#fee5683a3f04bd15cbd8318b096a27ab https://conda.anaconda.org/conda-forge/linux-64/libegl-1.7.0-ha4b6fd6_2.conda#c151d5eb730e9b7480e6d48c0fc44048 https://conda.anaconda.org/conda-forge/linux-64/libgcc-14.2.0-h77fa898_1.conda#3cb76c3f10d3bc7f1105b2fc9db984df https://conda.anaconda.org/conda-forge/linux-64/alsa-lib-1.2.13-hb9d3cd8_0.conda#ae1370588aa6a5157c34c73e9bbb36a0 -https://conda.anaconda.org/conda-forge/linux-64/libdeflate-1.22-hb9d3cd8_0.conda#b422943d5d772b7cc858b36ad2a92db5 +https://conda.anaconda.org/conda-forge/linux-64/libdeflate-1.23-h4ddbbb0_0.conda#8dfae1d2e74767e9ce36d5fa0d8605db https://conda.anaconda.org/conda-forge/linux-64/libexpat-2.6.4-h5888daf_0.conda#db833e03127376d461e1e13e76f09b6c https://conda.anaconda.org/conda-forge/linux-64/libgcc-ng-14.2.0-h69a702a_1.conda#e39480b9ca41323497b05492a63bc35b https://conda.anaconda.org/conda-forge/linux-64/libgfortran5-14.2.0-hd5240d6_1.conda#9822b874ea29af082e5d36098d25427d https://conda.anaconda.org/conda-forge/linux-64/liblzma-5.6.3-hb9d3cd8_1.conda#2ecf2f1c7e4e21fcfe6423a51a992d84 +https://conda.anaconda.org/conda-forge/linux-64/libntlm-1.8-hb9d3cd8_0.conda#7c7927b404672409d9917d49bff5f2d6 https://conda.anaconda.org/conda-forge/linux-64/libstdcxx-14.2.0-hc0a3c3a_1.conda#234a5554c53625688d51062645337328 +https://conda.anaconda.org/conda-forge/linux-64/libwebp-base-1.5.0-h851e524_0.conda#63f790534398730f59e1b899c3644d4a https://conda.anaconda.org/conda-forge/linux-64/libzlib-1.3.1-hb9d3cd8_2.conda#edb0dca6bc32e4f4789199455a1dbeb8 https://conda.anaconda.org/conda-forge/linux-64/openssl-3.4.0-hb9d3cd8_0.conda#23cc74f77eb99315c0360ec3533147a9 https://conda.anaconda.org/conda-forge/linux-64/pthread-stubs-0.4-hb9d3cd8_1002.conda#b3c17d95b5a10c6e64a21fa17573e70e @@ -45,7 +47,6 @@ https://conda.anaconda.org/conda-forge/linux-64/libgpg-error-1.51-hbd13f7d_1.con https://conda.anaconda.org/conda-forge/linux-64/libiconv-1.17-hd590300_2.conda#d66573916ffcf376178462f1b61c941e https://conda.anaconda.org/conda-forge/linux-64/libjpeg-turbo-3.0.0-hd590300_1.conda#ea25936bb4080d843790b586850f82b8 https://conda.anaconda.org/conda-forge/linux-64/libnsl-2.0.1-hd590300_0.conda#30fd6e37fe21f86f4bd26d6ee73eeec7 -https://conda.anaconda.org/conda-forge/linux-64/libntlm-1.4-h7f98852_1002.tar.bz2#e728e874159b042d92b90238a3cb0dc2 https://conda.anaconda.org/conda-forge/linux-64/libogg-1.3.5-h4ab18f5_0.conda#601bfb4b3c6f0b844443bb81a56651e0 https://conda.anaconda.org/conda-forge/linux-64/libopus-1.3.1-h7f98852_1.tar.bz2#15345e56d527b330e1cacbdf58676e8f https://conda.anaconda.org/conda-forge/linux-64/libpciaccess-0.18-hd590300_0.conda#48f4330bfcd959c3cfb704d424903c82 @@ -53,7 +54,6 @@ https://conda.anaconda.org/conda-forge/linux-64/libpng-1.6.44-hadc24fc_0.conda#f https://conda.anaconda.org/conda-forge/linux-64/libsqlite-3.47.2-hee588c1_0.conda#b58da17db24b6e08bcbf8fed2fb8c915 https://conda.anaconda.org/conda-forge/linux-64/libstdcxx-ng-14.2.0-h4852527_1.conda#8371ac6457591af2cf6159439c1fd051 https://conda.anaconda.org/conda-forge/linux-64/libuuid-2.38.1-h0b41bf4_0.conda#40b61aab5c7ba9ff276c41cfffe6b80b -https://conda.anaconda.org/conda-forge/linux-64/libwebp-base-1.4.0-hd590300_0.conda#b26e8aa824079e1be0294e7152ca4559 https://conda.anaconda.org/conda-forge/linux-64/libxcb-1.17.0-h8a09558_0.conda#92ed62436b625154323d40d5f2f11dd7 https://conda.anaconda.org/conda-forge/linux-64/libxcrypt-4.4.36-hd590300_1.conda#5aa797f8787fe7a17d1b0821485b5adc https://conda.anaconda.org/conda-forge/linux-64/lz4-c-1.10.0-h5888daf_1.conda#9de5350a85c4a20c685259b889aa6393 @@ -94,7 +94,7 @@ https://conda.anaconda.org/conda-forge/linux-64/libglx-1.7.0-ha4b6fd6_2.conda#c8 https://conda.anaconda.org/conda-forge/linux-64/libhiredis-1.0.2-h2cc385e_0.tar.bz2#b34907d3a81a3cd8095ee83d174c074a https://conda.anaconda.org/conda-forge/linux-64/libopenblas-0.3.25-pthreads_h413a1c8_0.conda#d172b34a443b95f86089e8229ddc9a17 https://conda.anaconda.org/conda-forge/linux-64/libsystemd0-256.9-h0b6a36f_2.conda#135bbeb376345b6847c065115be4221a -https://conda.anaconda.org/conda-forge/linux-64/libtiff-4.7.0-hc4654cb_2.conda#be54fb40ea32e8fe9dbaa94d4528b57e +https://conda.anaconda.org/conda-forge/linux-64/libtiff-4.7.0-hd9ff511_3.conda#0ea6510969e1296cc19966fad481f6de https://conda.anaconda.org/conda-forge/linux-64/libxml2-2.13.5-h8d12d68_1.conda#1a21e49e190d1ffe58531a81b6e400e1 https://conda.anaconda.org/conda-forge/linux-64/mysql-libs-9.0.1-he0572af_3.conda#dd9da69dd4c2bf798c0b8bd4786cafb5 https://conda.anaconda.org/conda-forge/linux-64/python-3.9.21-h9c0c6dc_1_cpython.conda#b4807744af026fdbe8c05131758fb4be @@ -105,7 +105,7 @@ https://conda.anaconda.org/conda-forge/linux-64/xorg-libxfixes-6.0.1-hb9d3cd8_0. https://conda.anaconda.org/conda-forge/linux-64/xorg-libxrender-0.9.12-hb9d3cd8_0.conda#96d57aba173e878a2089d5638016dc5e https://conda.anaconda.org/conda-forge/linux-64/cairo-1.18.2-h3394656_1.conda#b34c2833a1f56db610aeb27f206d800d https://conda.anaconda.org/conda-forge/linux-64/ccache-4.10.1-h065aff2_0.conda#d6b48c138e0c8170a6fe9c136e063540 -https://conda.anaconda.org/conda-forge/noarch/certifi-2024.8.30-pyhd8ed1ab_0.conda#12f7d00853807b0531775e9be891cb11 +https://conda.anaconda.org/conda-forge/noarch/certifi-2024.12.14-pyhd8ed1ab_0.conda#6feb87357ecd66733be3279f16a8c400 https://conda.anaconda.org/conda-forge/noarch/colorama-0.4.6-pyhd8ed1ab_1.conda#962b9857ee8e7018c22f2776ffa0b2d7 https://conda.anaconda.org/conda-forge/noarch/cycler-0.12.1-pyhd8ed1ab_1.conda#44600c4667a319d67dbe0681fc0bc833 https://conda.anaconda.org/conda-forge/linux-64/cyrus-sasl-2.1.27-h54b06d7_7.conda#dce22f70b4e5a407ce88f2be046f4ceb @@ -121,7 +121,7 @@ https://conda.anaconda.org/conda-forge/linux-64/lcms2-2.16-hb7c19ff_0.conda#51bb https://conda.anaconda.org/conda-forge/linux-64/libblas-3.9.0-20_linux64_openblas.conda#2b7bb4f7562c8cf334fc2e20c2d28abc https://conda.anaconda.org/conda-forge/linux-64/libcups-2.3.3-h4637d8d_4.conda#d4529f4dff3057982a7617c7ac58fde3 https://conda.anaconda.org/conda-forge/linux-64/libgl-1.7.0-ha4b6fd6_2.conda#928b8be80851f5d8ffb016f9c81dae7a -https://conda.anaconda.org/conda-forge/linux-64/libllvm19-19.1.5-ha7bfdaf_0.conda#76f3749eda7b24816aacd55b9f31447a +https://conda.anaconda.org/conda-forge/linux-64/libllvm19-19.1.6-ha7bfdaf_0.conda#ec6abc65eefc96cba8443b2716dcc43b https://conda.anaconda.org/conda-forge/linux-64/libxkbcommon-1.7.0-h2c5496b_1.conda#e2eaefa4de2b7237af7c907b8bbc760a https://conda.anaconda.org/conda-forge/linux-64/openblas-0.3.25-pthreads_h7a3da1a_0.conda#87661673941b5e702275fdf0fc095ad0 https://conda.anaconda.org/conda-forge/linux-64/openjpeg-2.5.3-h5fbd93e_0.conda#9e5816bc95d285c115a3ebc2f8563564 @@ -145,14 +145,14 @@ https://conda.anaconda.org/conda-forge/linux-64/glib-2.82.2-h44428e9_0.conda#f19 https://conda.anaconda.org/conda-forge/linux-64/harfbuzz-10.1.0-h0b3b770_0.conda#ab1d7d56034814f4c3ed9f69f8c68806 https://conda.anaconda.org/conda-forge/noarch/joblib-1.2.0-pyhd8ed1ab_0.tar.bz2#7583652522d71ad78ba536bba06940eb https://conda.anaconda.org/conda-forge/linux-64/libcblas-3.9.0-20_linux64_openblas.conda#36d486d72ab64ffea932329a1d3729a3 -https://conda.anaconda.org/conda-forge/linux-64/libclang-cpp19.1-19.1.5-default_hb5137d0_0.conda#ec8649c89988d8a443c252c20f259b72 -https://conda.anaconda.org/conda-forge/linux-64/libclang13-19.1.5-default_h9c6a7e4_0.conda#a3a5997b6b47373f0c1608d8503eb4e6 +https://conda.anaconda.org/conda-forge/linux-64/libclang-cpp19.1-19.1.6-default_hb5137d0_0.conda#9caebd39281536bf6bcb32f665dd4fbf +https://conda.anaconda.org/conda-forge/linux-64/libclang13-19.1.6-default_h9c6a7e4_0.conda#e1d2936c320083f1c520c3a17372521c https://conda.anaconda.org/conda-forge/linux-64/libflac-1.4.3-h59595ed_0.conda#ee48bf17cc83a00f59ca1494d5646869 https://conda.anaconda.org/conda-forge/linux-64/liblapack-3.9.0-20_linux64_openblas.conda#6fabc51f5e647d09cc010c40061557e0 -https://conda.anaconda.org/conda-forge/noarch/meson-1.6.0-pyhd8ed1ab_1.conda#59d45dbe1b0a123966266340b579d366 +https://conda.anaconda.org/conda-forge/noarch/meson-1.6.1-pyhd8ed1ab_0.conda#0062fb0a7f5da474705d0ce626de12f4 https://conda.anaconda.org/conda-forge/linux-64/openldap-2.6.9-he970967_0.conda#ca2de8bbdc871bce41dbf59e51324165 https://conda.anaconda.org/conda-forge/linux-64/pillow-11.0.0-py39h538c539_0.conda#a2bafdf8ae51c9eb6e5be684cfcedd60 -https://conda.anaconda.org/conda-forge/noarch/pip-24.3.1-pyh8b19718_0.conda#5dd546fe99b44fda83963d15f84263b7 +https://conda.anaconda.org/conda-forge/noarch/pip-24.3.1-pyh8b19718_2.conda#04e691b9fadd93a8a9fad87a81d4fd8f https://conda.anaconda.org/conda-forge/noarch/pyproject-metadata-0.9.0-pyhd8ed1ab_1.conda#1239146a53a383a84633800294120f17 https://conda.anaconda.org/conda-forge/noarch/pytest-8.3.4-pyhd8ed1ab_1.conda#799ed216dc6af62520f32aa39bc1c2bb https://conda.anaconda.org/conda-forge/noarch/python-dateutil-2.9.0.post0-pyhff2d567_1.conda#5ba79d7c71f03c678c8ead841f347d6e diff --git a/build_tools/azure/pymin_conda_forge_openblas_ubuntu_2204_linux-64_conda.lock b/build_tools/azure/pymin_conda_forge_openblas_ubuntu_2204_linux-64_conda.lock index 1c2cf1235d609..15e397c99efa6 100644 --- a/build_tools/azure/pymin_conda_forge_openblas_ubuntu_2204_linux-64_conda.lock +++ b/build_tools/azure/pymin_conda_forge_openblas_ubuntu_2204_linux-64_conda.lock @@ -13,7 +13,7 @@ https://conda.anaconda.org/conda-forge/noarch/tzdata-2024b-hc8b5060_0.conda#8ac3 https://conda.anaconda.org/conda-forge/noarch/fonts-conda-forge-1-0.tar.bz2#f766549260d6815b0c52253f1fb1bb29 https://conda.anaconda.org/conda-forge/linux-64/ld_impl_linux-64-2.43-h712a8e2_2.conda#048b02e3962f066da18efe3a21b77672 https://conda.anaconda.org/conda-forge/linux-64/libglvnd-1.7.0-ha4b6fd6_2.conda#434ca7e50e40f4918ab701e3facd59a0 -https://conda.anaconda.org/conda-forge/linux-64/llvm-openmp-19.1.5-h024ca30_0.conda#dc90d15c25a57f641f0b84c271e4761e +https://conda.anaconda.org/conda-forge/linux-64/llvm-openmp-19.1.6-h024ca30_0.conda#96e42ccbd3c067c1713ff5f2d2169247 https://conda.anaconda.org/conda-forge/linux-64/_openmp_mutex-4.5-2_kmp_llvm.tar.bz2#562b26ba2e19059551a811e72ab7f793 https://conda.anaconda.org/conda-forge/noarch/fonts-conda-ecosystem-1-0.tar.bz2#fee5683a3f04bd15cbd8318b096a27ab https://conda.anaconda.org/conda-forge/linux-64/libegl-1.7.0-ha4b6fd6_2.conda#c151d5eb730e9b7480e6d48c0fc44048 @@ -21,12 +21,14 @@ https://conda.anaconda.org/conda-forge/linux-64/libopengl-1.7.0-ha4b6fd6_2.conda https://conda.anaconda.org/conda-forge/linux-64/libgcc-14.2.0-h77fa898_1.conda#3cb76c3f10d3bc7f1105b2fc9db984df https://conda.anaconda.org/conda-forge/linux-64/alsa-lib-1.2.13-hb9d3cd8_0.conda#ae1370588aa6a5157c34c73e9bbb36a0 https://conda.anaconda.org/conda-forge/linux-64/libbrotlicommon-1.1.0-hb9d3cd8_2.conda#41b599ed2b02abcfdd84302bff174b23 -https://conda.anaconda.org/conda-forge/linux-64/libdeflate-1.22-hb9d3cd8_0.conda#b422943d5d772b7cc858b36ad2a92db5 +https://conda.anaconda.org/conda-forge/linux-64/libdeflate-1.23-h4ddbbb0_0.conda#8dfae1d2e74767e9ce36d5fa0d8605db https://conda.anaconda.org/conda-forge/linux-64/libexpat-2.6.4-h5888daf_0.conda#db833e03127376d461e1e13e76f09b6c https://conda.anaconda.org/conda-forge/linux-64/libgcc-ng-14.2.0-h69a702a_1.conda#e39480b9ca41323497b05492a63bc35b https://conda.anaconda.org/conda-forge/linux-64/libgfortran5-14.2.0-hd5240d6_1.conda#9822b874ea29af082e5d36098d25427d https://conda.anaconda.org/conda-forge/linux-64/liblzma-5.6.3-hb9d3cd8_1.conda#2ecf2f1c7e4e21fcfe6423a51a992d84 +https://conda.anaconda.org/conda-forge/linux-64/libntlm-1.8-hb9d3cd8_0.conda#7c7927b404672409d9917d49bff5f2d6 https://conda.anaconda.org/conda-forge/linux-64/libstdcxx-14.2.0-hc0a3c3a_1.conda#234a5554c53625688d51062645337328 +https://conda.anaconda.org/conda-forge/linux-64/libwebp-base-1.5.0-h851e524_0.conda#63f790534398730f59e1b899c3644d4a https://conda.anaconda.org/conda-forge/linux-64/libzlib-1.3.1-hb9d3cd8_2.conda#edb0dca6bc32e4f4789199455a1dbeb8 https://conda.anaconda.org/conda-forge/linux-64/openssl-3.4.0-hb9d3cd8_0.conda#23cc74f77eb99315c0360ec3533147a9 https://conda.anaconda.org/conda-forge/linux-64/pthread-stubs-0.4-hb9d3cd8_1002.conda#b3c17d95b5a10c6e64a21fa17573e70e @@ -43,13 +45,11 @@ https://conda.anaconda.org/conda-forge/linux-64/libgfortran-14.2.0-h69a702a_1.co https://conda.anaconda.org/conda-forge/linux-64/libiconv-1.17-hd590300_2.conda#d66573916ffcf376178462f1b61c941e https://conda.anaconda.org/conda-forge/linux-64/libjpeg-turbo-3.0.0-hd590300_1.conda#ea25936bb4080d843790b586850f82b8 https://conda.anaconda.org/conda-forge/linux-64/libnsl-2.0.1-hd590300_0.conda#30fd6e37fe21f86f4bd26d6ee73eeec7 -https://conda.anaconda.org/conda-forge/linux-64/libntlm-1.4-h7f98852_1002.tar.bz2#e728e874159b042d92b90238a3cb0dc2 https://conda.anaconda.org/conda-forge/linux-64/libpciaccess-0.18-hd590300_0.conda#48f4330bfcd959c3cfb704d424903c82 https://conda.anaconda.org/conda-forge/linux-64/libpng-1.6.44-hadc24fc_0.conda#f4cc49d7aa68316213e4b12be35308d1 https://conda.anaconda.org/conda-forge/linux-64/libsqlite-3.47.2-hee588c1_0.conda#b58da17db24b6e08bcbf8fed2fb8c915 https://conda.anaconda.org/conda-forge/linux-64/libstdcxx-ng-14.2.0-h4852527_1.conda#8371ac6457591af2cf6159439c1fd051 https://conda.anaconda.org/conda-forge/linux-64/libuuid-2.38.1-h0b41bf4_0.conda#40b61aab5c7ba9ff276c41cfffe6b80b -https://conda.anaconda.org/conda-forge/linux-64/libwebp-base-1.4.0-hd590300_0.conda#b26e8aa824079e1be0294e7152ca4559 https://conda.anaconda.org/conda-forge/linux-64/libxcb-1.17.0-h8a09558_0.conda#92ed62436b625154323d40d5f2f11dd7 https://conda.anaconda.org/conda-forge/linux-64/libxcrypt-4.4.36-hd590300_1.conda#5aa797f8787fe7a17d1b0821485b5adc https://conda.anaconda.org/conda-forge/linux-64/mysql-common-9.0.1-h266115a_3.conda#9411c61ff1070b5e065b32840c39faa5 @@ -81,11 +81,11 @@ https://conda.anaconda.org/conda-forge/linux-64/zstd-1.5.6-ha6fb4c9_0.conda#4d05 https://conda.anaconda.org/conda-forge/linux-64/brotli-1.1.0-hb9d3cd8_2.conda#98514fe74548d768907ce7a13f680e8f https://conda.anaconda.org/conda-forge/linux-64/fontconfig-2.15.0-h7e30c49_1.conda#8f5b0b297b59e1ac160ad4beec99dbee https://conda.anaconda.org/conda-forge/linux-64/krb5-1.21.3-h659f571_0.conda#3f43953b7d3fb3aaa1d0d0723d91e368 -https://conda.anaconda.org/conda-forge/linux-64/libblas-3.9.0-25_linux64_openblas.conda#8ea26d42ca88ec5258802715fe1ee10b +https://conda.anaconda.org/conda-forge/linux-64/libblas-3.9.0-26_linux64_openblas.conda#ac52800af2e0c0e7dac770b435ce768a https://conda.anaconda.org/conda-forge/linux-64/libglib-2.82.2-h2ff4ddf_0.conda#13e8e54035ddd2b91875ba399f0f7c04 https://conda.anaconda.org/conda-forge/linux-64/libglx-1.7.0-ha4b6fd6_2.conda#c8013e438185f33b13814c5c488acd5c https://conda.anaconda.org/conda-forge/linux-64/libhiredis-1.0.2-h2cc385e_0.tar.bz2#b34907d3a81a3cd8095ee83d174c074a -https://conda.anaconda.org/conda-forge/linux-64/libtiff-4.7.0-hc4654cb_2.conda#be54fb40ea32e8fe9dbaa94d4528b57e +https://conda.anaconda.org/conda-forge/linux-64/libtiff-4.7.0-hd9ff511_3.conda#0ea6510969e1296cc19966fad481f6de https://conda.anaconda.org/conda-forge/linux-64/libxml2-2.13.5-h8d12d68_1.conda#1a21e49e190d1ffe58531a81b6e400e1 https://conda.anaconda.org/conda-forge/linux-64/mysql-libs-9.0.1-he0572af_3.conda#dd9da69dd4c2bf798c0b8bd4786cafb5 https://conda.anaconda.org/conda-forge/linux-64/openblas-0.3.28-pthreads_h6ec200e_1.conda#8fe5d50db07e92519cc639cb0aef9b1b @@ -99,7 +99,7 @@ https://conda.anaconda.org/conda-forge/noarch/alabaster-0.7.16-pyhd8ed1ab_0.cond https://conda.anaconda.org/conda-forge/linux-64/brotli-python-1.1.0-py39hf88036b_2.conda#8ea5af6ac902f1a4429190970d9099ce https://conda.anaconda.org/conda-forge/linux-64/cairo-1.18.2-h3394656_1.conda#b34c2833a1f56db610aeb27f206d800d https://conda.anaconda.org/conda-forge/linux-64/ccache-4.10.1-h065aff2_0.conda#d6b48c138e0c8170a6fe9c136e063540 -https://conda.anaconda.org/conda-forge/noarch/certifi-2024.8.30-pyhd8ed1ab_0.conda#12f7d00853807b0531775e9be891cb11 +https://conda.anaconda.org/conda-forge/noarch/certifi-2024.12.14-pyhd8ed1ab_0.conda#6feb87357ecd66733be3279f16a8c400 https://conda.anaconda.org/conda-forge/noarch/charset-normalizer-3.4.0-pyhd8ed1ab_1.conda#6581a17bba6b948bb60130026404a9d6 https://conda.anaconda.org/conda-forge/noarch/colorama-0.4.6-pyhd8ed1ab_1.conda#962b9857ee8e7018c22f2776ffa0b2d7 https://conda.anaconda.org/conda-forge/noarch/cycler-0.12.1-pyhd8ed1ab_1.conda#44600c4667a319d67dbe0681fc0bc833 @@ -116,11 +116,11 @@ https://conda.anaconda.org/conda-forge/noarch/imagesize-1.4.1-pyhd8ed1ab_0.tar.b https://conda.anaconda.org/conda-forge/noarch/iniconfig-2.0.0-pyhd8ed1ab_1.conda#6837f3eff7dcea42ecd714ce1ac2b108 https://conda.anaconda.org/conda-forge/linux-64/kiwisolver-1.4.7-py39h74842e3_0.conda#1bf77976372ff6de02af7b75cf034ce5 https://conda.anaconda.org/conda-forge/linux-64/lcms2-2.16-hb7c19ff_0.conda#51bb7010fc86f70eee639b4bb7a894f5 -https://conda.anaconda.org/conda-forge/linux-64/libcblas-3.9.0-25_linux64_openblas.conda#5dbd1b0fc0d01ec5e0e1fbe667281a11 +https://conda.anaconda.org/conda-forge/linux-64/libcblas-3.9.0-26_linux64_openblas.conda#ebcc5f37a435aa3c19640533c82f8d76 https://conda.anaconda.org/conda-forge/linux-64/libcups-2.3.3-h4637d8d_4.conda#d4529f4dff3057982a7617c7ac58fde3 https://conda.anaconda.org/conda-forge/linux-64/libgl-1.7.0-ha4b6fd6_2.conda#928b8be80851f5d8ffb016f9c81dae7a -https://conda.anaconda.org/conda-forge/linux-64/liblapack-3.9.0-25_linux64_openblas.conda#4dc03a53fc69371a6158d0ed37214cd3 -https://conda.anaconda.org/conda-forge/linux-64/libllvm19-19.1.5-ha7bfdaf_0.conda#76f3749eda7b24816aacd55b9f31447a +https://conda.anaconda.org/conda-forge/linux-64/liblapack-3.9.0-26_linux64_openblas.conda#3792604c43695d6a273bc5faaac47d48 +https://conda.anaconda.org/conda-forge/linux-64/libllvm19-19.1.6-ha7bfdaf_0.conda#ec6abc65eefc96cba8443b2716dcc43b https://conda.anaconda.org/conda-forge/linux-64/libxkbcommon-1.7.0-h2c5496b_1.conda#e2eaefa4de2b7237af7c907b8bbc760a https://conda.anaconda.org/conda-forge/linux-64/libxslt-1.1.39-h76b75d6_0.conda#e71f31f8cfb0a91439f2086fc8aa0461 https://conda.anaconda.org/conda-forge/linux-64/markupsafe-3.0.2-py39h9399b63_1.conda#7821f0938aa629b9f17efd98c300a487 @@ -159,21 +159,21 @@ https://conda.anaconda.org/conda-forge/noarch/h2-4.1.0-pyhd8ed1ab_1.conda#825927 https://conda.anaconda.org/conda-forge/linux-64/harfbuzz-9.0.0-hda332d3_1.conda#76b32dcf243444aea9c6b804bcfa40b8 https://conda.anaconda.org/conda-forge/noarch/importlib-metadata-8.5.0-pyha770c72_1.conda#315607a3030ad5d5227e76e0733798ff https://conda.anaconda.org/conda-forge/noarch/importlib_resources-6.4.5-pyhd8ed1ab_1.conda#15798fa69312d433af690c8c42b3fb36 -https://conda.anaconda.org/conda-forge/noarch/jinja2-3.1.4-pyhd8ed1ab_1.conda#08cce3151bde4ecad7885bd9fb647532 +https://conda.anaconda.org/conda-forge/noarch/jinja2-3.1.5-pyhd8ed1ab_0.conda#2752a6ed44105bfb18c9bef1177d9dcd https://conda.anaconda.org/conda-forge/noarch/joblib-1.4.2-pyhd8ed1ab_1.conda#bf8243ee348f3a10a14ed0cae323e0c1 -https://conda.anaconda.org/conda-forge/linux-64/libclang-cpp19.1-19.1.5-default_hb5137d0_0.conda#ec8649c89988d8a443c252c20f259b72 -https://conda.anaconda.org/conda-forge/linux-64/libclang13-19.1.5-default_h9c6a7e4_0.conda#a3a5997b6b47373f0c1608d8503eb4e6 -https://conda.anaconda.org/conda-forge/linux-64/liblapacke-3.9.0-25_linux64_openblas.conda#8f5ead31b3a168aedd488b8a87736c41 -https://conda.anaconda.org/conda-forge/noarch/meson-1.6.0-pyhd8ed1ab_1.conda#59d45dbe1b0a123966266340b579d366 +https://conda.anaconda.org/conda-forge/linux-64/libclang-cpp19.1-19.1.6-default_hb5137d0_0.conda#9caebd39281536bf6bcb32f665dd4fbf +https://conda.anaconda.org/conda-forge/linux-64/libclang13-19.1.6-default_h9c6a7e4_0.conda#e1d2936c320083f1c520c3a17372521c +https://conda.anaconda.org/conda-forge/linux-64/liblapacke-3.9.0-26_linux64_openblas.conda#7b8b7732fb4786c00cf9b67d1d69445c +https://conda.anaconda.org/conda-forge/noarch/meson-1.6.1-pyhd8ed1ab_0.conda#0062fb0a7f5da474705d0ce626de12f4 https://conda.anaconda.org/conda-forge/linux-64/numpy-2.0.2-py39h9cb892a_1.conda#be95cf76ebd05d08be67e50e88d3cd49 https://conda.anaconda.org/conda-forge/linux-64/openldap-2.6.9-he970967_0.conda#ca2de8bbdc871bce41dbf59e51324165 https://conda.anaconda.org/conda-forge/linux-64/pillow-11.0.0-py39h538c539_0.conda#a2bafdf8ae51c9eb6e5be684cfcedd60 -https://conda.anaconda.org/conda-forge/noarch/pip-24.3.1-pyh8b19718_0.conda#5dd546fe99b44fda83963d15f84263b7 +https://conda.anaconda.org/conda-forge/noarch/pip-24.3.1-pyh8b19718_2.conda#04e691b9fadd93a8a9fad87a81d4fd8f https://conda.anaconda.org/conda-forge/noarch/pyproject-metadata-0.9.0-pyhd8ed1ab_1.conda#1239146a53a383a84633800294120f17 https://conda.anaconda.org/conda-forge/noarch/pytest-8.3.4-pyhd8ed1ab_1.conda#799ed216dc6af62520f32aa39bc1c2bb https://conda.anaconda.org/conda-forge/noarch/python-dateutil-2.9.0.post0-pyhff2d567_1.conda#5ba79d7c71f03c678c8ead841f347d6e https://conda.anaconda.org/conda-forge/linux-64/xorg-libxtst-1.2.5-hb9d3cd8_3.conda#7bbe9a0cc0df0ac5f5a8ad6d6a11af2f -https://conda.anaconda.org/conda-forge/linux-64/blas-devel-3.9.0-25_linux64_openblas.conda#02c516384c77f5a7b4d03ed6c0412c57 +https://conda.anaconda.org/conda-forge/linux-64/blas-devel-3.9.0-26_linux64_openblas.conda#da61c3ef2fbe100b0613cbc2b01b502d https://conda.anaconda.org/conda-forge/linux-64/contourpy-1.3.0-py39h74842e3_2.conda#5645190ef7f6d3aebee71e298dc9677b https://conda.anaconda.org/conda-forge/noarch/importlib-resources-6.4.5-pyhd8ed1ab_1.conda#59561d9b70f9df3b884c29910eba6593 https://conda.anaconda.org/conda-forge/linux-64/libpq-17.2-h3b95a9b_1.conda#37724d8bae042345a19ca1a25dde786b @@ -182,11 +182,11 @@ https://conda.anaconda.org/conda-forge/linux-64/pandas-2.2.3-py39h3b40f6f_1.cond https://conda.anaconda.org/conda-forge/noarch/pytest-xdist-3.6.1-pyhd8ed1ab_1.conda#59aad4fb37cabc0bacc73cf344612ddd https://conda.anaconda.org/conda-forge/linux-64/scipy-1.13.1-py39haf93ffa_0.conda#492a2cd65862d16a4aaf535ae9ccb761 https://conda.anaconda.org/conda-forge/linux-64/zstandard-0.23.0-py39h08a7858_1.conda#cd9fa334e11886738f17254f52210bc3 -https://conda.anaconda.org/conda-forge/linux-64/blas-2.125-openblas.conda#0c46b8a31a587738befc587dd8e52558 +https://conda.anaconda.org/conda-forge/linux-64/blas-2.126-openblas.conda#057a3d8aebeae33d971bc66ee08cbf61 https://conda.anaconda.org/conda-forge/linux-64/matplotlib-base-3.9.4-py39h16632d1_0.conda#f149592d52f9c1ab1bfe3dc055458e13 https://conda.anaconda.org/conda-forge/linux-64/pyamg-5.2.1-py39hf59e57a_1.conda#720dbce3188cecd95fc26525394d1e65 https://conda.anaconda.org/conda-forge/linux-64/qt6-main-6.8.1-h9d28a51_0.conda#7e8e17c44e7af62c77de7a0158afc35c -https://conda.anaconda.org/conda-forge/noarch/urllib3-2.2.3-pyhd8ed1ab_1.conda#4a2d8ef7c37b8808c5b9b750501fffce +https://conda.anaconda.org/conda-forge/noarch/urllib3-2.3.0-pyhd8ed1ab_0.conda#32674f8dbfb7b26410ed580dd3c10a29 https://conda.anaconda.org/conda-forge/linux-64/pyside6-6.8.1-py39h0383914_0.conda#45e71bee7ab5236b01ec50343d70b15e https://conda.anaconda.org/conda-forge/noarch/requests-2.32.3-pyhd8ed1ab_1.conda#a9b9368f3701a417eac9edbcae7cb737 https://conda.anaconda.org/conda-forge/linux-64/matplotlib-3.9.4-py39hf3d152e_0.conda#922f2edd2f9ff0a95c83eb781bacad5e diff --git a/build_tools/azure/ubuntu_atlas_lock.txt b/build_tools/azure/ubuntu_atlas_lock.txt index 3a48ce31e82e8..d12067653231c 100644 --- a/build_tools/azure/ubuntu_atlas_lock.txt +++ b/build_tools/azure/ubuntu_atlas_lock.txt @@ -14,7 +14,7 @@ iniconfig==2.0.0 # via pytest joblib==1.2.0 # via -r build_tools/azure/ubuntu_atlas_requirements.txt -meson==1.6.0 +meson==1.6.1 # via meson-python meson-python==0.17.1 # via -r build_tools/azure/ubuntu_atlas_requirements.txt diff --git a/build_tools/circle/doc_linux-64_conda.lock b/build_tools/circle/doc_linux-64_conda.lock index a4cb11b0a78c7..c502d62ed8baf 100644 --- a/build_tools/circle/doc_linux-64_conda.lock +++ b/build_tools/circle/doc_linux-64_conda.lock @@ -17,7 +17,7 @@ https://conda.anaconda.org/conda-forge/noarch/libgcc-devel_linux-64-13.3.0-h84ea https://conda.anaconda.org/conda-forge/linux-64/libglvnd-1.7.0-ha4b6fd6_2.conda#434ca7e50e40f4918ab701e3facd59a0 https://conda.anaconda.org/conda-forge/linux-64/libgomp-14.2.0-h77fa898_1.conda#cc3573974587f12dda90d96e3e55a702 https://conda.anaconda.org/conda-forge/noarch/libstdcxx-devel_linux-64-13.3.0-h84ea5a7_101.conda#29b5a4ed4613fa81a07c21045e3f5bf6 -https://conda.anaconda.org/conda-forge/linux-64/llvm-openmp-19.1.5-h024ca30_0.conda#dc90d15c25a57f641f0b84c271e4761e +https://conda.anaconda.org/conda-forge/linux-64/llvm-openmp-19.1.6-h024ca30_0.conda#96e42ccbd3c067c1713ff5f2d2169247 https://conda.anaconda.org/conda-forge/noarch/sysroot_linux-64-2.17-h4a8ded7_18.conda#0ea96f90a10838f58412aa84fdd9df09 https://conda.anaconda.org/conda-forge/linux-64/_openmp_mutex-4.5-2_kmp_llvm.tar.bz2#562b26ba2e19059551a811e72ab7f793 https://conda.anaconda.org/conda-forge/linux-64/binutils_impl_linux-64-2.43-h4bf12b8_2.conda#cf0c5521ac2a20dfa6c662a4009eeef6 @@ -29,12 +29,14 @@ https://conda.anaconda.org/conda-forge/linux-64/binutils_linux-64-2.43-h4852527_ https://conda.anaconda.org/conda-forge/linux-64/libgcc-14.2.0-h77fa898_1.conda#3cb76c3f10d3bc7f1105b2fc9db984df https://conda.anaconda.org/conda-forge/linux-64/alsa-lib-1.2.13-hb9d3cd8_0.conda#ae1370588aa6a5157c34c73e9bbb36a0 https://conda.anaconda.org/conda-forge/linux-64/libbrotlicommon-1.1.0-hb9d3cd8_2.conda#41b599ed2b02abcfdd84302bff174b23 -https://conda.anaconda.org/conda-forge/linux-64/libdeflate-1.22-hb9d3cd8_0.conda#b422943d5d772b7cc858b36ad2a92db5 +https://conda.anaconda.org/conda-forge/linux-64/libdeflate-1.23-h4ddbbb0_0.conda#8dfae1d2e74767e9ce36d5fa0d8605db https://conda.anaconda.org/conda-forge/linux-64/libexpat-2.6.4-h5888daf_0.conda#db833e03127376d461e1e13e76f09b6c https://conda.anaconda.org/conda-forge/linux-64/libgcc-ng-14.2.0-h69a702a_1.conda#e39480b9ca41323497b05492a63bc35b https://conda.anaconda.org/conda-forge/linux-64/libgfortran5-14.2.0-hd5240d6_1.conda#9822b874ea29af082e5d36098d25427d https://conda.anaconda.org/conda-forge/linux-64/liblzma-5.6.3-hb9d3cd8_1.conda#2ecf2f1c7e4e21fcfe6423a51a992d84 +https://conda.anaconda.org/conda-forge/linux-64/libntlm-1.8-hb9d3cd8_0.conda#7c7927b404672409d9917d49bff5f2d6 https://conda.anaconda.org/conda-forge/linux-64/libstdcxx-14.2.0-hc0a3c3a_1.conda#234a5554c53625688d51062645337328 +https://conda.anaconda.org/conda-forge/linux-64/libwebp-base-1.5.0-h851e524_0.conda#63f790534398730f59e1b899c3644d4a https://conda.anaconda.org/conda-forge/linux-64/libzlib-1.3.1-hb9d3cd8_2.conda#edb0dca6bc32e4f4789199455a1dbeb8 https://conda.anaconda.org/conda-forge/linux-64/openssl-3.4.0-hb9d3cd8_0.conda#23cc74f77eb99315c0360ec3533147a9 https://conda.anaconda.org/conda-forge/linux-64/pthread-stubs-0.4-hb9d3cd8_1002.conda#b3c17d95b5a10c6e64a21fa17573e70e @@ -54,14 +56,12 @@ https://conda.anaconda.org/conda-forge/linux-64/libgfortran-14.2.0-h69a702a_1.co https://conda.anaconda.org/conda-forge/linux-64/libiconv-1.17-hd590300_2.conda#d66573916ffcf376178462f1b61c941e https://conda.anaconda.org/conda-forge/linux-64/libjpeg-turbo-3.0.0-hd590300_1.conda#ea25936bb4080d843790b586850f82b8 https://conda.anaconda.org/conda-forge/linux-64/libnsl-2.0.1-hd590300_0.conda#30fd6e37fe21f86f4bd26d6ee73eeec7 -https://conda.anaconda.org/conda-forge/linux-64/libntlm-1.4-h7f98852_1002.tar.bz2#e728e874159b042d92b90238a3cb0dc2 https://conda.anaconda.org/conda-forge/linux-64/libpciaccess-0.18-hd590300_0.conda#48f4330bfcd959c3cfb704d424903c82 https://conda.anaconda.org/conda-forge/linux-64/libpng-1.6.44-hadc24fc_0.conda#f4cc49d7aa68316213e4b12be35308d1 https://conda.anaconda.org/conda-forge/linux-64/libsanitizer-13.3.0-heb74ff8_1.conda#c4cb22f270f501f5c59a122dc2adf20a https://conda.anaconda.org/conda-forge/linux-64/libsqlite-3.47.2-hee588c1_0.conda#b58da17db24b6e08bcbf8fed2fb8c915 https://conda.anaconda.org/conda-forge/linux-64/libstdcxx-ng-14.2.0-h4852527_1.conda#8371ac6457591af2cf6159439c1fd051 https://conda.anaconda.org/conda-forge/linux-64/libuuid-2.38.1-h0b41bf4_0.conda#40b61aab5c7ba9ff276c41cfffe6b80b -https://conda.anaconda.org/conda-forge/linux-64/libwebp-base-1.4.0-hd590300_0.conda#b26e8aa824079e1be0294e7152ca4559 https://conda.anaconda.org/conda-forge/linux-64/libxcb-1.17.0-h8a09558_0.conda#92ed62436b625154323d40d5f2f11dd7 https://conda.anaconda.org/conda-forge/linux-64/libxcrypt-4.4.36-hd590300_1.conda#5aa797f8787fe7a17d1b0821485b5adc https://conda.anaconda.org/conda-forge/linux-64/lz4-c-1.10.0-h5888daf_1.conda#9de5350a85c4a20c685259b889aa6393 @@ -112,11 +112,11 @@ https://conda.anaconda.org/conda-forge/linux-64/gfortran_impl_linux-64-13.3.0-h1 https://conda.anaconda.org/conda-forge/linux-64/gxx_impl_linux-64-13.3.0-hdbfa832_1.conda#806367e23a0a6ad21e51875b34c57d7e https://conda.anaconda.org/conda-forge/linux-64/krb5-1.21.3-h659f571_0.conda#3f43953b7d3fb3aaa1d0d0723d91e368 https://conda.anaconda.org/conda-forge/linux-64/libavif16-1.1.1-h1909e37_2.conda#21e468ed3786ebcb2124b123aa2484b7 -https://conda.anaconda.org/conda-forge/linux-64/libblas-3.9.0-25_linux64_openblas.conda#8ea26d42ca88ec5258802715fe1ee10b +https://conda.anaconda.org/conda-forge/linux-64/libblas-3.9.0-26_linux64_openblas.conda#ac52800af2e0c0e7dac770b435ce768a https://conda.anaconda.org/conda-forge/linux-64/libglib-2.82.2-h2ff4ddf_0.conda#13e8e54035ddd2b91875ba399f0f7c04 https://conda.anaconda.org/conda-forge/linux-64/libglx-1.7.0-ha4b6fd6_2.conda#c8013e438185f33b13814c5c488acd5c https://conda.anaconda.org/conda-forge/linux-64/libjxl-0.11.1-hdb8da77_0.conda#32b23f3487beae7e81495fbc1099ae9e -https://conda.anaconda.org/conda-forge/linux-64/libtiff-4.7.0-hc4654cb_2.conda#be54fb40ea32e8fe9dbaa94d4528b57e +https://conda.anaconda.org/conda-forge/linux-64/libtiff-4.7.0-hd9ff511_3.conda#0ea6510969e1296cc19966fad481f6de https://conda.anaconda.org/conda-forge/linux-64/libxml2-2.13.5-h8d12d68_1.conda#1a21e49e190d1ffe58531a81b6e400e1 https://conda.anaconda.org/conda-forge/linux-64/mysql-libs-9.0.1-he0572af_3.conda#dd9da69dd4c2bf798c0b8bd4786cafb5 https://conda.anaconda.org/conda-forge/linux-64/openblas-0.3.28-pthreads_h6ec200e_1.conda#8fe5d50db07e92519cc639cb0aef9b1b @@ -131,9 +131,9 @@ https://conda.anaconda.org/conda-forge/linux-64/brotli-python-1.1.0-py39hf88036b https://conda.anaconda.org/conda-forge/linux-64/brunsli-0.1-h9c3ff4c_0.tar.bz2#c1ac6229d0bfd14f8354ff9ad2a26cad https://conda.anaconda.org/conda-forge/linux-64/c-compiler-1.8.0-h2b85faf_1.conda#fa7b3bf2965b9d74a81a0702d9bb49ee https://conda.anaconda.org/conda-forge/linux-64/cairo-1.18.2-h3394656_1.conda#b34c2833a1f56db610aeb27f206d800d -https://conda.anaconda.org/conda-forge/noarch/certifi-2024.8.30-pyhd8ed1ab_0.conda#12f7d00853807b0531775e9be891cb11 +https://conda.anaconda.org/conda-forge/noarch/certifi-2024.12.14-pyhd8ed1ab_0.conda#6feb87357ecd66733be3279f16a8c400 https://conda.anaconda.org/conda-forge/noarch/charset-normalizer-3.4.0-pyhd8ed1ab_1.conda#6581a17bba6b948bb60130026404a9d6 -https://conda.anaconda.org/conda-forge/noarch/click-8.1.7-unix_pyh707e725_1.conda#cb8e52f28f5e592598190c562e7b5bf1 +https://conda.anaconda.org/conda-forge/noarch/click-8.1.8-pyh707e725_0.conda#f22f4d4970e09d68a10b922cbb0408d3 https://conda.anaconda.org/conda-forge/noarch/colorama-0.4.6-pyhd8ed1ab_1.conda#962b9857ee8e7018c22f2776ffa0b2d7 https://conda.anaconda.org/conda-forge/noarch/cycler-0.12.1-pyhd8ed1ab_1.conda#44600c4667a319d67dbe0681fc0bc833 https://conda.anaconda.org/conda-forge/linux-64/cyrus-sasl-2.1.27-h54b06d7_7.conda#dce22f70b4e5a407ce88f2be046f4ceb @@ -153,11 +153,11 @@ https://conda.anaconda.org/conda-forge/noarch/imagesize-1.4.1-pyhd8ed1ab_0.tar.b https://conda.anaconda.org/conda-forge/noarch/iniconfig-2.0.0-pyhd8ed1ab_1.conda#6837f3eff7dcea42ecd714ce1ac2b108 https://conda.anaconda.org/conda-forge/linux-64/kiwisolver-1.4.7-py39h74842e3_0.conda#1bf77976372ff6de02af7b75cf034ce5 https://conda.anaconda.org/conda-forge/linux-64/lcms2-2.16-hb7c19ff_0.conda#51bb7010fc86f70eee639b4bb7a894f5 -https://conda.anaconda.org/conda-forge/linux-64/libcblas-3.9.0-25_linux64_openblas.conda#5dbd1b0fc0d01ec5e0e1fbe667281a11 +https://conda.anaconda.org/conda-forge/linux-64/libcblas-3.9.0-26_linux64_openblas.conda#ebcc5f37a435aa3c19640533c82f8d76 https://conda.anaconda.org/conda-forge/linux-64/libcups-2.3.3-h4637d8d_4.conda#d4529f4dff3057982a7617c7ac58fde3 https://conda.anaconda.org/conda-forge/linux-64/libgl-1.7.0-ha4b6fd6_2.conda#928b8be80851f5d8ffb016f9c81dae7a -https://conda.anaconda.org/conda-forge/linux-64/liblapack-3.9.0-25_linux64_openblas.conda#4dc03a53fc69371a6158d0ed37214cd3 -https://conda.anaconda.org/conda-forge/linux-64/libllvm19-19.1.5-ha7bfdaf_0.conda#76f3749eda7b24816aacd55b9f31447a +https://conda.anaconda.org/conda-forge/linux-64/liblapack-3.9.0-26_linux64_openblas.conda#3792604c43695d6a273bc5faaac47d48 +https://conda.anaconda.org/conda-forge/linux-64/libllvm19-19.1.6-ha7bfdaf_0.conda#ec6abc65eefc96cba8443b2716dcc43b https://conda.anaconda.org/conda-forge/linux-64/libxkbcommon-1.7.0-h2c5496b_1.conda#e2eaefa4de2b7237af7c907b8bbc760a https://conda.anaconda.org/conda-forge/linux-64/libxslt-1.1.39-h76b75d6_0.conda#e71f31f8cfb0a91439f2086fc8aa0461 https://conda.anaconda.org/conda-forge/linux-64/markupsafe-3.0.2-py39h9399b63_1.conda#7821f0938aa629b9f17efd98c300a487 @@ -206,26 +206,26 @@ https://conda.anaconda.org/conda-forge/noarch/h2-4.1.0-pyhd8ed1ab_1.conda#825927 https://conda.anaconda.org/conda-forge/linux-64/harfbuzz-9.0.0-hda332d3_1.conda#76b32dcf243444aea9c6b804bcfa40b8 https://conda.anaconda.org/conda-forge/noarch/importlib-metadata-8.5.0-pyha770c72_1.conda#315607a3030ad5d5227e76e0733798ff https://conda.anaconda.org/conda-forge/noarch/importlib_resources-6.4.5-pyhd8ed1ab_1.conda#15798fa69312d433af690c8c42b3fb36 -https://conda.anaconda.org/conda-forge/noarch/jinja2-3.1.4-pyhd8ed1ab_1.conda#08cce3151bde4ecad7885bd9fb647532 +https://conda.anaconda.org/conda-forge/noarch/jinja2-3.1.5-pyhd8ed1ab_0.conda#2752a6ed44105bfb18c9bef1177d9dcd https://conda.anaconda.org/conda-forge/noarch/joblib-1.4.2-pyhd8ed1ab_1.conda#bf8243ee348f3a10a14ed0cae323e0c1 -https://conda.anaconda.org/conda-forge/linux-64/libclang-cpp19.1-19.1.5-default_hb5137d0_0.conda#ec8649c89988d8a443c252c20f259b72 -https://conda.anaconda.org/conda-forge/linux-64/libclang13-19.1.5-default_h9c6a7e4_0.conda#a3a5997b6b47373f0c1608d8503eb4e6 -https://conda.anaconda.org/conda-forge/linux-64/liblapacke-3.9.0-25_linux64_openblas.conda#8f5ead31b3a168aedd488b8a87736c41 +https://conda.anaconda.org/conda-forge/linux-64/libclang-cpp19.1-19.1.6-default_hb5137d0_0.conda#9caebd39281536bf6bcb32f665dd4fbf +https://conda.anaconda.org/conda-forge/linux-64/libclang13-19.1.6-default_h9c6a7e4_0.conda#e1d2936c320083f1c520c3a17372521c +https://conda.anaconda.org/conda-forge/linux-64/liblapacke-3.9.0-26_linux64_openblas.conda#7b8b7732fb4786c00cf9b67d1d69445c https://conda.anaconda.org/conda-forge/noarch/memory_profiler-0.61.0-pyhd8ed1ab_0.tar.bz2#8b45f9f2b2f7a98b0ec179c8991a4a9b -https://conda.anaconda.org/conda-forge/noarch/meson-1.6.0-pyhd8ed1ab_1.conda#59d45dbe1b0a123966266340b579d366 +https://conda.anaconda.org/conda-forge/noarch/meson-1.6.1-pyhd8ed1ab_0.conda#0062fb0a7f5da474705d0ce626de12f4 https://conda.anaconda.org/conda-forge/linux-64/numpy-2.0.2-py39h9cb892a_1.conda#be95cf76ebd05d08be67e50e88d3cd49 https://conda.anaconda.org/conda-forge/linux-64/openldap-2.6.9-he970967_0.conda#ca2de8bbdc871bce41dbf59e51324165 https://conda.anaconda.org/conda-forge/linux-64/pillow-11.0.0-py39h538c539_0.conda#a2bafdf8ae51c9eb6e5be684cfcedd60 -https://conda.anaconda.org/conda-forge/noarch/pip-24.3.1-pyh8b19718_0.conda#5dd546fe99b44fda83963d15f84263b7 +https://conda.anaconda.org/conda-forge/noarch/pip-24.3.1-pyh8b19718_2.conda#04e691b9fadd93a8a9fad87a81d4fd8f https://conda.anaconda.org/conda-forge/noarch/plotly-5.24.1-pyhd8ed1ab_1.conda#71ac632876630091c81c50a05ec5e030 https://conda.anaconda.org/conda-forge/noarch/pyproject-metadata-0.9.0-pyhd8ed1ab_1.conda#1239146a53a383a84633800294120f17 https://conda.anaconda.org/conda-forge/noarch/pytest-8.3.4-pyhd8ed1ab_1.conda#799ed216dc6af62520f32aa39bc1c2bb https://conda.anaconda.org/conda-forge/noarch/python-dateutil-2.9.0.post0-pyhff2d567_1.conda#5ba79d7c71f03c678c8ead841f347d6e https://conda.anaconda.org/conda-forge/linux-64/xorg-libxtst-1.2.5-hb9d3cd8_3.conda#7bbe9a0cc0df0ac5f5a8ad6d6a11af2f -https://conda.anaconda.org/conda-forge/linux-64/blas-devel-3.9.0-25_linux64_openblas.conda#02c516384c77f5a7b4d03ed6c0412c57 +https://conda.anaconda.org/conda-forge/linux-64/blas-devel-3.9.0-26_linux64_openblas.conda#da61c3ef2fbe100b0613cbc2b01b502d https://conda.anaconda.org/conda-forge/linux-64/compilers-1.8.0-ha770c72_1.conda#061e111d02f33a99548f0de07169d9fb https://conda.anaconda.org/conda-forge/linux-64/contourpy-1.3.0-py39h74842e3_2.conda#5645190ef7f6d3aebee71e298dc9677b -https://conda.anaconda.org/conda-forge/linux-64/imagecodecs-2024.9.22-py39h966145a_1.conda#56479bfb4818d058f104339e547efe70 +https://conda.anaconda.org/conda-forge/linux-64/imagecodecs-2024.9.22-py39hac51188_2.conda#87d7ce1f90bf94f40584db14777f8765 https://conda.anaconda.org/conda-forge/noarch/imageio-2.36.1-pyh12aca89_1.conda#84d5a2f075c861a8f98afd2842f7eb6e https://conda.anaconda.org/conda-forge/noarch/importlib-resources-6.4.5-pyhd8ed1ab_1.conda#59561d9b70f9df3b884c29910eba6593 https://conda.anaconda.org/conda-forge/noarch/lazy-loader-0.4-pyhd8ed1ab_2.conda#d10d9393680734a8febc4b362a4c94f2 @@ -238,7 +238,7 @@ https://conda.anaconda.org/conda-forge/noarch/pytest-xdist-3.6.1-pyhd8ed1ab_1.co https://conda.anaconda.org/conda-forge/linux-64/pywavelets-1.6.0-py39hd92a3bb_0.conda#32e26e16f60c568b17a82e3033a4d309 https://conda.anaconda.org/conda-forge/linux-64/scipy-1.13.1-py39haf93ffa_0.conda#492a2cd65862d16a4aaf535ae9ccb761 https://conda.anaconda.org/conda-forge/linux-64/zstandard-0.23.0-py39h08a7858_1.conda#cd9fa334e11886738f17254f52210bc3 -https://conda.anaconda.org/conda-forge/linux-64/blas-2.125-openblas.conda#0c46b8a31a587738befc587dd8e52558 +https://conda.anaconda.org/conda-forge/linux-64/blas-2.126-openblas.conda#057a3d8aebeae33d971bc66ee08cbf61 https://conda.anaconda.org/conda-forge/noarch/lazy_loader-0.4-pyhd8ed1ab_2.conda#bb0230917e2473c77d615104dbe8a49d https://conda.anaconda.org/conda-forge/linux-64/matplotlib-base-3.9.4-py39h16632d1_0.conda#f149592d52f9c1ab1bfe3dc055458e13 https://conda.anaconda.org/conda-forge/linux-64/pyamg-5.2.1-py39hf59e57a_1.conda#720dbce3188cecd95fc26525394d1e65 @@ -246,7 +246,7 @@ https://conda.anaconda.org/conda-forge/linux-64/qt6-main-6.8.1-h9d28a51_0.conda# https://conda.anaconda.org/conda-forge/linux-64/statsmodels-0.14.4-py39hf3d9206_0.conda#f633ed7c19e120b9e6c0efb79f20a53f https://conda.anaconda.org/conda-forge/noarch/tifffile-2024.6.18-pyhd8ed1ab_0.conda#7c3077529bfe3b86f9425d526d73bd24 https://conda.anaconda.org/conda-forge/noarch/towncrier-24.8.0-pyhd8ed1ab_0.conda#02190423152df62fda1cde3d9527b882 -https://conda.anaconda.org/conda-forge/noarch/urllib3-2.2.3-pyhd8ed1ab_1.conda#4a2d8ef7c37b8808c5b9b750501fffce +https://conda.anaconda.org/conda-forge/noarch/urllib3-2.3.0-pyhd8ed1ab_0.conda#32674f8dbfb7b26410ed580dd3c10a29 https://conda.anaconda.org/conda-forge/linux-64/pyside6-6.8.1-py39h0383914_0.conda#45e71bee7ab5236b01ec50343d70b15e https://conda.anaconda.org/conda-forge/noarch/requests-2.32.3-pyhd8ed1ab_1.conda#a9b9368f3701a417eac9edbcae7cb737 https://conda.anaconda.org/conda-forge/linux-64/scikit-image-0.24.0-py39h3b40f6f_3.conda#63666cfacc4dc32c8b2ff49705988f92 @@ -255,9 +255,9 @@ https://conda.anaconda.org/conda-forge/linux-64/matplotlib-3.9.4-py39hf3d152e_0. https://conda.anaconda.org/conda-forge/noarch/pooch-1.8.2-pyhd8ed1ab_1.conda#b3e783e8e8ed7577cf0b6dee37d1fbac https://conda.anaconda.org/conda-forge/noarch/seaborn-0.13.2-hd8ed1ab_3.conda#62afb877ca2c2b4b6f9ecb37320085b6 https://conda.anaconda.org/conda-forge/noarch/numpydoc-1.8.0-pyhd8ed1ab_1.conda#5af206d64d18d6c8dfb3122b4d9e643b -https://conda.anaconda.org/conda-forge/noarch/pydata-sphinx-theme-0.16.0-pyhd8ed1ab_0.conda#344261b0e77f5d2faaffb4eac225eeb7 -https://conda.anaconda.org/conda-forge/noarch/sphinx-copybutton-0.5.2-pyhd8ed1ab_0.conda#ac832cc43adc79118cf6e23f1f9b8995 -https://conda.anaconda.org/conda-forge/noarch/sphinx-design-0.6.1-pyhd8ed1ab_1.conda#db0f1eb28b6df3a11e89437597309009 +https://conda.anaconda.org/conda-forge/noarch/pydata-sphinx-theme-0.16.1-pyhd8ed1ab_0.conda#837aaf71ddf3b27acae0e7e9015eebc6 +https://conda.anaconda.org/conda-forge/noarch/sphinx-copybutton-0.5.2-pyhd8ed1ab_1.conda#bf22cb9c439572760316ce0748af3713 +https://conda.anaconda.org/conda-forge/noarch/sphinx-design-0.6.1-pyhd8ed1ab_2.conda#3e6c15d914b03f83fc96344f917e0838 https://conda.anaconda.org/conda-forge/noarch/sphinx-gallery-0.18.0-pyhd8ed1ab_0.conda#dc78276cbf5ec23e4b959d1bbd9caadb https://conda.anaconda.org/conda-forge/noarch/sphinx-prompt-1.4.0-pyhd8ed1ab_0.tar.bz2#88ee91e8679603f2a5bd036d52919cc2 https://conda.anaconda.org/conda-forge/noarch/sphinx-remove-toctrees-1.0.0.post1-pyhd8ed1ab_0.conda#6dee8412218288a17f99f2cfffab334d @@ -267,8 +267,8 @@ https://conda.anaconda.org/conda-forge/noarch/sphinxcontrib-htmlhelp-2.1.0-pyhd8 https://conda.anaconda.org/conda-forge/noarch/sphinxcontrib-qthelp-2.0.0-pyhd8ed1ab_1.conda#00534ebcc0375929b45c3039b5ba7636 https://conda.anaconda.org/conda-forge/noarch/sphinx-7.4.7-pyhd8ed1ab_0.conda#c568e260463da2528ecfd7c5a0b41bbd https://conda.anaconda.org/conda-forge/noarch/sphinxcontrib-serializinghtml-1.1.10-pyhd8ed1ab_1.conda#3bc61f7161d28137797e038263c04c54 -https://conda.anaconda.org/conda-forge/noarch/sphinxext-opengraph-0.9.1-pyhd8ed1ab_0.conda#286283e05a1eff606f55e7cd70f6d7f7 -# pip attrs @ https://files.pythonhosted.org/packages/6a/21/5b6702a7f963e95456c0de2d495f67bf5fd62840ac655dc451586d23d39a/attrs-24.2.0-py3-none-any.whl#sha256=81921eb96de3191c8258c199618104dd27ac608d9366f5e35d011eae1867ede2 +https://conda.anaconda.org/conda-forge/noarch/sphinxext-opengraph-0.9.1-pyhd8ed1ab_1.conda#79f5d05ad914baf152fb7f75073fe36d +# pip attrs @ https://files.pythonhosted.org/packages/89/aa/ab0f7891a01eeb2d2e338ae8fecbe57fcebea1a24dbb64d45801bfab481d/attrs-24.3.0-py3-none-any.whl#sha256=ac96cd038792094f438ad1f6ff80837353805ac950cd2aa0e0625ef19850c308 # pip cloudpickle @ https://files.pythonhosted.org/packages/48/41/e1d85ca3cab0b674e277c8c4f678cf66a91cd2cecf93df94353a606fe0db/cloudpickle-3.1.0-py3-none-any.whl#sha256=fe11acda67f61aaaec473e3afe030feb131d78a43461b718185363384f1ba12e # pip defusedxml @ https://files.pythonhosted.org/packages/07/6c/aa3f2f849e01cb6a001cd8554a88d4c77c5c1a31c95bdf1cf9301e6d9ef4/defusedxml-0.7.1-py2.py3-none-any.whl#sha256=a352e7e428770286cc899e2542b6cdaedb2b4953ff269a210103ec58f6198a61 # pip fastjsonschema @ https://files.pythonhosted.org/packages/90/2b/0817a2b257fe88725c25589d89aec060581aabf668707a8d03b2e9e0cb2a/fastjsonschema-2.21.1-py3-none-any.whl#sha256=c9e5b7e908310918cf494a434eeb31384dd84a98b57a30bcb1f535015b554667 @@ -277,6 +277,7 @@ https://conda.anaconda.org/conda-forge/noarch/sphinxext-opengraph-0.9.1-pyhd8ed1 # pip jsonpointer @ https://files.pythonhosted.org/packages/71/92/5e77f98553e9e75130c78900d000368476aed74276eb8ae8796f65f00918/jsonpointer-3.0.0-py2.py3-none-any.whl#sha256=13e088adc14fca8b6aa8177c044e12701e6ad4b28ff10e65f2267a90109c9942 # pip jupyterlab-pygments @ https://files.pythonhosted.org/packages/b1/dd/ead9d8ea85bf202d90cc513b533f9c363121c7792674f78e0d8a854b63b4/jupyterlab_pygments-0.3.0-py3-none-any.whl#sha256=841a89020971da1d8693f1a99997aefc5dc424bb1b251fd6322462a1b8842780 # pip libsass @ https://files.pythonhosted.org/packages/fd/5a/eb5b62641df0459a3291fc206cf5bd669c0feed7814dded8edef4ade8512/libsass-0.23.0-cp38-abi3-manylinux_2_5_x86_64.manylinux1_x86_64.whl#sha256=4a218406d605f325d234e4678bd57126a66a88841cb95bee2caeafdc6f138306 +# pip mdurl @ https://files.pythonhosted.org/packages/b3/38/89ba8ad64ae25be8de66a6d463314cf1eb366222074cfda9ee839c56a4b4/mdurl-0.1.2-py3-none-any.whl#sha256=84008a41e51615a49fc9966191ff91509e3c40b939176e643fd50a5c2196b8f8 # pip mistune @ https://files.pythonhosted.org/packages/f0/74/c95adcdf032956d9ef6c89a9b8a5152bf73915f8c633f3e3d88d06bd699c/mistune-3.0.2-py3-none-any.whl#sha256=71481854c30fdbc938963d3605b72501f5c10a9320ecd412c121c163a1c7d205 # pip overrides @ https://files.pythonhosted.org/packages/2c/ab/fc8290c6a4c722e5514d80f62b2dc4c4df1a68a41d1364e625c35990fcf3/overrides-7.7.0-py3-none-any.whl#sha256=c7ed9d062f78b8e4c1a7b70bd8796b35ead4d9f510227ef9c5dc7626c60d7e49 # pip pandocfilters @ https://files.pythonhosted.org/packages/ef/af/4fbc8cab944db5d21b7e2a5b8e9211a03a79852b1157e2c102fcc61ac440/pandocfilters-1.5.1-py2.py3-none-any.whl#sha256=93be382804a9cdb0a7267585f157e5d1731bbe5545a85b268d6f5fe6232de2bc @@ -300,7 +301,8 @@ https://conda.anaconda.org/conda-forge/noarch/sphinxext-opengraph-0.9.1-pyhd8ed1 # pip bleach @ https://files.pythonhosted.org/packages/fc/55/96142937f66150805c25c4d0f31ee4132fd33497753400734f9dfdcbdc66/bleach-6.2.0-py3-none-any.whl#sha256=117d9c6097a7c3d22fd578fcd8d35ff1e125df6736f554da4e432fdd63f31e5e # pip doit @ https://files.pythonhosted.org/packages/44/83/a2960d2c975836daa629a73995134fd86520c101412578c57da3d2aa71ee/doit-0.36.0-py3-none-any.whl#sha256=ebc285f6666871b5300091c26eafdff3de968a6bd60ea35dd1e3fc6f2e32479a # pip jupyter-core @ https://files.pythonhosted.org/packages/c9/fb/108ecd1fe961941959ad0ee4e12ee7b8b1477247f30b1fdfd83ceaf017f0/jupyter_core-5.7.2-py3-none-any.whl#sha256=4f7315d2f6b4bcf2e3e7cb6e46772eba760ae459cd1f59d29eb57b0a01bd7409 -# pip python-json-logger @ https://files.pythonhosted.org/packages/c3/be/a84e771466c68a33eda7efb5a274e4045dfb6ae3dc846ac153b62e14e7bd/python_json_logger-3.2.0-py3-none-any.whl#sha256=d73522ddcfc6d0461394120feaddea9025dc64bf804d96357dd42fa878cc5fe8 +# pip markdown-it-py @ https://files.pythonhosted.org/packages/42/d7/1ec15b46af6af88f19b8e5ffea08fa375d433c998b8a7639e76935c14f1f/markdown_it_py-3.0.0-py3-none-any.whl#sha256=355216845c60bd96232cd8d8c40e8f9765cc86f46880e43a8fd22dc1a1a8cab1 +# pip python-json-logger @ https://files.pythonhosted.org/packages/4b/72/2f30cf26664fcfa0bd8ec5ee62ec90c03bd485e4a294d92aabc76c5203a5/python_json_logger-3.2.1-py3-none-any.whl#sha256=cdc17047eb5374bd311e748b42f99d71223f3b0e186f4206cc5d52aefe85b090 # pip pyzmq @ https://files.pythonhosted.org/packages/6e/bd/3ff3e1172f12f55769793a3a334e956ec2886805ebfb2f64756b6b5c6a1a/pyzmq-26.2.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl#sha256=05590cdbc6b902101d0e65d6a4780af14dc22914cc6ab995d99b85af45362cc9 # pip referencing @ https://files.pythonhosted.org/packages/b7/59/2056f61236782a2c86b33906c025d4f4a0b17be0161b63b70fd9e8775d36/referencing-0.35.1-py3-none-any.whl#sha256=eda6d3234d62814d1c64e305c1331c9a3a6132da475ab6382eaa997b21ee75de # pip rfc3339-validator @ https://files.pythonhosted.org/packages/7b/44/4e421b96b67b2daff264473f7465db72fbdf36a07e05494f50300cc7b0c6/rfc3339_validator-0.1.4-py2.py3-none-any.whl#sha256=24f6ec1eda14ef823da9e36ec7113124b39c04d50a4d3d3a3c2859577e7791fa @@ -313,12 +315,14 @@ https://conda.anaconda.org/conda-forge/noarch/sphinxext-opengraph-0.9.1-pyhd8ed1 # pip jupyter-client @ https://files.pythonhosted.org/packages/11/85/b0394e0b6fcccd2c1eeefc230978a6f8cb0c5df1e4cd3e7625735a0d7d1e/jupyter_client-8.6.3-py3-none-any.whl#sha256=e8a19cc986cc45905ac3362915f410f3af85424b4c0905e94fa5f2cb08e8f23f # pip jupyter-server-terminals @ https://files.pythonhosted.org/packages/07/2d/2b32cdbe8d2a602f697a649798554e4f072115438e92249624e532e8aca6/jupyter_server_terminals-0.5.3-py3-none-any.whl#sha256=41ee0d7dc0ebf2809c668e0fc726dfaf258fcd3e769568996ca731b6194ae9aa # pip jupyterlite-core @ https://files.pythonhosted.org/packages/ff/51/0812a39260335c708c6f150e66e5d0ff2adcc40885f0a8b7244639286960/jupyterlite_core-0.4.5-py3-none-any.whl#sha256=2c30b815b0699d50160bfec35ff612295f8518ac66cf52acd7bfe41aa42ce0be +# pip mdit-py-plugins @ https://files.pythonhosted.org/packages/a7/f7/7782a043553ee469c1ff49cfa1cdace2d6bf99a1f333cf38676b3ddf30da/mdit_py_plugins-0.4.2-py3-none-any.whl#sha256=0c673c3f889399a33b95e88d2f0d111b4447bdfea7f237dab2d488f459835636 # pip jsonschema @ https://files.pythonhosted.org/packages/69/4a/4f9dbeb84e8850557c02365a0eee0649abe5eb1d84af92a25731c6c0f922/jsonschema-4.23.0-py3-none-any.whl#sha256=fbadb6f8b144a8f8cf9f0b89ba94501d143e50411a1278633f56a7acf7fd5566 -# pip jupyterlite-pyodide-kernel @ https://files.pythonhosted.org/packages/28/ff/087be7ea8eeba323f7447981270ef55e5d5a08727254b59936fa6f5bb76f/jupyterlite_pyodide_kernel-0.4.5-py3-none-any.whl#sha256=9aebec13d94e2eb3a0bb23f5d86ac34bb6b71e4f7b74518ba62e378e4d3da01b -# pip jupyter-events @ https://files.pythonhosted.org/packages/a5/94/059180ea70a9a326e1815176b2370da56376da347a796f8c4f0b830208ef/jupyter_events-0.10.0-py3-none-any.whl#sha256=4b72130875e59d57716d327ea70d3ebc3af1944d3717e5a498b8a06c6c159960 +# pip jupyterlite-pyodide-kernel @ https://files.pythonhosted.org/packages/8e/25/93209596b04c7751a5933ea96b2f4de986fc432b53a2837036a6492fcd26/jupyterlite_pyodide_kernel-0.4.6-py3-none-any.whl#sha256=e32ce447496c94baacb00340a77bcf3d8f7040c923152a8b2281ab64cfa9ce56 +# pip jupyter-events @ https://files.pythonhosted.org/packages/3f/8c/9b65cb2cd4ea32d885993d5542244641590530836802a2e8c7449a4c61c9/jupyter_events-0.11.0-py3-none-any.whl#sha256=36399b41ce1ca45fe8b8271067d6a140ffa54cec4028e95491c93b78a855cacf # pip nbformat @ https://files.pythonhosted.org/packages/a9/82/0340caa499416c78e5d8f5f05947ae4bc3cba53c9f038ab6e9ed964e22f1/nbformat-5.10.4-py3-none-any.whl#sha256=3b48d6c8fbca4b299bf3982ea7db1af21580e4fec269ad087b9e81588891200b -# pip nbclient @ https://files.pythonhosted.org/packages/26/1a/ed6d1299b1a00c1af4a033fdee565f533926d819e084caf0d2832f6f87c6/nbclient-0.10.1-py3-none-any.whl#sha256=949019b9240d66897e442888cfb618f69ef23dc71c01cb5fced8499c2cfc084d +# pip jupytext @ https://files.pythonhosted.org/packages/f4/02/27191f18564d4f2c0e543643aa94b54567de58f359cd6a3bed33adb723ac/jupytext-1.16.6-py3-none-any.whl#sha256=900132031f73fee15a1c9ebd862e05eb5f51e1ad6ab3a2c6fdd97ce2f9c913b4 +# pip nbclient @ https://files.pythonhosted.org/packages/34/6d/e7fa07f03a4a7b221d94b4d586edb754a9b0dc3c9e2c93353e9fa4e0d117/nbclient-0.10.2-py3-none-any.whl#sha256=4ffee11e788b4a27fabeb7955547e4318a5298f34342a4bfd01f2e1faaeadc3d # pip nbconvert @ https://files.pythonhosted.org/packages/b8/bb/bb5b6a515d1584aa2fd89965b11db6632e4bdc69495a52374bcc36e56cfa/nbconvert-7.16.4-py3-none-any.whl#sha256=05873c620fe520b6322bf8a5ad562692343fe3452abda5765c7a34b7d1aa3eb3 -# pip jupyter-server @ https://files.pythonhosted.org/packages/57/e1/085edea6187a127ca8ea053eb01f4e1792d778b4d192c74d32eb6730fed6/jupyter_server-2.14.2-py3-none-any.whl#sha256=47ff506127c2f7851a17bf4713434208fc490955d0e8632e95014a9a9afbeefd +# pip jupyter-server @ https://files.pythonhosted.org/packages/e2/a2/89eeaf0bb954a123a909859fa507fa86f96eb61b62dc30667b60dbd5fdaf/jupyter_server-2.15.0-py3-none-any.whl#sha256=872d989becf83517012ee669f09604aa4a28097c0bd90b2f424310156c2cdae3 # pip jupyterlab-server @ https://files.pythonhosted.org/packages/54/09/2032e7d15c544a0e3cd831c51d77a8ca57f7555b2e1b2922142eddb02a84/jupyterlab_server-2.27.3-py3-none-any.whl#sha256=e697488f66c3db49df675158a77b3b017520d772c6e1548c7d9bcc5df7944ee4 -# pip jupyterlite-sphinx @ https://files.pythonhosted.org/packages/f6/71/d7fa0b7d802f359539019dfe2ec9e4b0b11b14ce815748b5adc8d28bb283/jupyterlite_sphinx-0.16.5-py3-none-any.whl#sha256=9429bfd0310d18c3cd4273e342a7e67e5a07b6baf21b150c26a54fae1b2a0077 +# pip jupyterlite-sphinx @ https://files.pythonhosted.org/packages/ea/cd/b47668fdb492702e2373429c41eb7fa5b8379fb068901b3ff7328e3c4841/jupyterlite_sphinx-0.17.1-py3-none-any.whl#sha256=1e36fe2300175fe3afa9d4c46514764c98078000f96b2c726bf20b755c4061f2 diff --git a/build_tools/circle/doc_min_dependencies_linux-64_conda.lock b/build_tools/circle/doc_min_dependencies_linux-64_conda.lock index 9927919f62f2d..5b90f555f719f 100644 --- a/build_tools/circle/doc_min_dependencies_linux-64_conda.lock +++ b/build_tools/circle/doc_min_dependencies_linux-64_conda.lock @@ -9,7 +9,6 @@ https://conda.anaconda.org/conda-forge/noarch/font-ttf-inconsolata-3.000-h77eed3 https://conda.anaconda.org/conda-forge/noarch/font-ttf-source-code-pro-2.038-h77eed37_0.tar.bz2#4d59c254e01d9cde7957100457e2d5fb https://conda.anaconda.org/conda-forge/noarch/font-ttf-ubuntu-0.83-h77eed37_3.conda#49023d73832ef61042f6a237cb2687e7 https://conda.anaconda.org/conda-forge/noarch/kernel-headers_linux-64-3.10.0-he073ed8_18.conda#ad8527bf134a90e1c9ed35fa0b64318c -https://conda.anaconda.org/conda-forge/linux-64/mkl-include-2024.2.2-ha957f24_16.conda#42b0d14354b5910a9f41e29289914f6b https://conda.anaconda.org/conda-forge/linux-64/python_abi-3.9-5_cp39.conda#40363a30db350596b5f225d0d5a33328 https://conda.anaconda.org/conda-forge/noarch/tzdata-2024b-hc8b5060_0.conda#8ac3367aafb1cc0a068483c580af8015 https://conda.anaconda.org/conda-forge/noarch/fonts-conda-forge-1-0.tar.bz2#f766549260d6815b0c52253f1fb1bb29 @@ -18,9 +17,8 @@ https://conda.anaconda.org/conda-forge/noarch/libgcc-devel_linux-64-13.3.0-h84ea https://conda.anaconda.org/conda-forge/linux-64/libglvnd-1.7.0-ha4b6fd6_2.conda#434ca7e50e40f4918ab701e3facd59a0 https://conda.anaconda.org/conda-forge/linux-64/libgomp-14.2.0-h77fa898_1.conda#cc3573974587f12dda90d96e3e55a702 https://conda.anaconda.org/conda-forge/noarch/libstdcxx-devel_linux-64-13.3.0-h84ea5a7_101.conda#29b5a4ed4613fa81a07c21045e3f5bf6 -https://conda.anaconda.org/conda-forge/linux-64/llvm-openmp-19.1.5-h024ca30_0.conda#dc90d15c25a57f641f0b84c271e4761e https://conda.anaconda.org/conda-forge/noarch/sysroot_linux-64-2.17-h4a8ded7_18.conda#0ea96f90a10838f58412aa84fdd9df09 -https://conda.anaconda.org/conda-forge/linux-64/_openmp_mutex-4.5-2_kmp_llvm.tar.bz2#562b26ba2e19059551a811e72ab7f793 +https://conda.anaconda.org/conda-forge/linux-64/_openmp_mutex-4.5-2_gnu.tar.bz2#73aaf86a425cc6e73fcf236a5a46396d https://conda.anaconda.org/conda-forge/linux-64/binutils_impl_linux-64-2.43-h4bf12b8_2.conda#cf0c5521ac2a20dfa6c662a4009eeef6 https://conda.anaconda.org/conda-forge/noarch/fonts-conda-ecosystem-1-0.tar.bz2#fee5683a3f04bd15cbd8318b096a27ab https://conda.anaconda.org/conda-forge/linux-64/libegl-1.7.0-ha4b6fd6_2.conda#c151d5eb730e9b7480e6d48c0fc44048 @@ -29,12 +27,14 @@ https://conda.anaconda.org/conda-forge/linux-64/binutils_linux-64-2.43-h4852527_ https://conda.anaconda.org/conda-forge/linux-64/libgcc-14.2.0-h77fa898_1.conda#3cb76c3f10d3bc7f1105b2fc9db984df https://conda.anaconda.org/conda-forge/linux-64/alsa-lib-1.2.13-hb9d3cd8_0.conda#ae1370588aa6a5157c34c73e9bbb36a0 https://conda.anaconda.org/conda-forge/linux-64/libbrotlicommon-1.1.0-hb9d3cd8_2.conda#41b599ed2b02abcfdd84302bff174b23 -https://conda.anaconda.org/conda-forge/linux-64/libdeflate-1.22-hb9d3cd8_0.conda#b422943d5d772b7cc858b36ad2a92db5 +https://conda.anaconda.org/conda-forge/linux-64/libdeflate-1.23-h4ddbbb0_0.conda#8dfae1d2e74767e9ce36d5fa0d8605db https://conda.anaconda.org/conda-forge/linux-64/libexpat-2.6.4-h5888daf_0.conda#db833e03127376d461e1e13e76f09b6c https://conda.anaconda.org/conda-forge/linux-64/libgcc-ng-14.2.0-h69a702a_1.conda#e39480b9ca41323497b05492a63bc35b https://conda.anaconda.org/conda-forge/linux-64/libgfortran5-14.2.0-hd5240d6_1.conda#9822b874ea29af082e5d36098d25427d https://conda.anaconda.org/conda-forge/linux-64/liblzma-5.6.3-hb9d3cd8_1.conda#2ecf2f1c7e4e21fcfe6423a51a992d84 +https://conda.anaconda.org/conda-forge/linux-64/libntlm-1.8-hb9d3cd8_0.conda#7c7927b404672409d9917d49bff5f2d6 https://conda.anaconda.org/conda-forge/linux-64/libstdcxx-14.2.0-hc0a3c3a_1.conda#234a5554c53625688d51062645337328 +https://conda.anaconda.org/conda-forge/linux-64/libwebp-base-1.5.0-h851e524_0.conda#63f790534398730f59e1b899c3644d4a https://conda.anaconda.org/conda-forge/linux-64/libzlib-1.3.1-hb9d3cd8_2.conda#edb0dca6bc32e4f4789199455a1dbeb8 https://conda.anaconda.org/conda-forge/linux-64/openssl-3.4.0-hb9d3cd8_0.conda#23cc74f77eb99315c0360ec3533147a9 https://conda.anaconda.org/conda-forge/linux-64/pthread-stubs-0.4-hb9d3cd8_1002.conda#b3c17d95b5a10c6e64a21fa17573e70e @@ -42,6 +42,7 @@ https://conda.anaconda.org/conda-forge/linux-64/xorg-libice-1.1.2-hb9d3cd8_0.con https://conda.anaconda.org/conda-forge/linux-64/xorg-libxau-1.0.12-hb9d3cd8_0.conda#f6ebe2cb3f82ba6c057dde5d9debe4f7 https://conda.anaconda.org/conda-forge/linux-64/xorg-libxdmcp-1.1.5-hb9d3cd8_0.conda#8035c64cb77ed555e3f150b7b3972480 https://conda.anaconda.org/conda-forge/linux-64/attr-2.5.1-h166bdaf_1.tar.bz2#d9c69a24ad678ffce24c6543a0176b00 +https://conda.anaconda.org/conda-forge/linux-64/blis-0.9.0-h4ab18f5_2.conda#6f77ba1352b69c4a6f8a6d20def30e4e https://conda.anaconda.org/conda-forge/linux-64/bzip2-1.0.8-h4bc722e_7.conda#62ee74e96c5ebb0af99386de58cf9553 https://conda.anaconda.org/conda-forge/linux-64/dav1d-1.2.1-hd590300_0.conda#418c6ca5929a611cbd69204907a83995 https://conda.anaconda.org/conda-forge/linux-64/expat-2.6.4-h5888daf_0.conda#1d6afef758879ef5ee78127eb4cd2c4a @@ -60,7 +61,6 @@ https://conda.anaconda.org/conda-forge/linux-64/libgpg-error-1.51-hbd13f7d_1.con https://conda.anaconda.org/conda-forge/linux-64/libiconv-1.17-hd590300_2.conda#d66573916ffcf376178462f1b61c941e https://conda.anaconda.org/conda-forge/linux-64/libjpeg-turbo-3.0.0-hd590300_1.conda#ea25936bb4080d843790b586850f82b8 https://conda.anaconda.org/conda-forge/linux-64/libnsl-2.0.1-hd590300_0.conda#30fd6e37fe21f86f4bd26d6ee73eeec7 -https://conda.anaconda.org/conda-forge/linux-64/libntlm-1.4-h7f98852_1002.tar.bz2#e728e874159b042d92b90238a3cb0dc2 https://conda.anaconda.org/conda-forge/linux-64/libogg-1.3.5-h4ab18f5_0.conda#601bfb4b3c6f0b844443bb81a56651e0 https://conda.anaconda.org/conda-forge/linux-64/libopus-1.3.1-h7f98852_1.tar.bz2#15345e56d527b330e1cacbdf58676e8f https://conda.anaconda.org/conda-forge/linux-64/libpciaccess-0.18-hd590300_0.conda#48f4330bfcd959c3cfb704d424903c82 @@ -69,7 +69,6 @@ https://conda.anaconda.org/conda-forge/linux-64/libsanitizer-13.3.0-heb74ff8_1.c https://conda.anaconda.org/conda-forge/linux-64/libsqlite-3.47.2-hee588c1_0.conda#b58da17db24b6e08bcbf8fed2fb8c915 https://conda.anaconda.org/conda-forge/linux-64/libstdcxx-ng-14.2.0-h4852527_1.conda#8371ac6457591af2cf6159439c1fd051 https://conda.anaconda.org/conda-forge/linux-64/libuuid-2.38.1-h0b41bf4_0.conda#40b61aab5c7ba9ff276c41cfffe6b80b -https://conda.anaconda.org/conda-forge/linux-64/libwebp-base-1.4.0-hd590300_0.conda#b26e8aa824079e1be0294e7152ca4559 https://conda.anaconda.org/conda-forge/linux-64/libxcb-1.17.0-h8a09558_0.conda#92ed62436b625154323d40d5f2f11dd7 https://conda.anaconda.org/conda-forge/linux-64/libxcrypt-4.4.36-hd590300_1.conda#5aa797f8787fe7a17d1b0821485b5adc https://conda.anaconda.org/conda-forge/linux-64/lz4-c-1.10.0-h5888daf_1.conda#9de5350a85c4a20c685259b889aa6393 @@ -95,6 +94,7 @@ https://conda.anaconda.org/conda-forge/linux-64/icu-75.1-he02047a_0.conda#8b1893 https://conda.anaconda.org/conda-forge/linux-64/lerc-4.0.0-h27087fc_0.tar.bz2#76bbff344f0134279f225174e9064c8f https://conda.anaconda.org/conda-forge/linux-64/libaec-1.1.3-h59595ed_0.conda#5e97e271911b8b2001a8b71860c32faa https://conda.anaconda.org/conda-forge/linux-64/libasprintf-0.22.5-he8f35ee_3.conda#4fab9799da9571266d05ca5503330655 +https://conda.anaconda.org/conda-forge/linux-64/libblas-3.9.0-26_linux64_blis.conda#6c34f4ac0b024d8346d13204dce0281d https://conda.anaconda.org/conda-forge/linux-64/libcap-2.71-h39aace5_0.conda#dd19e4e3043f6948bd7454b946ee0983 https://conda.anaconda.org/conda-forge/linux-64/libdrm-2.4.124-hb9d3cd8_0.conda#8bc89311041d7fcb510238cf0848ccae https://conda.anaconda.org/conda-forge/linux-64/libedit-3.1.20191231-he28a2e2_2.tar.bz2#4d331e44109e3f0e19b4cb8f9b82f3e1 @@ -126,11 +126,13 @@ https://conda.anaconda.org/conda-forge/linux-64/gxx_impl_linux-64-13.3.0-hdbfa83 https://conda.anaconda.org/conda-forge/linux-64/krb5-1.21.3-h659f571_0.conda#3f43953b7d3fb3aaa1d0d0723d91e368 https://conda.anaconda.org/conda-forge/linux-64/libasprintf-devel-0.22.5-he8f35ee_3.conda#1091193789bb830127ed067a9e01ac57 https://conda.anaconda.org/conda-forge/linux-64/libavif16-1.1.1-h1909e37_2.conda#21e468ed3786ebcb2124b123aa2484b7 +https://conda.anaconda.org/conda-forge/linux-64/libcblas-3.9.0-26_linux64_blis.conda#a602fa2ca743dedd49a1fad3382eb244 https://conda.anaconda.org/conda-forge/linux-64/libglib-2.82.2-h2ff4ddf_0.conda#13e8e54035ddd2b91875ba399f0f7c04 https://conda.anaconda.org/conda-forge/linux-64/libglx-1.7.0-ha4b6fd6_2.conda#c8013e438185f33b13814c5c488acd5c https://conda.anaconda.org/conda-forge/linux-64/libjxl-0.11.1-hdb8da77_0.conda#32b23f3487beae7e81495fbc1099ae9e +https://conda.anaconda.org/conda-forge/linux-64/liblapack-3.9.0-8_h3b12eaf_netlib.conda#09c4b501eaefc9041f73b680a7a2e673 https://conda.anaconda.org/conda-forge/linux-64/libsystemd0-256.9-h0b6a36f_2.conda#135bbeb376345b6847c065115be4221a -https://conda.anaconda.org/conda-forge/linux-64/libtiff-4.7.0-hc4654cb_2.conda#be54fb40ea32e8fe9dbaa94d4528b57e +https://conda.anaconda.org/conda-forge/linux-64/libtiff-4.7.0-hd9ff511_3.conda#0ea6510969e1296cc19966fad481f6de https://conda.anaconda.org/conda-forge/linux-64/libxml2-2.13.5-h8d12d68_1.conda#1a21e49e190d1ffe58531a81b6e400e1 https://conda.anaconda.org/conda-forge/linux-64/mysql-libs-9.0.1-he0572af_3.conda#dd9da69dd4c2bf798c0b8bd4786cafb5 https://conda.anaconda.org/conda-forge/linux-64/python-3.9.21-h9c0c6dc_1_cpython.conda#b4807744af026fdbe8c05131758fb4be @@ -145,9 +147,9 @@ https://conda.anaconda.org/conda-forge/linux-64/brotli-python-1.1.0-py39hf88036b https://conda.anaconda.org/conda-forge/linux-64/brunsli-0.1-h9c3ff4c_0.tar.bz2#c1ac6229d0bfd14f8354ff9ad2a26cad https://conda.anaconda.org/conda-forge/linux-64/c-compiler-1.8.0-h2b85faf_1.conda#fa7b3bf2965b9d74a81a0702d9bb49ee https://conda.anaconda.org/conda-forge/linux-64/cairo-1.18.2-h3394656_1.conda#b34c2833a1f56db610aeb27f206d800d -https://conda.anaconda.org/conda-forge/noarch/certifi-2024.8.30-pyhd8ed1ab_0.conda#12f7d00853807b0531775e9be891cb11 +https://conda.anaconda.org/conda-forge/noarch/certifi-2024.12.14-pyhd8ed1ab_0.conda#6feb87357ecd66733be3279f16a8c400 https://conda.anaconda.org/conda-forge/noarch/charset-normalizer-3.4.0-pyhd8ed1ab_1.conda#6581a17bba6b948bb60130026404a9d6 -https://conda.anaconda.org/conda-forge/noarch/click-8.1.7-unix_pyh707e725_1.conda#cb8e52f28f5e592598190c562e7b5bf1 +https://conda.anaconda.org/conda-forge/noarch/click-8.1.8-pyh707e725_0.conda#f22f4d4970e09d68a10b922cbb0408d3 https://conda.anaconda.org/conda-forge/noarch/cloudpickle-3.1.0-pyhd8ed1ab_1.conda#c88ca2bb7099167912e3b26463fff079 https://conda.anaconda.org/conda-forge/noarch/colorama-0.4.6-pyhd8ed1ab_1.conda#962b9857ee8e7018c22f2776ffa0b2d7 https://conda.anaconda.org/conda-forge/noarch/cycler-0.12.1-pyhd8ed1ab_1.conda#44600c4667a319d67dbe0681fc0bc833 @@ -157,7 +159,7 @@ https://conda.anaconda.org/conda-forge/linux-64/dbus-1.13.6-h5008d03_3.tar.bz2#e https://conda.anaconda.org/conda-forge/noarch/docutils-0.21.2-pyhd8ed1ab_1.conda#24c1ca34138ee57de72a943237cde4cc https://conda.anaconda.org/conda-forge/noarch/exceptiongroup-1.2.2-pyhd8ed1ab_1.conda#a16662747cdeb9abbac74d0057cc976e https://conda.anaconda.org/conda-forge/noarch/execnet-2.1.1-pyhd8ed1ab_1.conda#a71efeae2c160f6789900ba2631a2c90 -https://conda.anaconda.org/conda-forge/noarch/fsspec-2024.10.0-pyhd8ed1ab_1.conda#906fe13095e734cb413b57a49116cdc8 +https://conda.anaconda.org/conda-forge/noarch/fsspec-2024.12.0-pyhd8ed1ab_0.conda#e041ad4c43ab5e10c74587f95378ebc7 https://conda.anaconda.org/conda-forge/linux-64/gettext-0.22.5-he02047a_3.conda#c7f243bbaea97cd6ea1edd693270100e https://conda.anaconda.org/conda-forge/linux-64/gfortran-13.3.0-h9576a4e_1.conda#5e5e3b592d5174eb49607a973c77825b https://conda.anaconda.org/conda-forge/linux-64/gfortran_linux-64-13.3.0-hb919d3a_7.conda#0b8e7413559c4c892a37c35de4559969 @@ -173,12 +175,13 @@ https://conda.anaconda.org/conda-forge/linux-64/kiwisolver-1.4.7-py39h74842e3_0. https://conda.anaconda.org/conda-forge/linux-64/lcms2-2.16-hb7c19ff_0.conda#51bb7010fc86f70eee639b4bb7a894f5 https://conda.anaconda.org/conda-forge/linux-64/libcups-2.3.3-h4637d8d_4.conda#d4529f4dff3057982a7617c7ac58fde3 https://conda.anaconda.org/conda-forge/linux-64/libgl-1.7.0-ha4b6fd6_2.conda#928b8be80851f5d8ffb016f9c81dae7a -https://conda.anaconda.org/conda-forge/linux-64/libhwloc-2.11.2-default_h0d58e46_1001.conda#804ca9e91bcaea0824a341d55b1684f2 -https://conda.anaconda.org/conda-forge/linux-64/libllvm19-19.1.5-ha7bfdaf_0.conda#76f3749eda7b24816aacd55b9f31447a +https://conda.anaconda.org/conda-forge/linux-64/liblapacke-3.9.0-8_h3b12eaf_netlib.conda#4785c8d7af13c1d601b1a427e5f18ea9 +https://conda.anaconda.org/conda-forge/linux-64/libllvm19-19.1.6-ha7bfdaf_0.conda#ec6abc65eefc96cba8443b2716dcc43b https://conda.anaconda.org/conda-forge/linux-64/libxkbcommon-1.7.0-h2c5496b_1.conda#e2eaefa4de2b7237af7c907b8bbc760a https://conda.anaconda.org/conda-forge/noarch/locket-1.0.0-pyhd8ed1ab_0.tar.bz2#91e27ef3d05cc772ce627e51cff111c4 https://conda.anaconda.org/conda-forge/linux-64/markupsafe-3.0.2-py39h9399b63_1.conda#7821f0938aa629b9f17efd98c300a487 https://conda.anaconda.org/conda-forge/noarch/networkx-3.2-pyhd8ed1ab_0.conda#cec8cc498664cc00a070676aa89e69a7 +https://conda.anaconda.org/conda-forge/linux-64/numpy-1.19.5-py39hd249d9e_3.tar.bz2#0cf333996ebdeeba8d1c8c1c0ee9eff9 https://conda.anaconda.org/conda-forge/linux-64/openjpeg-2.5.3-h5fbd93e_0.conda#9e5816bc95d285c115a3ebc2f8563564 https://conda.anaconda.org/conda-forge/noarch/packaging-24.2-pyhd8ed1ab_2.conda#3bfed7e6228ebf2f7b9eaa47f1b4e2aa https://conda.anaconda.org/conda-forge/noarch/pluggy-1.5.0-pyhd8ed1ab_1.conda#e9dcbce5f45f9ee500e728ae58b605b6 @@ -209,6 +212,7 @@ https://conda.anaconda.org/conda-forge/noarch/zipp-3.21.0-pyhd8ed1ab_1.conda#0c3 https://conda.anaconda.org/conda-forge/noarch/accessible-pygments-0.0.5-pyhd8ed1ab_0.conda#1bb1ef9806a9a20872434f58b3e7fc1a https://conda.anaconda.org/conda-forge/noarch/babel-2.16.0-pyhd8ed1ab_1.conda#3e23f7db93ec14c80525257d8affac28 https://conda.anaconda.org/conda-forge/noarch/beautifulsoup4-4.12.3-pyha770c72_1.conda#d48f7e9fdec44baf6d1da416fe402b04 +https://conda.anaconda.org/conda-forge/linux-64/blas-devel-3.9.0-26_linux64_blis.conda#0498c83a4942dcb342d5416c2ff1048c https://conda.anaconda.org/conda-forge/linux-64/cffi-1.17.1-py39h15c3d72_0.conda#7e61b8777f42e00b08ff059f9e8ebc44 https://conda.anaconda.org/conda-forge/linux-64/cxx-compiler-1.8.0-h1a2810e_1.conda#3bb4907086d7187bf01c8bec397ffa5e https://conda.anaconda.org/conda-forge/linux-64/cytoolz-1.0.1-py39h8cd3c5a_0.conda#6a86bebd04e7ecd773208e774aa3a58d @@ -216,71 +220,62 @@ https://conda.anaconda.org/conda-forge/linux-64/fortran-compiler-1.8.0-h36df796_ https://conda.anaconda.org/conda-forge/linux-64/glib-2.82.2-h44428e9_0.conda#f19f985ab043e8843045410f3b99de8a https://conda.anaconda.org/conda-forge/noarch/h2-4.1.0-pyhd8ed1ab_1.conda#825927dc7b0f287ef8d4d0011bb113b1 https://conda.anaconda.org/conda-forge/linux-64/harfbuzz-10.1.0-h0b3b770_0.conda#ab1d7d56034814f4c3ed9f69f8c68806 +https://conda.anaconda.org/conda-forge/linux-64/imagecodecs-2024.9.22-py39hac51188_2.conda#87d7ce1f90bf94f40584db14777f8765 https://conda.anaconda.org/conda-forge/noarch/importlib-metadata-8.5.0-pyha770c72_1.conda#315607a3030ad5d5227e76e0733798ff https://conda.anaconda.org/conda-forge/noarch/importlib_resources-6.4.5-pyhd8ed1ab_1.conda#15798fa69312d433af690c8c42b3fb36 -https://conda.anaconda.org/conda-forge/noarch/jinja2-3.1.4-pyhd8ed1ab_1.conda#08cce3151bde4ecad7885bd9fb647532 +https://conda.anaconda.org/conda-forge/noarch/jinja2-3.1.5-pyhd8ed1ab_0.conda#2752a6ed44105bfb18c9bef1177d9dcd https://conda.anaconda.org/conda-forge/noarch/joblib-1.4.2-pyhd8ed1ab_1.conda#bf8243ee348f3a10a14ed0cae323e0c1 -https://conda.anaconda.org/conda-forge/linux-64/libclang-cpp19.1-19.1.5-default_hb5137d0_0.conda#ec8649c89988d8a443c252c20f259b72 -https://conda.anaconda.org/conda-forge/linux-64/libclang13-19.1.5-default_h9c6a7e4_0.conda#a3a5997b6b47373f0c1608d8503eb4e6 +https://conda.anaconda.org/conda-forge/linux-64/libclang-cpp19.1-19.1.6-default_hb5137d0_0.conda#9caebd39281536bf6bcb32f665dd4fbf +https://conda.anaconda.org/conda-forge/linux-64/libclang13-19.1.6-default_h9c6a7e4_0.conda#e1d2936c320083f1c520c3a17372521c https://conda.anaconda.org/conda-forge/linux-64/libflac-1.4.3-h59595ed_0.conda#ee48bf17cc83a00f59ca1494d5646869 https://conda.anaconda.org/conda-forge/noarch/memory_profiler-0.61.0-pyhd8ed1ab_0.tar.bz2#8b45f9f2b2f7a98b0ec179c8991a4a9b -https://conda.anaconda.org/conda-forge/noarch/meson-1.6.0-pyhd8ed1ab_1.conda#59d45dbe1b0a123966266340b579d366 +https://conda.anaconda.org/conda-forge/noarch/meson-1.6.1-pyhd8ed1ab_0.conda#0062fb0a7f5da474705d0ce626de12f4 https://conda.anaconda.org/conda-forge/linux-64/openldap-2.6.9-he970967_0.conda#ca2de8bbdc871bce41dbf59e51324165 https://conda.anaconda.org/conda-forge/noarch/partd-1.4.2-pyhd8ed1ab_0.conda#0badf9c54e24cecfb0ad2f99d680c163 +https://conda.anaconda.org/conda-forge/noarch/patsy-1.0.1-pyhd8ed1ab_1.conda#ee23fabfd0a8c6b8d6f3729b47b2859d https://conda.anaconda.org/conda-forge/linux-64/pillow-11.0.0-py39h538c539_0.conda#a2bafdf8ae51c9eb6e5be684cfcedd60 -https://conda.anaconda.org/conda-forge/noarch/pip-24.3.1-pyh8b19718_0.conda#5dd546fe99b44fda83963d15f84263b7 +https://conda.anaconda.org/conda-forge/noarch/pip-24.3.1-pyh8b19718_2.conda#04e691b9fadd93a8a9fad87a81d4fd8f https://conda.anaconda.org/conda-forge/noarch/plotly-5.14.0-pyhd8ed1ab_0.conda#6a7bcc42ef58dd6cf3da9333ea102433 +https://conda.anaconda.org/conda-forge/linux-64/polars-0.20.30-py39ha963410_0.conda#322084e8890afc27fcca6df7a528df25 https://conda.anaconda.org/conda-forge/noarch/pyproject-metadata-0.9.0-pyhd8ed1ab_1.conda#1239146a53a383a84633800294120f17 https://conda.anaconda.org/conda-forge/noarch/pytest-8.3.4-pyhd8ed1ab_1.conda#799ed216dc6af62520f32aa39bc1c2bb https://conda.anaconda.org/conda-forge/noarch/python-dateutil-2.9.0.post0-pyhff2d567_1.conda#5ba79d7c71f03c678c8ead841f347d6e +https://conda.anaconda.org/conda-forge/linux-64/pywavelets-1.6.0-py39hd92a3bb_0.conda#32e26e16f60c568b17a82e3033a4d309 +https://conda.anaconda.org/conda-forge/linux-64/scipy-1.6.0-py39hee8e79c_0.tar.bz2#3afcb78281836e61351a2924f3230060 https://conda.anaconda.org/conda-forge/linux-64/sip-6.7.12-py39h3d6467e_0.conda#e667a3ab0df62c54e60e1843d2e6defb -https://conda.anaconda.org/conda-forge/linux-64/tbb-2021.13.0-hceb3a55_1.conda#ba7726b8df7b9d34ea80e82b097a4893 +https://conda.anaconda.org/conda-forge/linux-64/blas-2.126-blis.conda#166a502cf42652611beef4b9dc50fe27 https://conda.anaconda.org/conda-forge/linux-64/compilers-1.8.0-ha770c72_1.conda#061e111d02f33a99548f0de07169d9fb https://conda.anaconda.org/conda-forge/linux-64/gstreamer-1.24.7-hf3bb09a_0.conda#c78bc4ef0afb3cd2365d9973c71fc876 +https://conda.anaconda.org/conda-forge/noarch/imageio-2.36.1-pyh12aca89_1.conda#84d5a2f075c861a8f98afd2842f7eb6e https://conda.anaconda.org/conda-forge/noarch/importlib-resources-6.4.5-pyhd8ed1ab_1.conda#59561d9b70f9df3b884c29910eba6593 https://conda.anaconda.org/conda-forge/noarch/importlib_metadata-8.5.0-hd8ed1ab_1.conda#c70dd0718dbccdcc6d5828de3e71399d https://conda.anaconda.org/conda-forge/linux-64/libpq-17.2-h3b95a9b_1.conda#37724d8bae042345a19ca1a25dde786b https://conda.anaconda.org/conda-forge/linux-64/libsndfile-1.2.2-hc60ed4a_1.conda#ef1910918dd895516a769ed36b5b3a4e +https://conda.anaconda.org/conda-forge/linux-64/matplotlib-base-3.3.4-py39h2fa2bec_0.tar.bz2#9ec0b2186fab9121c54f4844f93ee5b7 https://conda.anaconda.org/conda-forge/noarch/meson-python-0.17.1-pyh70fd9c4_1.conda#7a02679229c6c2092571b4c025055440 -https://conda.anaconda.org/conda-forge/linux-64/mkl-2024.2.2-ha957f24_16.conda#1459379c79dda834673426504d52b319 +https://conda.anaconda.org/conda-forge/linux-64/pandas-1.1.5-py39hde0f152_0.tar.bz2#79fc4b5b3a865b90dd3701cecf1ad33c +https://conda.anaconda.org/conda-forge/linux-64/pyamg-4.2.3-py39hac2352c_1.tar.bz2#6fb0628d6195d8b6caa2422d09296399 https://conda.anaconda.org/conda-forge/linux-64/pyqt5-sip-12.12.2-py39h3d6467e_5.conda#93aff412f3e49fdb43361c0215cbd72d https://conda.anaconda.org/conda-forge/noarch/pytest-xdist-3.6.1-pyhd8ed1ab_1.conda#59aad4fb37cabc0bacc73cf344612ddd +https://conda.anaconda.org/conda-forge/noarch/tifffile-2024.6.18-pyhd8ed1ab_0.conda#7c3077529bfe3b86f9425d526d73bd24 https://conda.anaconda.org/conda-forge/linux-64/zstandard-0.23.0-py39h08a7858_1.conda#cd9fa334e11886738f17254f52210bc3 https://conda.anaconda.org/conda-forge/noarch/dask-core-2024.8.0-pyhd8ed1ab_0.conda#bf68bf9ff9a18f1b17aa8c817225aee0 https://conda.anaconda.org/conda-forge/linux-64/gst-plugins-base-1.24.7-h0a52356_0.conda#d368425fbd031a2f8e801a40c3415c72 -https://conda.anaconda.org/conda-forge/linux-64/libblas-3.9.0-25_linux64_mkl.conda#b77ebfb548eae4d91639e2ca003662c8 -https://conda.anaconda.org/conda-forge/linux-64/mkl-devel-2024.2.2-ha770c72_16.conda#140891ea14285fc634353b31e9e40a95 https://conda.anaconda.org/conda-forge/linux-64/pulseaudio-client-17.0-hb77b528_0.conda#07f45f1be1c25345faddb8db0de8039b +https://conda.anaconda.org/conda-forge/noarch/seaborn-base-0.12.2-pyhd8ed1ab_0.conda#cf88f3a1c11536bc3c10c14ad00ccc42 +https://conda.anaconda.org/conda-forge/linux-64/statsmodels-0.13.2-py39hd257fcd_0.tar.bz2#bd7cdadf70e34a19333c3aacc40206e8 https://conda.anaconda.org/conda-forge/noarch/towncrier-24.8.0-pyhd8ed1ab_0.conda#02190423152df62fda1cde3d9527b882 -https://conda.anaconda.org/conda-forge/noarch/urllib3-2.2.3-pyhd8ed1ab_1.conda#4a2d8ef7c37b8808c5b9b750501fffce -https://conda.anaconda.org/conda-forge/linux-64/libcblas-3.9.0-25_linux64_mkl.conda#e48aeb4ab1a293f621fe995959f1d32f -https://conda.anaconda.org/conda-forge/linux-64/liblapack-3.9.0-25_linux64_mkl.conda#d5afbe3777c594434e4de6481254e99c +https://conda.anaconda.org/conda-forge/noarch/urllib3-2.3.0-pyhd8ed1ab_0.conda#32674f8dbfb7b26410ed580dd3c10a29 https://conda.anaconda.org/conda-forge/linux-64/qt-main-5.15.15-hc3cb62f_2.conda#eadc22e45a87c8d5c71670d9ec956aba https://conda.anaconda.org/conda-forge/noarch/requests-2.32.3-pyhd8ed1ab_1.conda#a9b9368f3701a417eac9edbcae7cb737 -https://conda.anaconda.org/conda-forge/linux-64/liblapacke-3.9.0-25_linux64_mkl.conda#cbddb4169d3d24b13b308403b45f401e -https://conda.anaconda.org/conda-forge/linux-64/numpy-1.19.5-py39hd249d9e_3.tar.bz2#0cf333996ebdeeba8d1c8c1c0ee9eff9 +https://conda.anaconda.org/conda-forge/linux-64/scikit-image-0.17.2-py39hde0f152_4.tar.bz2#2a58a7e382317b03f023b2fddf40f8a1 +https://conda.anaconda.org/conda-forge/noarch/seaborn-0.12.2-hd8ed1ab_0.conda#50847a47c07812f88581081c620f5160 https://conda.anaconda.org/conda-forge/noarch/pooch-1.6.0-pyhd8ed1ab_0.tar.bz2#6429e1d1091c51f626b5dcfdd38bf429 https://conda.anaconda.org/conda-forge/linux-64/pyqt-5.15.9-py39h52134e7_5.conda#e1f148e57d071b09187719df86f513c1 -https://conda.anaconda.org/conda-forge/linux-64/blas-devel-3.9.0-25_linux64_mkl.conda#cb60caae3cb30988431d7107691bd587 -https://conda.anaconda.org/conda-forge/linux-64/imagecodecs-2024.9.22-py39h966145a_1.conda#56479bfb4818d058f104339e547efe70 -https://conda.anaconda.org/conda-forge/noarch/imageio-2.36.1-pyh12aca89_1.conda#84d5a2f075c861a8f98afd2842f7eb6e -https://conda.anaconda.org/conda-forge/linux-64/matplotlib-base-3.3.4-py39h2fa2bec_0.tar.bz2#9ec0b2186fab9121c54f4844f93ee5b7 -https://conda.anaconda.org/conda-forge/linux-64/pandas-1.1.5-py39hde0f152_0.tar.bz2#79fc4b5b3a865b90dd3701cecf1ad33c -https://conda.anaconda.org/conda-forge/noarch/patsy-1.0.1-pyhd8ed1ab_1.conda#ee23fabfd0a8c6b8d6f3729b47b2859d -https://conda.anaconda.org/conda-forge/linux-64/polars-0.20.30-py39ha963410_0.conda#322084e8890afc27fcca6df7a528df25 -https://conda.anaconda.org/conda-forge/linux-64/pywavelets-1.6.0-py39hd92a3bb_0.conda#32e26e16f60c568b17a82e3033a4d309 -https://conda.anaconda.org/conda-forge/linux-64/scipy-1.6.0-py39hee8e79c_0.tar.bz2#3afcb78281836e61351a2924f3230060 -https://conda.anaconda.org/conda-forge/linux-64/blas-2.125-mkl.conda#8a0ffaaae2bccf691cffdde83cb0f1a5 https://conda.anaconda.org/conda-forge/linux-64/matplotlib-3.3.4-py39hf3d152e_0.tar.bz2#cbaec993375a908bbe506dc7328d747c -https://conda.anaconda.org/conda-forge/linux-64/pyamg-4.2.3-py39hac2352c_1.tar.bz2#6fb0628d6195d8b6caa2422d09296399 -https://conda.anaconda.org/conda-forge/noarch/seaborn-base-0.12.2-pyhd8ed1ab_0.conda#cf88f3a1c11536bc3c10c14ad00ccc42 -https://conda.anaconda.org/conda-forge/linux-64/statsmodels-0.13.2-py39hd257fcd_0.tar.bz2#bd7cdadf70e34a19333c3aacc40206e8 -https://conda.anaconda.org/conda-forge/noarch/tifffile-2024.6.18-pyhd8ed1ab_0.conda#7c3077529bfe3b86f9425d526d73bd24 -https://conda.anaconda.org/conda-forge/linux-64/scikit-image-0.17.2-py39hde0f152_4.tar.bz2#2a58a7e382317b03f023b2fddf40f8a1 -https://conda.anaconda.org/conda-forge/noarch/seaborn-0.12.2-hd8ed1ab_0.conda#50847a47c07812f88581081c620f5160 https://conda.anaconda.org/conda-forge/noarch/numpydoc-1.2-pyhd8ed1ab_0.tar.bz2#025ad7ca2c7f65007ab6b6f5d93a56eb https://conda.anaconda.org/conda-forge/noarch/pydata-sphinx-theme-0.15.3-pyhd8ed1ab_0.conda#55e445f4fcb07f2471fb0e1102d36488 -https://conda.anaconda.org/conda-forge/noarch/sphinx-copybutton-0.5.2-pyhd8ed1ab_0.conda#ac832cc43adc79118cf6e23f1f9b8995 +https://conda.anaconda.org/conda-forge/noarch/sphinx-copybutton-0.5.2-pyhd8ed1ab_1.conda#bf22cb9c439572760316ce0748af3713 https://conda.anaconda.org/conda-forge/noarch/sphinx-design-0.6.0-pyhd8ed1ab_0.conda#b04f3c04e4f7939c6207dc0c0355f468 https://conda.anaconda.org/conda-forge/noarch/sphinx-gallery-0.17.1-pyhd8ed1ab_0.conda#0adfccc6e7269a29a63c1c8ee3c6d8ba https://conda.anaconda.org/conda-forge/noarch/sphinx-prompt-1.4.0-pyhd8ed1ab_0.tar.bz2#88ee91e8679603f2a5bd036d52919cc2 From ea981856fc7caf39131986a477bf63c57998b812 Mon Sep 17 00:00:00 2001 From: Aniruddha Saha Date: Fri, 27 Dec 2024 20:03:21 -0500 Subject: [PATCH 119/159] DOC Fix typos in Developing scikit-learn estimators page (#30547) --- doc/developers/develop.rst | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/doc/developers/develop.rst b/doc/developers/develop.rst index 3b8a455c75228..7db68f2d40624 100644 --- a/doc/developers/develop.rst +++ b/doc/developers/develop.rst @@ -227,7 +227,7 @@ users as public attributes and have been estimated or learned from the data must have a name ending with trailing underscore, for example the coefficients of some regression estimator would be stored in a ``coef_`` attribute after ``fit`` has been called. Similarly, attributes that you learn in the process and you'd like to store yet -not expose to the user, should have a leading underscure, e.g. ``_intermediate_coefs``. +not expose to the user, should have a leading underscore, e.g. ``_intermediate_coefs``. You'd need to document the first group (with a trailing underscore) as "Attributes" and no need to document the second group (with a leading underscore). @@ -355,7 +355,7 @@ All scikit-learn estimators have ``get_params`` and ``set_params`` functions. The ``get_params`` function takes no arguments and returns a dict of the ``__init__`` parameters of the estimator, together with their values. -It take one keyword argument, ``deep``, which receives a boolean value that determines +It takes one keyword argument, ``deep``, which receives a boolean value that determines whether the method should return the parameters of sub-estimators (only relevant for meta-estimators). The default value for ``deep`` is ``True``. For instance considering the following estimator:: From 1f831403fe47c7687c4599361f1c6d075f4d757b Mon Sep 17 00:00:00 2001 From: ArthurDbrn <145210018+ArthurDbrn@users.noreply.github.com> Date: Sat, 28 Dec 2024 02:04:48 +0100 Subject: [PATCH 120/159] DOC minor fix in Glossary: wrong reference in See-also for components_ (#30550) --- doc/glossary.rst | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/doc/glossary.rst b/doc/glossary.rst index a5feb72a268f4..4319cb38878cb 100644 --- a/doc/glossary.rst +++ b/doc/glossary.rst @@ -1793,7 +1793,7 @@ See concept :term:`attribute`. the number of output features and :term:`n_features` is the number of input features. - See also :term:`components_` which is a similar attribute for linear + See also :term:`coef_` which is a similar attribute for linear predictors. ``coef_`` From 8746404d7e0efae14ca25604ddb1db13d454b9d1 Mon Sep 17 00:00:00 2001 From: Guillaume Lemaitre Date: Sun, 29 Dec 2024 18:26:32 +0100 Subject: [PATCH 121/159] DOC add Virgil Chan to the contributor experience team (#30555) --- doc/contributor_experience_team.rst | 4 ++++ 1 file changed, 4 insertions(+) diff --git a/doc/contributor_experience_team.rst b/doc/contributor_experience_team.rst index c2bd739ed584d..73ccd668b20cd 100644 --- a/doc/contributor_experience_team.rst +++ b/doc/contributor_experience_team.rst @@ -6,6 +6,10 @@ img.avatar {border-radius: 10px;}
+
+

Virgil Chan

+
+

Juan Carlos Alfaro Jiménez

From 3113e8bd9bae52997276411e07967a23db4bf549 Mon Sep 17 00:00:00 2001 From: Virgil Chan Date: Sun, 29 Dec 2024 20:42:42 -0800 Subject: [PATCH 122/159] DOC mention setting `SCIPY_ARRAY_API=1` in Array API support document (#30513) --- doc/modules/array_api.rst | 19 ++++++++++++++++++- 1 file changed, 18 insertions(+), 1 deletion(-) diff --git a/doc/modules/array_api.rst b/doc/modules/array_api.rst index 2fb57a64118f7..6ee4c12b7fbfc 100644 --- a/doc/modules/array_api.rst +++ b/doc/modules/array_api.rst @@ -9,7 +9,18 @@ Array API support (experimental) The `Array API `_ specification defines a standard API for all array manipulation libraries with a NumPy-like API. Scikit-learn's Array API support requires -`array-api-compat `__ to be installed. +`array-api-compat `__ to be installed, +and the environment variable `SCIPY_ARRAY_API` must be set to `1` before importing +`scipy` and `scikit-learn`: + +.. prompt:: bash $ + + export SCIPY_ARRAY_API=1 + +Please note that this environment variable is intended for temporary use. +For more details, refer to SciPy's `Array API documentation +`_. + Some scikit-learn estimators that primarily rely on NumPy (as opposed to using Cython) to implement the algorithmic logic of their `fit`, `predict` or @@ -24,6 +35,12 @@ explicitly as explained in the following. Currently, only `array-api-strict`, `cupy`, and `PyTorch` are known to work with scikit-learn's estimators. +The following video provides an overview of the standard's design principles +and how it facilitates interoperability between array libraries: + +- `Scikit-learn on GPUs with Array API `_ + by :user:`Thomas Fan ` at PyData NYC 2023. + Example usage ============= From 46818419a2e60f8a0be01394fd3f05133d9703d3 Mon Sep 17 00:00:00 2001 From: scikit-learn-bot Date: Mon, 30 Dec 2024 10:04:23 +0100 Subject: [PATCH 123/159] :lock: :robot: CI Update lock files for cirrus-arm CI build(s) :lock: :robot: (#30558) Co-authored-by: Lock file bot --- build_tools/cirrus/pymin_conda_forge_linux-aarch64_conda.lock | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/build_tools/cirrus/pymin_conda_forge_linux-aarch64_conda.lock b/build_tools/cirrus/pymin_conda_forge_linux-aarch64_conda.lock index dc990948c8650..8ff68226b10ae 100644 --- a/build_tools/cirrus/pymin_conda_forge_linux-aarch64_conda.lock +++ b/build_tools/cirrus/pymin_conda_forge_linux-aarch64_conda.lock @@ -134,7 +134,7 @@ https://conda.anaconda.org/conda-forge/linux-aarch64/xorg-libxi-1.8.2-h57736b2_0 https://conda.anaconda.org/conda-forge/linux-aarch64/xorg-libxrandr-1.5.4-h86ecc28_0.conda#dd3e74283a082381aa3860312e3c721e https://conda.anaconda.org/conda-forge/linux-aarch64/xorg-libxxf86vm-1.1.6-h86ecc28_0.conda#d745faa2d7c15092652e40a22bb261ed https://conda.anaconda.org/conda-forge/noarch/zipp-3.21.0-pyhd8ed1ab_1.conda#0c3cc595284c5e8f0f9900a9b228a332 -https://conda.anaconda.org/conda-forge/linux-aarch64/fonttools-4.55.3-py39hbebea31_0.conda#c885be0a33c5c0c56e345db57815c8d2 +https://conda.anaconda.org/conda-forge/linux-aarch64/fonttools-4.55.3-py39hbebea31_1.conda#8f6cca97167821f34fc339f18f0acea8 https://conda.anaconda.org/conda-forge/linux-aarch64/harfbuzz-9.0.0-hbf49d6b_1.conda#ceb458f664cab8550fcd74fff26451db https://conda.anaconda.org/conda-forge/noarch/importlib_resources-6.4.5-pyhd8ed1ab_1.conda#15798fa69312d433af690c8c42b3fb36 https://conda.anaconda.org/conda-forge/noarch/joblib-1.4.2-pyhd8ed1ab_1.conda#bf8243ee348f3a10a14ed0cae323e0c1 From e4e249e1de3f5f170a47beb77d8b4751c79100f1 Mon Sep 17 00:00:00 2001 From: scikit-learn-bot Date: Mon, 30 Dec 2024 10:04:56 +0100 Subject: [PATCH 124/159] :lock: :robot: CI Update lock files for scipy-dev CI build(s) :lock: :robot: (#30559) Co-authored-by: Lock file bot --- build_tools/azure/pylatest_pip_scipy_dev_linux-64_conda.lock | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/build_tools/azure/pylatest_pip_scipy_dev_linux-64_conda.lock b/build_tools/azure/pylatest_pip_scipy_dev_linux-64_conda.lock index f2f5c4773953a..685a757b6ece0 100644 --- a/build_tools/azure/pylatest_pip_scipy_dev_linux-64_conda.lock +++ b/build_tools/azure/pylatest_pip_scipy_dev_linux-64_conda.lock @@ -31,8 +31,8 @@ https://repo.anaconda.com/pkgs/main/linux-64/pip-24.2-py313h06a4308_0.conda#59f8 # pip alabaster @ https://files.pythonhosted.org/packages/7e/b3/6b4067be973ae96ba0d615946e314c5ae35f9f993eca561b356540bb0c2b/alabaster-1.0.0-py3-none-any.whl#sha256=fc6786402dc3fcb2de3cabd5fe455a2db534b371124f1f21de8731783dec828b # pip babel @ https://files.pythonhosted.org/packages/ed/20/bc79bc575ba2e2a7f70e8a1155618bb1301eaa5132a8271373a6903f73f8/babel-2.16.0-py3-none-any.whl#sha256=368b5b98b37c06b7daf6696391c3240c938b37767d4584413e8438c5c435fa8b # pip certifi @ https://files.pythonhosted.org/packages/a5/32/8f6669fc4798494966bf446c8c4a162e0b5d893dff088afddf76414f70e1/certifi-2024.12.14-py3-none-any.whl#sha256=1275f7a45be9464efc1173084eaa30f866fe2e47d389406136d332ed4967ec56 -# pip charset-normalizer @ https://files.pythonhosted.org/packages/2b/c9/1c8fe3ce05d30c87eff498592c89015b19fade13df42850aafae09e94f35/charset_normalizer-3.4.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl#sha256=4796efc4faf6b53a18e3d46343535caed491776a22af773f366534056c4e1fbc -# pip coverage @ https://files.pythonhosted.org/packages/9f/79/6c7a800913a9dd23ac8c8da133ebb556771a5a3d4df36b46767b1baffd35/coverage-7.6.9-cp313-cp313-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl#sha256=3c026eb44f744acaa2bda7493dad903aa5bf5fc4f2554293a798d5606710055d +# pip charset-normalizer @ https://files.pythonhosted.org/packages/52/ed/b7f4f07de100bdb95c1756d3a4d17b90c1a3c53715c1a476f8738058e0fa/charset_normalizer-3.4.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl#sha256=955f8851919303c92343d2f66165294848d57e9bba6cf6e3625485a70a038d11 +# pip coverage @ https://files.pythonhosted.org/packages/9a/0b/7797d4193f5adb4b837207ed87fecf5fc38f7cc612b369a8e8e12d9fa114/coverage-7.6.10-cp313-cp313-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl#sha256=26bcf5c4df41cad1b19c84af71c22cbc9ea9a547fc973f1f2cc9a290002c8b3c # pip docutils @ https://files.pythonhosted.org/packages/8f/d7/9322c609343d929e75e7e5e6255e614fcc67572cfd083959cdef3b7aad79/docutils-0.21.2-py3-none-any.whl#sha256=dafca5b9e384f0e419294eb4d2ff9fa826435bf15f15b7bd45723e8ad76811b2 # pip execnet @ https://files.pythonhosted.org/packages/43/09/2aea36ff60d16dd8879bdb2f5b3ee0ba8d08cbbdcdfe870e695ce3784385/execnet-2.1.1-py3-none-any.whl#sha256=26dee51f1b80cebd6d0ca8e74dd8745419761d3bef34163928cbebbdc4749fdc # pip idna @ https://files.pythonhosted.org/packages/76/c6/c88e154df9c4e1a2a66ccf0005a88dfb2650c1dffb6f5ce603dfbd452ce3/idna-3.10-py3-none-any.whl#sha256=946d195a0d259cbba61165e88e65941f16e9b36ea6ddb97f00452bae8b1287d3 From 8ee515b627aae362ab5451311f802d7c74d57136 Mon Sep 17 00:00:00 2001 From: scikit-learn-bot Date: Mon, 30 Dec 2024 10:06:51 +0100 Subject: [PATCH 125/159] :lock: :robot: CI Update lock files for main CI build(s) :lock: :robot: (#30561) Co-authored-by: Lock file bot --- build_tools/azure/debian_32bit_lock.txt | 2 +- .../pylatest_conda_forge_mkl_linux-64_conda.lock | 8 ++++---- .../pylatest_conda_forge_mkl_osx-64_conda.lock | 4 ++-- ...atest_pip_openblas_pandas_linux-64_conda.lock | 8 ++++---- .../pymin_conda_forge_mkl_win-64_conda.lock | 4 ++-- ...openblas_min_dependencies_linux-64_conda.lock | 2 +- ...orge_openblas_ubuntu_2204_linux-64_conda.lock | 2 +- build_tools/circle/doc_linux-64_conda.lock | 16 ++++++++-------- .../doc_min_dependencies_linux-64_conda.lock | 12 ++++++------ 9 files changed, 29 insertions(+), 29 deletions(-) diff --git a/build_tools/azure/debian_32bit_lock.txt b/build_tools/azure/debian_32bit_lock.txt index dbd218846d571..35fe32712c20c 100644 --- a/build_tools/azure/debian_32bit_lock.txt +++ b/build_tools/azure/debian_32bit_lock.txt @@ -4,7 +4,7 @@ # # pip-compile --output-file=build_tools/azure/debian_32bit_lock.txt build_tools/azure/debian_32bit_requirements.txt # -coverage[toml]==7.6.9 +coverage[toml]==7.6.10 # via pytest-cov cython==3.0.11 # via -r build_tools/azure/debian_32bit_requirements.txt diff --git a/build_tools/azure/pylatest_conda_forge_mkl_linux-64_conda.lock b/build_tools/azure/pylatest_conda_forge_mkl_linux-64_conda.lock index f2ff7c56fa71c..74f1756167af4 100644 --- a/build_tools/azure/pylatest_conda_forge_mkl_linux-64_conda.lock +++ b/build_tools/azure/pylatest_conda_forge_mkl_linux-64_conda.lock @@ -48,7 +48,7 @@ https://conda.anaconda.org/conda-forge/linux-64/bzip2-1.0.8-h4bc722e_7.conda#62e https://conda.anaconda.org/conda-forge/linux-64/expat-2.6.4-h5888daf_0.conda#1d6afef758879ef5ee78127eb4cd2c4a https://conda.anaconda.org/conda-forge/linux-64/gflags-2.2.2-h5888daf_1005.conda#d411fc29e338efb48c5fd4576d71d881 https://conda.anaconda.org/conda-forge/linux-64/keyutils-1.6.1-h166bdaf_0.tar.bz2#30186d27e2c9fa62b45fb1476b7200e3 -https://conda.anaconda.org/conda-forge/linux-64/libabseil-20240722.0-cxx17_h5888daf_1.conda#e1f604644fe8d78e22660e2fec6756bc +https://conda.anaconda.org/conda-forge/linux-64/libabseil-20240722.0-cxx17_hbbce691_2.conda#48099a5f37e331f5570abbf22b229961 https://conda.anaconda.org/conda-forge/linux-64/libbrotlidec-1.1.0-hb9d3cd8_2.conda#9566f0bd264fbd463002e759b8a82401 https://conda.anaconda.org/conda-forge/linux-64/libbrotlienc-1.1.0-hb9d3cd8_2.conda#06f70867945ea6a84d35836af780f1de https://conda.anaconda.org/conda-forge/linux-64/libev-4.33-hd590300_2.conda#172bf1cd1ff8629f2b1179945ed45055 @@ -122,7 +122,7 @@ https://conda.anaconda.org/conda-forge/linux-64/xkeyboard-config-2.43-hb9d3cd8_0 https://conda.anaconda.org/conda-forge/linux-64/xorg-libxext-1.3.6-hb9d3cd8_0.conda#febbab7d15033c913d53c7a2c102309d https://conda.anaconda.org/conda-forge/linux-64/xorg-libxfixes-6.0.1-hb9d3cd8_0.conda#4bdb303603e9821baf5fe5fdff1dc8f8 https://conda.anaconda.org/conda-forge/linux-64/xorg-libxrender-0.9.12-hb9d3cd8_0.conda#96d57aba173e878a2089d5638016dc5e -https://conda.anaconda.org/conda-forge/noarch/array-api-compat-1.9.1-pyhd8ed1ab_1.conda#524043e3f1797bd4c64cd7ef36f678e8 +https://conda.anaconda.org/conda-forge/noarch/array-api-compat-1.10.0-pyhd8ed1ab_0.conda#e399bc184553ca13cb068d272a995f48 https://conda.anaconda.org/conda-forge/linux-64/aws-c-auth-0.8.0-hb921021_15.conda#c79d50f64cffa5ad51ecc1a81057962f https://conda.anaconda.org/conda-forge/linux-64/aws-c-mqtt-0.11.0-h11f4f37_12.conda#96c3e0221fa2da97619ee82faa341a73 https://conda.anaconda.org/conda-forge/linux-64/cairo-1.18.2-h3394656_1.conda#b34c2833a1f56db610aeb27f206d800d @@ -176,8 +176,8 @@ https://conda.anaconda.org/conda-forge/linux-64/xorg-libxrandr-1.5.4-hb9d3cd8_0. https://conda.anaconda.org/conda-forge/linux-64/xorg-libxxf86vm-1.1.6-hb9d3cd8_0.conda#5efa5fa6243a622445fdfd72aee15efa https://conda.anaconda.org/conda-forge/linux-64/aws-c-s3-0.7.7-hf454442_0.conda#947c82025693bebd557f782bb5d6b469 https://conda.anaconda.org/conda-forge/linux-64/azure-core-cpp-1.14.0-h5cfcd09_0.conda#0a8838771cc2e985cd295e01ae83baf1 -https://conda.anaconda.org/conda-forge/linux-64/coverage-7.6.9-py313h8060acc_0.conda#dc7f212c995a2126d955225844888dcb -https://conda.anaconda.org/conda-forge/linux-64/fonttools-4.55.3-py313h8060acc_0.conda#8402b3d23142194dde4af92af17b276c +https://conda.anaconda.org/conda-forge/linux-64/coverage-7.6.10-py313h8060acc_0.conda#b76045c1b72b2db6e936bc1226a42c99 +https://conda.anaconda.org/conda-forge/linux-64/fonttools-4.55.3-py313h8060acc_1.conda#f89b4b415c5be34d24f74f30954792b5 https://conda.anaconda.org/conda-forge/linux-64/gmpy2-2.1.5-py313h11186cd_3.conda#846a773cdc154eda7b86d7f4427432f2 https://conda.anaconda.org/conda-forge/linux-64/harfbuzz-9.0.0-hda332d3_1.conda#76b32dcf243444aea9c6b804bcfa40b8 https://conda.anaconda.org/conda-forge/noarch/jinja2-3.1.5-pyhd8ed1ab_0.conda#2752a6ed44105bfb18c9bef1177d9dcd diff --git a/build_tools/azure/pylatest_conda_forge_mkl_osx-64_conda.lock b/build_tools/azure/pylatest_conda_forge_mkl_osx-64_conda.lock index 50b6cdb3b37ce..48041585bc4d3 100644 --- a/build_tools/azure/pylatest_conda_forge_mkl_osx-64_conda.lock +++ b/build_tools/azure/pylatest_conda_forge_mkl_osx-64_conda.lock @@ -84,8 +84,8 @@ https://conda.anaconda.org/conda-forge/osx-64/tornado-6.4.2-py313h63b0ddb_0.cond https://conda.anaconda.org/conda-forge/osx-64/ccache-4.10.1-hee5fd93_0.conda#09898bb80e196695cea9e07402cff215 https://conda.anaconda.org/conda-forge/osx-64/cctools_osx-64-1010.6-hea4301f_2.conda#70260b63386f080de1aa175dea5d57ac https://conda.anaconda.org/conda-forge/osx-64/clang-17-17.0.6-default_hb173f14_7.conda#809e36447b1bfb87ed1b7fb46339561a -https://conda.anaconda.org/conda-forge/osx-64/coverage-7.6.9-py313h717bdf5_0.conda#31f9f00b93e0a0c1fea6a5e94bcf0008 -https://conda.anaconda.org/conda-forge/osx-64/fonttools-4.55.3-py313h717bdf5_0.conda#a9d214f3df927b0b3b2d3654cbc20801 +https://conda.anaconda.org/conda-forge/osx-64/coverage-7.6.10-py313h717bdf5_0.conda#3025d254bcdd0cbff2c7aa302bb96b38 +https://conda.anaconda.org/conda-forge/osx-64/fonttools-4.55.3-py313h717bdf5_1.conda#f69669f8ead50bb3e13f125defbe6ffe https://conda.anaconda.org/conda-forge/osx-64/gfortran_impl_osx-64-13.2.0-h2bc304d_3.conda#57aa4cb95277a27aa0a1834ed97be45b https://conda.anaconda.org/conda-forge/noarch/joblib-1.4.2-pyhd8ed1ab_1.conda#bf8243ee348f3a10a14ed0cae323e0c1 https://conda.anaconda.org/conda-forge/osx-64/ld64-951.9-h0a3eb4e_2.conda#c198062cf84f2e797996ac156daffa9e diff --git a/build_tools/azure/pylatest_pip_openblas_pandas_linux-64_conda.lock b/build_tools/azure/pylatest_pip_openblas_pandas_linux-64_conda.lock index 3b6235c4871b7..5d61d4e4fbe24 100644 --- a/build_tools/azure/pylatest_pip_openblas_pandas_linux-64_conda.lock +++ b/build_tools/azure/pylatest_pip_openblas_pandas_linux-64_conda.lock @@ -29,11 +29,11 @@ https://repo.anaconda.com/pkgs/main/linux-64/setuptools-75.1.0-py313h06a4308_0.c https://repo.anaconda.com/pkgs/main/linux-64/wheel-0.44.0-py313h06a4308_0.conda#0d8e57ed81bb23b971817beeb3d49606 https://repo.anaconda.com/pkgs/main/linux-64/pip-24.2-py313h06a4308_0.conda#59f806485e89cb8721847b5857f6df2b # pip alabaster @ https://files.pythonhosted.org/packages/7e/b3/6b4067be973ae96ba0d615946e314c5ae35f9f993eca561b356540bb0c2b/alabaster-1.0.0-py3-none-any.whl#sha256=fc6786402dc3fcb2de3cabd5fe455a2db534b371124f1f21de8731783dec828b -# pip array-api-compat @ https://files.pythonhosted.org/packages/13/1d/2b2d33635de5dbf5e703114c11f1129394e68be16cc4dc5ccc2021a17f7b/array_api_compat-1.9.1-py3-none-any.whl#sha256=41a2703a662832d21619359ddddc5c0449876871f6c01e108c335f2a9432df94 +# pip array-api-compat @ https://files.pythonhosted.org/packages/72/76/633dffbd77631525921ab8d8867e33abd8bdb4ac64bfabd41e88ea910940/array_api_compat-1.10.0-py3-none-any.whl#sha256=d9066981fbc730174861b4394f38e27928827cbf7ed5becd8b1263b507c58864 # pip babel @ https://files.pythonhosted.org/packages/ed/20/bc79bc575ba2e2a7f70e8a1155618bb1301eaa5132a8271373a6903f73f8/babel-2.16.0-py3-none-any.whl#sha256=368b5b98b37c06b7daf6696391c3240c938b37767d4584413e8438c5c435fa8b # pip certifi @ https://files.pythonhosted.org/packages/a5/32/8f6669fc4798494966bf446c8c4a162e0b5d893dff088afddf76414f70e1/certifi-2024.12.14-py3-none-any.whl#sha256=1275f7a45be9464efc1173084eaa30f866fe2e47d389406136d332ed4967ec56 -# pip charset-normalizer @ https://files.pythonhosted.org/packages/2b/c9/1c8fe3ce05d30c87eff498592c89015b19fade13df42850aafae09e94f35/charset_normalizer-3.4.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl#sha256=4796efc4faf6b53a18e3d46343535caed491776a22af773f366534056c4e1fbc -# pip coverage @ https://files.pythonhosted.org/packages/9f/79/6c7a800913a9dd23ac8c8da133ebb556771a5a3d4df36b46767b1baffd35/coverage-7.6.9-cp313-cp313-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl#sha256=3c026eb44f744acaa2bda7493dad903aa5bf5fc4f2554293a798d5606710055d +# pip charset-normalizer @ https://files.pythonhosted.org/packages/52/ed/b7f4f07de100bdb95c1756d3a4d17b90c1a3c53715c1a476f8738058e0fa/charset_normalizer-3.4.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl#sha256=955f8851919303c92343d2f66165294848d57e9bba6cf6e3625485a70a038d11 +# pip coverage @ https://files.pythonhosted.org/packages/9a/0b/7797d4193f5adb4b837207ed87fecf5fc38f7cc612b369a8e8e12d9fa114/coverage-7.6.10-cp313-cp313-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl#sha256=26bcf5c4df41cad1b19c84af71c22cbc9ea9a547fc973f1f2cc9a290002c8b3c # pip cycler @ https://files.pythonhosted.org/packages/e7/05/c19819d5e3d95294a6f5947fb9b9629efb316b96de511b418c53d245aae6/cycler-0.12.1-py3-none-any.whl#sha256=85cef7cff222d8644161529808465972e51340599459b8ac3ccbac5a854e0d30 # pip cython @ https://files.pythonhosted.org/packages/1c/ae/d520f3cd94a8926bc47275a968e51bbc669a28f27a058cdfc5c3081fbbf7/Cython-3.0.11-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl#sha256=9c02361af9bfa10ff1ccf967fc75159e56b1c8093caf565739ed77a559c1f29f # pip docutils @ https://files.pythonhosted.org/packages/8f/d7/9322c609343d929e75e7e5e6255e614fcc67572cfd083959cdef3b7aad79/docutils-0.21.2-py3-none-any.whl#sha256=dafca5b9e384f0e419294eb4d2ff9fa826435bf15f15b7bd45723e8ad76811b2 @@ -43,7 +43,7 @@ https://repo.anaconda.com/pkgs/main/linux-64/pip-24.2-py313h06a4308_0.conda#59f8 # pip imagesize @ https://files.pythonhosted.org/packages/ff/62/85c4c919272577931d407be5ba5d71c20f0b616d31a0befe0ae45bb79abd/imagesize-1.4.1-py2.py3-none-any.whl#sha256=0d8d18d08f840c19d0ee7ca1fd82490fdc3729b7ac93f49870406ddde8ef8d8b # pip iniconfig @ https://files.pythonhosted.org/packages/ef/a6/62565a6e1cf69e10f5727360368e451d4b7f58beeac6173dc9db836a5b46/iniconfig-2.0.0-py3-none-any.whl#sha256=b6a85871a79d2e3b22d2d1b94ac2824226a63c6b741c88f7ae975f18b6778374 # pip joblib @ https://files.pythonhosted.org/packages/91/29/df4b9b42f2be0b623cbd5e2140cafcaa2bef0759a00b7b70104dcfe2fb51/joblib-1.4.2-py3-none-any.whl#sha256=06d478d5674cbc267e7496a410ee875abd68e4340feff4490bcb7afb88060ae6 -# pip kiwisolver @ https://files.pythonhosted.org/packages/39/fa/cdc0b6105d90eadc3bee525fecc9179e2b41e1ce0293caaf49cb631a6aaf/kiwisolver-1.4.7-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl#sha256=913983ad2deb14e66d83c28b632fd35ba2b825031f2fa4ca29675e665dfecbe1 +# pip kiwisolver @ https://files.pythonhosted.org/packages/8f/e9/6a7d025d8da8c4931522922cd706105aa32b3291d1add8c5427cdcd66e63/kiwisolver-1.4.8-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl#sha256=a5ce1e481a74b44dd5e92ff03ea0cb371ae7a0268318e202be06c8f04f4f1246 # pip markupsafe @ https://files.pythonhosted.org/packages/0c/91/96cf928db8236f1bfab6ce15ad070dfdd02ed88261c2afafd4b43575e9e9/MarkupSafe-3.0.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl#sha256=15ab75ef81add55874e7ab7055e9c397312385bd9ced94920f2802310c930396 # pip meson @ https://files.pythonhosted.org/packages/d2/f3/9d53c24a7113e08879b14117f83e7105251e6ecf7e03bb7c04926888db9c/meson-1.6.1-py3-none-any.whl#sha256=3f41f6b03df56bb76836cc33c94e1a404c3584d48b3259540794a60a21fad1f9 # pip networkx @ https://files.pythonhosted.org/packages/b9/54/dd730b32ea14ea797530a4479b2ed46a6fb250f682a9cfb997e968bf0261/networkx-3.4.2-py3-none-any.whl#sha256=df5d4365b724cf81b8c6a7312509d0c22386097011ad1abe274afd5e9d3bbc5f diff --git a/build_tools/azure/pymin_conda_forge_mkl_win-64_conda.lock b/build_tools/azure/pymin_conda_forge_mkl_win-64_conda.lock index 50445ef7b09a2..71a25c1d2e984 100644 --- a/build_tools/azure/pymin_conda_forge_mkl_win-64_conda.lock +++ b/build_tools/azure/pymin_conda_forge_mkl_win-64_conda.lock @@ -82,7 +82,7 @@ https://conda.anaconda.org/conda-forge/win-64/xorg-libxau-1.0.12-h0e40799_0.cond https://conda.anaconda.org/conda-forge/win-64/xorg-libxdmcp-1.1.5-h0e40799_0.conda#8393c0f7e7870b4eb45553326f81f0ff https://conda.anaconda.org/conda-forge/noarch/zipp-3.21.0-pyhd8ed1ab_1.conda#0c3cc595284c5e8f0f9900a9b228a332 https://conda.anaconda.org/conda-forge/win-64/brotli-1.1.0-h2466b09_2.conda#378f1c9421775dfe644731cb121c8979 -https://conda.anaconda.org/conda-forge/win-64/coverage-7.6.9-py39hf73967f_0.conda#30eda386561c7e6b4ab15fe08d9b2835 +https://conda.anaconda.org/conda-forge/win-64/coverage-7.6.10-py39hf73967f_0.conda#7b587c8f98fdfb579147df8c23386531 https://conda.anaconda.org/conda-forge/win-64/fontconfig-2.15.0-h765892d_1.conda#9bb0026a2131b09404c59c4290c697cd https://conda.anaconda.org/conda-forge/noarch/importlib_resources-6.4.5-pyhd8ed1ab_1.conda#15798fa69312d433af690c8c42b3fb36 https://conda.anaconda.org/conda-forge/noarch/joblib-1.4.2-pyhd8ed1ab_1.conda#bf8243ee348f3a10a14ed0cae323e0c1 @@ -96,7 +96,7 @@ https://conda.anaconda.org/conda-forge/noarch/pytest-8.3.4-pyhd8ed1ab_1.conda#79 https://conda.anaconda.org/conda-forge/noarch/python-dateutil-2.9.0.post0-pyhff2d567_1.conda#5ba79d7c71f03c678c8ead841f347d6e https://conda.anaconda.org/conda-forge/win-64/tbb-2021.13.0-h62715c5_1.conda#9190dd0a23d925f7602f9628b3aed511 https://conda.anaconda.org/conda-forge/win-64/cairo-1.18.2-h5782bbf_1.conda#63ff2bf400dde4fad0bed56debee5c16 -https://conda.anaconda.org/conda-forge/win-64/fonttools-4.55.3-py39hf73967f_0.conda#05d4d4ec2568580b33399ef7e11e4134 +https://conda.anaconda.org/conda-forge/win-64/fonttools-4.55.3-py39hf73967f_1.conda#8401c0a5f5a3faf092ac6ebb00de608a https://conda.anaconda.org/conda-forge/noarch/importlib-resources-6.4.5-pyhd8ed1ab_1.conda#59561d9b70f9df3b884c29910eba6593 https://conda.anaconda.org/conda-forge/noarch/meson-python-0.17.1-pyh70fd9c4_1.conda#7a02679229c6c2092571b4c025055440 https://conda.anaconda.org/conda-forge/win-64/mkl-2024.2.2-h66d3029_15.conda#302dff2807f2927b3e9e0d19d60121de diff --git a/build_tools/azure/pymin_conda_forge_openblas_min_dependencies_linux-64_conda.lock b/build_tools/azure/pymin_conda_forge_openblas_min_dependencies_linux-64_conda.lock index 5540dd71ee103..29130c3773764 100644 --- a/build_tools/azure/pymin_conda_forge_openblas_min_dependencies_linux-64_conda.lock +++ b/build_tools/azure/pymin_conda_forge_openblas_min_dependencies_linux-64_conda.lock @@ -140,7 +140,7 @@ https://conda.anaconda.org/conda-forge/noarch/typing_extensions-4.12.2-pyha770c7 https://conda.anaconda.org/conda-forge/noarch/wheel-0.45.1-pyhd8ed1ab_1.conda#75cb7132eb58d97896e173ef12ac9986 https://conda.anaconda.org/conda-forge/linux-64/xorg-libxdamage-1.1.6-hb9d3cd8_0.conda#b5fcc7172d22516e1f965490e65e33a4 https://conda.anaconda.org/conda-forge/linux-64/xorg-libxxf86vm-1.1.6-hb9d3cd8_0.conda#5efa5fa6243a622445fdfd72aee15efa -https://conda.anaconda.org/conda-forge/linux-64/coverage-7.6.9-py39h9399b63_0.conda#a04d17fe73417952d7686fd1ff067bbd +https://conda.anaconda.org/conda-forge/linux-64/coverage-7.6.10-py39h9399b63_0.conda#cf3d6b6d3e8aba0a9ea3dec4d05c9380 https://conda.anaconda.org/conda-forge/linux-64/glib-2.82.2-h44428e9_0.conda#f19f985ab043e8843045410f3b99de8a https://conda.anaconda.org/conda-forge/linux-64/harfbuzz-10.1.0-h0b3b770_0.conda#ab1d7d56034814f4c3ed9f69f8c68806 https://conda.anaconda.org/conda-forge/noarch/joblib-1.2.0-pyhd8ed1ab_0.tar.bz2#7583652522d71ad78ba536bba06940eb diff --git a/build_tools/azure/pymin_conda_forge_openblas_ubuntu_2204_linux-64_conda.lock b/build_tools/azure/pymin_conda_forge_openblas_ubuntu_2204_linux-64_conda.lock index 15e397c99efa6..96519331c01e3 100644 --- a/build_tools/azure/pymin_conda_forge_openblas_ubuntu_2204_linux-64_conda.lock +++ b/build_tools/azure/pymin_conda_forge_openblas_ubuntu_2204_linux-64_conda.lock @@ -154,7 +154,7 @@ https://conda.anaconda.org/conda-forge/linux-64/xorg-libxxf86vm-1.1.6-hb9d3cd8_0 https://conda.anaconda.org/conda-forge/noarch/zipp-3.21.0-pyhd8ed1ab_1.conda#0c3cc595284c5e8f0f9900a9b228a332 https://conda.anaconda.org/conda-forge/noarch/babel-2.16.0-pyhd8ed1ab_1.conda#3e23f7db93ec14c80525257d8affac28 https://conda.anaconda.org/conda-forge/linux-64/cffi-1.17.1-py39h15c3d72_0.conda#7e61b8777f42e00b08ff059f9e8ebc44 -https://conda.anaconda.org/conda-forge/linux-64/fonttools-4.55.3-py39h9399b63_0.conda#5f2545dc0944d6ffb9ce7750ab2a702f +https://conda.anaconda.org/conda-forge/linux-64/fonttools-4.55.3-py39h9399b63_1.conda#5cd3b942589049b43ef3a65d1f63c488 https://conda.anaconda.org/conda-forge/noarch/h2-4.1.0-pyhd8ed1ab_1.conda#825927dc7b0f287ef8d4d0011bb113b1 https://conda.anaconda.org/conda-forge/linux-64/harfbuzz-9.0.0-hda332d3_1.conda#76b32dcf243444aea9c6b804bcfa40b8 https://conda.anaconda.org/conda-forge/noarch/importlib-metadata-8.5.0-pyha770c72_1.conda#315607a3030ad5d5227e76e0733798ff diff --git a/build_tools/circle/doc_linux-64_conda.lock b/build_tools/circle/doc_linux-64_conda.lock index c502d62ed8baf..6df3444a6b22a 100644 --- a/build_tools/circle/doc_linux-64_conda.lock +++ b/build_tools/circle/doc_linux-64_conda.lock @@ -18,7 +18,7 @@ https://conda.anaconda.org/conda-forge/linux-64/libglvnd-1.7.0-ha4b6fd6_2.conda# https://conda.anaconda.org/conda-forge/linux-64/libgomp-14.2.0-h77fa898_1.conda#cc3573974587f12dda90d96e3e55a702 https://conda.anaconda.org/conda-forge/noarch/libstdcxx-devel_linux-64-13.3.0-h84ea5a7_101.conda#29b5a4ed4613fa81a07c21045e3f5bf6 https://conda.anaconda.org/conda-forge/linux-64/llvm-openmp-19.1.6-h024ca30_0.conda#96e42ccbd3c067c1713ff5f2d2169247 -https://conda.anaconda.org/conda-forge/noarch/sysroot_linux-64-2.17-h4a8ded7_18.conda#0ea96f90a10838f58412aa84fdd9df09 +https://conda.anaconda.org/conda-forge/noarch/sysroot_linux-64-2.17-h0157908_18.conda#460eba7851277ec1fd80a1a24080787a https://conda.anaconda.org/conda-forge/linux-64/_openmp_mutex-4.5-2_kmp_llvm.tar.bz2#562b26ba2e19059551a811e72ab7f793 https://conda.anaconda.org/conda-forge/linux-64/binutils_impl_linux-64-2.43-h4bf12b8_2.conda#cf0c5521ac2a20dfa6c662a4009eeef6 https://conda.anaconda.org/conda-forge/noarch/fonts-conda-ecosystem-1-0.tar.bz2#fee5683a3f04bd15cbd8318b096a27ab @@ -167,7 +167,7 @@ https://conda.anaconda.org/conda-forge/linux-64/openjpeg-2.5.3-h5fbd93e_0.conda# https://conda.anaconda.org/conda-forge/noarch/packaging-24.2-pyhd8ed1ab_2.conda#3bfed7e6228ebf2f7b9eaa47f1b4e2aa https://conda.anaconda.org/conda-forge/noarch/platformdirs-4.3.6-pyhd8ed1ab_1.conda#577852c7e53901ddccc7e6a9959ddebe https://conda.anaconda.org/conda-forge/noarch/pluggy-1.5.0-pyhd8ed1ab_1.conda#e9dcbce5f45f9ee500e728ae58b605b6 -https://conda.anaconda.org/conda-forge/linux-64/psutil-6.1.0-py39h8cd3c5a_0.conda#ef257b7ce1e1cb152639ced6bc653475 +https://conda.anaconda.org/conda-forge/linux-64/psutil-6.1.1-py39h8cd3c5a_0.conda#287b29f8df0363b2a53a5a6e6ce4fa5c https://conda.anaconda.org/conda-forge/noarch/pycparser-2.22-pyh29332c3_1.conda#12c566707c80111f9799308d9e265aef https://conda.anaconda.org/conda-forge/noarch/pygments-2.18.0-pyhd8ed1ab_1.conda#b38dc0206e2a530e5c2cf11dc086b31a https://conda.anaconda.org/conda-forge/noarch/pyparsing-3.2.0-pyhd8ed1ab_2.conda#4c05a2bcf87bb495512374143b57cf28 @@ -195,12 +195,12 @@ https://conda.anaconda.org/conda-forge/linux-64/xorg-libxi-1.8.2-hb9d3cd8_0.cond https://conda.anaconda.org/conda-forge/linux-64/xorg-libxrandr-1.5.4-hb9d3cd8_0.conda#2de7f99d6581a4a7adbff607b5c278ca https://conda.anaconda.org/conda-forge/linux-64/xorg-libxxf86vm-1.1.6-hb9d3cd8_0.conda#5efa5fa6243a622445fdfd72aee15efa https://conda.anaconda.org/conda-forge/noarch/zipp-3.21.0-pyhd8ed1ab_1.conda#0c3cc595284c5e8f0f9900a9b228a332 -https://conda.anaconda.org/conda-forge/noarch/accessible-pygments-0.0.5-pyhd8ed1ab_0.conda#1bb1ef9806a9a20872434f58b3e7fc1a +https://conda.anaconda.org/conda-forge/noarch/accessible-pygments-0.0.5-pyhd8ed1ab_1.conda#74ac5069774cdbc53910ec4d631a3999 https://conda.anaconda.org/conda-forge/noarch/babel-2.16.0-pyhd8ed1ab_1.conda#3e23f7db93ec14c80525257d8affac28 https://conda.anaconda.org/conda-forge/noarch/beautifulsoup4-4.12.3-pyha770c72_1.conda#d48f7e9fdec44baf6d1da416fe402b04 https://conda.anaconda.org/conda-forge/linux-64/cffi-1.17.1-py39h15c3d72_0.conda#7e61b8777f42e00b08ff059f9e8ebc44 https://conda.anaconda.org/conda-forge/linux-64/cxx-compiler-1.8.0-h1a2810e_1.conda#3bb4907086d7187bf01c8bec397ffa5e -https://conda.anaconda.org/conda-forge/linux-64/fonttools-4.55.3-py39h9399b63_0.conda#5f2545dc0944d6ffb9ce7750ab2a702f +https://conda.anaconda.org/conda-forge/linux-64/fonttools-4.55.3-py39h9399b63_1.conda#5cd3b942589049b43ef3a65d1f63c488 https://conda.anaconda.org/conda-forge/linux-64/fortran-compiler-1.8.0-h36df796_1.conda#6b57750841d53ade8d3b47eafe53dd9f https://conda.anaconda.org/conda-forge/noarch/h2-4.1.0-pyhd8ed1ab_1.conda#825927dc7b0f287ef8d4d0011bb113b1 https://conda.anaconda.org/conda-forge/linux-64/harfbuzz-9.0.0-hda332d3_1.conda#76b32dcf243444aea9c6b804bcfa40b8 @@ -211,7 +211,7 @@ https://conda.anaconda.org/conda-forge/noarch/joblib-1.4.2-pyhd8ed1ab_1.conda#bf https://conda.anaconda.org/conda-forge/linux-64/libclang-cpp19.1-19.1.6-default_hb5137d0_0.conda#9caebd39281536bf6bcb32f665dd4fbf https://conda.anaconda.org/conda-forge/linux-64/libclang13-19.1.6-default_h9c6a7e4_0.conda#e1d2936c320083f1c520c3a17372521c https://conda.anaconda.org/conda-forge/linux-64/liblapacke-3.9.0-26_linux64_openblas.conda#7b8b7732fb4786c00cf9b67d1d69445c -https://conda.anaconda.org/conda-forge/noarch/memory_profiler-0.61.0-pyhd8ed1ab_0.tar.bz2#8b45f9f2b2f7a98b0ec179c8991a4a9b +https://conda.anaconda.org/conda-forge/noarch/memory_profiler-0.61.0-pyhd8ed1ab_1.conda#71abbefb6f3b95e1668cd5e0af3affb9 https://conda.anaconda.org/conda-forge/noarch/meson-1.6.1-pyhd8ed1ab_0.conda#0062fb0a7f5da474705d0ce626de12f4 https://conda.anaconda.org/conda-forge/linux-64/numpy-2.0.2-py39h9cb892a_1.conda#be95cf76ebd05d08be67e50e88d3cd49 https://conda.anaconda.org/conda-forge/linux-64/openldap-2.6.9-he970967_0.conda#ca2de8bbdc871bce41dbf59e51324165 @@ -245,7 +245,7 @@ https://conda.anaconda.org/conda-forge/linux-64/pyamg-5.2.1-py39hf59e57a_1.conda https://conda.anaconda.org/conda-forge/linux-64/qt6-main-6.8.1-h9d28a51_0.conda#7e8e17c44e7af62c77de7a0158afc35c https://conda.anaconda.org/conda-forge/linux-64/statsmodels-0.14.4-py39hf3d9206_0.conda#f633ed7c19e120b9e6c0efb79f20a53f https://conda.anaconda.org/conda-forge/noarch/tifffile-2024.6.18-pyhd8ed1ab_0.conda#7c3077529bfe3b86f9425d526d73bd24 -https://conda.anaconda.org/conda-forge/noarch/towncrier-24.8.0-pyhd8ed1ab_0.conda#02190423152df62fda1cde3d9527b882 +https://conda.anaconda.org/conda-forge/noarch/towncrier-24.8.0-pyhd8ed1ab_1.conda#820b6a1ddf590fba253f8204f7200d82 https://conda.anaconda.org/conda-forge/noarch/urllib3-2.3.0-pyhd8ed1ab_0.conda#32674f8dbfb7b26410ed580dd3c10a29 https://conda.anaconda.org/conda-forge/linux-64/pyside6-6.8.1-py39h0383914_0.conda#45e71bee7ab5236b01ec50343d70b15e https://conda.anaconda.org/conda-forge/noarch/requests-2.32.3-pyhd8ed1ab_1.conda#a9b9368f3701a417eac9edbcae7cb737 @@ -258,7 +258,7 @@ https://conda.anaconda.org/conda-forge/noarch/numpydoc-1.8.0-pyhd8ed1ab_1.conda# https://conda.anaconda.org/conda-forge/noarch/pydata-sphinx-theme-0.16.1-pyhd8ed1ab_0.conda#837aaf71ddf3b27acae0e7e9015eebc6 https://conda.anaconda.org/conda-forge/noarch/sphinx-copybutton-0.5.2-pyhd8ed1ab_1.conda#bf22cb9c439572760316ce0748af3713 https://conda.anaconda.org/conda-forge/noarch/sphinx-design-0.6.1-pyhd8ed1ab_2.conda#3e6c15d914b03f83fc96344f917e0838 -https://conda.anaconda.org/conda-forge/noarch/sphinx-gallery-0.18.0-pyhd8ed1ab_0.conda#dc78276cbf5ec23e4b959d1bbd9caadb +https://conda.anaconda.org/conda-forge/noarch/sphinx-gallery-0.18.0-pyhd8ed1ab_1.conda#aa09c826cf825f905ade2586978263ca https://conda.anaconda.org/conda-forge/noarch/sphinx-prompt-1.4.0-pyhd8ed1ab_0.tar.bz2#88ee91e8679603f2a5bd036d52919cc2 https://conda.anaconda.org/conda-forge/noarch/sphinx-remove-toctrees-1.0.0.post1-pyhd8ed1ab_0.conda#6dee8412218288a17f99f2cfffab334d https://conda.anaconda.org/conda-forge/noarch/sphinxcontrib-applehelp-2.0.0-pyhd8ed1ab_1.conda#16e3f039c0aa6446513e94ab18a8784b @@ -278,7 +278,6 @@ https://conda.anaconda.org/conda-forge/noarch/sphinxext-opengraph-0.9.1-pyhd8ed1 # pip jupyterlab-pygments @ https://files.pythonhosted.org/packages/b1/dd/ead9d8ea85bf202d90cc513b533f9c363121c7792674f78e0d8a854b63b4/jupyterlab_pygments-0.3.0-py3-none-any.whl#sha256=841a89020971da1d8693f1a99997aefc5dc424bb1b251fd6322462a1b8842780 # pip libsass @ https://files.pythonhosted.org/packages/fd/5a/eb5b62641df0459a3291fc206cf5bd669c0feed7814dded8edef4ade8512/libsass-0.23.0-cp38-abi3-manylinux_2_5_x86_64.manylinux1_x86_64.whl#sha256=4a218406d605f325d234e4678bd57126a66a88841cb95bee2caeafdc6f138306 # pip mdurl @ https://files.pythonhosted.org/packages/b3/38/89ba8ad64ae25be8de66a6d463314cf1eb366222074cfda9ee839c56a4b4/mdurl-0.1.2-py3-none-any.whl#sha256=84008a41e51615a49fc9966191ff91509e3c40b939176e643fd50a5c2196b8f8 -# pip mistune @ https://files.pythonhosted.org/packages/f0/74/c95adcdf032956d9ef6c89a9b8a5152bf73915f8c633f3e3d88d06bd699c/mistune-3.0.2-py3-none-any.whl#sha256=71481854c30fdbc938963d3605b72501f5c10a9320ecd412c121c163a1c7d205 # pip overrides @ https://files.pythonhosted.org/packages/2c/ab/fc8290c6a4c722e5514d80f62b2dc4c4df1a68a41d1364e625c35990fcf3/overrides-7.7.0-py3-none-any.whl#sha256=c7ed9d062f78b8e4c1a7b70bd8796b35ead4d9f510227ef9c5dc7626c60d7e49 # pip pandocfilters @ https://files.pythonhosted.org/packages/ef/af/4fbc8cab944db5d21b7e2a5b8e9211a03a79852b1157e2c102fcc61ac440/pandocfilters-1.5.1-py2.py3-none-any.whl#sha256=93be382804a9cdb0a7267585f157e5d1731bbe5545a85b268d6f5fe6232de2bc # pip pkginfo @ https://files.pythonhosted.org/packages/21/11/4af184fbd8ae13daa13953212b27a212f4e63772ca8a0dd84d08b60ed206/pkginfo-1.12.0-py3-none-any.whl#sha256=dcd589c9be4da8973eceffa247733c144812759aa67eaf4bbf97016a02f39088 @@ -302,6 +301,7 @@ https://conda.anaconda.org/conda-forge/noarch/sphinxext-opengraph-0.9.1-pyhd8ed1 # pip doit @ https://files.pythonhosted.org/packages/44/83/a2960d2c975836daa629a73995134fd86520c101412578c57da3d2aa71ee/doit-0.36.0-py3-none-any.whl#sha256=ebc285f6666871b5300091c26eafdff3de968a6bd60ea35dd1e3fc6f2e32479a # pip jupyter-core @ https://files.pythonhosted.org/packages/c9/fb/108ecd1fe961941959ad0ee4e12ee7b8b1477247f30b1fdfd83ceaf017f0/jupyter_core-5.7.2-py3-none-any.whl#sha256=4f7315d2f6b4bcf2e3e7cb6e46772eba760ae459cd1f59d29eb57b0a01bd7409 # pip markdown-it-py @ https://files.pythonhosted.org/packages/42/d7/1ec15b46af6af88f19b8e5ffea08fa375d433c998b8a7639e76935c14f1f/markdown_it_py-3.0.0-py3-none-any.whl#sha256=355216845c60bd96232cd8d8c40e8f9765cc86f46880e43a8fd22dc1a1a8cab1 +# pip mistune @ https://files.pythonhosted.org/packages/b4/b3/743ffc3f59da380da504d84ccd1faf9a857a1445991ff19bf2ec754163c2/mistune-3.1.0-py3-none-any.whl#sha256=b05198cf6d671b3deba6c87ec6cf0d4eb7b72c524636eddb6dbf13823b52cee1 # pip python-json-logger @ https://files.pythonhosted.org/packages/4b/72/2f30cf26664fcfa0bd8ec5ee62ec90c03bd485e4a294d92aabc76c5203a5/python_json_logger-3.2.1-py3-none-any.whl#sha256=cdc17047eb5374bd311e748b42f99d71223f3b0e186f4206cc5d52aefe85b090 # pip pyzmq @ https://files.pythonhosted.org/packages/6e/bd/3ff3e1172f12f55769793a3a334e956ec2886805ebfb2f64756b6b5c6a1a/pyzmq-26.2.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl#sha256=05590cdbc6b902101d0e65d6a4780af14dc22914cc6ab995d99b85af45362cc9 # pip referencing @ https://files.pythonhosted.org/packages/b7/59/2056f61236782a2c86b33906c025d4f4a0b17be0161b63b70fd9e8775d36/referencing-0.35.1-py3-none-any.whl#sha256=eda6d3234d62814d1c64e305c1331c9a3a6132da475ab6382eaa997b21ee75de diff --git a/build_tools/circle/doc_min_dependencies_linux-64_conda.lock b/build_tools/circle/doc_min_dependencies_linux-64_conda.lock index 5b90f555f719f..a4550e14965d8 100644 --- a/build_tools/circle/doc_min_dependencies_linux-64_conda.lock +++ b/build_tools/circle/doc_min_dependencies_linux-64_conda.lock @@ -17,7 +17,7 @@ https://conda.anaconda.org/conda-forge/noarch/libgcc-devel_linux-64-13.3.0-h84ea https://conda.anaconda.org/conda-forge/linux-64/libglvnd-1.7.0-ha4b6fd6_2.conda#434ca7e50e40f4918ab701e3facd59a0 https://conda.anaconda.org/conda-forge/linux-64/libgomp-14.2.0-h77fa898_1.conda#cc3573974587f12dda90d96e3e55a702 https://conda.anaconda.org/conda-forge/noarch/libstdcxx-devel_linux-64-13.3.0-h84ea5a7_101.conda#29b5a4ed4613fa81a07c21045e3f5bf6 -https://conda.anaconda.org/conda-forge/noarch/sysroot_linux-64-2.17-h4a8ded7_18.conda#0ea96f90a10838f58412aa84fdd9df09 +https://conda.anaconda.org/conda-forge/noarch/sysroot_linux-64-2.17-h0157908_18.conda#460eba7851277ec1fd80a1a24080787a https://conda.anaconda.org/conda-forge/linux-64/_openmp_mutex-4.5-2_gnu.tar.bz2#73aaf86a425cc6e73fcf236a5a46396d https://conda.anaconda.org/conda-forge/linux-64/binutils_impl_linux-64-2.43-h4bf12b8_2.conda#cf0c5521ac2a20dfa6c662a4009eeef6 https://conda.anaconda.org/conda-forge/noarch/fonts-conda-ecosystem-1-0.tar.bz2#fee5683a3f04bd15cbd8318b096a27ab @@ -150,7 +150,7 @@ https://conda.anaconda.org/conda-forge/linux-64/cairo-1.18.2-h3394656_1.conda#b3 https://conda.anaconda.org/conda-forge/noarch/certifi-2024.12.14-pyhd8ed1ab_0.conda#6feb87357ecd66733be3279f16a8c400 https://conda.anaconda.org/conda-forge/noarch/charset-normalizer-3.4.0-pyhd8ed1ab_1.conda#6581a17bba6b948bb60130026404a9d6 https://conda.anaconda.org/conda-forge/noarch/click-8.1.8-pyh707e725_0.conda#f22f4d4970e09d68a10b922cbb0408d3 -https://conda.anaconda.org/conda-forge/noarch/cloudpickle-3.1.0-pyhd8ed1ab_1.conda#c88ca2bb7099167912e3b26463fff079 +https://conda.anaconda.org/conda-forge/noarch/cloudpickle-3.1.0-pyhd8ed1ab_2.conda#1f76b7e2b3ab88def5aa2f158322c7e6 https://conda.anaconda.org/conda-forge/noarch/colorama-0.4.6-pyhd8ed1ab_1.conda#962b9857ee8e7018c22f2776ffa0b2d7 https://conda.anaconda.org/conda-forge/noarch/cycler-0.12.1-pyhd8ed1ab_1.conda#44600c4667a319d67dbe0681fc0bc833 https://conda.anaconda.org/conda-forge/linux-64/cyrus-sasl-2.1.27-h54b06d7_7.conda#dce22f70b4e5a407ce88f2be046f4ceb @@ -186,7 +186,7 @@ https://conda.anaconda.org/conda-forge/linux-64/openjpeg-2.5.3-h5fbd93e_0.conda# https://conda.anaconda.org/conda-forge/noarch/packaging-24.2-pyhd8ed1ab_2.conda#3bfed7e6228ebf2f7b9eaa47f1b4e2aa https://conda.anaconda.org/conda-forge/noarch/pluggy-1.5.0-pyhd8ed1ab_1.conda#e9dcbce5f45f9ee500e728ae58b605b6 https://conda.anaconda.org/conda-forge/noarch/ply-3.11-pyhd8ed1ab_3.conda#fd5062942bfa1b0bd5e0d2a4397b099e -https://conda.anaconda.org/conda-forge/linux-64/psutil-6.1.0-py39h8cd3c5a_0.conda#ef257b7ce1e1cb152639ced6bc653475 +https://conda.anaconda.org/conda-forge/linux-64/psutil-6.1.1-py39h8cd3c5a_0.conda#287b29f8df0363b2a53a5a6e6ce4fa5c https://conda.anaconda.org/conda-forge/noarch/pycparser-2.22-pyh29332c3_1.conda#12c566707c80111f9799308d9e265aef https://conda.anaconda.org/conda-forge/noarch/pygments-2.18.0-pyhd8ed1ab_1.conda#b38dc0206e2a530e5c2cf11dc086b31a https://conda.anaconda.org/conda-forge/noarch/pyparsing-3.2.0-pyhd8ed1ab_2.conda#4c05a2bcf87bb495512374143b57cf28 @@ -209,7 +209,7 @@ https://conda.anaconda.org/conda-forge/noarch/wheel-0.45.1-pyhd8ed1ab_1.conda#75 https://conda.anaconda.org/conda-forge/linux-64/xorg-libxdamage-1.1.6-hb9d3cd8_0.conda#b5fcc7172d22516e1f965490e65e33a4 https://conda.anaconda.org/conda-forge/linux-64/xorg-libxxf86vm-1.1.6-hb9d3cd8_0.conda#5efa5fa6243a622445fdfd72aee15efa https://conda.anaconda.org/conda-forge/noarch/zipp-3.21.0-pyhd8ed1ab_1.conda#0c3cc595284c5e8f0f9900a9b228a332 -https://conda.anaconda.org/conda-forge/noarch/accessible-pygments-0.0.5-pyhd8ed1ab_0.conda#1bb1ef9806a9a20872434f58b3e7fc1a +https://conda.anaconda.org/conda-forge/noarch/accessible-pygments-0.0.5-pyhd8ed1ab_1.conda#74ac5069774cdbc53910ec4d631a3999 https://conda.anaconda.org/conda-forge/noarch/babel-2.16.0-pyhd8ed1ab_1.conda#3e23f7db93ec14c80525257d8affac28 https://conda.anaconda.org/conda-forge/noarch/beautifulsoup4-4.12.3-pyha770c72_1.conda#d48f7e9fdec44baf6d1da416fe402b04 https://conda.anaconda.org/conda-forge/linux-64/blas-devel-3.9.0-26_linux64_blis.conda#0498c83a4942dcb342d5416c2ff1048c @@ -228,7 +228,7 @@ https://conda.anaconda.org/conda-forge/noarch/joblib-1.4.2-pyhd8ed1ab_1.conda#bf https://conda.anaconda.org/conda-forge/linux-64/libclang-cpp19.1-19.1.6-default_hb5137d0_0.conda#9caebd39281536bf6bcb32f665dd4fbf https://conda.anaconda.org/conda-forge/linux-64/libclang13-19.1.6-default_h9c6a7e4_0.conda#e1d2936c320083f1c520c3a17372521c https://conda.anaconda.org/conda-forge/linux-64/libflac-1.4.3-h59595ed_0.conda#ee48bf17cc83a00f59ca1494d5646869 -https://conda.anaconda.org/conda-forge/noarch/memory_profiler-0.61.0-pyhd8ed1ab_0.tar.bz2#8b45f9f2b2f7a98b0ec179c8991a4a9b +https://conda.anaconda.org/conda-forge/noarch/memory_profiler-0.61.0-pyhd8ed1ab_1.conda#71abbefb6f3b95e1668cd5e0af3affb9 https://conda.anaconda.org/conda-forge/noarch/meson-1.6.1-pyhd8ed1ab_0.conda#0062fb0a7f5da474705d0ce626de12f4 https://conda.anaconda.org/conda-forge/linux-64/openldap-2.6.9-he970967_0.conda#ca2de8bbdc871bce41dbf59e51324165 https://conda.anaconda.org/conda-forge/noarch/partd-1.4.2-pyhd8ed1ab_0.conda#0badf9c54e24cecfb0ad2f99d680c163 @@ -264,7 +264,7 @@ https://conda.anaconda.org/conda-forge/linux-64/gst-plugins-base-1.24.7-h0a52356 https://conda.anaconda.org/conda-forge/linux-64/pulseaudio-client-17.0-hb77b528_0.conda#07f45f1be1c25345faddb8db0de8039b https://conda.anaconda.org/conda-forge/noarch/seaborn-base-0.12.2-pyhd8ed1ab_0.conda#cf88f3a1c11536bc3c10c14ad00ccc42 https://conda.anaconda.org/conda-forge/linux-64/statsmodels-0.13.2-py39hd257fcd_0.tar.bz2#bd7cdadf70e34a19333c3aacc40206e8 -https://conda.anaconda.org/conda-forge/noarch/towncrier-24.8.0-pyhd8ed1ab_0.conda#02190423152df62fda1cde3d9527b882 +https://conda.anaconda.org/conda-forge/noarch/towncrier-24.8.0-pyhd8ed1ab_1.conda#820b6a1ddf590fba253f8204f7200d82 https://conda.anaconda.org/conda-forge/noarch/urllib3-2.3.0-pyhd8ed1ab_0.conda#32674f8dbfb7b26410ed580dd3c10a29 https://conda.anaconda.org/conda-forge/linux-64/qt-main-5.15.15-hc3cb62f_2.conda#eadc22e45a87c8d5c71670d9ec956aba https://conda.anaconda.org/conda-forge/noarch/requests-2.32.3-pyhd8ed1ab_1.conda#a9b9368f3701a417eac9edbcae7cb737 From f2f3bbf3b496a68e27d68842314996a1527c14f6 Mon Sep 17 00:00:00 2001 From: scikit-learn-bot Date: Mon, 30 Dec 2024 10:08:33 +0100 Subject: [PATCH 126/159] :lock: :robot: CI Update lock files for array-api CI build(s) :lock: :robot: (#30560) Co-authored-by: Lock file bot --- ...st_conda_forge_cuda_array-api_linux-64_conda.lock | 12 ++++++------ 1 file changed, 6 insertions(+), 6 deletions(-) diff --git a/build_tools/github/pylatest_conda_forge_cuda_array-api_linux-64_conda.lock b/build_tools/github/pylatest_conda_forge_cuda_array-api_linux-64_conda.lock index 7137da203dda7..f9ea68848447a 100644 --- a/build_tools/github/pylatest_conda_forge_cuda_array-api_linux-64_conda.lock +++ b/build_tools/github/pylatest_conda_forge_cuda_array-api_linux-64_conda.lock @@ -16,7 +16,7 @@ https://conda.anaconda.org/conda-forge/noarch/fonts-conda-forge-1-0.tar.bz2#f766 https://conda.anaconda.org/conda-forge/linux-64/ld_impl_linux-64-2.43-h712a8e2_2.conda#048b02e3962f066da18efe3a21b77672 https://conda.anaconda.org/conda-forge/linux-64/libglvnd-1.7.0-ha4b6fd6_2.conda#434ca7e50e40f4918ab701e3facd59a0 https://conda.anaconda.org/conda-forge/linux-64/llvm-openmp-19.1.6-h024ca30_0.conda#96e42ccbd3c067c1713ff5f2d2169247 -https://conda.anaconda.org/conda-forge/noarch/sysroot_linux-64-2.17-h4a8ded7_18.conda#0ea96f90a10838f58412aa84fdd9df09 +https://conda.anaconda.org/conda-forge/noarch/sysroot_linux-64-2.17-h0157908_18.conda#460eba7851277ec1fd80a1a24080787a https://conda.anaconda.org/conda-forge/linux-64/_openmp_mutex-4.5-2_kmp_llvm.tar.bz2#562b26ba2e19059551a811e72ab7f793 https://conda.anaconda.org/conda-forge/noarch/fonts-conda-ecosystem-1-0.tar.bz2#fee5683a3f04bd15cbd8318b096a27ab https://conda.anaconda.org/conda-forge/linux-64/libegl-1.7.0-ha4b6fd6_2.conda#c151d5eb730e9b7480e6d48c0fc44048 @@ -50,7 +50,7 @@ https://conda.anaconda.org/conda-forge/linux-64/bzip2-1.0.8-h4bc722e_7.conda#62e https://conda.anaconda.org/conda-forge/linux-64/expat-2.6.4-h5888daf_0.conda#1d6afef758879ef5ee78127eb4cd2c4a https://conda.anaconda.org/conda-forge/linux-64/gflags-2.2.2-h5888daf_1005.conda#d411fc29e338efb48c5fd4576d71d881 https://conda.anaconda.org/conda-forge/linux-64/keyutils-1.6.1-h166bdaf_0.tar.bz2#30186d27e2c9fa62b45fb1476b7200e3 -https://conda.anaconda.org/conda-forge/linux-64/libabseil-20240722.0-cxx17_h5888daf_1.conda#e1f604644fe8d78e22660e2fec6756bc +https://conda.anaconda.org/conda-forge/linux-64/libabseil-20240722.0-cxx17_hbbce691_2.conda#48099a5f37e331f5570abbf22b229961 https://conda.anaconda.org/conda-forge/linux-64/libbrotlidec-1.1.0-hb9d3cd8_2.conda#9566f0bd264fbd463002e759b8a82401 https://conda.anaconda.org/conda-forge/linux-64/libbrotlienc-1.1.0-hb9d3cd8_2.conda#06f70867945ea6a84d35836af780f1de https://conda.anaconda.org/conda-forge/linux-64/libev-4.33-hd590300_2.conda#172bf1cd1ff8629f2b1179945ed45055 @@ -131,7 +131,7 @@ https://conda.anaconda.org/conda-forge/linux-64/xkeyboard-config-2.43-hb9d3cd8_0 https://conda.anaconda.org/conda-forge/linux-64/xorg-libxext-1.3.6-hb9d3cd8_0.conda#febbab7d15033c913d53c7a2c102309d https://conda.anaconda.org/conda-forge/linux-64/xorg-libxfixes-6.0.1-hb9d3cd8_0.conda#4bdb303603e9821baf5fe5fdff1dc8f8 https://conda.anaconda.org/conda-forge/linux-64/xorg-libxrender-0.9.12-hb9d3cd8_0.conda#96d57aba173e878a2089d5638016dc5e -https://conda.anaconda.org/conda-forge/noarch/array-api-compat-1.9.1-pyhd8ed1ab_1.conda#524043e3f1797bd4c64cd7ef36f678e8 +https://conda.anaconda.org/conda-forge/noarch/array-api-compat-1.10.0-pyhd8ed1ab_0.conda#e399bc184553ca13cb068d272a995f48 https://conda.anaconda.org/conda-forge/linux-64/aws-c-auth-0.8.0-hb921021_15.conda#c79d50f64cffa5ad51ecc1a81057962f https://conda.anaconda.org/conda-forge/linux-64/aws-c-mqtt-0.11.0-h11f4f37_12.conda#96c3e0221fa2da97619ee82faa341a73 https://conda.anaconda.org/conda-forge/linux-64/cairo-1.18.2-h3394656_1.conda#b34c2833a1f56db610aeb27f206d800d @@ -189,8 +189,8 @@ https://conda.anaconda.org/conda-forge/linux-64/xorg-libxrandr-1.5.4-hb9d3cd8_0. https://conda.anaconda.org/conda-forge/linux-64/xorg-libxxf86vm-1.1.6-hb9d3cd8_0.conda#5efa5fa6243a622445fdfd72aee15efa https://conda.anaconda.org/conda-forge/linux-64/aws-c-s3-0.7.7-hf454442_0.conda#947c82025693bebd557f782bb5d6b469 https://conda.anaconda.org/conda-forge/linux-64/azure-core-cpp-1.14.0-h5cfcd09_0.conda#0a8838771cc2e985cd295e01ae83baf1 -https://conda.anaconda.org/conda-forge/linux-64/coverage-7.6.9-py312h178313f_0.conda#a6a5f52f8260983b0aaeebcebf558a3e -https://conda.anaconda.org/conda-forge/linux-64/fonttools-4.55.3-py312h178313f_0.conda#968104bfe69e21fadeb30edd9c3785f9 +https://conda.anaconda.org/conda-forge/linux-64/coverage-7.6.10-py312h178313f_0.conda#df113f58bdfc79c98f5e07b6bd3eb4c2 +https://conda.anaconda.org/conda-forge/linux-64/fonttools-4.55.3-py312h178313f_1.conda#bc18c46eda4c2b29431981998507e723 https://conda.anaconda.org/conda-forge/linux-64/gmpy2-2.1.5-py312h7201bc8_3.conda#673ef4d6611f5b4ca7b5c1f8c65a38dc https://conda.anaconda.org/conda-forge/linux-64/harfbuzz-9.0.0-hda332d3_1.conda#76b32dcf243444aea9c6b804bcfa40b8 https://conda.anaconda.org/conda-forge/noarch/jinja2-3.1.5-pyhd8ed1ab_0.conda#2752a6ed44105bfb18c9bef1177d9dcd @@ -199,7 +199,7 @@ https://conda.anaconda.org/conda-forge/linux-64/libclang-cpp19.1-19.1.6-default_ https://conda.anaconda.org/conda-forge/linux-64/libclang13-19.1.6-default_h9c6a7e4_0.conda#e1d2936c320083f1c520c3a17372521c https://conda.anaconda.org/conda-forge/linux-64/libgoogle-cloud-2.32.0-h804f50b_0.conda#3d96df4d6b1c88455e05b94ce8a14a53 https://conda.anaconda.org/conda-forge/linux-64/liblapacke-3.9.0-26_linux64_openblas.conda#7b8b7732fb4786c00cf9b67d1d69445c -https://conda.anaconda.org/conda-forge/linux-64/libmagma-2.8.0-h9ddd185_1.conda#2ed47b19940065845dae91ee58ef7957 +https://conda.anaconda.org/conda-forge/linux-64/libmagma-2.8.0-h9ddd185_2.conda#8de40c4f75d36bb00a5870f682457f1d https://conda.anaconda.org/conda-forge/noarch/meson-1.6.1-pyhd8ed1ab_0.conda#0062fb0a7f5da474705d0ce626de12f4 https://conda.anaconda.org/conda-forge/linux-64/numpy-2.2.1-py312h7e784f5_0.conda#6159cab400b61f38579a7692be5e630a https://conda.anaconda.org/conda-forge/linux-64/openldap-2.6.9-he970967_0.conda#ca2de8bbdc871bce41dbf59e51324165 From 940878784edb8410dc3a5c304f45ecdadb27bea0 Mon Sep 17 00:00:00 2001 From: Lucy Liu Date: Tue, 31 Dec 2024 08:53:07 +1100 Subject: [PATCH 127/159] DOC Add early stopping case to `scoring` glossary entry (#30544) --- doc/glossary.rst | 13 +++++++++---- 1 file changed, 9 insertions(+), 4 deletions(-) diff --git a/doc/glossary.rst b/doc/glossary.rst index 4319cb38878cb..47af4c9e782ee 100644 --- a/doc/glossary.rst +++ b/doc/glossary.rst @@ -1696,9 +1696,15 @@ functions or non-estimator constructors. objects and avoid common pitfalls, you may refer to :ref:`randomness`. ``scoring`` - Specifies the score function to be maximized (usually by :ref:`cross - validation `), or -- in some cases -- multiple score - functions to be reported. The score function can be a string accepted + Depending on the object, can specify: + + * the score function to be maximized (usually by + :ref:`cross validation `), + * the multiple score functions to be reported, + * the score function to be used to check early stopping, or + * for visualization related objects, the score function to output or plot + + The score function can be a string accepted by :func:`metrics.get_scorer` or a callable :term:`scorer`, not to be confused with an :term:`evaluation metric`, as the latter have a more diverse API. ``scoring`` may also be set to None, in which case the @@ -1711,7 +1717,6 @@ functions or non-estimator constructors. this does *not* specify which score function is to be maximized, and another parameter such as ``refit`` maybe used for this purpose. - The ``scoring`` parameter is validated and interpreted using :func:`metrics.check_scoring`. From 13f1823a987c54df50768d4bd643466203f75bcc Mon Sep 17 00:00:00 2001 From: "dependabot[bot]" <49699333+dependabot[bot]@users.noreply.github.com> Date: Thu, 2 Jan 2025 11:03:07 +0100 Subject: [PATCH 128/159] Bump pypa/gh-action-pypi-publish from 1.12.2 to 1.12.3 in the actions group (#30566) Signed-off-by: dependabot[bot] Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com> --- .github/workflows/publish_pypi.yml | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/.github/workflows/publish_pypi.yml b/.github/workflows/publish_pypi.yml index 5677c7766ad3f..e580106f6a7e5 100644 --- a/.github/workflows/publish_pypi.yml +++ b/.github/workflows/publish_pypi.yml @@ -39,13 +39,13 @@ jobs: run: | python build_tools/github/check_wheels.py - name: Publish package to TestPyPI - uses: pypa/gh-action-pypi-publish@15c56dba361d8335944d31a2ecd17d700fc7bcbc # v1.12.2 + uses: pypa/gh-action-pypi-publish@67339c736fd9354cd4f8cb0b744f2b82a74b5c70 # v1.12.3 with: repository-url: https://test.pypi.org/legacy/ print-hash: true if: ${{ github.event.inputs.pypi_repo == 'testpypi' }} - name: Publish package to PyPI - uses: pypa/gh-action-pypi-publish@15c56dba361d8335944d31a2ecd17d700fc7bcbc # v1.12.2 + uses: pypa/gh-action-pypi-publish@67339c736fd9354cd4f8cb0b744f2b82a74b5c70 # v1.12.3 if: ${{ github.event.inputs.pypi_repo == 'pypi' }} with: print-hash: true From 78dc040dd134e5cdc2d19ab3e047cfc2928a28fd Mon Sep 17 00:00:00 2001 From: Hanjun Kim <155338300+hanjunkim11@users.noreply.github.com> Date: Thu, 2 Jan 2025 02:48:56 -0800 Subject: [PATCH 129/159] DOC Add link to random tree embedding example in docs (#30418) --- sklearn/ensemble/_forest.py | 4 ++++ 1 file changed, 4 insertions(+) diff --git a/sklearn/ensemble/_forest.py b/sklearn/ensemble/_forest.py index c396f9344d1d5..a1bbf36bdf8e3 100644 --- a/sklearn/ensemble/_forest.py +++ b/sklearn/ensemble/_forest.py @@ -2641,6 +2641,10 @@ class RandomTreesEmbedding(TransformerMixin, BaseForest): ``n_out <= n_estimators * max_leaf_nodes``. If ``max_leaf_nodes == None``, the number of leaf nodes is at most ``n_estimators * 2 ** max_depth``. + For an example of applying Random Trees Embedding to non-linear + classification, see + :ref:`sphx_glr_auto_examples_ensemble_plot_random_forest_embedding.py`. + Read more in the :ref:`User Guide `. Parameters From b93fd88274f77961c4727abbb5a93a512225a311 Mon Sep 17 00:00:00 2001 From: Adrin Jalali Date: Thu, 2 Jan 2025 12:30:39 +0100 Subject: [PATCH 130/159] FIX methods in model_selection/_validation accept params=None with metadata routing enabled (#30451) MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit Co-authored-by: Jérémie du Boisberranger --- .../sklearn.model_selection/30451.fix.rst | 3 +++ sklearn/model_selection/_validation.py | 3 ++- .../model_selection/tests/test_validation.py | 21 +++++++++++++++++++ 3 files changed, 26 insertions(+), 1 deletion(-) create mode 100644 doc/whats_new/upcoming_changes/sklearn.model_selection/30451.fix.rst diff --git a/doc/whats_new/upcoming_changes/sklearn.model_selection/30451.fix.rst b/doc/whats_new/upcoming_changes/sklearn.model_selection/30451.fix.rst new file mode 100644 index 0000000000000..5ebfb5992d832 --- /dev/null +++ b/doc/whats_new/upcoming_changes/sklearn.model_selection/30451.fix.rst @@ -0,0 +1,3 @@ +- :func:`~model_selection.cross_validate`, :func:`~model_selection.cross_val_predict`, + and :func:`~model_selection.cross_val_score` now accept `params=None` when metadata + routing is enabled. By `Adrin Jalali`_ diff --git a/sklearn/model_selection/_validation.py b/sklearn/model_selection/_validation.py index 7d38182911fb8..d5984d2454a4c 100644 --- a/sklearn/model_selection/_validation.py +++ b/sklearn/model_selection/_validation.py @@ -343,7 +343,7 @@ def cross_validate( _check_groups_routing_disabled(groups) X, y = indexable(X, y) - + params = {} if params is None else params cv = check_cv(cv, y, classifier=is_classifier(estimator)) scorers = check_scoring( @@ -1172,6 +1172,7 @@ def cross_val_predict( """ _check_groups_routing_disabled(groups) X, y = indexable(X, y) + params = {} if params is None else params if _routing_enabled(): # For estimators, a MetadataRouter is created in get_metadata_routing diff --git a/sklearn/model_selection/tests/test_validation.py b/sklearn/model_selection/tests/test_validation.py index 2d579772b1fbe..73156c2a25337 100644 --- a/sklearn/model_selection/tests/test_validation.py +++ b/sklearn/model_selection/tests/test_validation.py @@ -2539,6 +2539,27 @@ def test_groups_with_routing_validation(func, extra_args): ) +@pytest.mark.parametrize( + "func, extra_args", + [ + (cross_validate, {}), + (cross_val_score, {}), + (cross_val_predict, {}), + (learning_curve, {}), + (permutation_test_score, {}), + (validation_curve, {"param_name": "alpha", "param_range": np.array([1])}), + ], +) +@config_context(enable_metadata_routing=True) +def test_cross_validate_params_none(func, extra_args): + """Test that no errors are raised when passing `params=None`, which is the + default value. + Non-regression test for: https://github.com/scikit-learn/scikit-learn/issues/30447 + """ + X, y = make_classification(n_samples=100, n_classes=2, random_state=0) + func(estimator=ConsumingClassifier(), X=X, y=y, **extra_args) + + @pytest.mark.parametrize( "func, extra_args", [ From 761e10caed0a3ac242fc7cbe6e6ce2c3dd14db61 Mon Sep 17 00:00:00 2001 From: antoinebaker Date: Thu, 2 Jan 2025 13:06:18 +0100 Subject: [PATCH 131/159] FIX Check and correct the input_tags.sparse flag (#30187) MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit Co-authored-by: Guillaume Lemaitre Co-authored-by: Jérémie du Boisberranger --- .../changed-models/30187.fix.rst | 2 + .../sklearn.utils/30187.enhancement.rst | 4 ++ sklearn/calibration.py | 11 ++-- sklearn/cluster/_affinity_propagation.py | 1 + sklearn/cluster/_bicluster.py | 5 ++ sklearn/cluster/_birch.py | 1 + sklearn/cluster/_bisect_k_means.py | 1 + sklearn/cluster/_dbscan.py | 1 + sklearn/cluster/_hdbscan/hdbscan.py | 1 + sklearn/cluster/_kmeans.py | 5 ++ sklearn/cluster/_spectral.py | 1 + sklearn/compose/_column_transformer.py | 16 ++++++ sklearn/compose/_target.py | 1 + sklearn/decomposition/_incremental_pca.py | 6 ++ sklearn/decomposition/_kernel_pca.py | 1 + sklearn/decomposition/_lda.py | 1 + sklearn/decomposition/_nmf.py | 1 + sklearn/decomposition/_pca.py | 5 ++ sklearn/decomposition/_truncated_svd.py | 1 + sklearn/dummy.py | 2 + sklearn/ensemble/_bagging.py | 1 + sklearn/ensemble/_base.py | 13 +++-- sklearn/ensemble/_forest.py | 11 ++++ sklearn/ensemble/_gb.py | 5 ++ sklearn/ensemble/_weight_boosting.py | 5 ++ sklearn/feature_selection/_from_model.py | 1 + sklearn/feature_selection/_rfe.py | 1 + sklearn/feature_selection/_sequential.py | 1 + .../_univariate_selection.py | 1 + .../feature_selection/_variance_threshold.py | 1 + sklearn/impute/_base.py | 2 + sklearn/kernel_approximation.py | 8 +++ sklearn/kernel_ridge.py | 1 + sklearn/linear_model/_base.py | 5 ++ sklearn/linear_model/_coordinate_descent.py | 25 ++++---- sklearn/linear_model/_glm/glm.py | 1 + sklearn/linear_model/_huber.py | 5 ++ sklearn/linear_model/_logistic.py | 10 ++++ sklearn/linear_model/_quantile.py | 5 ++ sklearn/linear_model/_ransac.py | 10 +++- sklearn/linear_model/_ridge.py | 15 +++++ sklearn/linear_model/_stochastic_gradient.py | 15 +++++ sklearn/manifold/_isomap.py | 1 + sklearn/manifold/_spectral_embedding.py | 1 + .../_classification_threshold.py | 3 +- sklearn/model_selection/_search.py | 5 +- sklearn/multiclass.py | 7 +++ sklearn/multioutput.py | 8 ++- sklearn/naive_bayes.py | 2 + sklearn/neighbors/_base.py | 1 + sklearn/neighbors/_nearest_centroid.py | 1 + .../neural_network/_multilayer_perceptron.py | 5 ++ sklearn/neural_network/_rbm.py | 1 + sklearn/pipeline.py | 24 ++++++++ sklearn/preprocessing/_data.py | 6 ++ .../preprocessing/_function_transformer.py | 1 + sklearn/preprocessing/_polynomial.py | 5 ++ sklearn/random_projection.py | 1 + sklearn/semi_supervised/_label_propagation.py | 5 ++ sklearn/semi_supervised/_self_training.py | 19 +++++-- sklearn/svm/_base.py | 6 ++ sklearn/svm/_classes.py | 10 ++++ sklearn/tree/_classes.py | 5 ++ .../utils/_test_common/instance_generator.py | 19 +++++++ sklearn/utils/estimator_checks.py | 57 +++++++++++++++++++ sklearn/utils/tests/test_estimator_checks.py | 55 +++++++++++++++++- 66 files changed, 424 insertions(+), 33 deletions(-) create mode 100644 doc/whats_new/upcoming_changes/changed-models/30187.fix.rst create mode 100644 doc/whats_new/upcoming_changes/sklearn.utils/30187.enhancement.rst diff --git a/doc/whats_new/upcoming_changes/changed-models/30187.fix.rst b/doc/whats_new/upcoming_changes/changed-models/30187.fix.rst new file mode 100644 index 0000000000000..001b8840d9a7b --- /dev/null +++ b/doc/whats_new/upcoming_changes/changed-models/30187.fix.rst @@ -0,0 +1,2 @@ +- The `tags.input_tags.sparse` flag was corrected for a majority of estimators. + By :user:`Antoine Baker ` diff --git a/doc/whats_new/upcoming_changes/sklearn.utils/30187.enhancement.rst b/doc/whats_new/upcoming_changes/sklearn.utils/30187.enhancement.rst new file mode 100644 index 0000000000000..de75f70cb552e --- /dev/null +++ b/doc/whats_new/upcoming_changes/sklearn.utils/30187.enhancement.rst @@ -0,0 +1,4 @@ +- :func:`utils.estimator_checks.check_estimator_sparse_tag` ensures that + the estimator tag `input_tags.sparse` is consistent with its `fit` + method (accepting sparse input `X` or raising the appropriate error). + By :user:`Antoine Baker ` diff --git a/sklearn/calibration.py b/sklearn/calibration.py index b4023172bb20c..1a39315ba6557 100644 --- a/sklearn/calibration.py +++ b/sklearn/calibration.py @@ -28,11 +28,7 @@ from .model_selection import LeaveOneOut, check_cv, cross_val_predict from .preprocessing import LabelEncoder, label_binarize from .svm import LinearSVC -from .utils import ( - _safe_indexing, - column_or_1d, - indexable, -) +from .utils import _safe_indexing, column_or_1d, get_tags, indexable from .utils._param_validation import ( HasMethods, Hidden, @@ -554,6 +550,11 @@ def get_metadata_routing(self): ) return router + def __sklearn_tags__(self): + tags = super().__sklearn_tags__() + tags.input_tags.sparse = get_tags(self._get_estimator()).input_tags.sparse + return tags + def _fit_classifier_calibrator_pair( estimator, diff --git a/sklearn/cluster/_affinity_propagation.py b/sklearn/cluster/_affinity_propagation.py index 677421974bdc0..e5cb501984762 100644 --- a/sklearn/cluster/_affinity_propagation.py +++ b/sklearn/cluster/_affinity_propagation.py @@ -483,6 +483,7 @@ def __init__( def __sklearn_tags__(self): tags = super().__sklearn_tags__() tags.input_tags.pairwise = self.affinity == "precomputed" + tags.input_tags.sparse = self.affinity != "precomputed" return tags @_fit_context(prefer_skip_nested_validation=True) diff --git a/sklearn/cluster/_bicluster.py b/sklearn/cluster/_bicluster.py index b3b129d205768..95f49056ef646 100644 --- a/sklearn/cluster/_bicluster.py +++ b/sklearn/cluster/_bicluster.py @@ -193,6 +193,11 @@ def _k_means(self, data, n_clusters): labels = model.labels_ return centroid, labels + def __sklearn_tags__(self): + tags = super().__sklearn_tags__() + tags.input_tags.sparse = True + return tags + class SpectralCoclustering(BaseSpectral): """Spectral Co-Clustering algorithm (Dhillon, 2001). diff --git a/sklearn/cluster/_birch.py b/sklearn/cluster/_birch.py index 3e5f9d10a79e8..4d8abb43513dc 100644 --- a/sklearn/cluster/_birch.py +++ b/sklearn/cluster/_birch.py @@ -742,4 +742,5 @@ def _global_clustering(self, X=None): def __sklearn_tags__(self): tags = super().__sklearn_tags__() tags.transformer_tags.preserves_dtype = ["float64", "float32"] + tags.input_tags.sparse = True return tags diff --git a/sklearn/cluster/_bisect_k_means.py b/sklearn/cluster/_bisect_k_means.py index 3c9ccdcf06414..77e24adbf8084 100644 --- a/sklearn/cluster/_bisect_k_means.py +++ b/sklearn/cluster/_bisect_k_means.py @@ -538,5 +538,6 @@ def _predict_recursive(self, X, sample_weight, cluster_node): def __sklearn_tags__(self): tags = super().__sklearn_tags__() + tags.input_tags.sparse = True tags.transformer_tags.preserves_dtype = ["float64", "float32"] return tags diff --git a/sklearn/cluster/_dbscan.py b/sklearn/cluster/_dbscan.py index 7764bff94582f..d79c4f286d76d 100644 --- a/sklearn/cluster/_dbscan.py +++ b/sklearn/cluster/_dbscan.py @@ -473,4 +473,5 @@ def fit_predict(self, X, y=None, sample_weight=None): def __sklearn_tags__(self): tags = super().__sklearn_tags__() tags.input_tags.pairwise = self.metric == "precomputed" + tags.input_tags.sparse = True return tags diff --git a/sklearn/cluster/_hdbscan/hdbscan.py b/sklearn/cluster/_hdbscan/hdbscan.py index b4b92d8202b39..02061753ff573 100644 --- a/sklearn/cluster/_hdbscan/hdbscan.py +++ b/sklearn/cluster/_hdbscan/hdbscan.py @@ -1006,5 +1006,6 @@ def dbscan_clustering(self, cut_distance, min_cluster_size=5): def __sklearn_tags__(self): tags = super().__sklearn_tags__() + tags.input_tags.sparse = True tags.input_tags.allow_nan = self.metric != "precomputed" return tags diff --git a/sklearn/cluster/_kmeans.py b/sklearn/cluster/_kmeans.py index dba4388d0100c..6955de3c385a2 100644 --- a/sklearn/cluster/_kmeans.py +++ b/sklearn/cluster/_kmeans.py @@ -1177,6 +1177,11 @@ def score(self, X, y=None, sample_weight=None): ) return -scores + def __sklearn_tags__(self): + tags = super().__sklearn_tags__() + tags.input_tags.sparse = True + return tags + class KMeans(_BaseKMeans): """K-Means clustering. diff --git a/sklearn/cluster/_spectral.py b/sklearn/cluster/_spectral.py index ebfeccee677a9..6d1dcd093e803 100644 --- a/sklearn/cluster/_spectral.py +++ b/sklearn/cluster/_spectral.py @@ -794,6 +794,7 @@ def fit_predict(self, X, y=None): def __sklearn_tags__(self): tags = super().__sklearn_tags__() + tags.input_tags.sparse = True tags.input_tags.pairwise = self.affinity in [ "precomputed", "precomputed_nearest_neighbors", diff --git a/sklearn/compose/_column_transformer.py b/sklearn/compose/_column_transformer.py index 1985d352619af..e088f534707d2 100644 --- a/sklearn/compose/_column_transformer.py +++ b/sklearn/compose/_column_transformer.py @@ -29,6 +29,7 @@ _get_output_config, _safe_set_output, ) +from ..utils._tags import get_tags from ..utils.metadata_routing import ( MetadataRouter, MethodMapping, @@ -1315,6 +1316,21 @@ def get_metadata_routing(self): return router + def __sklearn_tags__(self): + tags = super().__sklearn_tags__() + try: + tags.input_tags.sparse = all( + get_tags(trans).input_tags.sparse + for name, trans, _ in self.transformers + if trans not in {"passthrough", "drop"} + ) + except Exception: + # If `transformers` does not comply with our API (list of tuples) + # then it will fail. In this case, we assume that `sparse` is False + # but the parameter validation will raise an error during `fit`. + pass # pragma: no cover + return tags + def _check_X(X): """Use check_array only when necessary, e.g. on lists and other non-array-likes.""" diff --git a/sklearn/compose/_target.py b/sklearn/compose/_target.py index d90ee17d13f49..86fc6294878b9 100644 --- a/sklearn/compose/_target.py +++ b/sklearn/compose/_target.py @@ -348,6 +348,7 @@ def __sklearn_tags__(self): regressor = self._get_regressor() tags = super().__sklearn_tags__() tags.regressor_tags.poor_score = True + tags.input_tags.sparse = get_tags(regressor).input_tags.sparse tags.target_tags.multi_output = get_tags(regressor).target_tags.multi_output return tags diff --git a/sklearn/decomposition/_incremental_pca.py b/sklearn/decomposition/_incremental_pca.py index 8fda4ddd1470f..da617ef8fa787 100644 --- a/sklearn/decomposition/_incremental_pca.py +++ b/sklearn/decomposition/_incremental_pca.py @@ -418,3 +418,9 @@ def transform(self, X): return np.vstack(output) else: return super().transform(X) + + def __sklearn_tags__(self): + tags = super().__sklearn_tags__() + # Beware that fit accepts sparse data but partial_fit doesn't + tags.input_tags.sparse = True + return tags diff --git a/sklearn/decomposition/_kernel_pca.py b/sklearn/decomposition/_kernel_pca.py index d9757c7845be1..37ff77c8d7c64 100644 --- a/sklearn/decomposition/_kernel_pca.py +++ b/sklearn/decomposition/_kernel_pca.py @@ -566,6 +566,7 @@ def inverse_transform(self, X): def __sklearn_tags__(self): tags = super().__sklearn_tags__() + tags.input_tags.sparse = True tags.transformer_tags.preserves_dtype = ["float64", "float32"] tags.input_tags.pairwise = self.kernel == "precomputed" return tags diff --git a/sklearn/decomposition/_lda.py b/sklearn/decomposition/_lda.py index 875c6e25fbb10..4580ff073bca5 100644 --- a/sklearn/decomposition/_lda.py +++ b/sklearn/decomposition/_lda.py @@ -549,6 +549,7 @@ def _em_step(self, X, total_samples, batch_update, parallel=None): def __sklearn_tags__(self): tags = super().__sklearn_tags__() tags.input_tags.positive_only = True + tags.input_tags.sparse = True tags.transformer_tags.preserves_dtype = ["float32", "float64"] return tags diff --git a/sklearn/decomposition/_nmf.py b/sklearn/decomposition/_nmf.py index 6be97f2223fb5..dc21e389f6849 100644 --- a/sklearn/decomposition/_nmf.py +++ b/sklearn/decomposition/_nmf.py @@ -1331,6 +1331,7 @@ def _n_features_out(self): def __sklearn_tags__(self): tags = super().__sklearn_tags__() tags.input_tags.positive_only = True + tags.input_tags.sparse = True tags.transformer_tags.preserves_dtype = ["float64", "float32"] return tags diff --git a/sklearn/decomposition/_pca.py b/sklearn/decomposition/_pca.py index 24cb1649c5fee..f8882a7a6b5d6 100644 --- a/sklearn/decomposition/_pca.py +++ b/sklearn/decomposition/_pca.py @@ -851,4 +851,9 @@ def __sklearn_tags__(self): tags = super().__sklearn_tags__() tags.transformer_tags.preserves_dtype = ["float64", "float32"] tags.array_api_support = True + tags.input_tags.sparse = self.svd_solver in ( + "auto", + "arpack", + "covariance_eigh", + ) return tags diff --git a/sklearn/decomposition/_truncated_svd.py b/sklearn/decomposition/_truncated_svd.py index b87a53684c140..b77882f5da78d 100644 --- a/sklearn/decomposition/_truncated_svd.py +++ b/sklearn/decomposition/_truncated_svd.py @@ -312,6 +312,7 @@ def inverse_transform(self, X): def __sklearn_tags__(self): tags = super().__sklearn_tags__() + tags.input_tags.sparse = True tags.transformer_tags.preserves_dtype = ["float64", "float32"] return tags diff --git a/sklearn/dummy.py b/sklearn/dummy.py index 28c7a956b9243..dbcb36c4c0025 100644 --- a/sklearn/dummy.py +++ b/sklearn/dummy.py @@ -423,6 +423,7 @@ def predict_log_proba(self, X): def __sklearn_tags__(self): tags = super().__sklearn_tags__() + tags.input_tags.sparse = True tags.classifier_tags.poor_score = True tags.no_validation = True return tags @@ -662,6 +663,7 @@ def predict(self, X, return_std=False): def __sklearn_tags__(self): tags = super().__sklearn_tags__() + tags.input_tags.sparse = True tags.regressor_tags.poor_score = True tags.no_validation = True return tags diff --git a/sklearn/ensemble/_bagging.py b/sklearn/ensemble/_bagging.py index ca133e9fed27a..20013e1f6d000 100644 --- a/sklearn/ensemble/_bagging.py +++ b/sklearn/ensemble/_bagging.py @@ -627,6 +627,7 @@ def _get_estimator(self): def __sklearn_tags__(self): tags = super().__sklearn_tags__() + tags.input_tags.sparse = get_tags(self._get_estimator()).input_tags.sparse tags.input_tags.allow_nan = get_tags(self._get_estimator()).input_tags.allow_nan return tags diff --git a/sklearn/ensemble/_base.py b/sklearn/ensemble/_base.py index 386c4875a1804..db5a0944a72c3 100644 --- a/sklearn/ensemble/_base.py +++ b/sklearn/ensemble/_base.py @@ -288,14 +288,17 @@ def get_params(self, deep=True): def __sklearn_tags__(self): tags = super().__sklearn_tags__() try: - allow_nan = all( + tags.input_tags.allow_nan = all( get_tags(est[1]).input_tags.allow_nan if est[1] != "drop" else True for est in self.estimators ) + tags.input_tags.sparse = all( + get_tags(est[1]).input_tags.sparse if est[1] != "drop" else True + for est in self.estimators + ) except Exception: # If `estimators` does not comply with our API (list of tuples) then it will - # fail. In this case, we assume that `allow_nan` is False but the parameter - # validation will raise an error during `fit`. - allow_nan = False - tags.input_tags.allow_nan = allow_nan + # fail. In this case, we assume that `allow_nan` and `sparse` are False but + # the parameter validation will raise an error during `fit`. + pass # pragma: no cover return tags diff --git a/sklearn/ensemble/_forest.py b/sklearn/ensemble/_forest.py index a1bbf36bdf8e3..5c2152f34e93d 100644 --- a/sklearn/ensemble/_forest.py +++ b/sklearn/ensemble/_forest.py @@ -1002,6 +1002,7 @@ def predict_log_proba(self, X): def __sklearn_tags__(self): tags = super().__sklearn_tags__() tags.classifier_tags.multi_label = True + tags.input_tags.sparse = True return tags @@ -1165,6 +1166,11 @@ def _compute_partial_dependence_recursion(self, grid, target_features): return averaged_predictions + def __sklearn_tags__(self): + tags = super().__sklearn_tags__() + tags.input_tags.sparse = True + return tags + class RandomForestClassifier(ForestClassifier): """ @@ -2991,3 +2997,8 @@ def transform(self, X): """ check_is_fitted(self) return self.one_hot_encoder_.transform(self.apply(X)) + + def __sklearn_tags__(self): + tags = super().__sklearn_tags__() + tags.input_tags.sparse = True + return tags diff --git a/sklearn/ensemble/_gb.py b/sklearn/ensemble/_gb.py index 5d67847d3544d..fded8a535413d 100644 --- a/sklearn/ensemble/_gb.py +++ b/sklearn/ensemble/_gb.py @@ -1117,6 +1117,11 @@ def apply(self, X): return leaves + def __sklearn_tags__(self): + tags = super().__sklearn_tags__() + tags.input_tags.sparse = True + return tags + class GradientBoostingClassifier(ClassifierMixin, BaseGradientBoosting): """Gradient Boosting for classification. diff --git a/sklearn/ensemble/_weight_boosting.py b/sklearn/ensemble/_weight_boosting.py index cbd5bfe74dba3..8503c4fdb8ae7 100644 --- a/sklearn/ensemble/_weight_boosting.py +++ b/sklearn/ensemble/_weight_boosting.py @@ -312,6 +312,11 @@ def feature_importances_(self): "feature_importances_ attribute" ) from e + def __sklearn_tags__(self): + tags = super().__sklearn_tags__() + tags.input_tags.sparse = True + return tags + def _samme_proba(estimator, n_classes, X): """Calculate algorithm 4, step 2, equation c) of Zhu et al [1]. diff --git a/sklearn/feature_selection/_from_model.py b/sklearn/feature_selection/_from_model.py index 28af66d524623..d73b53eea647e 100644 --- a/sklearn/feature_selection/_from_model.py +++ b/sklearn/feature_selection/_from_model.py @@ -501,5 +501,6 @@ def get_metadata_routing(self): def __sklearn_tags__(self): tags = super().__sklearn_tags__() + tags.input_tags.sparse = get_tags(self.estimator).input_tags.sparse tags.input_tags.allow_nan = get_tags(self.estimator).input_tags.allow_nan return tags diff --git a/sklearn/feature_selection/_rfe.py b/sklearn/feature_selection/_rfe.py index bd6a28b97b557..3c2a351440342 100644 --- a/sklearn/feature_selection/_rfe.py +++ b/sklearn/feature_selection/_rfe.py @@ -521,6 +521,7 @@ def __sklearn_tags__(self): if tags.regressor_tags is not None: tags.regressor_tags.poor_score = True tags.target_tags.required = True + tags.input_tags.sparse = sub_estimator_tags.input_tags.sparse tags.input_tags.allow_nan = sub_estimator_tags.input_tags.allow_nan return tags diff --git a/sklearn/feature_selection/_sequential.py b/sklearn/feature_selection/_sequential.py index bd1e27efef60b..80cf1fb171cc0 100644 --- a/sklearn/feature_selection/_sequential.py +++ b/sklearn/feature_selection/_sequential.py @@ -329,6 +329,7 @@ def _get_support_mask(self): def __sklearn_tags__(self): tags = super().__sklearn_tags__() tags.input_tags.allow_nan = get_tags(self.estimator).input_tags.allow_nan + tags.input_tags.sparse = get_tags(self.estimator).input_tags.sparse return tags def get_metadata_routing(self): diff --git a/sklearn/feature_selection/_univariate_selection.py b/sklearn/feature_selection/_univariate_selection.py index 7933818a6a19b..996d5423995d2 100644 --- a/sklearn/feature_selection/_univariate_selection.py +++ b/sklearn/feature_selection/_univariate_selection.py @@ -581,6 +581,7 @@ def _check_params(self, X, y): def __sklearn_tags__(self): tags = super().__sklearn_tags__() tags.target_tags.required = True + tags.input_tags.sparse = True return tags diff --git a/sklearn/feature_selection/_variance_threshold.py b/sklearn/feature_selection/_variance_threshold.py index 1aab9080b964d..f26d70ecf8f82 100644 --- a/sklearn/feature_selection/_variance_threshold.py +++ b/sklearn/feature_selection/_variance_threshold.py @@ -137,4 +137,5 @@ def _get_support_mask(self): def __sklearn_tags__(self): tags = super().__sklearn_tags__() tags.input_tags.allow_nan = True + tags.input_tags.sparse = True return tags diff --git a/sklearn/impute/_base.py b/sklearn/impute/_base.py index faf1f9e23b678..7a8f2cc4483e2 100644 --- a/sklearn/impute/_base.py +++ b/sklearn/impute/_base.py @@ -739,6 +739,7 @@ def inverse_transform(self, X): def __sklearn_tags__(self): tags = super().__sklearn_tags__() + tags.input_tags.sparse = True tags.input_tags.allow_nan = is_pandas_na(self.missing_values) or is_scalar_nan( self.missing_values ) @@ -1130,5 +1131,6 @@ def __sklearn_tags__(self): tags = super().__sklearn_tags__() tags.input_tags.allow_nan = True tags.input_tags.string = True + tags.input_tags.sparse = True tags.transformer_tags.preserves_dtype = [] return tags diff --git a/sklearn/kernel_approximation.py b/sklearn/kernel_approximation.py index 6364252c980be..35da4d08dcbf4 100644 --- a/sklearn/kernel_approximation.py +++ b/sklearn/kernel_approximation.py @@ -235,6 +235,11 @@ def transform(self, X): return data_sketch + def __sklearn_tags__(self): + tags = super().__sklearn_tags__() + tags.input_tags.sparse = True + return tags + class RBFSampler(ClassNamePrefixFeaturesOutMixin, TransformerMixin, BaseEstimator): """Approximate a RBF kernel feature map using random Fourier features. @@ -404,6 +409,7 @@ def transform(self, X): def __sklearn_tags__(self): tags = super().__sklearn_tags__() + tags.input_tags.sparse = True tags.transformer_tags.preserves_dtype = ["float64", "float32"] return tags @@ -826,6 +832,7 @@ def __sklearn_tags__(self): tags = super().__sklearn_tags__() tags.requires_fit = False tags.input_tags.positive_only = True + tags.input_tags.sparse = True return tags @@ -1094,5 +1101,6 @@ def _get_kernel_params(self): def __sklearn_tags__(self): tags = super().__sklearn_tags__() + tags.input_tags.sparse = True tags.transformer_tags.preserves_dtype = ["float64", "float32"] return tags diff --git a/sklearn/kernel_ridge.py b/sklearn/kernel_ridge.py index 983b463508c5b..29e744647acc9 100644 --- a/sklearn/kernel_ridge.py +++ b/sklearn/kernel_ridge.py @@ -169,6 +169,7 @@ def _get_kernel(self, X, Y=None): def __sklearn_tags__(self): tags = super().__sklearn_tags__() + tags.input_tags.sparse = True tags.input_tags.pairwise = self.kernel == "precomputed" return tags diff --git a/sklearn/linear_model/_base.py b/sklearn/linear_model/_base.py index 3bb3b8b7626d8..bb71cbe9ed550 100644 --- a/sklearn/linear_model/_base.py +++ b/sklearn/linear_model/_base.py @@ -687,6 +687,11 @@ def rmatvec(b): self._set_intercept(X_offset, y_offset, X_scale) return self + def __sklearn_tags__(self): + tags = super().__sklearn_tags__() + tags.input_tags.sparse = not self.positive + return tags + def _check_precomputed_gram_matrix( X, precompute, X_offset, X_scale, rtol=None, atol=1e-5 diff --git a/sklearn/linear_model/_coordinate_descent.py b/sklearn/linear_model/_coordinate_descent.py index 2dbb83c82fbaa..b98cf08925910 100644 --- a/sklearn/linear_model/_coordinate_descent.py +++ b/sklearn/linear_model/_coordinate_descent.py @@ -1149,6 +1149,11 @@ def _decision_function(self, X): else: return super()._decision_function(X) + def __sklearn_tags__(self): + tags = super().__sklearn_tags__() + tags.input_tags.sparse = True + return tags + ############################################################################### # Lasso model @@ -1864,6 +1869,13 @@ def get_metadata_routing(self): ) return router + def __sklearn_tags__(self): + tags = super().__sklearn_tags__() + multitask = self._is_multitask() + tags.input_tags.sparse = not multitask + tags.target_tags.multi_output = multitask + return tags + class LassoCV(RegressorMixin, LinearModelCV): """Lasso linear model with iterative fitting along a regularization path. @@ -2076,11 +2088,6 @@ def _get_estimator(self): def _is_multitask(self): return False - def __sklearn_tags__(self): - tags = super().__sklearn_tags__() - tags.target_tags.multi_output = False - return tags - def fit(self, X, y, sample_weight=None, **params): """Fit Lasso model with coordinate descent. @@ -2357,11 +2364,6 @@ def _get_estimator(self): def _is_multitask(self): return False - def __sklearn_tags__(self): - tags = super().__sklearn_tags__() - tags.target_tags.multi_output = False - return tags - def fit(self, X, y, sample_weight=None, **params): """Fit ElasticNet model with coordinate descent. @@ -2654,6 +2656,7 @@ def fit(self, X, y): def __sklearn_tags__(self): tags = super().__sklearn_tags__() + tags.input_tags.sparse = False tags.target_tags.multi_output = True tags.target_tags.single_output = False return tags @@ -3024,7 +3027,6 @@ def _is_multitask(self): def __sklearn_tags__(self): tags = super().__sklearn_tags__() - tags.target_tags.multi_output = True tags.target_tags.single_output = False return tags @@ -3265,7 +3267,6 @@ def _is_multitask(self): def __sklearn_tags__(self): tags = super().__sklearn_tags__() - tags.target_tags.multi_output = True tags.target_tags.single_output = False return tags diff --git a/sklearn/linear_model/_glm/glm.py b/sklearn/linear_model/_glm/glm.py index 093a813f60550..fc31f9825d2e5 100644 --- a/sklearn/linear_model/_glm/glm.py +++ b/sklearn/linear_model/_glm/glm.py @@ -442,6 +442,7 @@ def score(self, X, y, sample_weight=None): def __sklearn_tags__(self): tags = super().__sklearn_tags__() + tags.input_tags.sparse = True try: # Create instance of BaseLoss if fit wasn't called yet. This is necessary as # TweedieRegressor might set the used loss during fit different from diff --git a/sklearn/linear_model/_huber.py b/sklearn/linear_model/_huber.py index df939ca7f2e89..598d208df535c 100644 --- a/sklearn/linear_model/_huber.py +++ b/sklearn/linear_model/_huber.py @@ -351,3 +351,8 @@ def fit(self, X, y, sample_weight=None): residual = np.abs(y - safe_sparse_dot(X, self.coef_) - self.intercept_) self.outliers_ = residual > self.scale_ * self.epsilon return self + + def __sklearn_tags__(self): + tags = super().__sklearn_tags__() + tags.input_tags.sparse = True + return tags diff --git a/sklearn/linear_model/_logistic.py b/sklearn/linear_model/_logistic.py index ff7f09aee896a..291c3972eb3e5 100644 --- a/sklearn/linear_model/_logistic.py +++ b/sklearn/linear_model/_logistic.py @@ -1457,6 +1457,11 @@ def predict_log_proba(self, X): """ return np.log(self.predict_proba(X)) + def __sklearn_tags__(self): + tags = super().__sklearn_tags__() + tags.input_tags.sparse = True + return tags + class LogisticRegressionCV(LogisticRegression, LinearClassifierMixin, BaseEstimator): """Logistic Regression CV (aka logit, MaxEnt) classifier. @@ -2274,3 +2279,8 @@ def _get_scorer(self): """ scoring = self.scoring or "accuracy" return get_scorer(scoring) + + def __sklearn_tags__(self): + tags = super().__sklearn_tags__() + tags.input_tags.sparse = True + return tags diff --git a/sklearn/linear_model/_quantile.py b/sklearn/linear_model/_quantile.py index 883a41558f2f7..446d232958e8d 100644 --- a/sklearn/linear_model/_quantile.py +++ b/sklearn/linear_model/_quantile.py @@ -294,3 +294,8 @@ def fit(self, X, y, sample_weight=None): self.coef_ = params self.intercept_ = 0.0 return self + + def __sklearn_tags__(self): + tags = super().__sklearn_tags__() + tags.input_tags.sparse = True + return tags diff --git a/sklearn/linear_model/_ransac.py b/sklearn/linear_model/_ransac.py index 1203ce71c0534..90dc6d6bc5e70 100644 --- a/sklearn/linear_model/_ransac.py +++ b/sklearn/linear_model/_ransac.py @@ -15,7 +15,7 @@ clone, ) from ..exceptions import ConvergenceWarning -from ..utils import check_consistent_length, check_random_state +from ..utils import check_consistent_length, check_random_state, get_tags from ..utils._bunch import Bunch from ..utils._param_validation import ( HasMethods, @@ -721,3 +721,11 @@ def get_metadata_routing(self): .add(caller="predict", callee="predict"), ) return router + + def __sklearn_tags__(self): + tags = super().__sklearn_tags__() + if self.estimator is None: + tags.input_tags.sparse = True # default estimator is LinearRegression + else: + tags.input_tags.sparse = get_tags(self.estimator).input_tags.sparse + return tags diff --git a/sklearn/linear_model/_ridge.py b/sklearn/linear_model/_ridge.py index e0a614129053a..9a94ba1caec1c 100644 --- a/sklearn/linear_model/_ridge.py +++ b/sklearn/linear_model/_ridge.py @@ -1251,6 +1251,9 @@ def fit(self, X, y, sample_weight=None): def __sklearn_tags__(self): tags = super().__sklearn_tags__() tags.array_api_support = True + tags.input_tags.sparse = (self.solver != "svd") and ( + self.solver != "cholesky" or not self.fit_intercept + ) return tags @@ -1568,6 +1571,13 @@ def fit(self, X, y, sample_weight=None): super().fit(X, Y, sample_weight=sample_weight) return self + def __sklearn_tags__(self): + tags = super().__sklearn_tags__() + tags.input_tags.sparse = (self.solver != "svd") and ( + self.solver != "cholesky" or not self.fit_intercept + ) + return tags + def _check_gcv_mode(X, gcv_mode): if gcv_mode in ["eigen", "svd"]: @@ -2532,6 +2542,11 @@ def _get_scorer(self): def cv_values_(self): return self.cv_results_ + def __sklearn_tags__(self): + tags = super().__sklearn_tags__() + tags.input_tags.sparse = True + return tags + class RidgeCV(MultiOutputMixin, RegressorMixin, _BaseRidgeCV): """Ridge regression with built-in cross-validation. diff --git a/sklearn/linear_model/_stochastic_gradient.py b/sklearn/linear_model/_stochastic_gradient.py index ab475f3e1f304..d4c196a6fc8ca 100644 --- a/sklearn/linear_model/_stochastic_gradient.py +++ b/sklearn/linear_model/_stochastic_gradient.py @@ -941,6 +941,11 @@ def fit(self, X, y, coef_init=None, intercept_init=None, sample_weight=None): sample_weight=sample_weight, ) + def __sklearn_tags__(self): + tags = super().__sklearn_tags__() + tags.input_tags.sparse = True + return tags + class SGDClassifier(BaseSGDClassifier): """Linear classifiers (SVM, logistic regression, etc.) with SGD training. @@ -1772,6 +1777,11 @@ def _fit_regressor( else: self.intercept_ = np.atleast_1d(intercept) + def __sklearn_tags__(self): + tags = super().__sklearn_tags__() + tags.input_tags.sparse = True + return tags + class SGDRegressor(BaseSGDRegressor): """Linear model fitted by minimizing a regularized empirical loss with SGD. @@ -2633,3 +2643,8 @@ def predict(self, X): y = (self.decision_function(X) >= 0).astype(np.int32) y[y == 0] = -1 # for consistency with outlier detectors return y + + def __sklearn_tags__(self): + tags = super().__sklearn_tags__() + tags.input_tags.sparse = True + return tags diff --git a/sklearn/manifold/_isomap.py b/sklearn/manifold/_isomap.py index ee302bc07b384..90154470c18a4 100644 --- a/sklearn/manifold/_isomap.py +++ b/sklearn/manifold/_isomap.py @@ -438,4 +438,5 @@ def transform(self, X): def __sklearn_tags__(self): tags = super().__sklearn_tags__() tags.transformer_tags.preserves_dtype = ["float64", "float32"] + tags.input_tags.sparse = True return tags diff --git a/sklearn/manifold/_spectral_embedding.py b/sklearn/manifold/_spectral_embedding.py index ebd5d7c5b651b..d3d45ec0773c3 100644 --- a/sklearn/manifold/_spectral_embedding.py +++ b/sklearn/manifold/_spectral_embedding.py @@ -650,6 +650,7 @@ def __init__( def __sklearn_tags__(self): tags = super().__sklearn_tags__() + tags.input_tags.sparse = True tags.input_tags.pairwise = self.affinity in [ "precomputed", "precomputed_nearest_neighbors", diff --git a/sklearn/model_selection/_classification_threshold.py b/sklearn/model_selection/_classification_threshold.py index 4bd0ff9972fdc..ff1a82d584606 100644 --- a/sklearn/model_selection/_classification_threshold.py +++ b/sklearn/model_selection/_classification_threshold.py @@ -22,7 +22,7 @@ _CurveScorer, _threshold_scores_to_class_labels, ) -from ..utils import _safe_indexing +from ..utils import _safe_indexing, get_tags from ..utils._param_validation import HasMethods, Interval, RealNotInt, StrOptions from ..utils._response import _get_response_values_binary from ..utils.metadata_routing import ( @@ -206,6 +206,7 @@ def decision_function(self, X): def __sklearn_tags__(self): tags = super().__sklearn_tags__() tags.classifier_tags.multi_class = False + tags.input_tags.sparse = get_tags(self.estimator).input_tags.sparse return tags diff --git a/sklearn/model_selection/_search.py b/sklearn/model_selection/_search.py index 39161e51bacc5..46b9a4d4b912c 100644 --- a/sklearn/model_selection/_search.py +++ b/sklearn/model_selection/_search.py @@ -488,8 +488,9 @@ def __sklearn_tags__(self): tags.classifier_tags = deepcopy(sub_estimator_tags.classifier_tags) tags.regressor_tags = deepcopy(sub_estimator_tags.regressor_tags) # allows cross-validation to see 'precomputed' metrics - tags.input_tags.pairwise = get_tags(self.estimator).input_tags.pairwise - tags.array_api_support = get_tags(self.estimator).array_api_support + tags.input_tags.pairwise = sub_estimator_tags.input_tags.pairwise + tags.input_tags.sparse = sub_estimator_tags.input_tags.sparse + tags.array_api_support = sub_estimator_tags.array_api_support return tags def score(self, X, y=None, **params): diff --git a/sklearn/multiclass.py b/sklearn/multiclass.py index dca055ecbfb4a..1ddb36ca4fa8f 100644 --- a/sklearn/multiclass.py +++ b/sklearn/multiclass.py @@ -601,6 +601,7 @@ def __sklearn_tags__(self): """Indicate if wrapped estimator is using a precomputed Gram matrix""" tags = super().__sklearn_tags__() tags.input_tags.pairwise = get_tags(self.estimator).input_tags.pairwise + tags.input_tags.sparse = get_tags(self.estimator).input_tags.sparse return tags def get_metadata_routing(self): @@ -1004,6 +1005,7 @@ def __sklearn_tags__(self): """Indicate if wrapped estimator is using a precomputed Gram matrix""" tags = super().__sklearn_tags__() tags.input_tags.pairwise = get_tags(self.estimator).input_tags.pairwise + tags.input_tags.sparse = get_tags(self.estimator).input_tags.sparse return tags def get_metadata_routing(self): @@ -1276,3 +1278,8 @@ def get_metadata_routing(self): method_mapping=MethodMapping().add(caller="fit", callee="fit"), ) return router + + def __sklearn_tags__(self): + tags = super().__sklearn_tags__() + tags.input_tags.sparse = get_tags(self.estimator).input_tags.sparse + return tags diff --git a/sklearn/multioutput.py b/sklearn/multioutput.py index ebcd73e95d881..38b6eb4a7e0ec 100644 --- a/sklearn/multioutput.py +++ b/sklearn/multioutput.py @@ -25,7 +25,7 @@ is_classifier, ) from .model_selection import cross_val_predict -from .utils import Bunch, check_random_state +from .utils import Bunch, check_random_state, get_tags from .utils._param_validation import HasMethods, StrOptions from .utils._response import _get_response_values from .utils._user_interface import _print_elapsed_time @@ -311,6 +311,7 @@ def predict(self, X): def __sklearn_tags__(self): tags = super().__sklearn_tags__() + tags.input_tags.sparse = get_tags(self.estimator).input_tags.sparse tags.target_tags.single_output = False tags.target_tags.multi_output = True return tags @@ -829,6 +830,11 @@ def predict(self, X): """ return self._get_predictions(X, output_method="predict") + def __sklearn_tags__(self): + tags = super().__sklearn_tags__() + tags.input_tags.sparse = get_tags(self.base_estimator).input_tags.sparse + return tags + class ClassifierChain(MetaEstimatorMixin, ClassifierMixin, _BaseChain): """A multi-label model that arranges binary classifiers into a chain. diff --git a/sklearn/naive_bayes.py b/sklearn/naive_bayes.py index a483fd0df0d37..0bb2daab25d0b 100644 --- a/sklearn/naive_bayes.py +++ b/sklearn/naive_bayes.py @@ -771,6 +771,7 @@ def _init_counters(self, n_classes, n_features): def __sklearn_tags__(self): tags = super().__sklearn_tags__() + tags.input_tags.sparse = True tags.classifier_tags.poor_score = True return tags @@ -1432,6 +1433,7 @@ def partial_fit(self, X, y, classes=None, sample_weight=None): def __sklearn_tags__(self): tags = super().__sklearn_tags__() + tags.input_tags.sparse = False tags.input_tags.positive_only = True return tags diff --git a/sklearn/neighbors/_base.py b/sklearn/neighbors/_base.py index 876fb9906b9e2..72d27f444000e 100644 --- a/sklearn/neighbors/_base.py +++ b/sklearn/neighbors/_base.py @@ -707,6 +707,7 @@ def _fit(self, X, y=None): def __sklearn_tags__(self): tags = super().__sklearn_tags__() + tags.input_tags.sparse = True # For cross-validation routines to split data correctly tags.input_tags.pairwise = self.metric == "precomputed" # when input is precomputed metric values, all those values need to be positive diff --git a/sklearn/neighbors/_nearest_centroid.py b/sklearn/neighbors/_nearest_centroid.py index b30dc309b2dd7..a780c27587792 100644 --- a/sklearn/neighbors/_nearest_centroid.py +++ b/sklearn/neighbors/_nearest_centroid.py @@ -355,4 +355,5 @@ def _check_euclidean_metric(self): def __sklearn_tags__(self): tags = super().__sklearn_tags__() tags.input_tags.allow_nan = self.metric == "nan_euclidean" + tags.input_tags.sparse = True return tags diff --git a/sklearn/neural_network/_multilayer_perceptron.py b/sklearn/neural_network/_multilayer_perceptron.py index 196203ce46763..47805857b5154 100644 --- a/sklearn/neural_network/_multilayer_perceptron.py +++ b/sklearn/neural_network/_multilayer_perceptron.py @@ -771,6 +771,11 @@ def _score_with_function(self, X, y, score_function): return score_function(y, y_pred) + def __sklearn_tags__(self): + tags = super().__sklearn_tags__() + tags.input_tags.sparse = True + return tags + class MLPClassifier(ClassifierMixin, BaseMultilayerPerceptron): """Multi-layer Perceptron classifier. diff --git a/sklearn/neural_network/_rbm.py b/sklearn/neural_network/_rbm.py index c5f49087b758d..1e1d3c2e11b7c 100644 --- a/sklearn/neural_network/_rbm.py +++ b/sklearn/neural_network/_rbm.py @@ -440,5 +440,6 @@ def fit(self, X, y=None): def __sklearn_tags__(self): tags = super().__sklearn_tags__() + tags.input_tags.sparse = True tags.transformer_tags.preserves_dtype = ["float64", "float32"] return tags diff --git a/sklearn/pipeline.py b/sklearn/pipeline.py index d525051a403ef..fc5be7e3c51f7 100644 --- a/sklearn/pipeline.py +++ b/sklearn/pipeline.py @@ -1226,6 +1226,15 @@ def __sklearn_tags__(self): tags.input_tags.pairwise = get_tags( self.steps[0][1] ).input_tags.pairwise + # WARNING: the sparse tag can be incorrect. + # Some Pipelines accepting sparse data are wrongly tagged sparse=False. + # For example Pipeline([PCA(), estimator]) accepts sparse data + # even if the estimator doesn't as PCA outputs a dense array. + tags.input_tags.sparse = all( + get_tags(step).input_tags.sparse + for name, step in self.steps + if step != "passthrough" + ) except (ValueError, AttributeError, TypeError): # This happens when the `steps` is not a list of (name, estimator) # tuples and `fit` is not called yet to validate the steps. @@ -2115,6 +2124,21 @@ def get_metadata_routing(self): return router + def __sklearn_tags__(self): + tags = super().__sklearn_tags__() + try: + tags.input_tags.sparse = all( + get_tags(trans).input_tags.sparse + for name, trans in self.transformer_list + if trans not in {"passthrough", "drop"} + ) + except Exception: + # If `transformer_list` does not comply with our API (list of tuples) + # then it will fail. In this case, we assume that `sparse` is False + # but the parameter validation will raise an error during `fit`. + pass # pragma: no cover + return tags + def make_union(*transformers, n_jobs=None, verbose=False): """Construct a :class:`FeatureUnion` from the given transformers. diff --git a/sklearn/preprocessing/_data.py b/sklearn/preprocessing/_data.py index 74ea7431a5d72..f0d1defe61ca9 100644 --- a/sklearn/preprocessing/_data.py +++ b/sklearn/preprocessing/_data.py @@ -1130,6 +1130,7 @@ def inverse_transform(self, X, copy=None): def __sklearn_tags__(self): tags = super().__sklearn_tags__() tags.input_tags.allow_nan = True + tags.input_tags.sparse = not self.with_mean tags.transformer_tags.preserves_dtype = ["float64", "float32"] return tags @@ -1363,6 +1364,7 @@ def inverse_transform(self, X): def __sklearn_tags__(self): tags = super().__sklearn_tags__() tags.input_tags.allow_nan = True + tags.input_tags.sparse = True return tags @@ -1737,6 +1739,7 @@ def inverse_transform(self, X): def __sklearn_tags__(self): tags = super().__sklearn_tags__() + tags.input_tags.sparse = not self.with_centering tags.input_tags.allow_nan = True return tags @@ -2136,6 +2139,7 @@ def transform(self, X, copy=None): def __sklearn_tags__(self): tags = super().__sklearn_tags__() + tags.input_tags.sparse = True tags.requires_fit = False tags.array_api_support = True return tags @@ -2343,6 +2347,7 @@ def transform(self, X, copy=None): def __sklearn_tags__(self): tags = super().__sklearn_tags__() tags.requires_fit = False + tags.input_tags.sparse = True return tags @@ -3009,6 +3014,7 @@ def inverse_transform(self, X): def __sklearn_tags__(self): tags = super().__sklearn_tags__() + tags.input_tags.sparse = True tags.input_tags.allow_nan = True return tags diff --git a/sklearn/preprocessing/_function_transformer.py b/sklearn/preprocessing/_function_transformer.py index 02379273e302e..3fc33c59e76bd 100644 --- a/sklearn/preprocessing/_function_transformer.py +++ b/sklearn/preprocessing/_function_transformer.py @@ -394,6 +394,7 @@ def __sklearn_tags__(self): tags = super().__sklearn_tags__() tags.no_validation = not self.validate tags.requires_fit = False + tags.input_tags.sparse = not self.validate or self.accept_sparse return tags def set_output(self, *, transform=None): diff --git a/sklearn/preprocessing/_polynomial.py b/sklearn/preprocessing/_polynomial.py index a6c69d73666a6..6bf85c4d6f661 100644 --- a/sklearn/preprocessing/_polynomial.py +++ b/sklearn/preprocessing/_polynomial.py @@ -585,6 +585,11 @@ def transform(self, X): XP = Xout return XP + def __sklearn_tags__(self): + tags = super().__sklearn_tags__() + tags.input_tags.sparse = True + return tags + class SplineTransformer(TransformerMixin, BaseEstimator): """Generate univariate B-spline bases for features. diff --git a/sklearn/random_projection.py b/sklearn/random_projection.py index ca328f84733f8..74741585f7761 100644 --- a/sklearn/random_projection.py +++ b/sklearn/random_projection.py @@ -463,6 +463,7 @@ def inverse_transform(self, X): def __sklearn_tags__(self): tags = super().__sklearn_tags__() tags.transformer_tags.preserves_dtype = ["float64", "float32"] + tags.input_tags.sparse = True return tags diff --git a/sklearn/semi_supervised/_label_propagation.py b/sklearn/semi_supervised/_label_propagation.py index c83a7d62e9108..559a17a13d6ae 100644 --- a/sklearn/semi_supervised/_label_propagation.py +++ b/sklearn/semi_supervised/_label_propagation.py @@ -336,6 +336,11 @@ def fit(self, X, y): self.transduction_ = transduction.ravel() return self + def __sklearn_tags__(self): + tags = super().__sklearn_tags__() + tags.input_tags.sparse = True + return tags + class LabelPropagation(BaseLabelPropagation): """Label Propagation classifier. diff --git a/sklearn/semi_supervised/_self_training.py b/sklearn/semi_supervised/_self_training.py index 6b5c343ad661d..4b469a2e9f8d8 100644 --- a/sklearn/semi_supervised/_self_training.py +++ b/sklearn/semi_supervised/_self_training.py @@ -4,10 +4,14 @@ import numpy as np -from sklearn.base import ClassifierMixin - -from ..base import BaseEstimator, MetaEstimatorMixin, _fit_context, clone -from ..utils import Bunch, safe_mask +from ..base import ( + BaseEstimator, + ClassifierMixin, + MetaEstimatorMixin, + _fit_context, + clone, +) +from ..utils import Bunch, get_tags, safe_mask from ..utils._param_validation import HasMethods, Hidden, Interval, StrOptions from ..utils.metadata_routing import ( MetadataRouter, @@ -613,3 +617,10 @@ def get_metadata_routing(self): ), ) return router + + def __sklearn_tags__(self): + tags = super().__sklearn_tags__() + # TODO(1.8): remove the condition check together with base_estimator + if self.estimator is not None: + tags.input_tags.sparse = get_tags(self.estimator).input_tags.sparse + return tags diff --git a/sklearn/svm/_base.py b/sklearn/svm/_base.py index 3e5024364df5c..f5b35f39a7daf 100644 --- a/sklearn/svm/_base.py +++ b/sklearn/svm/_base.py @@ -147,6 +147,7 @@ def __sklearn_tags__(self): tags = super().__sklearn_tags__() # Used by cross_val_score. tags.input_tags.pairwise = self.kernel == "precomputed" + tags.input_tags.sparse = self.kernel != "precomputed" return tags @_fit_context(prefer_skip_nested_validation=True) @@ -999,6 +1000,11 @@ def probB_(self): """ return self._probB + def __sklearn_tags__(self): + tags = super().__sklearn_tags__() + tags.input_tags.sparse = self.kernel != "precomputed" + return tags + def _get_liblinear_solver_type(multi_class, penalty, loss, dual): """Find the liblinear magic number for the solver. diff --git a/sklearn/svm/_classes.py b/sklearn/svm/_classes.py index 664c7443045d2..0eb49a8c0832c 100644 --- a/sklearn/svm/_classes.py +++ b/sklearn/svm/_classes.py @@ -349,6 +349,11 @@ def fit(self, X, y, sample_weight=None): return self + def __sklearn_tags__(self): + tags = super().__sklearn_tags__() + tags.input_tags.sparse = True + return tags + class LinearSVR(RegressorMixin, LinearModel): """Linear Support Vector Regression. @@ -600,6 +605,11 @@ def fit(self, X, y, sample_weight=None): return self + def __sklearn_tags__(self): + tags = super().__sklearn_tags__() + tags.input_tags.sparse = True + return tags + class SVC(BaseSVC): """C-Support Vector Classification. diff --git a/sklearn/tree/_classes.py b/sklearn/tree/_classes.py index 93246a1376e85..646aa7fb034c4 100644 --- a/sklearn/tree/_classes.py +++ b/sklearn/tree/_classes.py @@ -690,6 +690,11 @@ def feature_importances_(self): return self.tree_.compute_feature_importances() + def __sklearn_tags__(self): + tags = super().__sklearn_tags__() + tags.input_tags.sparse = True + return tags + # ============================================================================= # Public estimators diff --git a/sklearn/utils/_test_common/instance_generator.py b/sklearn/utils/_test_common/instance_generator.py index 49422947a0fe7..2f6a64a9d0364 100644 --- a/sklearn/utils/_test_common/instance_generator.py +++ b/sklearn/utils/_test_common/instance_generator.py @@ -539,6 +539,18 @@ FactorAnalysis: {"check_dict_unchanged": dict(max_iter=5, n_components=1)}, FastICA: {"check_dict_unchanged": dict(max_iter=5, n_components=1)}, FeatureAgglomeration: {"check_dict_unchanged": dict(n_clusters=1)}, + FeatureUnion: { + "check_estimator_sparse_tag": [ + dict(transformer_list=[("trans1", StandardScaler())]), + dict( + transformer_list=[ + ("trans1", StandardScaler(with_mean=False)), + ("trans2", "drop"), + ("trans3", "passthrough"), + ] + ), + ] + }, GammaRegressor: { "check_sample_weight_equivalence_on_dense_data": [ dict(solver="newton-cholesky"), @@ -556,6 +568,13 @@ "check_dict_unchanged": dict(batch_size=10, max_iter=5, n_components=1) }, LinearDiscriminantAnalysis: {"check_dict_unchanged": dict(n_components=1)}, + LinearRegression: { + "check_estimator_sparse_tag": [dict(positive=False), dict(positive=True)], + "check_sample_weight_equivalence_on_dense_data": [ + dict(positive=False), + dict(positive=True), + ], + }, LocallyLinearEmbedding: {"check_dict_unchanged": dict(max_iter=5, n_components=1)}, LogisticRegression: { "check_sample_weight_equivalence_on_dense_data": [ diff --git a/sklearn/utils/estimator_checks.py b/sklearn/utils/estimator_checks.py index f68fd8d091119..0de7b21a468ff 100644 --- a/sklearn/utils/estimator_checks.py +++ b/sklearn/utils/estimator_checks.py @@ -192,6 +192,7 @@ def _yield_checks(estimator): if hasattr(estimator, "sparsify"): yield check_sparsify_coefficients + yield check_estimator_sparse_tag yield check_estimator_sparse_array yield check_estimator_sparse_matrix @@ -1231,6 +1232,62 @@ def check_array_api_input_and_values( ) +def check_estimator_sparse_tag(name, estimator_orig): + """Check that estimator tag related with accepting sparse data is properly set.""" + if SPARSE_ARRAY_PRESENT: + sparse_container = sparse.csr_array + else: + sparse_container = sparse.csr_matrix + estimator = clone(estimator_orig) + + rng = np.random.RandomState(0) + n_samples = 15 if name == "SpectralCoclustering" else 40 + X = rng.uniform(size=(n_samples, 3)) + X[X < 0.6] = 0 + y = rng.randint(0, 3, size=n_samples) + X = _enforce_estimator_tags_X(estimator, X) + y = _enforce_estimator_tags_y(estimator, y) + X = sparse_container(X) + + tags = get_tags(estimator) + if tags.input_tags.sparse: + try: + estimator.fit(X, y) # should pass + except Exception as e: + err_msg = ( + f"Estimator {name} raised an exception. " + f"The tag self.input_tags.sparse={tags.input_tags.sparse} " + "might not be consistent with the estimator's ability to " + "handle sparse data (i.e. controlled by the parameter `accept_sparse`" + " in `validate_data` or `check_array` functions)." + ) + raise AssertionError(err_msg) from e + else: + err_msg = ( + f"Estimator {name} raised an exception. " + "The estimator failed when fitted on sparse data in accordance " + f"with its tag self.input_tags.sparse={tags.input_tags.sparse} " + "but didn't raise the appropriate error: error message should " + "state explicitly that sparse input is not supported if this is " + "not the case, e.g. by using check_array(X, accept_sparse=False)." + ) + try: + estimator.fit(X, y) # should fail with appropriate error + except (ValueError, TypeError) as e: + if re.search("[Ss]parse", str(e)): + # Got the right error type and mentioning sparse issue + return + raise AssertionError(err_msg) from e + except Exception as e: + raise AssertionError(err_msg) from e + raise AssertionError( + f"Estimator {name} didn't fail when fitted on sparse data " + "but should have according to its tag " + f"self.input_tags.sparse={tags.input_tags.sparse}. " + f"The tag is inconsistent and must be fixed." + ) + + def _check_estimator_sparse_container(name, estimator_orig, sparse_type): rng = np.random.RandomState(0) X = rng.uniform(size=(40, 3)) diff --git a/sklearn/utils/tests/test_estimator_checks.py b/sklearn/utils/tests/test_estimator_checks.py index 7caf05f3d327f..b805bc1209f0c 100644 --- a/sklearn/utils/tests/test_estimator_checks.py +++ b/sklearn/utils/tests/test_estimator_checks.py @@ -72,6 +72,7 @@ check_estimator_repr, check_estimator_sparse_array, check_estimator_sparse_matrix, + check_estimator_sparse_tag, check_estimator_tags_renamed, check_estimators_nan_inf, check_estimators_overwrite_params, @@ -508,7 +509,8 @@ def __sklearn_tags__(self): class RequiresPositiveXRegressor(LinearRegression): def fit(self, X, y): - X, y = validate_data(self, X, y, multi_output=True) + # reject sparse X to be able to call (X < 0).any() + X, y = validate_data(self, X, y, accept_sparse=False, multi_output=True) if (X < 0).any(): raise ValueError("Negative values in data passed to X.") return super().fit(X, y) @@ -516,12 +518,14 @@ def fit(self, X, y): def __sklearn_tags__(self): tags = super().__sklearn_tags__() tags.input_tags.positive_only = True + # reject sparse X to be able to call (X < 0).any() + tags.input_tags.sparse = False return tags class RequiresPositiveYRegressor(LinearRegression): def fit(self, X, y): - X, y = validate_data(self, X, y, multi_output=True) + X, y = validate_data(self, X, y, accept_sparse=True, multi_output=True) if (y <= 0).any(): raise ValueError("negative y values not supported!") return super().fit(X, y) @@ -845,6 +849,53 @@ def test_check_outlier_corruption(): check_outlier_corruption(1, 2, decision) +def test_check_estimator_sparse_tag(): + """Test that check_estimator_sparse_tag raises error when sparse tag is + misaligned.""" + + class EstimatorWithSparseConfig(BaseEstimator): + def __init__(self, tag_sparse, accept_sparse, fit_error=None): + self.tag_sparse = tag_sparse + self.accept_sparse = accept_sparse + self.fit_error = fit_error + + def fit(self, X, y=None): + if self.fit_error: + raise self.fit_error + validate_data(self, X, y, accept_sparse=self.accept_sparse) + return self + + def __sklearn_tags__(self): + tags = super().__sklearn_tags__() + tags.input_tags.sparse = self.tag_sparse + return tags + + test_cases = [ + {"tag_sparse": True, "accept_sparse": True, "error_type": None}, + {"tag_sparse": False, "accept_sparse": False, "error_type": None}, + {"tag_sparse": False, "accept_sparse": True, "error_type": AssertionError}, + {"tag_sparse": True, "accept_sparse": False, "error_type": AssertionError}, + ] + + for test_case in test_cases: + estimator = EstimatorWithSparseConfig( + test_case["tag_sparse"], + test_case["accept_sparse"], + ) + if test_case["error_type"] is None: + check_estimator_sparse_tag(estimator.__class__.__name__, estimator) + else: + with raises(test_case["error_type"]): + check_estimator_sparse_tag(estimator.__class__.__name__, estimator) + + # estimator `tag_sparse=accept_sparse=False` fails on sparse data + # but does not raise the appropriate error + for fit_error in [TypeError("unexpected error"), KeyError("other error")]: + estimator = EstimatorWithSparseConfig(False, False, fit_error) + with raises(AssertionError): + check_estimator_sparse_tag(estimator.__class__.__name__, estimator) + + def test_check_estimator_transformer_no_mixin(): # check that TransformerMixin is not required for transformer tests to run # but it fails since the tag is not set From 861e526de74a658d743de46281f1fbfaffbb8f8d Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?J=C3=A9r=C3=A9mie=20du=20Boisberranger?= Date: Thu, 2 Jan 2025 15:39:46 +0100 Subject: [PATCH 132/159] DOC Update maintainers doc now that we use towncrier (#30455) Co-authored-by: Guillaume Lemaitre --- doc/developers/maintainer.rst.template | 84 ++++++++++++++++++-------- 1 file changed, 60 insertions(+), 24 deletions(-) diff --git a/doc/developers/maintainer.rst.template b/doc/developers/maintainer.rst.template index a9877f7dd8c47..9c39d00775557 100644 --- a/doc/developers/maintainer.rst.template +++ b/doc/developers/maintainer.rst.template @@ -118,6 +118,7 @@ Reference Steps * [ ] Update the sklearn dev0 version in main branch {%- endif %} * [ ] Set the version number in the release branch + * [ ] Generate the changelog in the release branch * [ ] Check that the wheels for the release can be built successfully * [ ] Merge the PR with `[cd build]` commit message to upload wheels to the staging repo * [ ] Upload the wheels and source tarball to https://test.pypi.org @@ -125,8 +126,10 @@ Reference Steps * [ ] Confirm bot detected at https://github.com/conda-forge/scikit-learn-feedstock and wait for merge * [ ] Upload the wheels and source tarball to PyPI + {%- if key != "rc" %} * [ ] Update news and what's new date in main branch * [ ] Backport news and what's new date in release branch + {%- endif %} {%- if key == "final" %} * [ ] Update symlink for stable in https://github.com/scikit-learn/scikit-learn.github.io {%- endif %} @@ -139,17 +142,62 @@ Reference Steps {%- endif %} {% if key == "rc" %} - - Create a PR from `main` and targeting `main` to increment the dev0 `__version__` - variable in `sklearn/__init__.py`. This means while we are in the release - candidate period, the latest stable is two version behind the `main` branch, - instead of one. In this PR targeting `main`, you should also include a new what's - new file under the `doc/whats_new/` directory so that we prepare the - changelog for the next release. + - Create a PR from `main` and targeting `main` to prepare for the next version. In + this PR you need to: + + - Increment the dev0 `__version__` variable in `sklearn/__init__.py`. This means + that while we are in the release candidate period, the latest stable is two + versions behind the `main` branch, instead of one. + + - Include a new what's new file under the `doc/whats_new/` directory. Don't forget + to add an entry for this new file in `doc/whats_new.rst`. + + - Change the what's new file to the newly created one in the `filename` field of + the `tool.towncrier` section in `pyproject.toml`. + {% endif %} - In the release branch, change the version number `__version__` in `sklearn/__init__.py` to `{{ version_full }}`. + - In the release branch, generate the changelog for the incoming version, i.e + `doc/whats_new/{{ version_short }}.rst`. + {%- if key == "rc" %} + During the RC period we want to keep the fragments when we generate the changelog + because we'll generate it again for the final release, including the changes that + may happen in between: + + .. prompt:: bash + + towncrier build --keep --version {{ version_short}}.0 + {%- else -%} + For a non RC release, push a commit where you: + + - generate the changelog, not keeping the fragments. + + .. prompt:: bash + + towncrier build --version {{ version_full}} + + {%- if key == "final" %} + - link the release highlights example + {%- endif %} + - add the list of contributor names. Suppose that the tag of the last release in + the previous major/minor version is `{{ previous_tag }}`, then you can use the + following command to retrieve the list of contributor names: + + .. prompt:: bash + + git shortlog -s {{ previous_tag }}.. | + cut -f2- | + sort --ignore-case | + tr "\n" ";" | + sed "s/;/, /g;s/, $//" | + fold -s + + Then create a PR targeting the `main` branch and cherry-pick this commit there. + {%- endif %} + - Trigger the wheel builder with the `[cd build]` commit marker. See also the `workflow runs of the wheel builder `_. @@ -206,6 +254,12 @@ Reference Steps https://github.com/conda-forge/scikit-learn-feedstock. If not, submit a PR for the release, targeting the `{% if key == "rc" %}rc{% else %}main{% endif %}` branch. + {%- if key == "rc" %} + Make sure to update the PR such that it will be synchronized with the `main` + branch. In particular, backport migrations that may have been added since the last + release. + {% endif %} + - Trigger the `PyPI publishing workflow `_ again, but this time to upload the artifacts to the real https://pypi.org/. To do @@ -246,24 +300,6 @@ Reference Steps twine upload dist/* {% if key != "rc" %} - - In the `main` branch, edit the corresponding file in the `doc/whats_new` directory - to update the release date - {%- if key == "final" %}, link the release highlights example,{% endif %} - and add the list of contributor names. Suppose that the tag of the last release in - the previous major/minor version is `{{ previous_tag }}`, then you can use the - following command to retrieve the list of contributor names: - - .. prompt:: bash - - git shortlog -s {{ previous_tag }}.. | - cut -f2- | - sort --ignore-case | - tr "\n" ";" | - sed "s/;/, /g;s/, $//" | - fold -s - - Then cherry-pick it in the release branch. - - In the `main` branch, edit `doc/templates/index.html` to change the "News" section in the landing page, along with the month of the release. {%- if key == "final" %} From fad237ed369427a2048be8c6cd3dace980eb86c9 Mon Sep 17 00:00:00 2001 From: ThorbenMaa <117150878+ThorbenMaa@users.noreply.github.com> Date: Thu, 2 Jan 2025 15:40:48 +0100 Subject: [PATCH 133/159] DOC add details regarding `decision_function` in the docstring of metrics (#30311) Co-authored-by: Guillaume Lemaitre --- sklearn/metrics/_ranking.py | 14 ++++++++++++++ 1 file changed, 14 insertions(+) diff --git a/sklearn/metrics/_ranking.py b/sklearn/metrics/_ranking.py index 958ab3be9cc0d..0303eece69573 100644 --- a/sklearn/metrics/_ranking.py +++ b/sklearn/metrics/_ranking.py @@ -145,6 +145,8 @@ def average_precision_score( Target scores, can either be probability estimates of the positive class, confidence values, or non-thresholded measure of decisions (as returned by :term:`decision_function` on some classifiers). + For :term:`decision_function` scores, values greater than or equal to + zero should indicate the positive class. average : {'micro', 'samples', 'weighted', 'macro'} or None, \ default='macro' @@ -293,6 +295,8 @@ def det_curve(y_true, y_score, pos_label=None, sample_weight=None): Target scores, can either be probability estimates of the positive class, confidence values, or non-thresholded measure of decisions (as returned by "decision_function" on some classifiers). + For :term:`decision_function` scores, values greater than or equal to + zero should indicate the positive class. pos_label : int, float, bool or str, default=None The label of the positive class. @@ -914,6 +918,8 @@ def precision_recall_curve( Target scores, can either be probability estimates of the positive class, or non-thresholded measure of decisions (as returned by `decision_function` on some classifiers). + For :term:`decision_function` scores, values greater than or equal to + zero should indicate the positive class. pos_label : int, float, bool or str, default=None The label of the positive class. @@ -1066,6 +1072,8 @@ def roc_curve( Target scores, can either be probability estimates of the positive class, confidence values, or non-thresholded measure of decisions (as returned by "decision_function" on some classifiers). + For :term:`decision_function` scores, values greater than or equal to + zero should indicate the positive class. pos_label : int, float, bool or str, default=None The label of the positive class. @@ -1220,6 +1228,8 @@ def label_ranking_average_precision_score(y_true, y_score, *, sample_weight=None Target scores, can either be probability estimates of the positive class, confidence values, or non-thresholded measure of decisions (as returned by "decision_function" on some classifiers). + For :term:`decision_function` scores, values greater than or equal to + zero should indicate the positive class. sample_weight : array-like of shape (n_samples,), default=None Sample weights. @@ -1320,6 +1330,8 @@ def coverage_error(y_true, y_score, *, sample_weight=None): Target scores, can either be probability estimates of the positive class, confidence values, or non-thresholded measure of decisions (as returned by "decision_function" on some classifiers). + For :term:`decision_function` scores, values greater than or equal to + zero should indicate the positive class. sample_weight : array-like of shape (n_samples,), default=None Sample weights. @@ -1395,6 +1407,8 @@ def label_ranking_loss(y_true, y_score, *, sample_weight=None): Target scores, can either be probability estimates of the positive class, confidence values, or non-thresholded measure of decisions (as returned by "decision_function" on some classifiers). + For :term:`decision_function` scores, values greater than or equal to + zero should indicate the positive class. sample_weight : array-like of shape (n_samples,), default=None Sample weights. From 1a2bcb5444044b122e53bc3c5239838a0c2c20be Mon Sep 17 00:00:00 2001 From: "Thomas J. Fan" Date: Thu, 2 Jan 2025 10:48:33 -0500 Subject: [PATCH 134/159] FIX Uses log2 in tree building (#30557) --- .../sklearn.tree/30557.fix.rst | 2 ++ sklearn/tree/_partitioner.pyx | 13 +++++++---- sklearn/tree/tests/test_tree.py | 23 +++++++++++++++++++ 3 files changed, 34 insertions(+), 4 deletions(-) create mode 100644 doc/whats_new/upcoming_changes/sklearn.tree/30557.fix.rst diff --git a/doc/whats_new/upcoming_changes/sklearn.tree/30557.fix.rst b/doc/whats_new/upcoming_changes/sklearn.tree/30557.fix.rst new file mode 100644 index 0000000000000..86ba5c9a88e9d --- /dev/null +++ b/doc/whats_new/upcoming_changes/sklearn.tree/30557.fix.rst @@ -0,0 +1,2 @@ +- Use `log2` instead of `ln` for building trees to maintain behavior of previous + versions. By `Thomas Fan`_ diff --git a/sklearn/tree/_partitioner.pyx b/sklearn/tree/_partitioner.pyx index 195b7e2caf67c..575a9413e09ca 100644 --- a/sklearn/tree/_partitioner.pyx +++ b/sklearn/tree/_partitioner.pyx @@ -11,7 +11,7 @@ and sparse data stored in a Compressed Sparse Column (CSC) format. # SPDX-License-Identifier: BSD-3-Clause from cython cimport final -from libc.math cimport isnan, log +from libc.math cimport isnan, log2 from libc.stdlib cimport qsort from libc.string cimport memcpy @@ -503,8 +503,8 @@ cdef class SparsePartitioner: # O(n_samples * log(n_indices)) is the running time of binary # search and O(n_indices) is the running time of index_to_samples # approach. - if ((1 - self.is_samples_sorted) * n_samples * log(n_samples) + - n_samples * log(n_indices) < EXTRACT_NNZ_SWITCH * n_indices): + if ((1 - self.is_samples_sorted) * n_samples * log2(n_samples) + + n_samples * log2(n_indices) < EXTRACT_NNZ_SWITCH * n_indices): extract_nnz_binary_search(X_indices, X_data, indptr_start, indptr_end, samples, self.start, self.end, @@ -702,12 +702,17 @@ cdef inline void shift_missing_values_to_left_if_required( best.pos += best.n_missing +def _py_sort(float32_t[::1] feature_values, intp_t[::1] samples, intp_t n): + """Used for testing sort.""" + sort(&feature_values[0], &samples[0], n) + + # Sort n-element arrays pointed to by feature_values and samples, simultaneously, # by the values in feature_values. Algorithm: Introsort (Musser, SP&E, 1997). cdef inline void sort(float32_t* feature_values, intp_t* samples, intp_t n) noexcept nogil: if n == 0: return - cdef intp_t maxd = 2 * log(n) + cdef intp_t maxd = 2 * log2(n) introsort(feature_values, samples, n, maxd) diff --git a/sklearn/tree/tests/test_tree.py b/sklearn/tree/tests/test_tree.py index cb13cf83cc782..dc36bd6dc6a3e 100644 --- a/sklearn/tree/tests/test_tree.py +++ b/sklearn/tree/tests/test_tree.py @@ -36,6 +36,7 @@ DENSE_SPLITTERS, SPARSE_SPLITTERS, ) +from sklearn.tree._partitioner import _py_sort from sklearn.tree._tree import ( NODE_DTYPE, TREE_LEAF, @@ -2814,3 +2815,25 @@ def test_build_pruned_tree_infinite_loop(): ValueError, match="Node has reached a leaf in the original tree" ): _build_pruned_tree_py(pruned_tree, tree.tree_, leave_in_subtree) + + +def test_sort_log2_build(): + """Non-regression test for gh-30554. + + Using log2 and log in sort correctly sorts feature_values, but the tie breaking is + different which can results in placing samples in a different order. + """ + rng = np.random.default_rng(75) + some = rng.normal(loc=0.0, scale=10.0, size=10).astype(np.float32) + feature_values = np.concatenate([some] * 5) + samples = np.arange(50) + _py_sort(feature_values, samples, 50) + # fmt: off + # no black reformatting for this specific array + expected_samples = [ + 0, 40, 30, 20, 10, 29, 39, 19, 49, 9, 45, 15, 35, 5, 25, 11, 31, + 41, 1, 21, 22, 12, 2, 42, 32, 23, 13, 43, 3, 33, 6, 36, 46, 16, + 26, 4, 14, 24, 34, 44, 27, 47, 7, 37, 17, 8, 38, 48, 28, 18 + ] + # fmt: on + assert_array_equal(samples, expected_samples) From 35266525f513ebaeeefd0f4c81b04775491e03da Mon Sep 17 00:00:00 2001 From: Haesun Park Date: Fri, 3 Jan 2025 00:49:33 +0900 Subject: [PATCH 135/159] MNT Fix a typo (#30570) --- sklearn/preprocessing/_polynomial.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/sklearn/preprocessing/_polynomial.py b/sklearn/preprocessing/_polynomial.py index 6bf85c4d6f661..de0308cda3b06 100644 --- a/sklearn/preprocessing/_polynomial.py +++ b/sklearn/preprocessing/_polynomial.py @@ -392,7 +392,7 @@ def fit(self, X, y=None): ) raise ValueError(msg) # We also record the number of output features for - # _max_degree = 0 + # _min_degree = 0 self._n_out_full = self._num_combinations( n_features=n_features, min_degree=0, From fc624f301badb713719c92946cff7e89b24c88a4 Mon Sep 17 00:00:00 2001 From: Stefano Gaspari <151990721+stefanogaspari@users.noreply.github.com> Date: Thu, 2 Jan 2025 20:26:51 +0400 Subject: [PATCH 136/159] DOC add link to plot_covariance_estimation example in docstrings and userguide (#30429) --- sklearn/covariance/_shrunk_covariance.py | 6 ++++++ 1 file changed, 6 insertions(+) diff --git a/sklearn/covariance/_shrunk_covariance.py b/sklearn/covariance/_shrunk_covariance.py index 2a5e09f2ca8f3..ab875d83b30ec 100644 --- a/sklearn/covariance/_shrunk_covariance.py +++ b/sklearn/covariance/_shrunk_covariance.py @@ -563,6 +563,9 @@ class LedoitWolf(EmpiricalCovariance): [0.1616..., 0.8022...]]) >>> cov.location_ array([ 0.0595... , -0.0075...]) + + See also :ref:`sphx_glr_auto_examples_covariance_plot_covariance_estimation.py` + for a more detailed example. """ _parameter_constraints: dict = { @@ -780,6 +783,9 @@ class OAS(EmpiricalCovariance): [-1.2431..., 3.3889...]]) >>> oas.shrinkage_ np.float64(0.0195...) + + See also :ref:`sphx_glr_auto_examples_covariance_plot_covariance_estimation.py` + for a more detailed example. """ @_fit_context(prefer_skip_nested_validation=True) From 26637bdc706744b2ad251290260e8fe8ed9a8e49 Mon Sep 17 00:00:00 2001 From: Lucas Colley Date: Fri, 3 Jan 2025 18:23:52 +0000 Subject: [PATCH 137/159] DEV add missing dep to lock-file script docstring (#30574) --- build_tools/update_environments_and_lock_files.py | 1 + 1 file changed, 1 insertion(+) diff --git a/build_tools/update_environments_and_lock_files.py b/build_tools/update_environments_and_lock_files.py index 829b35ff204ae..312a54dba4dad 100644 --- a/build_tools/update_environments_and_lock_files.py +++ b/build_tools/update_environments_and_lock_files.py @@ -26,6 +26,7 @@ with pip. To run this script you need: +- conda - conda-lock. The version should match the one used in the CI in sklearn/_min_dependencies.py - pip-tools From 579b0100b461ac5e29bc8602f78fce22d674e6b5 Mon Sep 17 00:00:00 2001 From: Yao Xiao <108576690+Charlie-XIAO@users.noreply.github.com> Date: Mon, 6 Jan 2025 04:12:39 +0800 Subject: [PATCH 138/159] DOC avoid version switcher dropdown being cut off by right boundary (#30581) --- doc/scss/custom.scss | 23 +++++++++++++++-------- 1 file changed, 15 insertions(+), 8 deletions(-) diff --git a/doc/scss/custom.scss b/doc/scss/custom.scss index f653ff66d4622..381c4173156a4 100644 --- a/doc/scss/custom.scss +++ b/doc/scss/custom.scss @@ -14,15 +14,22 @@ code.literal { /* Version switcher */ -.version-switcher__menu a.list-group-item.sk-avail-docs-link { - display: flex; - align-items: center; +.version-switcher__menu.dropdown-menu { + // The version switcher is aligned right so we need to avoid the dropdown menu + // to be cut off by the right boundary + left: unset; + right: 0; + + a.list-group-item.sk-avail-docs-link { + display: flex; + align-items: center; - &:after { - content: var(--pst-icon-external-link); - font: var(--fa-font-solid); - font-size: 0.75rem; - margin-left: 0.5rem; + &:after { + content: var(--pst-icon-external-link); + font: var(--fa-font-solid); + font-size: 0.75rem; + margin-left: 0.5rem; + } } } From 728bb901bce0bb2b140814b1cb3105b8f64ad15d Mon Sep 17 00:00:00 2001 From: Yao Xiao <108576690+Charlie-XIAO@users.noreply.github.com> Date: Mon, 6 Jan 2025 04:15:25 +0800 Subject: [PATCH 139/159] DOC fix formatting in maintainer information - releasing (#30578) --- doc/developers/maintainer.rst.template | 49 +++++++++++++------------- 1 file changed, 25 insertions(+), 24 deletions(-) diff --git a/doc/developers/maintainer.rst.template b/doc/developers/maintainer.rst.template index 9c39d00775557..dc39f68784b46 100644 --- a/doc/developers/maintainer.rst.template +++ b/doc/developers/maintainer.rst.template @@ -144,23 +144,22 @@ Reference Steps {% if key == "rc" %} - Create a PR from `main` and targeting `main` to prepare for the next version. In this PR you need to: - + - Increment the dev0 `__version__` variable in `sklearn/__init__.py`. This means that while we are in the release candidate period, the latest stable is two versions behind the `main` branch, instead of one. - + - Include a new what's new file under the `doc/whats_new/` directory. Don't forget to add an entry for this new file in `doc/whats_new.rst`. - Change the what's new file to the newly created one in the `filename` field of - the `tool.towncrier` section in `pyproject.toml`. - + the `tool.towncrier` section in `pyproject.toml`. {% endif %} - In the release branch, change the version number `__version__` in `sklearn/__init__.py` to `{{ version_full }}`. - - In the release branch, generate the changelog for the incoming version, i.e + - In the release branch, generate the changelog for the incoming version, i.e., `doc/whats_new/{{ version_short }}.rst`. {%- if key == "rc" %} During the RC period we want to keep the fragments when we generate the changelog @@ -169,31 +168,33 @@ Reference Steps .. prompt:: bash - towncrier build --keep --version {{ version_short}}.0 - {%- else -%} + towncrier build --keep --version {{ version_short }}.0 + + {%- else %} For a non RC release, push a commit where you: - - - generate the changelog, not keeping the fragments. - .. prompt:: bash + - Generate the changelog, not keeping the fragments. + + .. prompt:: bash - towncrier build --version {{ version_full}} + towncrier build --version {{ version_full }} - {%- if key == "final" %} - - link the release highlights example - {%- endif %} - - add the list of contributor names. Suppose that the tag of the last release in - the previous major/minor version is `{{ previous_tag }}`, then you can use the - following command to retrieve the list of contributor names: + {% if key == "final" -%} + - Link the release highlights example. + {% endif -%} - .. prompt:: bash + - Add the list of contributor names. Suppose that the tag of the last release in + the previous major/minor version is `{{ previous_tag }}`, then you can use the + following command to retrieve the list of contributor names: + + .. prompt:: bash - git shortlog -s {{ previous_tag }}.. | - cut -f2- | - sort --ignore-case | - tr "\n" ";" | - sed "s/;/, /g;s/, $//" | - fold -s + git shortlog -s {{ previous_tag }}.. | + cut -f2- | + sort --ignore-case | + tr "\n" ";" | + sed "s/;/, /g;s/, $//" | + fold -s Then create a PR targeting the `main` branch and cherry-pick this commit there. {%- endif %} From a317d0ed8b165f98625bcd5994024fe713fd529b Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Lo=C3=AFc=20Est=C3=A8ve?= Date: Mon, 6 Jan 2025 09:15:20 +0100 Subject: [PATCH 140/159] CI Use scipy 1.15 rather than scipy-dev for free-threaded build (#30582) --- build_tools/azure/install.sh | 16 ++++++++-------- 1 file changed, 8 insertions(+), 8 deletions(-) diff --git a/build_tools/azure/install.sh b/build_tools/azure/install.sh index 44fd9ebe64d5a..c009e2972036e 100755 --- a/build_tools/azure/install.sh +++ b/build_tools/azure/install.sh @@ -68,14 +68,14 @@ python_environment_install_and_activate() { # Install additional packages on top of the lock-file in specific cases if [[ "$DISTRIB" == "conda-free-threaded" ]]; then - # TODO We install scipy and cython from - # scientific-python-nightly-wheels. When there are conda-forge packages - # for scipy and cython, we can update - # build_tools/update_environments_and_lock_files.py and remove the - # lines below - dev_anaconda_url=https://pypi.anaconda.org/scientific-python-nightly-wheels/simple - dev_packages="scipy Cython" - pip install --pre --upgrade --timeout=60 --extra-index $dev_anaconda_url $dev_packages --only-binary :all: + # TODO: we install scipy with pip. When there is a conda-forge package, + # we can update build_tools/update_environments_and_lock_files.py and + # remove the line below + pip install scipy --only-binary :all: + # TODO: we install cython 3.1 alpha from pip. When there is a conda-forge package, + # we can update build_tools/update_environments_and_lock_files.py and + # remove the line below + pip install --pre cython --only-binary :all: elif [[ "$DISTRIB" == "conda-pip-scipy-dev" ]]; then echo "Installing development dependency wheels" From 69e49153b244cc3e5905a853edaeeee680c32cd1 Mon Sep 17 00:00:00 2001 From: Hugo Boulenger Date: Mon, 6 Jan 2025 12:02:05 +0100 Subject: [PATCH 141/159] DOC Clarify chi2 usage with continuous data (#30473) --- sklearn/feature_selection/_univariate_selection.py | 5 ++++- 1 file changed, 4 insertions(+), 1 deletion(-) diff --git a/sklearn/feature_selection/_univariate_selection.py b/sklearn/feature_selection/_univariate_selection.py index 996d5423995d2..855ba5ad70f12 100644 --- a/sklearn/feature_selection/_univariate_selection.py +++ b/sklearn/feature_selection/_univariate_selection.py @@ -203,9 +203,12 @@ def chi2(X, y): This score can be used to select the `n_features` features with the highest values for the test chi-squared statistic from X, which must - contain only **non-negative features** such as booleans or frequencies + contain only **non-negative integer feature values** such as booleans or frequencies (e.g., term counts in document classification), relative to the classes. + If some of your features are continuous, you need to bin them, for + example by using :class:`~sklearn.preprocessing.KBinsDiscretizer`. + Recall that the chi-square test measures dependence between stochastic variables, so using this function "weeds out" the features that are the most likely to be independent of class and therefore irrelevant for From 0c5e0c814af79f18537df07a72e2c0c72f08d203 Mon Sep 17 00:00:00 2001 From: scikit-learn-bot Date: Mon, 6 Jan 2025 14:25:57 +0100 Subject: [PATCH 142/159] :lock: :robot: CI Update lock files for array-api CI build(s) :lock: :robot: (#30592) Co-authored-by: Lock file bot --- ...a_forge_cuda_array-api_linux-64_conda.lock | 24 +++++++++---------- 1 file changed, 12 insertions(+), 12 deletions(-) diff --git a/build_tools/github/pylatest_conda_forge_cuda_array-api_linux-64_conda.lock b/build_tools/github/pylatest_conda_forge_cuda_array-api_linux-64_conda.lock index f9ea68848447a..bb5aa3b1f43b7 100644 --- a/build_tools/github/pylatest_conda_forge_cuda_array-api_linux-64_conda.lock +++ b/build_tools/github/pylatest_conda_forge_cuda_array-api_linux-64_conda.lock @@ -37,7 +37,7 @@ https://conda.anaconda.org/conda-forge/linux-64/libutf8proc-2.9.0-hb9d3cd8_1.con https://conda.anaconda.org/conda-forge/linux-64/libuv-1.49.2-hb9d3cd8_0.conda#070e3c9ddab77e38799d5c30b109c633 https://conda.anaconda.org/conda-forge/linux-64/libwebp-base-1.5.0-h851e524_0.conda#63f790534398730f59e1b899c3644d4a https://conda.anaconda.org/conda-forge/linux-64/libzlib-1.3.1-hb9d3cd8_2.conda#edb0dca6bc32e4f4789199455a1dbeb8 -https://conda.anaconda.org/conda-forge/linux-64/openssl-3.4.0-hb9d3cd8_0.conda#23cc74f77eb99315c0360ec3533147a9 +https://conda.anaconda.org/conda-forge/linux-64/openssl-3.4.0-h7b32b05_1.conda#4ce6875f75469b2757a65e10a5d05e31 https://conda.anaconda.org/conda-forge/linux-64/pthread-stubs-0.4-hb9d3cd8_1002.conda#b3c17d95b5a10c6e64a21fa17573e70e https://conda.anaconda.org/conda-forge/linux-64/xorg-libice-1.1.2-hb9d3cd8_0.conda#fb901ff28063514abb6046c9ec2c4a45 https://conda.anaconda.org/conda-forge/linux-64/xorg-libxau-1.0.12-hb9d3cd8_0.conda#f6ebe2cb3f82ba6c057dde5d9debe4f7 @@ -50,7 +50,7 @@ https://conda.anaconda.org/conda-forge/linux-64/bzip2-1.0.8-h4bc722e_7.conda#62e https://conda.anaconda.org/conda-forge/linux-64/expat-2.6.4-h5888daf_0.conda#1d6afef758879ef5ee78127eb4cd2c4a https://conda.anaconda.org/conda-forge/linux-64/gflags-2.2.2-h5888daf_1005.conda#d411fc29e338efb48c5fd4576d71d881 https://conda.anaconda.org/conda-forge/linux-64/keyutils-1.6.1-h166bdaf_0.tar.bz2#30186d27e2c9fa62b45fb1476b7200e3 -https://conda.anaconda.org/conda-forge/linux-64/libabseil-20240722.0-cxx17_hbbce691_2.conda#48099a5f37e331f5570abbf22b229961 +https://conda.anaconda.org/conda-forge/linux-64/libabseil-20240722.0-cxx17_hbbce691_4.conda#488f260ccda0afaf08acb286db439c2f https://conda.anaconda.org/conda-forge/linux-64/libbrotlidec-1.1.0-hb9d3cd8_2.conda#9566f0bd264fbd463002e759b8a82401 https://conda.anaconda.org/conda-forge/linux-64/libbrotlienc-1.1.0-hb9d3cd8_2.conda#06f70867945ea6a84d35836af780f1de https://conda.anaconda.org/conda-forge/linux-64/libev-4.33-hd590300_2.conda#172bf1cd1ff8629f2b1179945ed45055 @@ -69,7 +69,7 @@ https://conda.anaconda.org/conda-forge/linux-64/libuuid-2.38.1-h0b41bf4_0.conda# https://conda.anaconda.org/conda-forge/linux-64/libxcb-1.17.0-h8a09558_0.conda#92ed62436b625154323d40d5f2f11dd7 https://conda.anaconda.org/conda-forge/linux-64/libxcrypt-4.4.36-hd590300_1.conda#5aa797f8787fe7a17d1b0821485b5adc https://conda.anaconda.org/conda-forge/linux-64/lz4-c-1.10.0-h5888daf_1.conda#9de5350a85c4a20c685259b889aa6393 -https://conda.anaconda.org/conda-forge/linux-64/mysql-common-9.0.1-h266115a_3.conda#9411c61ff1070b5e065b32840c39faa5 +https://conda.anaconda.org/conda-forge/linux-64/mysql-common-9.0.1-h266115a_4.conda#9a5a1e3db671a8258c3f2c1969a4c654 https://conda.anaconda.org/conda-forge/linux-64/ncurses-6.5-he02047a_1.conda#70caf8bb6cf39a0b6b7efc885f51c0fe https://conda.anaconda.org/conda-forge/linux-64/pixman-0.44.2-h29eaf8c_0.conda#5e2a7acfa2c24188af39e7944e1b3604 https://conda.anaconda.org/conda-forge/linux-64/s2n-1.5.10-hb5b8611_0.conda#999f3673f2a011f59287f2969e3749e4 @@ -93,7 +93,7 @@ https://conda.anaconda.org/conda-forge/linux-64/libgfortran-ng-14.2.0-h69a702a_1 https://conda.anaconda.org/conda-forge/linux-64/libnghttp2-1.64.0-h161d5f1_0.conda#19e57602824042dfd0446292ef90488b https://conda.anaconda.org/conda-forge/linux-64/libopenblas-0.3.28-pthreads_h94d23a6_1.conda#62857b389e42b36b686331bec0922050 https://conda.anaconda.org/conda-forge/linux-64/libprotobuf-5.28.2-h5b01275_0.conda#ab0bff36363bec94720275a681af8b83 -https://conda.anaconda.org/conda-forge/linux-64/libre2-11-2024.07.02-hbbce691_1.conda#2124de47357b7a516c0a3efd8f88c143 +https://conda.anaconda.org/conda-forge/linux-64/libre2-11-2024.07.02-hbbce691_2.conda#b2fede24428726dd867611664fb372e8 https://conda.anaconda.org/conda-forge/linux-64/libthrift-0.21.0-h0e7cc3e_0.conda#dcb95c0a98ba9ff737f7ae482aef7833 https://conda.anaconda.org/conda-forge/linux-64/nccl-2.23.4.1-h03a54cd_3.conda#5ea398a88c7271b2e3ec56cd33da424f https://conda.anaconda.org/conda-forge/linux-64/ninja-1.12.1-h297d8ca_0.conda#3aa1c7e292afeff25a0091ddd7c69b72 @@ -111,7 +111,7 @@ https://conda.anaconda.org/conda-forge/linux-64/zstd-1.5.6-ha6fb4c9_0.conda#4d05 https://conda.anaconda.org/conda-forge/linux-64/aws-c-event-stream-0.5.0-h7959bf6_11.conda#9b3fb60fe57925a92f399bc3fc42eccf https://conda.anaconda.org/conda-forge/linux-64/aws-c-http-0.9.2-hefd7a92_4.conda#5ce4df662d32d3123ea8da15571b6f51 https://conda.anaconda.org/conda-forge/linux-64/brotli-1.1.0-hb9d3cd8_2.conda#98514fe74548d768907ce7a13f680e8f -https://conda.anaconda.org/conda-forge/linux-64/cudnn-9.3.0.75-h50b6be5_1.conda#660be3f87f4cd47853bedaebce9ec76e +https://conda.anaconda.org/conda-forge/linux-64/cudnn-9.3.0.75-hf36481c_2.conda#4317195ce030bb551f3853bf928d436f https://conda.anaconda.org/conda-forge/linux-64/fontconfig-2.15.0-h7e30c49_1.conda#8f5b0b297b59e1ac160ad4beec99dbee https://conda.anaconda.org/conda-forge/linux-64/krb5-1.21.3-h659f571_0.conda#3f43953b7d3fb3aaa1d0d0723d91e368 https://conda.anaconda.org/conda-forge/linux-64/libblas-3.9.0-26_linux64_openblas.conda#ac52800af2e0c0e7dac770b435ce768a @@ -121,11 +121,11 @@ https://conda.anaconda.org/conda-forge/linux-64/libhiredis-1.0.2-h2cc385e_0.tar. https://conda.anaconda.org/conda-forge/linux-64/libtiff-4.7.0-hd9ff511_3.conda#0ea6510969e1296cc19966fad481f6de https://conda.anaconda.org/conda-forge/linux-64/libxml2-2.13.5-h8d12d68_1.conda#1a21e49e190d1ffe58531a81b6e400e1 https://conda.anaconda.org/conda-forge/linux-64/mpfr-4.2.1-h90cbb55_3.conda#2eeb50cab6652538eee8fc0bc3340c81 -https://conda.anaconda.org/conda-forge/linux-64/mysql-libs-9.0.1-he0572af_3.conda#dd9da69dd4c2bf798c0b8bd4786cafb5 +https://conda.anaconda.org/conda-forge/linux-64/mysql-libs-9.0.1-he0572af_4.conda#af19508df9d2e9f6894a9076a0857dc7 https://conda.anaconda.org/conda-forge/linux-64/openblas-0.3.28-pthreads_h6ec200e_1.conda#8fe5d50db07e92519cc639cb0aef9b1b https://conda.anaconda.org/conda-forge/linux-64/orc-2.0.3-h97ab989_1.conda#2f46eae652623114e112df13fae311cf https://conda.anaconda.org/conda-forge/linux-64/python-3.12.8-h9e4cc4f_1_cpython.conda#7fd2fd79436d9b473812f14e86746844 -https://conda.anaconda.org/conda-forge/linux-64/re2-2024.07.02-h77b4e00_1.conda#01093ff37c1b5e6bf9f17c0116747d11 +https://conda.anaconda.org/conda-forge/linux-64/re2-2024.07.02-h9925aae_2.conda#e84ddf12bde691e8ec894b00ea829ddf https://conda.anaconda.org/conda-forge/linux-64/xcb-util-image-0.4.0-hb711507_2.conda#a0901183f08b6c7107aab109733a3c91 https://conda.anaconda.org/conda-forge/linux-64/xkeyboard-config-2.43-hb9d3cd8_0.conda#f725c7425d6d7c15e31f3b99a88ea02f https://conda.anaconda.org/conda-forge/linux-64/xorg-libxext-1.3.6-hb9d3cd8_0.conda#febbab7d15033c913d53c7a2c102309d @@ -168,7 +168,7 @@ https://conda.anaconda.org/conda-forge/noarch/networkx-3.4.2-pyh267e887_2.conda# https://conda.anaconda.org/conda-forge/linux-64/openjpeg-2.5.3-h5fbd93e_0.conda#9e5816bc95d285c115a3ebc2f8563564 https://conda.anaconda.org/conda-forge/noarch/packaging-24.2-pyhd8ed1ab_2.conda#3bfed7e6228ebf2f7b9eaa47f1b4e2aa https://conda.anaconda.org/conda-forge/noarch/pluggy-1.5.0-pyhd8ed1ab_1.conda#e9dcbce5f45f9ee500e728ae58b605b6 -https://conda.anaconda.org/conda-forge/noarch/pyparsing-3.2.0-pyhd8ed1ab_2.conda#4c05a2bcf87bb495512374143b57cf28 +https://conda.anaconda.org/conda-forge/noarch/pyparsing-3.2.1-pyhd8ed1ab_0.conda#285e237b8f351e85e7574a2c7bfa6d46 https://conda.anaconda.org/conda-forge/noarch/python-tzdata-2024.2-pyhd8ed1ab_1.conda#c0def296b2f6d2dd7b030c2a7f66bb1f https://conda.anaconda.org/conda-forge/noarch/pytz-2024.1-pyhd8ed1ab_0.conda#3eeeeb9e4827ace8c0c1419c85d590ad https://conda.anaconda.org/conda-forge/noarch/setuptools-75.6.0-pyhff2d567_1.conda#fc80f7995e396cbaeabd23cf46c413dc @@ -192,7 +192,7 @@ https://conda.anaconda.org/conda-forge/linux-64/azure-core-cpp-1.14.0-h5cfcd09_0 https://conda.anaconda.org/conda-forge/linux-64/coverage-7.6.10-py312h178313f_0.conda#df113f58bdfc79c98f5e07b6bd3eb4c2 https://conda.anaconda.org/conda-forge/linux-64/fonttools-4.55.3-py312h178313f_1.conda#bc18c46eda4c2b29431981998507e723 https://conda.anaconda.org/conda-forge/linux-64/gmpy2-2.1.5-py312h7201bc8_3.conda#673ef4d6611f5b4ca7b5c1f8c65a38dc -https://conda.anaconda.org/conda-forge/linux-64/harfbuzz-9.0.0-hda332d3_1.conda#76b32dcf243444aea9c6b804bcfa40b8 +https://conda.anaconda.org/conda-forge/linux-64/harfbuzz-10.1.0-h0b3b770_0.conda#ab1d7d56034814f4c3ed9f69f8c68806 https://conda.anaconda.org/conda-forge/noarch/jinja2-3.1.5-pyhd8ed1ab_0.conda#2752a6ed44105bfb18c9bef1177d9dcd https://conda.anaconda.org/conda-forge/noarch/joblib-1.4.2-pyhd8ed1ab_1.conda#bf8243ee348f3a10a14ed0cae323e0c1 https://conda.anaconda.org/conda-forge/linux-64/libclang-cpp19.1-19.1.6-default_hb5137d0_0.conda#9caebd39281536bf6bcb32f665dd4fbf @@ -203,7 +203,7 @@ https://conda.anaconda.org/conda-forge/linux-64/libmagma-2.8.0-h9ddd185_2.conda# https://conda.anaconda.org/conda-forge/noarch/meson-1.6.1-pyhd8ed1ab_0.conda#0062fb0a7f5da474705d0ce626de12f4 https://conda.anaconda.org/conda-forge/linux-64/numpy-2.2.1-py312h7e784f5_0.conda#6159cab400b61f38579a7692be5e630a https://conda.anaconda.org/conda-forge/linux-64/openldap-2.6.9-he970967_0.conda#ca2de8bbdc871bce41dbf59e51324165 -https://conda.anaconda.org/conda-forge/linux-64/pillow-11.0.0-py312h7b63e92_0.conda#385f46a4df6f97892503a841121a9acf +https://conda.anaconda.org/conda-forge/linux-64/pillow-11.1.0-py312h80c1187_0.conda#d3894405f05b2c0f351d5de3ae26fa9c https://conda.anaconda.org/conda-forge/noarch/pip-24.3.1-pyh8b19718_2.conda#04e691b9fadd93a8a9fad87a81d4fd8f https://conda.anaconda.org/conda-forge/noarch/pyproject-metadata-0.9.0-pyhd8ed1ab_1.conda#1239146a53a383a84633800294120f17 https://conda.anaconda.org/conda-forge/noarch/pytest-8.3.4-pyhd8ed1ab_1.conda#799ed216dc6af62520f32aa39bc1c2bb @@ -226,7 +226,7 @@ https://conda.anaconda.org/conda-forge/linux-64/pandas-2.2.3-py312hf9745cd_1.con https://conda.anaconda.org/conda-forge/linux-64/polars-1.17.1-py312hda0fa55_0.conda#7ac74b8f85b43224508108f850617dad https://conda.anaconda.org/conda-forge/noarch/pytest-cov-6.0.0-pyhd8ed1ab_1.conda#79963c319d1be62c8fd3e34555816e01 https://conda.anaconda.org/conda-forge/noarch/pytest-xdist-3.6.1-pyhd8ed1ab_1.conda#59aad4fb37cabc0bacc73cf344612ddd -https://conda.anaconda.org/conda-forge/linux-64/scipy-1.14.1-py312h62794b6_2.conda#94688dd449f6c092e5f951780235aca1 +https://conda.anaconda.org/conda-forge/linux-64/scipy-1.15.0-py312h180e4f1_0.conda#66004839e9394a241b483436a9742845 https://conda.anaconda.org/conda-forge/noarch/sympy-1.13.3-pyh2585a3b_104.conda#68085d736d2b2f54498832b65059875d https://conda.anaconda.org/conda-forge/linux-64/aws-sdk-cpp-1.11.458-hc430e4a_4.conda#aeefac461bea1f126653c1285cf5af08 https://conda.anaconda.org/conda-forge/linux-64/azure-storage-blobs-cpp-12.13.0-h3cf044e_1.conda#7eb66060455c7a47d9dcdbfa9f46579b @@ -235,7 +235,7 @@ https://conda.anaconda.org/conda-forge/linux-64/cupy-13.3.0-py312h8e83189_2.cond https://conda.anaconda.org/conda-forge/linux-64/libtorch-2.5.1-cuda118_hb34f2e8_303.conda#da799bf557ff6376a1a58f40bddfb293 https://conda.anaconda.org/conda-forge/linux-64/matplotlib-base-3.10.0-py312hd3ec401_0.conda#c27a17a8c54c0d35cf83bbc0de8f7f77 https://conda.anaconda.org/conda-forge/linux-64/pyamg-5.2.1-py312hc39e661_1.conda#372efc32220f0dfb603e5b31ffaefa23 -https://conda.anaconda.org/conda-forge/linux-64/qt6-main-6.8.1-h9d28a51_0.conda#7e8e17c44e7af62c77de7a0158afc35c +https://conda.anaconda.org/conda-forge/linux-64/qt6-main-6.8.1-h588cce1_2.conda#5d2f1f29c025a110a43f9946527623ab https://conda.anaconda.org/conda-forge/linux-64/azure-storage-files-datalake-cpp-12.12.0-ha633028_1.conda#7c1980f89dd41b097549782121a73490 https://conda.anaconda.org/conda-forge/linux-64/pyside6-6.8.1-py312h91f0f75_0.conda#0b7900a6d6f6c441acad5e9ab51001ab https://conda.anaconda.org/conda-forge/linux-64/pytorch-2.5.1-cuda118_py312h919e71f_303.conda#f2fd2356f07999ac24b84b097bb96749 From 400e71835a15f3835b2b1d4b4212adbe510a2110 Mon Sep 17 00:00:00 2001 From: scikit-learn-bot Date: Mon, 6 Jan 2025 14:28:14 +0100 Subject: [PATCH 143/159] :lock: :robot: CI Update lock files for cirrus-arm CI build(s) :lock: :robot: (#30589) Co-authored-by: Lock file bot --- .../pymin_conda_forge_linux-aarch64_conda.lock | 14 +++++++------- 1 file changed, 7 insertions(+), 7 deletions(-) diff --git a/build_tools/cirrus/pymin_conda_forge_linux-aarch64_conda.lock b/build_tools/cirrus/pymin_conda_forge_linux-aarch64_conda.lock index 8ff68226b10ae..0997b149849e3 100644 --- a/build_tools/cirrus/pymin_conda_forge_linux-aarch64_conda.lock +++ b/build_tools/cirrus/pymin_conda_forge_linux-aarch64_conda.lock @@ -28,7 +28,7 @@ https://conda.anaconda.org/conda-forge/linux-aarch64/liblzma-5.6.3-h86ecc28_1.co https://conda.anaconda.org/conda-forge/linux-aarch64/libstdcxx-14.2.0-h3f4de04_1.conda#37f489acd39e22b623d2d1e5ac6d195c https://conda.anaconda.org/conda-forge/linux-aarch64/libwebp-base-1.5.0-h0886dbf_0.conda#95ef4a689b8cc1b7e18b53784d88f96b https://conda.anaconda.org/conda-forge/linux-aarch64/libzlib-1.3.1-h86ecc28_2.conda#08aad7cbe9f5a6b460d0976076b6ae64 -https://conda.anaconda.org/conda-forge/linux-aarch64/openssl-3.4.0-h86ecc28_0.conda#b2f202b5bddafac824eb610b65dde98f +https://conda.anaconda.org/conda-forge/linux-aarch64/openssl-3.4.0-hd08dc88_1.conda#e21c4767e783a58c373fdb99de6211bf https://conda.anaconda.org/conda-forge/linux-aarch64/pthread-stubs-0.4-h86ecc28_1002.conda#bb5a90c93e3bac3d5690acf76b4a6386 https://conda.anaconda.org/conda-forge/linux-aarch64/xorg-libice-1.1.2-h86ecc28_0.conda#c8d8ec3e00cd0fd8a231789b91a7c5b7 https://conda.anaconda.org/conda-forge/linux-aarch64/xorg-libxau-1.0.12-h86ecc28_0.conda#d5397424399a66d33c80b1f2345a36a6 @@ -51,7 +51,7 @@ https://conda.anaconda.org/conda-forge/linux-aarch64/libstdcxx-ng-14.2.0-hf1166c https://conda.anaconda.org/conda-forge/linux-aarch64/libuuid-2.38.1-hb4cce97_0.conda#000e30b09db0b7c775b21695dff30969 https://conda.anaconda.org/conda-forge/linux-aarch64/libxcb-1.17.0-h262b8f6_0.conda#cd14ee5cca2464a425b1dbfc24d90db2 https://conda.anaconda.org/conda-forge/linux-aarch64/libxcrypt-4.4.36-h31becfc_1.conda#b4df5d7d4b63579d081fd3a4cf99740e -https://conda.anaconda.org/conda-forge/linux-aarch64/mysql-common-9.0.1-h3f5c77f_3.conda#38eee60dc5b5bec65da4ed0ca9841f30 +https://conda.anaconda.org/conda-forge/linux-aarch64/mysql-common-9.0.1-h3f5c77f_4.conda#252699a6b6e8e86d64d37c360ac8d783 https://conda.anaconda.org/conda-forge/linux-aarch64/ncurses-6.5-hcccb83c_1.conda#91d49c85cacd92caa40cf375ef72a25d https://conda.anaconda.org/conda-forge/linux-aarch64/pixman-0.44.2-h86a87f0_0.conda#95689fc369832398e82d17c56ff5df8a https://conda.anaconda.org/conda-forge/linux-aarch64/tk-8.6.13-h194ca79_0.conda#f75105e0585851f818e0009dd1dde4dc @@ -86,7 +86,7 @@ https://conda.anaconda.org/conda-forge/linux-aarch64/libglx-1.7.0-hd24410f_2.con https://conda.anaconda.org/conda-forge/linux-aarch64/libhiredis-1.0.2-h05efe27_0.tar.bz2#a87f068744fd20334cd41489eb163bee https://conda.anaconda.org/conda-forge/linux-aarch64/libtiff-4.7.0-h88f7998_3.conda#36a0ea4a173338c8725dc0807e99cf22 https://conda.anaconda.org/conda-forge/linux-aarch64/libxml2-2.13.5-h2e0c361_1.conda#63410f85031930cde371dfe0ee89109a -https://conda.anaconda.org/conda-forge/linux-aarch64/mysql-libs-9.0.1-h11569fd_3.conda#0b70a85c661a9891f39d8e9aab98b118 +https://conda.anaconda.org/conda-forge/linux-aarch64/mysql-libs-9.0.1-h11569fd_4.conda#283642d922c40633996f0f1afb5c9993 https://conda.anaconda.org/conda-forge/linux-aarch64/openblas-0.3.28-pthreads_h3a8cbd8_1.conda#d36b4f01d28df4f90c7e37adb8e9adb5 https://conda.anaconda.org/conda-forge/linux-aarch64/python-3.9.21-hb97c71e_1_cpython.conda#49094665d26eac2d8a199169cf0989db https://conda.anaconda.org/conda-forge/linux-aarch64/xcb-util-image-0.4.0-h5c728e9_2.conda#b82e5c78dbbfa931980e8bfe83bce913 @@ -118,7 +118,7 @@ https://conda.anaconda.org/conda-forge/noarch/munkres-1.1.4-pyh9f0ad1d_0.tar.bz2 https://conda.anaconda.org/conda-forge/linux-aarch64/openjpeg-2.5.3-h3f56577_0.conda#04231368e4af50d11184b50e14250993 https://conda.anaconda.org/conda-forge/noarch/packaging-24.2-pyhd8ed1ab_2.conda#3bfed7e6228ebf2f7b9eaa47f1b4e2aa https://conda.anaconda.org/conda-forge/noarch/pluggy-1.5.0-pyhd8ed1ab_1.conda#e9dcbce5f45f9ee500e728ae58b605b6 -https://conda.anaconda.org/conda-forge/noarch/pyparsing-3.2.0-pyhd8ed1ab_2.conda#4c05a2bcf87bb495512374143b57cf28 +https://conda.anaconda.org/conda-forge/noarch/pyparsing-3.2.1-pyhd8ed1ab_0.conda#285e237b8f351e85e7574a2c7bfa6d46 https://conda.anaconda.org/conda-forge/noarch/setuptools-75.6.0-pyhff2d567_1.conda#fc80f7995e396cbaeabd23cf46c413dc https://conda.anaconda.org/conda-forge/noarch/six-1.17.0-pyhd8ed1ab_0.conda#a451d576819089b0d672f18768be0f65 https://conda.anaconda.org/conda-forge/noarch/threadpoolctl-3.5.0-pyhc1e730c_0.conda#df68d78237980a159bd7149f33c0e8fd @@ -135,7 +135,7 @@ https://conda.anaconda.org/conda-forge/linux-aarch64/xorg-libxrandr-1.5.4-h86ecc https://conda.anaconda.org/conda-forge/linux-aarch64/xorg-libxxf86vm-1.1.6-h86ecc28_0.conda#d745faa2d7c15092652e40a22bb261ed https://conda.anaconda.org/conda-forge/noarch/zipp-3.21.0-pyhd8ed1ab_1.conda#0c3cc595284c5e8f0f9900a9b228a332 https://conda.anaconda.org/conda-forge/linux-aarch64/fonttools-4.55.3-py39hbebea31_1.conda#8f6cca97167821f34fc339f18f0acea8 -https://conda.anaconda.org/conda-forge/linux-aarch64/harfbuzz-9.0.0-hbf49d6b_1.conda#ceb458f664cab8550fcd74fff26451db +https://conda.anaconda.org/conda-forge/linux-aarch64/harfbuzz-10.1.0-hbdc1db7_0.conda#881e8d9b31e1a7335d4dea4d66851bc0 https://conda.anaconda.org/conda-forge/noarch/importlib_resources-6.4.5-pyhd8ed1ab_1.conda#15798fa69312d433af690c8c42b3fb36 https://conda.anaconda.org/conda-forge/noarch/joblib-1.4.2-pyhd8ed1ab_1.conda#bf8243ee348f3a10a14ed0cae323e0c1 https://conda.anaconda.org/conda-forge/linux-aarch64/libclang-cpp19.1-19.1.6-default_he324ac1_0.conda#2f399a5612317660f5c98f6cb634829b @@ -144,7 +144,7 @@ https://conda.anaconda.org/conda-forge/linux-aarch64/liblapacke-3.9.0-26_linuxaa https://conda.anaconda.org/conda-forge/noarch/meson-1.6.1-pyhd8ed1ab_0.conda#0062fb0a7f5da474705d0ce626de12f4 https://conda.anaconda.org/conda-forge/linux-aarch64/numpy-2.0.2-py39h4a34e27_1.conda#fe586ddf9512644add97b0526129ed95 https://conda.anaconda.org/conda-forge/linux-aarch64/openldap-2.6.9-h30c48ee_0.conda#c07822a5de65ce9797b9afa257faa917 -https://conda.anaconda.org/conda-forge/linux-aarch64/pillow-11.0.0-py39hb20fde8_0.conda#78cdfe29a452feee8c5bd689c2c871bd +https://conda.anaconda.org/conda-forge/linux-aarch64/pillow-11.1.0-py39h301a0e3_0.conda#22c413e9649bfe2a9af6cbe8c82077d3 https://conda.anaconda.org/conda-forge/noarch/pip-24.3.1-pyh8b19718_2.conda#04e691b9fadd93a8a9fad87a81d4fd8f https://conda.anaconda.org/conda-forge/noarch/pyproject-metadata-0.9.0-pyhd8ed1ab_1.conda#1239146a53a383a84633800294120f17 https://conda.anaconda.org/conda-forge/noarch/pytest-8.3.4-pyhd8ed1ab_1.conda#799ed216dc6af62520f32aa39bc1c2bb @@ -159,6 +159,6 @@ https://conda.anaconda.org/conda-forge/noarch/pytest-xdist-3.6.1-pyhd8ed1ab_1.co https://conda.anaconda.org/conda-forge/linux-aarch64/scipy-1.13.1-py39hb921187_0.conda#1aac9080de661e03d286f18fb71e5240 https://conda.anaconda.org/conda-forge/linux-aarch64/blas-2.126-openblas.conda#b98894367755d9a81f6e90ef2bcff0a6 https://conda.anaconda.org/conda-forge/linux-aarch64/matplotlib-base-3.9.4-py39hd333c8e_0.conda#d3c00b185510462fe6c3829f06bbfc82 -https://conda.anaconda.org/conda-forge/linux-aarch64/qt6-main-6.8.1-h0d3cc05_0.conda#2ed5cc4f5abc62d505b9a89a00f1dca8 +https://conda.anaconda.org/conda-forge/linux-aarch64/qt6-main-6.8.1-ha0a94ed_2.conda#72dfd400f4b96eab2e36ff57bd887f13 https://conda.anaconda.org/conda-forge/linux-aarch64/pyside6-6.8.1-py39h51c6ee1_0.conda#ba98ca3cd6725e007a6ca0870e8212dd https://conda.anaconda.org/conda-forge/linux-aarch64/matplotlib-3.9.4-py39ha65689a_0.conda#3694fc225c2b4ef3943e74c81c43307d From 0d2ce432de05b1f0c3b055572c08bee332c37724 Mon Sep 17 00:00:00 2001 From: Guillaume Lemaitre Date: Mon, 6 Jan 2025 14:29:07 +0100 Subject: [PATCH 144/159] FIX change FutureWarnings to DeprecationWarnings for the tags (#30573) --- .../many-modules/30573.fix.rst | 4 ++ sklearn/base.py | 4 +- sklearn/utils/_tags.py | 4 +- sklearn/utils/tests/test_tags.py | 42 +++++++++++-------- 4 files changed, 33 insertions(+), 21 deletions(-) create mode 100644 doc/whats_new/upcoming_changes/many-modules/30573.fix.rst diff --git a/doc/whats_new/upcoming_changes/many-modules/30573.fix.rst b/doc/whats_new/upcoming_changes/many-modules/30573.fix.rst new file mode 100644 index 0000000000000..dcf4393518133 --- /dev/null +++ b/doc/whats_new/upcoming_changes/many-modules/30573.fix.rst @@ -0,0 +1,4 @@ +- `_more_tags`, `_get_tags`, and `_safe_tags` are now raising a + :class:`DeprecationWarning` instead of a :class:`FutureWarning` to only notify + developers instead of end-users. + By :user:`Guillaume Lemaitre ` in diff --git a/sklearn/base.py b/sklearn/base.py index 2c82cf05a6c5a..3343caa05ca02 100644 --- a/sklearn/base.py +++ b/sklearn/base.py @@ -400,7 +400,7 @@ def _more_tags(self): warnings.warn( "The `_more_tags` method is deprecated in 1.6 and will be removed in " "1.7. Please implement the `__sklearn_tags__` method.", - category=FutureWarning, + category=DeprecationWarning, ) return _to_old_tags(default_tags(self)) @@ -411,7 +411,7 @@ def _get_tags(self): warnings.warn( "The `_get_tags` method is deprecated in 1.6 and will be removed in " "1.7. Please implement the `__sklearn_tags__` method.", - category=FutureWarning, + category=DeprecationWarning, ) return _to_old_tags(get_tags(self)) diff --git a/sklearn/utils/_tags.py b/sklearn/utils/_tags.py index d4f211eb52152..3ee816d83003a 100644 --- a/sklearn/utils/_tags.py +++ b/sklearn/utils/_tags.py @@ -359,7 +359,7 @@ def _find_tags_provider(estimator, warn=True): "`sklearn.base.ClassifierMixin`, `sklearn.base.RegressorMixin`, and " "`sklearn.base.OutlierMixin`. From scikit-learn 1.7, not defining " "`__sklearn_tags__` will raise an error.", - category=FutureWarning, + category=DeprecationWarning, ) return tag_provider @@ -446,7 +446,7 @@ def _safe_tags(estimator, key=None): "The `_safe_tags` function is deprecated in 1.6 and will be removed in " "1.7. Use the public `get_tags` function instead and make sure to implement " "the `__sklearn_tags__` method.", - category=FutureWarning, + category=DeprecationWarning, ) tags = _to_old_tags(get_tags(estimator)) diff --git a/sklearn/utils/tests/test_tags.py b/sklearn/utils/tests/test_tags.py index 2ff6878d974fb..46876aa0d1972 100644 --- a/sklearn/utils/tests/test_tags.py +++ b/sklearn/utils/tests/test_tags.py @@ -40,7 +40,9 @@ class EmptyRegressor(RegressorMixin, BaseEstimator): pass -@pytest.mark.filterwarnings("ignore:.*no __sklearn_tags__ attribute.*:FutureWarning") +@pytest.mark.filterwarnings( + "ignore:.*no __sklearn_tags__ attribute.*:DeprecationWarning" +) @pytest.mark.parametrize( "estimator, value", [ @@ -169,7 +171,7 @@ def test_get_tags_backward_compatibility(): predictor_classes = [PredictorNewTags, PredictorOldNewTags, PredictorOldTags] for predictor_cls in predictor_classes: if predictor_cls.__name__.endswith("OldTags"): - with pytest.warns(FutureWarning, match=warn_msg): + with pytest.warns(DeprecationWarning, match=warn_msg): tags = get_tags(predictor_cls()) else: tags = get_tags(predictor_cls()) @@ -194,7 +196,7 @@ class ChildClass(allow_nan_cls, predictor_cls): base_cls.__name__.endswith("OldTags") for base_cls in (predictor_cls, allow_nan_cls) ): - with pytest.warns(FutureWarning, match=warn_msg): + with pytest.warns(DeprecationWarning, match=warn_msg): tags = get_tags(ChildClass()) else: tags = get_tags(ChildClass()) @@ -227,7 +229,7 @@ class ChildClass(allow_nan_cls, array_api_cls, predictor_cls): base_cls.__name__.endswith("OldTags") for base_cls in (predictor_cls, array_api_cls, allow_nan_cls) ): - with pytest.warns(FutureWarning, match=warn_msg): + with pytest.warns(DeprecationWarning, match=warn_msg): tags = get_tags(ChildClass()) else: tags = get_tags(ChildClass()) @@ -238,7 +240,7 @@ class ChildClass(allow_nan_cls, array_api_cls, predictor_cls): @pytest.mark.filterwarnings( - "ignore:.*Please define the `__sklearn_tags__` method.*:FutureWarning" + "ignore:.*Please define the `__sklearn_tags__` method.*:DeprecationWarning" ) def test_safe_tags_backward_compatibility(): warn_msg = "The `_safe_tags` function is deprecated in 1.6" @@ -247,7 +249,7 @@ def test_safe_tags_backward_compatibility(): # only predictor inheriting from BaseEstimator predictor_classes = [PredictorNewTags, PredictorOldNewTags, PredictorOldTags] for predictor_cls in predictor_classes: - with pytest.warns(FutureWarning, match=warn_msg): + with pytest.warns(DeprecationWarning, match=warn_msg): tags = _safe_tags(predictor_cls()) assert tags["requires_fit"] @@ -266,7 +268,7 @@ def test_safe_tags_backward_compatibility(): class ChildClass(allow_nan_cls, predictor_cls): pass - with pytest.warns(FutureWarning, match=warn_msg): + with pytest.warns(DeprecationWarning, match=warn_msg): tags = _safe_tags(ChildClass()) assert tags["allow_nan"] @@ -293,7 +295,7 @@ class ChildClass(allow_nan_cls, predictor_cls): class ChildClass(allow_nan_cls, array_api_cls, predictor_cls): pass - with pytest.warns(FutureWarning, match=warn_msg): + with pytest.warns(DeprecationWarning, match=warn_msg): tags = _safe_tags(ChildClass()) assert tags["allow_nan"] @@ -302,7 +304,7 @@ class ChildClass(allow_nan_cls, array_api_cls, predictor_cls): @pytest.mark.filterwarnings( - "ignore:.*Please define the `__sklearn_tags__` method.*:FutureWarning" + "ignore:.*Please define the `__sklearn_tags__` method.*:DeprecationWarning" ) def test__get_tags_backward_compatibility(): warn_msg = "The `_get_tags` method is deprecated in 1.6" @@ -311,7 +313,7 @@ def test__get_tags_backward_compatibility(): # only predictor inheriting from BaseEstimator predictor_classes = [PredictorNewTags, PredictorOldNewTags, PredictorOldTags] for predictor_cls in predictor_classes: - with pytest.warns(FutureWarning, match=warn_msg): + with pytest.warns(DeprecationWarning, match=warn_msg): tags = predictor_cls()._get_tags() assert tags["requires_fit"] @@ -330,7 +332,7 @@ def test__get_tags_backward_compatibility(): class ChildClass(allow_nan_cls, predictor_cls): pass - with pytest.warns(FutureWarning, match=warn_msg): + with pytest.warns(DeprecationWarning, match=warn_msg): tags = ChildClass()._get_tags() assert tags["allow_nan"] @@ -357,7 +359,7 @@ class ChildClass(allow_nan_cls, predictor_cls): class ChildClass(allow_nan_cls, array_api_cls, predictor_cls): pass - with pytest.warns(FutureWarning, match=warn_msg): + with pytest.warns(DeprecationWarning, match=warn_msg): tags = ChildClass()._get_tags() assert tags["allow_nan"] @@ -376,10 +378,12 @@ def test_base_estimator_more_tags(): `BaseEstimator`. """ estimator = BaseEstimator() - with pytest.warns(FutureWarning, match="The `_more_tags` method is deprecated"): + with pytest.warns( + DeprecationWarning, match="The `_more_tags` method is deprecated" + ): more_tags = BaseEstimator._more_tags(estimator) - with pytest.warns(FutureWarning, match="The `_get_tags` method is deprecated"): + with pytest.warns(DeprecationWarning, match="The `_get_tags` method is deprecated"): get_tags = BaseEstimator._get_tags(estimator) assert more_tags == get_tags @@ -387,10 +391,14 @@ def test_base_estimator_more_tags(): def test_safe_tags(): estimator = PredictorNewTags() - with pytest.warns(FutureWarning, match="The `_safe_tags` function is deprecated"): + with pytest.warns( + DeprecationWarning, match="The `_safe_tags` function is deprecated" + ): tags = _safe_tags(estimator) - with pytest.warns(FutureWarning, match="The `_safe_tags` function is deprecated"): + with pytest.warns( + DeprecationWarning, match="The `_safe_tags` function is deprecated" + ): tags_requires_fit = _safe_tags(estimator, key="requires_fit") assert tags_requires_fit == tags["requires_fit"] @@ -398,7 +406,7 @@ def test_safe_tags(): err_msg = "The key unknown_key is not defined" with pytest.raises(ValueError, match=err_msg): with pytest.warns( - FutureWarning, match="The `_safe_tags` function is deprecated" + DeprecationWarning, match="The `_safe_tags` function is deprecated" ): _safe_tags(estimator, key="unknown_key") From 42831e522f9f08f34e01cd85d60aa852914b135d Mon Sep 17 00:00:00 2001 From: Guillaume Lemaitre Date: Mon, 6 Jan 2025 14:29:52 +0100 Subject: [PATCH 145/159] FIX warn if an estimator does have a concrete __sklearn_tags__ implementation (#30516) MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit Co-authored-by: Adrin Jalali Co-authored-by: Thomas J. Fan Co-authored-by: Jérémie du Boisberranger --- .../sklearn.utils/30516.fix.rst | 4 ++ sklearn/utils/_tags.py | 27 ++++++++++- sklearn/utils/tests/test_tags.py | 48 +++++++++++++++++++ 3 files changed, 78 insertions(+), 1 deletion(-) create mode 100644 doc/whats_new/upcoming_changes/sklearn.utils/30516.fix.rst diff --git a/doc/whats_new/upcoming_changes/sklearn.utils/30516.fix.rst b/doc/whats_new/upcoming_changes/sklearn.utils/30516.fix.rst new file mode 100644 index 0000000000000..6e008f3beeb3c --- /dev/null +++ b/doc/whats_new/upcoming_changes/sklearn.utils/30516.fix.rst @@ -0,0 +1,4 @@ +- Raise a `DeprecationWarning` when there is no concrete implementation of `__sklearn_tags__` + in the MRO of the estimator. We request to inherit from `BaseEstimator` that + implements `__sklearn_tags__`. + By :user:`Guillaume Lemaitre ` \ No newline at end of file diff --git a/sklearn/utils/_tags.py b/sklearn/utils/_tags.py index 3ee816d83003a..ffb654c83637b 100644 --- a/sklearn/utils/_tags.py +++ b/sklearn/utils/_tags.py @@ -393,7 +393,32 @@ def get_tags(estimator) -> Tags: tag_provider = _find_tags_provider(estimator) if tag_provider == "__sklearn_tags__": - tags = estimator.__sklearn_tags__() + # TODO(1.7): turn the warning into an error + try: + tags = estimator.__sklearn_tags__() + except AttributeError as exc: + if str(exc) == "'super' object has no attribute '__sklearn_tags__'": + # workaround the regression reported in + # https://github.com/scikit-learn/scikit-learn/issues/30479 + # `__sklearn_tags__` is implemented by calling + # `super().__sklearn_tags__()` but there is no `__sklearn_tags__` + # method in the base class. + warnings.warn( + f"The following error was raised: {str(exc)}. It seems that " + "there are no classes that implement `__sklearn_tags__` " + "in the MRO and/or all classes in the MRO call " + "`super().__sklearn_tags__()`. Make sure to inherit from " + "`BaseEstimator` which implements `__sklearn_tags__` (or " + "alternatively define `__sklearn_tags__` but we don't recommend " + "this approach). Note that `BaseEstimator` needs to be on the " + "right side of other Mixins in the inheritance order. The " + "default are now used instead since retrieving tags failed. " + "This warning will be replaced by an error in 1.7.", + category=DeprecationWarning, + ) + tags = default_tags(estimator) + else: + raise else: # TODO(1.7): Remove this branch of the code # Let's go through the MRO and patch each class implementing _more_tags diff --git a/sklearn/utils/tests/test_tags.py b/sklearn/utils/tests/test_tags.py index 46876aa0d1972..72a811c8470ef 100644 --- a/sklearn/utils/tests/test_tags.py +++ b/sklearn/utils/tests/test_tags.py @@ -1,12 +1,15 @@ from dataclasses import dataclass, fields +import numpy as np import pytest from sklearn.base import ( BaseEstimator, + ClassifierMixin, RegressorMixin, TransformerMixin, ) +from sklearn.pipeline import Pipeline from sklearn.utils import ( ClassifierTags, InputTags, @@ -637,3 +640,48 @@ def __sklearn_tags__(self): } assert old_tags == expected_tags assert _to_new_tags(_to_old_tags(new_tags), estimator=estimator) == new_tags + + +# TODO(1.7): Remove this test +def test_tags_no_sklearn_tags_concrete_implementation(): + """Non-regression test for: + https://github.com/scikit-learn/scikit-learn/issues/30479 + + There is no class implementing `__sklearn_tags__` without calling + `super().__sklearn_tags__()`. Thus, we raise a warning and request to inherit from + `BaseEstimator` that implements `__sklearn_tags__`. + """ + + class MyEstimator(ClassifierMixin): + def __init__(self, *, param=1): + self.param = param + + def fit(self, X, y=None): + self.is_fitted_ = True + return self + + def predict(self, X): + return np.full(shape=X.shape[0], fill_value=self.param) + + X = np.array([[1, 2], [2, 3], [3, 4]]) + y = np.array([1, 0, 1]) + + my_pipeline = Pipeline([("estimator", MyEstimator(param=1))]) + with pytest.warns(DeprecationWarning, match="The following error was raised"): + my_pipeline.fit(X, y).predict(X) + + # check that we still raise an error if it is not a AttributeError or related to + # __sklearn_tags__ + class MyEstimator2(MyEstimator, BaseEstimator): + def __init__(self, *, param=1, error_type=AttributeError): + self.param = param + self.error_type = error_type + + def __sklearn_tags__(self): + super().__sklearn_tags__() + raise self.error_type("test") + + for error_type in (AttributeError, TypeError, ValueError): + estimator = MyEstimator2(param=1, error_type=error_type) + with pytest.raises(error_type): + get_tags(estimator) From acbb8621c816f12f0648f175edf8acb561768ec5 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Lo=C3=AFc=20Est=C3=A8ve?= Date: Mon, 6 Jan 2025 14:35:48 +0100 Subject: [PATCH 146/159] TST Fix doctest due to GradientBoostingClassifier difference with scipy 1.15 (#30583) --- doc/common_pitfalls.rst | 22 +++++++++++----------- 1 file changed, 11 insertions(+), 11 deletions(-) diff --git a/doc/common_pitfalls.rst b/doc/common_pitfalls.rst index c16385943f9ad..63d2893cec479 100644 --- a/doc/common_pitfalls.rst +++ b/doc/common_pitfalls.rst @@ -160,7 +160,7 @@ much higher than expected accuracy score:: >>> from sklearn.model_selection import train_test_split >>> from sklearn.feature_selection import SelectKBest - >>> from sklearn.ensemble import GradientBoostingClassifier + >>> from sklearn.ensemble import HistGradientBoostingClassifier >>> from sklearn.metrics import accuracy_score >>> # Incorrect preprocessing: the entire data is transformed @@ -168,9 +168,9 @@ much higher than expected accuracy score:: >>> X_train, X_test, y_train, y_test = train_test_split( ... X_selected, y, random_state=42) - >>> gbc = GradientBoostingClassifier(random_state=1) + >>> gbc = HistGradientBoostingClassifier(random_state=1) >>> gbc.fit(X_train, y_train) - GradientBoostingClassifier(random_state=1) + HistGradientBoostingClassifier(random_state=1) >>> y_pred = gbc.predict(X_test) >>> accuracy_score(y_test, y_pred) @@ -189,14 +189,14 @@ data, close to chance:: >>> select = SelectKBest(k=25) >>> X_train_selected = select.fit_transform(X_train, y_train) - >>> gbc = GradientBoostingClassifier(random_state=1) + >>> gbc = HistGradientBoostingClassifier(random_state=1) >>> gbc.fit(X_train_selected, y_train) - GradientBoostingClassifier(random_state=1) + HistGradientBoostingClassifier(random_state=1) >>> X_test_selected = select.transform(X_test) >>> y_pred = gbc.predict(X_test_selected) >>> accuracy_score(y_test, y_pred) - 0.46 + 0.5 Here again, we recommend using a :class:`~sklearn.pipeline.Pipeline` to chain together the feature selection and model estimators. The pipeline ensures @@ -207,15 +207,15 @@ is used only for calculating the accuracy score:: >>> X_train, X_test, y_train, y_test = train_test_split( ... X, y, random_state=42) >>> pipeline = make_pipeline(SelectKBest(k=25), - ... GradientBoostingClassifier(random_state=1)) + ... HistGradientBoostingClassifier(random_state=1)) >>> pipeline.fit(X_train, y_train) Pipeline(steps=[('selectkbest', SelectKBest(k=25)), - ('gradientboostingclassifier', - GradientBoostingClassifier(random_state=1))]) + ('histgradientboostingclassifier', + HistGradientBoostingClassifier(random_state=1))]) >>> y_pred = pipeline.predict(X_test) >>> accuracy_score(y_test, y_pred) - 0.46 + 0.5 The pipeline can also be fed into a cross-validation function such as :func:`~sklearn.model_selection.cross_val_score`. @@ -225,7 +225,7 @@ method is used during fitting and predicting:: >>> from sklearn.model_selection import cross_val_score >>> scores = cross_val_score(pipeline, X, y) >>> print(f"Mean accuracy: {scores.mean():.2f}+/-{scores.std():.2f}") - Mean accuracy: 0.46+/-0.07 + Mean accuracy: 0.43+/-0.05 .. _randomness: From f5f2b9c7b725a957caf8089d254f9176e8fabda9 Mon Sep 17 00:00:00 2001 From: scikit-learn-bot Date: Mon, 6 Jan 2025 15:28:58 +0100 Subject: [PATCH 147/159] :lock: :robot: CI Update lock files for free-threaded CI build(s) :lock: :robot: (#30591) MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit Co-authored-by: Lock file bot Co-authored-by: Jérémie du Boisberranger --- build_tools/azure/pylatest_free_threaded_linux-64_conda.lock | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/build_tools/azure/pylatest_free_threaded_linux-64_conda.lock b/build_tools/azure/pylatest_free_threaded_linux-64_conda.lock index 30453d12b9bb8..c499cfd66a6fe 100644 --- a/build_tools/azure/pylatest_free_threaded_linux-64_conda.lock +++ b/build_tools/azure/pylatest_free_threaded_linux-64_conda.lock @@ -16,7 +16,7 @@ https://conda.anaconda.org/conda-forge/linux-64/libgfortran5-14.2.0-hd5240d6_1.c https://conda.anaconda.org/conda-forge/linux-64/liblzma-5.6.3-hb9d3cd8_1.conda#2ecf2f1c7e4e21fcfe6423a51a992d84 https://conda.anaconda.org/conda-forge/linux-64/libstdcxx-14.2.0-hc0a3c3a_1.conda#234a5554c53625688d51062645337328 https://conda.anaconda.org/conda-forge/linux-64/libzlib-1.3.1-hb9d3cd8_2.conda#edb0dca6bc32e4f4789199455a1dbeb8 -https://conda.anaconda.org/conda-forge/linux-64/openssl-3.4.0-hb9d3cd8_0.conda#23cc74f77eb99315c0360ec3533147a9 +https://conda.anaconda.org/conda-forge/linux-64/openssl-3.4.0-h7b32b05_1.conda#4ce6875f75469b2757a65e10a5d05e31 https://conda.anaconda.org/conda-forge/linux-64/bzip2-1.0.8-h4bc722e_7.conda#62ee74e96c5ebb0af99386de58cf9553 https://conda.anaconda.org/conda-forge/linux-64/libffi-3.4.2-h7f98852_5.tar.bz2#d645c6d2ac96843a2bfaccd2d62b3ac3 https://conda.anaconda.org/conda-forge/linux-64/libgfortran-14.2.0-h69a702a_1.conda#f1fd30127802683586f768875127a987 From bc291f1030aa4f122187d5334a426ab1848a7ee6 Mon Sep 17 00:00:00 2001 From: scikit-learn-bot Date: Mon, 6 Jan 2025 15:45:00 +0100 Subject: [PATCH 148/159] :lock: :robot: CI Update lock files for scipy-dev CI build(s) :lock: :robot: (#30590) MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit Co-authored-by: Lock file bot Co-authored-by: Jérémie du Boisberranger --- build_tools/azure/pylatest_pip_scipy_dev_linux-64_conda.lock | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/build_tools/azure/pylatest_pip_scipy_dev_linux-64_conda.lock b/build_tools/azure/pylatest_pip_scipy_dev_linux-64_conda.lock index 685a757b6ece0..8087b446d3dbe 100644 --- a/build_tools/azure/pylatest_pip_scipy_dev_linux-64_conda.lock +++ b/build_tools/azure/pylatest_pip_scipy_dev_linux-64_conda.lock @@ -44,7 +44,7 @@ https://repo.anaconda.com/pkgs/main/linux-64/pip-24.2-py313h06a4308_0.conda#59f8 # pip packaging @ https://files.pythonhosted.org/packages/88/ef/eb23f262cca3c0c4eb7ab1933c3b1f03d021f2c48f54763065b6f0e321be/packaging-24.2-py3-none-any.whl#sha256=09abb1bccd265c01f4a3aa3f7a7db064b36514d2cba19a2f694fe6150451a759 # pip platformdirs @ https://files.pythonhosted.org/packages/3c/a6/bc1012356d8ece4d66dd75c4b9fc6c1f6650ddd5991e421177d9f8f671be/platformdirs-4.3.6-py3-none-any.whl#sha256=73e575e1408ab8103900836b97580d5307456908a03e92031bab39e4554cc3fb # pip pluggy @ https://files.pythonhosted.org/packages/88/5f/e351af9a41f866ac3f1fac4ca0613908d9a41741cfcf2228f4ad853b697d/pluggy-1.5.0-py3-none-any.whl#sha256=44e1ad92c8ca002de6377e165f3e0f1be63266ab4d554740532335b9d75ea669 -# pip pygments @ https://files.pythonhosted.org/packages/f7/3f/01c8b82017c199075f8f788d0d906b9ffbbc5a47dc9918a945e13d5a2bda/pygments-2.18.0-py3-none-any.whl#sha256=b8e6aca0523f3ab76fee51799c488e38782ac06eafcf95e7ba832985c8e7b13a +# pip pygments @ https://files.pythonhosted.org/packages/20/dc/fde3e7ac4d279a331676829af4afafd113b34272393d73f610e8f0329221/pygments-2.19.0-py3-none-any.whl#sha256=4755e6e64d22161d5b61432c0600c923c5927214e7c956e31c23923c89251a9b # pip six @ https://files.pythonhosted.org/packages/b7/ce/149a00dd41f10bc29e5921b496af8b574d8413afcd5e30dfa0ed46c2cc5e/six-1.17.0-py2.py3-none-any.whl#sha256=4721f391ed90541fddacab5acf947aa0d3dc7d27b2e1e8eda2be8970586c3274 # pip snowballstemmer @ https://files.pythonhosted.org/packages/ed/dc/c02e01294f7265e63a7315fe086dd1df7dacb9f840a804da846b96d01b96/snowballstemmer-2.2.0-py2.py3-none-any.whl#sha256=c8e1716e83cc398ae16824e5572ae04e0d9fc2c6b985fb0f900f5f0c96ecba1a # pip sphinxcontrib-applehelp @ https://files.pythonhosted.org/packages/5d/85/9ebeae2f76e9e77b952f4b274c27238156eae7979c5421fba91a28f4970d/sphinxcontrib_applehelp-2.0.0-py3-none-any.whl#sha256=4cd3f0ec4ac5dd9c17ec65e9ab272c9b867ea77425228e68ecf08d6b28ddbdb5 From ea8a7259f53c2cd78c1a8341bdab228e621dd2ba Mon Sep 17 00:00:00 2001 From: scikit-learn-bot Date: Mon, 6 Jan 2025 16:01:46 +0100 Subject: [PATCH 149/159] :lock: :robot: CI Update lock files for main CI build(s) :lock: :robot: (#30593) MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit Co-authored-by: Lock file bot Co-authored-by: Jérémie du Boisberranger --- ...latest_conda_forge_mkl_linux-64_conda.lock | 48 +++++++++---------- ...pylatest_conda_forge_mkl_osx-64_conda.lock | 8 ++-- ...st_pip_openblas_pandas_linux-64_conda.lock | 8 ++-- .../pymin_conda_forge_mkl_win-64_conda.lock | 8 ++-- ...nblas_min_dependencies_linux-64_conda.lock | 10 ++-- ...e_openblas_ubuntu_2204_linux-64_conda.lock | 16 +++---- build_tools/circle/doc_linux-64_conda.lock | 26 +++++----- .../doc_min_dependencies_linux-64_conda.lock | 14 +++--- 8 files changed, 69 insertions(+), 69 deletions(-) diff --git a/build_tools/azure/pylatest_conda_forge_mkl_linux-64_conda.lock b/build_tools/azure/pylatest_conda_forge_mkl_linux-64_conda.lock index 74f1756167af4..f92b3eb1bf335 100644 --- a/build_tools/azure/pylatest_conda_forge_mkl_linux-64_conda.lock +++ b/build_tools/azure/pylatest_conda_forge_mkl_linux-64_conda.lock @@ -35,7 +35,7 @@ https://conda.anaconda.org/conda-forge/linux-64/libutf8proc-2.9.0-hb9d3cd8_1.con https://conda.anaconda.org/conda-forge/linux-64/libuv-1.49.2-hb9d3cd8_0.conda#070e3c9ddab77e38799d5c30b109c633 https://conda.anaconda.org/conda-forge/linux-64/libwebp-base-1.5.0-h851e524_0.conda#63f790534398730f59e1b899c3644d4a https://conda.anaconda.org/conda-forge/linux-64/libzlib-1.3.1-hb9d3cd8_2.conda#edb0dca6bc32e4f4789199455a1dbeb8 -https://conda.anaconda.org/conda-forge/linux-64/openssl-3.4.0-hb9d3cd8_0.conda#23cc74f77eb99315c0360ec3533147a9 +https://conda.anaconda.org/conda-forge/linux-64/openssl-3.4.0-h7b32b05_1.conda#4ce6875f75469b2757a65e10a5d05e31 https://conda.anaconda.org/conda-forge/linux-64/pthread-stubs-0.4-hb9d3cd8_1002.conda#b3c17d95b5a10c6e64a21fa17573e70e https://conda.anaconda.org/conda-forge/linux-64/xorg-libice-1.1.2-hb9d3cd8_0.conda#fb901ff28063514abb6046c9ec2c4a45 https://conda.anaconda.org/conda-forge/linux-64/xorg-libxau-1.0.12-hb9d3cd8_0.conda#f6ebe2cb3f82ba6c057dde5d9debe4f7 @@ -48,7 +48,7 @@ https://conda.anaconda.org/conda-forge/linux-64/bzip2-1.0.8-h4bc722e_7.conda#62e https://conda.anaconda.org/conda-forge/linux-64/expat-2.6.4-h5888daf_0.conda#1d6afef758879ef5ee78127eb4cd2c4a https://conda.anaconda.org/conda-forge/linux-64/gflags-2.2.2-h5888daf_1005.conda#d411fc29e338efb48c5fd4576d71d881 https://conda.anaconda.org/conda-forge/linux-64/keyutils-1.6.1-h166bdaf_0.tar.bz2#30186d27e2c9fa62b45fb1476b7200e3 -https://conda.anaconda.org/conda-forge/linux-64/libabseil-20240722.0-cxx17_hbbce691_2.conda#48099a5f37e331f5570abbf22b229961 +https://conda.anaconda.org/conda-forge/linux-64/libabseil-20240722.0-cxx17_hbbce691_4.conda#488f260ccda0afaf08acb286db439c2f https://conda.anaconda.org/conda-forge/linux-64/libbrotlidec-1.1.0-hb9d3cd8_2.conda#9566f0bd264fbd463002e759b8a82401 https://conda.anaconda.org/conda-forge/linux-64/libbrotlienc-1.1.0-hb9d3cd8_2.conda#06f70867945ea6a84d35836af780f1de https://conda.anaconda.org/conda-forge/linux-64/libev-4.33-hd590300_2.conda#172bf1cd1ff8629f2b1179945ed45055 @@ -66,7 +66,7 @@ https://conda.anaconda.org/conda-forge/linux-64/libstdcxx-ng-14.2.0-h4852527_1.c https://conda.anaconda.org/conda-forge/linux-64/libuuid-2.38.1-h0b41bf4_0.conda#40b61aab5c7ba9ff276c41cfffe6b80b https://conda.anaconda.org/conda-forge/linux-64/libxcb-1.17.0-h8a09558_0.conda#92ed62436b625154323d40d5f2f11dd7 https://conda.anaconda.org/conda-forge/linux-64/lz4-c-1.10.0-h5888daf_1.conda#9de5350a85c4a20c685259b889aa6393 -https://conda.anaconda.org/conda-forge/linux-64/mysql-common-9.0.1-h266115a_3.conda#9411c61ff1070b5e065b32840c39faa5 +https://conda.anaconda.org/conda-forge/linux-64/mysql-common-9.0.1-h266115a_4.conda#9a5a1e3db671a8258c3f2c1969a4c654 https://conda.anaconda.org/conda-forge/linux-64/ncurses-6.5-he02047a_1.conda#70caf8bb6cf39a0b6b7efc885f51c0fe https://conda.anaconda.org/conda-forge/linux-64/pixman-0.44.2-h29eaf8c_0.conda#5e2a7acfa2c24188af39e7944e1b3604 https://conda.anaconda.org/conda-forge/linux-64/s2n-1.5.10-hb5b8611_0.conda#999f3673f2a011f59287f2969e3749e4 @@ -87,8 +87,8 @@ https://conda.anaconda.org/conda-forge/linux-64/libdrm-2.4.124-hb9d3cd8_0.conda# https://conda.anaconda.org/conda-forge/linux-64/libedit-3.1.20191231-he28a2e2_2.tar.bz2#4d331e44109e3f0e19b4cb8f9b82f3e1 https://conda.anaconda.org/conda-forge/linux-64/libgfortran-ng-14.2.0-h69a702a_1.conda#0a7f4cd238267c88e5d69f7826a407eb https://conda.anaconda.org/conda-forge/linux-64/libnghttp2-1.64.0-h161d5f1_0.conda#19e57602824042dfd0446292ef90488b -https://conda.anaconda.org/conda-forge/linux-64/libprotobuf-5.28.2-h5b01275_0.conda#ab0bff36363bec94720275a681af8b83 -https://conda.anaconda.org/conda-forge/linux-64/libre2-11-2024.07.02-hbbce691_1.conda#2124de47357b7a516c0a3efd8f88c143 +https://conda.anaconda.org/conda-forge/linux-64/libprotobuf-5.28.3-h6128344_1.conda#d8703f1ffe5a06356f06467f1d0b9464 +https://conda.anaconda.org/conda-forge/linux-64/libre2-11-2024.07.02-hbbce691_2.conda#b2fede24428726dd867611664fb372e8 https://conda.anaconda.org/conda-forge/linux-64/libthrift-0.21.0-h0e7cc3e_0.conda#dcb95c0a98ba9ff737f7ae482aef7833 https://conda.anaconda.org/conda-forge/linux-64/ninja-1.12.1-h297d8ca_0.conda#3aa1c7e292afeff25a0091ddd7c69b72 https://conda.anaconda.org/conda-forge/linux-64/pcre2-10.44-hba22ea6_2.conda#df359c09c41cd186fffb93a2d87aa6f5 @@ -113,10 +113,10 @@ https://conda.anaconda.org/conda-forge/linux-64/libhiredis-1.0.2-h2cc385e_0.tar. https://conda.anaconda.org/conda-forge/linux-64/libtiff-4.7.0-hd9ff511_3.conda#0ea6510969e1296cc19966fad481f6de https://conda.anaconda.org/conda-forge/linux-64/libxml2-2.13.5-h8d12d68_1.conda#1a21e49e190d1ffe58531a81b6e400e1 https://conda.anaconda.org/conda-forge/linux-64/mpfr-4.2.1-h90cbb55_3.conda#2eeb50cab6652538eee8fc0bc3340c81 -https://conda.anaconda.org/conda-forge/linux-64/mysql-libs-9.0.1-he0572af_3.conda#dd9da69dd4c2bf798c0b8bd4786cafb5 -https://conda.anaconda.org/conda-forge/linux-64/orc-2.0.3-h97ab989_1.conda#2f46eae652623114e112df13fae311cf +https://conda.anaconda.org/conda-forge/linux-64/mysql-libs-9.0.1-he0572af_4.conda#af19508df9d2e9f6894a9076a0857dc7 +https://conda.anaconda.org/conda-forge/linux-64/orc-2.0.3-h12ee42a_2.conda#4f6f9f3f80354ad185e276c120eac3f0 https://conda.anaconda.org/conda-forge/linux-64/python-3.13.1-ha99a958_102_cp313.conda#6e7535f1d1faf524e9210d2689b3149b -https://conda.anaconda.org/conda-forge/linux-64/re2-2024.07.02-h77b4e00_1.conda#01093ff37c1b5e6bf9f17c0116747d11 +https://conda.anaconda.org/conda-forge/linux-64/re2-2024.07.02-h9925aae_2.conda#e84ddf12bde691e8ec894b00ea829ddf https://conda.anaconda.org/conda-forge/linux-64/xcb-util-image-0.4.0-hb711507_2.conda#a0901183f08b6c7107aab109733a3c91 https://conda.anaconda.org/conda-forge/linux-64/xkeyboard-config-2.43-hb9d3cd8_0.conda#f725c7425d6d7c15e31f3b99a88ea02f https://conda.anaconda.org/conda-forge/linux-64/xorg-libxext-1.3.6-hb9d3cd8_0.conda#febbab7d15033c913d53c7a2c102309d @@ -143,7 +143,7 @@ https://conda.anaconda.org/conda-forge/linux-64/lcms2-2.16-hb7c19ff_0.conda#51bb https://conda.anaconda.org/conda-forge/linux-64/libcups-2.3.3-h4637d8d_4.conda#d4529f4dff3057982a7617c7ac58fde3 https://conda.anaconda.org/conda-forge/linux-64/libcurl-8.11.1-h332b0f4_0.conda#2b3e0081006dc21e8bf53a91c83a055c https://conda.anaconda.org/conda-forge/linux-64/libgl-1.7.0-ha4b6fd6_2.conda#928b8be80851f5d8ffb016f9c81dae7a -https://conda.anaconda.org/conda-forge/linux-64/libgrpc-1.67.1-hc2c308b_0.conda#4606a4647bfe857e3cfe21ca12ac3afb +https://conda.anaconda.org/conda-forge/linux-64/libgrpc-1.67.1-h25350d4_1.conda#0c6497a760b99a926c7c12b74951a39c https://conda.anaconda.org/conda-forge/linux-64/libhwloc-2.11.2-default_h0d58e46_1001.conda#804ca9e91bcaea0824a341d55b1684f2 https://conda.anaconda.org/conda-forge/linux-64/libllvm19-19.1.6-ha7bfdaf_0.conda#ec6abc65eefc96cba8443b2716dcc43b https://conda.anaconda.org/conda-forge/linux-64/libxkbcommon-1.7.0-h2c5496b_1.conda#e2eaefa4de2b7237af7c907b8bbc760a @@ -157,7 +157,7 @@ https://conda.anaconda.org/conda-forge/linux-64/openjpeg-2.5.3-h5fbd93e_0.conda# https://conda.anaconda.org/conda-forge/noarch/packaging-24.2-pyhd8ed1ab_2.conda#3bfed7e6228ebf2f7b9eaa47f1b4e2aa https://conda.anaconda.org/conda-forge/noarch/pip-24.3.1-pyh145f28c_2.conda#76601b0ccfe1fe13a21a5f8813cb38de https://conda.anaconda.org/conda-forge/noarch/pluggy-1.5.0-pyhd8ed1ab_1.conda#e9dcbce5f45f9ee500e728ae58b605b6 -https://conda.anaconda.org/conda-forge/noarch/pyparsing-3.2.0-pyhd8ed1ab_2.conda#4c05a2bcf87bb495512374143b57cf28 +https://conda.anaconda.org/conda-forge/noarch/pyparsing-3.2.1-pyhd8ed1ab_0.conda#285e237b8f351e85e7574a2c7bfa6d46 https://conda.anaconda.org/conda-forge/noarch/python-tzdata-2024.2-pyhd8ed1ab_1.conda#c0def296b2f6d2dd7b030c2a7f66bb1f https://conda.anaconda.org/conda-forge/noarch/pytz-2024.1-pyhd8ed1ab_0.conda#3eeeeb9e4827ace8c0c1419c85d590ad https://conda.anaconda.org/conda-forge/noarch/setuptools-75.6.0-pyhff2d567_1.conda#fc80f7995e396cbaeabd23cf46c413dc @@ -179,15 +179,15 @@ https://conda.anaconda.org/conda-forge/linux-64/azure-core-cpp-1.14.0-h5cfcd09_0 https://conda.anaconda.org/conda-forge/linux-64/coverage-7.6.10-py313h8060acc_0.conda#b76045c1b72b2db6e936bc1226a42c99 https://conda.anaconda.org/conda-forge/linux-64/fonttools-4.55.3-py313h8060acc_1.conda#f89b4b415c5be34d24f74f30954792b5 https://conda.anaconda.org/conda-forge/linux-64/gmpy2-2.1.5-py313h11186cd_3.conda#846a773cdc154eda7b86d7f4427432f2 -https://conda.anaconda.org/conda-forge/linux-64/harfbuzz-9.0.0-hda332d3_1.conda#76b32dcf243444aea9c6b804bcfa40b8 +https://conda.anaconda.org/conda-forge/linux-64/harfbuzz-10.1.0-h0b3b770_0.conda#ab1d7d56034814f4c3ed9f69f8c68806 https://conda.anaconda.org/conda-forge/noarch/jinja2-3.1.5-pyhd8ed1ab_0.conda#2752a6ed44105bfb18c9bef1177d9dcd https://conda.anaconda.org/conda-forge/noarch/joblib-1.4.2-pyhd8ed1ab_1.conda#bf8243ee348f3a10a14ed0cae323e0c1 https://conda.anaconda.org/conda-forge/linux-64/libclang-cpp19.1-19.1.6-default_hb5137d0_0.conda#9caebd39281536bf6bcb32f665dd4fbf https://conda.anaconda.org/conda-forge/linux-64/libclang13-19.1.6-default_h9c6a7e4_0.conda#e1d2936c320083f1c520c3a17372521c -https://conda.anaconda.org/conda-forge/linux-64/libgoogle-cloud-2.32.0-h804f50b_0.conda#3d96df4d6b1c88455e05b94ce8a14a53 +https://conda.anaconda.org/conda-forge/linux-64/libgoogle-cloud-2.33.0-h2b5623c_1.conda#61829a8dd5f4e2327e707572065bae41 https://conda.anaconda.org/conda-forge/noarch/meson-1.6.1-pyhd8ed1ab_0.conda#0062fb0a7f5da474705d0ce626de12f4 https://conda.anaconda.org/conda-forge/linux-64/openldap-2.6.9-he970967_0.conda#ca2de8bbdc871bce41dbf59e51324165 -https://conda.anaconda.org/conda-forge/linux-64/pillow-11.0.0-py313h2d7ed13_0.conda#0d95e1cda6bf9ce501e751c02561204e +https://conda.anaconda.org/conda-forge/linux-64/pillow-11.1.0-py313h8db990d_0.conda#1e86810c6c3fb6d6aebdba26564eb2e8 https://conda.anaconda.org/conda-forge/noarch/pyproject-metadata-0.9.0-pyhd8ed1ab_1.conda#1239146a53a383a84633800294120f17 https://conda.anaconda.org/conda-forge/noarch/pytest-8.3.4-pyhd8ed1ab_1.conda#799ed216dc6af62520f32aa39bc1c2bb https://conda.anaconda.org/conda-forge/noarch/python-dateutil-2.9.0.post0-pyhff2d567_1.conda#5ba79d7c71f03c678c8ead841f347d6e @@ -196,7 +196,7 @@ https://conda.anaconda.org/conda-forge/linux-64/xorg-libxtst-1.2.5-hb9d3cd8_3.co https://conda.anaconda.org/conda-forge/linux-64/aws-crt-cpp-0.29.7-hd92328a_7.conda#02b95564257d5c3db9c06beccf711f95 https://conda.anaconda.org/conda-forge/linux-64/azure-identity-cpp-1.10.0-h113e628_0.conda#73f73f60854f325a55f1d31459f2ab73 https://conda.anaconda.org/conda-forge/linux-64/azure-storage-common-cpp-12.8.0-h736e048_1.conda#13de36be8de3ae3f05ba127631599213 -https://conda.anaconda.org/conda-forge/linux-64/libgoogle-cloud-storage-2.32.0-h0121fbd_0.conda#877a5ec0431a5af83bf0cd0522bfe661 +https://conda.anaconda.org/conda-forge/linux-64/libgoogle-cloud-storage-2.33.0-h0121fbd_1.conda#b0cfb5044685a7a9fa43ae669124f0a0 https://conda.anaconda.org/conda-forge/linux-64/libpq-17.2-h3b95a9b_1.conda#37724d8bae042345a19ca1a25dde786b https://conda.anaconda.org/conda-forge/noarch/meson-python-0.17.1-pyh70fd9c4_1.conda#7a02679229c6c2092571b4c025055440 https://conda.anaconda.org/conda-forge/linux-64/mkl-2024.2.2-ha957f24_16.conda#1459379c79dda834673426504d52b319 @@ -207,30 +207,30 @@ https://conda.anaconda.org/conda-forge/linux-64/aws-sdk-cpp-1.11.458-hc430e4a_4. https://conda.anaconda.org/conda-forge/linux-64/azure-storage-blobs-cpp-12.13.0-h3cf044e_1.conda#7eb66060455c7a47d9dcdbfa9f46579b https://conda.anaconda.org/conda-forge/linux-64/libblas-3.9.0-26_linux64_mkl.conda#60463d3ec26e0860bfc7fc1547e005ef https://conda.anaconda.org/conda-forge/linux-64/mkl-devel-2024.2.2-ha770c72_16.conda#140891ea14285fc634353b31e9e40a95 -https://conda.anaconda.org/conda-forge/linux-64/qt6-main-6.8.1-h9d28a51_0.conda#7e8e17c44e7af62c77de7a0158afc35c +https://conda.anaconda.org/conda-forge/linux-64/qt6-main-6.8.1-h588cce1_2.conda#5d2f1f29c025a110a43f9946527623ab https://conda.anaconda.org/conda-forge/linux-64/azure-storage-files-datalake-cpp-12.12.0-ha633028_1.conda#7c1980f89dd41b097549782121a73490 https://conda.anaconda.org/conda-forge/linux-64/libcblas-3.9.0-26_linux64_mkl.conda#760c109bfe25518d6f9af51d7af8b9f3 https://conda.anaconda.org/conda-forge/linux-64/liblapack-3.9.0-26_linux64_mkl.conda#84112111a50db59ca64153e0054fa73e https://conda.anaconda.org/conda-forge/linux-64/pyside6-6.8.1-py313h5f61773_0.conda#689386169e9c1e4879e81384de4d47e9 -https://conda.anaconda.org/conda-forge/linux-64/libarrow-18.1.0-h44a453e_6_cpu.conda#2cf6d608d6e66506f69797d5c6944c35 +https://conda.anaconda.org/conda-forge/linux-64/libarrow-18.1.0-hd595efa_7_cpu.conda#08d4aff5ee6dee9a1b9ab13fca927697 https://conda.anaconda.org/conda-forge/linux-64/liblapacke-3.9.0-26_linux64_mkl.conda#ffd5d8a606a1bd0e914f276dc44b42ee -https://conda.anaconda.org/conda-forge/linux-64/libtorch-2.5.1-cpu_mkl_h791ef64_106.conda#a6197137453f4365412dcbef1f403141 +https://conda.anaconda.org/conda-forge/linux-64/libtorch-2.5.1-cpu_mkl_he8ec5d7_108.conda#a070bb62918bea542fbb092c2abd7004 https://conda.anaconda.org/conda-forge/linux-64/numpy-2.2.1-py313hb30382a_0.conda#bacc73d89e22828efedf31fdc4b54b4e https://conda.anaconda.org/conda-forge/noarch/array-api-strict-2.2-pyhd8ed1ab_1.conda#02e7a32986412d3aaf97095d17120757 https://conda.anaconda.org/conda-forge/linux-64/blas-devel-3.9.0-26_linux64_mkl.conda#261acc954f47b7bf11d841ad8dd91d08 https://conda.anaconda.org/conda-forge/linux-64/contourpy-1.3.1-py313h33d0bda_0.conda#6b6768e7c585d7029f79a04cbc4cbff0 -https://conda.anaconda.org/conda-forge/linux-64/libarrow-acero-18.1.0-hcb10f89_6_cpu.conda#143f9288b64759a6427563f058c62f2b -https://conda.anaconda.org/conda-forge/linux-64/libparquet-18.1.0-h081d1f1_6_cpu.conda#68788df49ce7480187eb6387f15b2b67 +https://conda.anaconda.org/conda-forge/linux-64/libarrow-acero-18.1.0-hcb10f89_7_cpu.conda#12d84228204c56fec6ed113288014d11 +https://conda.anaconda.org/conda-forge/linux-64/libparquet-18.1.0-h081d1f1_7_cpu.conda#b97013ef4e1dd2cf11594f06d5b5e83a https://conda.anaconda.org/conda-forge/linux-64/pandas-2.2.3-py313ha87cce1_1.conda#c5d63dd501db554b84a30dea33824164 https://conda.anaconda.org/conda-forge/linux-64/polars-1.17.1-py313hae41bca_0.conda#ee6fe8aba7963d1229645a3f831e3744 https://conda.anaconda.org/conda-forge/linux-64/pyarrow-core-18.1.0-py313he5f92c8_0_cpu.conda#5380e12f4468e891911dbbd4248b521a -https://conda.anaconda.org/conda-forge/linux-64/pytorch-2.5.1-cpu_mkl_py313hf76930e_106.conda#436a5c9f320b3230e67fbe26d224d516 -https://conda.anaconda.org/conda-forge/linux-64/scipy-1.14.1-py313h27c5614_2.conda#25c0eda0d2ed28962c5f3e8f7fbeace3 +https://conda.anaconda.org/conda-forge/linux-64/pytorch-2.5.1-cpu_mkl_py313_h90df46e_108.conda#f192f56caccbdbdad81e015a64294e92 +https://conda.anaconda.org/conda-forge/linux-64/scipy-1.15.0-py313hc93385a_0.conda#cd05940add8516cad1407b7dac647526 https://conda.anaconda.org/conda-forge/linux-64/blas-2.126-mkl.conda#4af53f2542f5adbfc2290f084f3a99fa -https://conda.anaconda.org/conda-forge/linux-64/libarrow-dataset-18.1.0-hcb10f89_6_cpu.conda#20ca46a6bc714a6ab189d5b3f46e66d8 +https://conda.anaconda.org/conda-forge/linux-64/libarrow-dataset-18.1.0-hcb10f89_7_cpu.conda#0a81eb63d7cd150f598c752e86388d57 https://conda.anaconda.org/conda-forge/linux-64/matplotlib-base-3.10.0-py313h129903b_0.conda#ab5b84154e1d9e41d4f11aea76d74096 https://conda.anaconda.org/conda-forge/linux-64/pyamg-5.2.1-py313hf0ab243_1.conda#4c769bf3858f424cb2ecf952175ec600 -https://conda.anaconda.org/conda-forge/linux-64/pytorch-cpu-2.5.1-cpu_mkl_hc60beec_106.conda#0e8cc9f4649cbcd439c4a6bc8166ac03 -https://conda.anaconda.org/conda-forge/linux-64/libarrow-substrait-18.1.0-h3ee7192_6_cpu.conda#aa313b3168caf98d00b3753f5ba27650 +https://conda.anaconda.org/conda-forge/linux-64/pytorch-cpu-2.5.1-cpu_mkl_hc60beec_108.conda#8135dc47e3dcbd4b3d83ad5b48e50ecb +https://conda.anaconda.org/conda-forge/linux-64/libarrow-substrait-18.1.0-h08228c5_7_cpu.conda#e128def53c133e8a23ac00cd4a479335 https://conda.anaconda.org/conda-forge/linux-64/matplotlib-3.10.0-py313h78bf25f_0.conda#8db95cf01990edcecf616ed65a986fde https://conda.anaconda.org/conda-forge/linux-64/pyarrow-18.1.0-py313h78bf25f_0.conda#a11d880ceedc33993c6f5c14a80ea9d3 diff --git a/build_tools/azure/pylatest_conda_forge_mkl_osx-64_conda.lock b/build_tools/azure/pylatest_conda_forge_mkl_osx-64_conda.lock index 48041585bc4d3..d67a5e8ffc606 100644 --- a/build_tools/azure/pylatest_conda_forge_mkl_osx-64_conda.lock +++ b/build_tools/azure/pylatest_conda_forge_mkl_osx-64_conda.lock @@ -21,7 +21,7 @@ https://conda.anaconda.org/conda-forge/osx-64/libwebp-base-1.5.0-h6cf52b4_0.cond https://conda.anaconda.org/conda-forge/osx-64/libzlib-1.3.1-hd23fc13_2.conda#003a54a4e32b02f7355b50a837e699da https://conda.anaconda.org/conda-forge/osx-64/llvm-openmp-19.1.6-ha54dae1_0.conda#4fe4d62071f8a3322ffb6588b49ccbb8 https://conda.anaconda.org/conda-forge/osx-64/ncurses-6.5-hf036a51_1.conda#e102bbf8a6ceeaf429deab8032fc8977 -https://conda.anaconda.org/conda-forge/osx-64/openssl-3.4.0-hd471939_0.conda#ec99d2ce0b3033a75cbad01bbc7c5b71 +https://conda.anaconda.org/conda-forge/osx-64/openssl-3.4.0-hc426f3f_1.conda#eaae23dbfc9ec84775097898526c72ea https://conda.anaconda.org/conda-forge/osx-64/pthread-stubs-0.4-h00291cd_1002.conda#8bcf980d2c6b17094961198284b8e862 https://conda.anaconda.org/conda-forge/osx-64/xorg-libxau-1.0.12-h6e16a3a_0.conda#4cf40e60b444d56512a64f39d12c20bd https://conda.anaconda.org/conda-forge/osx-64/xorg-libxdmcp-1.1.5-h00291cd_0.conda#9f438e1b6f4e73fd9e6d78bfe7c36743 @@ -71,7 +71,7 @@ https://conda.anaconda.org/conda-forge/osx-64/openjpeg-2.5.3-h7fd6d84_0.conda#02 https://conda.anaconda.org/conda-forge/noarch/packaging-24.2-pyhd8ed1ab_2.conda#3bfed7e6228ebf2f7b9eaa47f1b4e2aa https://conda.anaconda.org/conda-forge/noarch/pip-24.3.1-pyh145f28c_2.conda#76601b0ccfe1fe13a21a5f8813cb38de https://conda.anaconda.org/conda-forge/noarch/pluggy-1.5.0-pyhd8ed1ab_1.conda#e9dcbce5f45f9ee500e728ae58b605b6 -https://conda.anaconda.org/conda-forge/noarch/pyparsing-3.2.0-pyhd8ed1ab_2.conda#4c05a2bcf87bb495512374143b57cf28 +https://conda.anaconda.org/conda-forge/noarch/pyparsing-3.2.1-pyhd8ed1ab_0.conda#285e237b8f351e85e7574a2c7bfa6d46 https://conda.anaconda.org/conda-forge/noarch/python-tzdata-2024.2-pyhd8ed1ab_1.conda#c0def296b2f6d2dd7b030c2a7f66bb1f https://conda.anaconda.org/conda-forge/noarch/pytz-2024.1-pyhd8ed1ab_0.conda#3eeeeb9e4827ace8c0c1419c85d590ad https://conda.anaconda.org/conda-forge/noarch/setuptools-75.6.0-pyhff2d567_1.conda#fc80f7995e396cbaeabd23cf46c413dc @@ -91,7 +91,7 @@ https://conda.anaconda.org/conda-forge/noarch/joblib-1.4.2-pyhd8ed1ab_1.conda#bf https://conda.anaconda.org/conda-forge/osx-64/ld64-951.9-h0a3eb4e_2.conda#c198062cf84f2e797996ac156daffa9e https://conda.anaconda.org/conda-forge/noarch/meson-1.6.1-pyhd8ed1ab_0.conda#0062fb0a7f5da474705d0ce626de12f4 https://conda.anaconda.org/conda-forge/osx-64/mkl-2023.2.0-h54c2260_50500.conda#0a342ccdc79e4fcd359245ac51941e7b -https://conda.anaconda.org/conda-forge/osx-64/pillow-11.0.0-py313h4d44d4f_0.conda#d5a3e556600840a77c61394c48ee52d9 +https://conda.anaconda.org/conda-forge/osx-64/pillow-11.1.0-py313h0c4f865_0.conda#11b4dd7a814202f2a0b655420f1c1c3a https://conda.anaconda.org/conda-forge/noarch/pyproject-metadata-0.9.0-pyhd8ed1ab_1.conda#1239146a53a383a84633800294120f17 https://conda.anaconda.org/conda-forge/noarch/pytest-8.3.4-pyhd8ed1ab_1.conda#799ed216dc6af62520f32aa39bc1c2bb https://conda.anaconda.org/conda-forge/noarch/python-dateutil-2.9.0.post0-pyhff2d567_1.conda#5ba79d7c71f03c678c8ead841f347d6e @@ -112,7 +112,7 @@ https://conda.anaconda.org/conda-forge/osx-64/blas-devel-3.9.0-20_osx64_mkl.cond https://conda.anaconda.org/conda-forge/osx-64/compiler-rt-17.0.6-h1020d70_2.conda#be4cb4531d4cee9df94bf752455d68de https://conda.anaconda.org/conda-forge/osx-64/contourpy-1.3.1-py313ha0b1807_0.conda#5ae850f4b044294bd7d655228fc236f9 https://conda.anaconda.org/conda-forge/osx-64/pandas-2.2.3-py313h38cdd20_1.conda#ab61fb255c951a0514616e92dd2e18b2 -https://conda.anaconda.org/conda-forge/osx-64/scipy-1.14.1-py313hd641537_2.conda#761f4433e80b2daed4d050da787db155 +https://conda.anaconda.org/conda-forge/osx-64/scipy-1.15.0-py313hd604262_0.conda#ad0e3fcb5d4328802185894d7c37c182 https://conda.anaconda.org/conda-forge/osx-64/blas-2.120-mkl.conda#b041a7677a412f3d925d8208936cb1e2 https://conda.anaconda.org/conda-forge/osx-64/clang_impl_osx-64-17.0.6-h1af8efd_23.conda#90132dd643d402883e4fbd8f0527e152 https://conda.anaconda.org/conda-forge/osx-64/matplotlib-base-3.10.0-py313he981572_0.conda#765ffe9ff0204c094692b08c08b2c0f4 diff --git a/build_tools/azure/pylatest_pip_openblas_pandas_linux-64_conda.lock b/build_tools/azure/pylatest_pip_openblas_pandas_linux-64_conda.lock index 5d61d4e4fbe24..7d47d2f07bd03 100644 --- a/build_tools/azure/pylatest_pip_openblas_pandas_linux-64_conda.lock +++ b/build_tools/azure/pylatest_pip_openblas_pandas_linux-64_conda.lock @@ -50,10 +50,10 @@ https://repo.anaconda.com/pkgs/main/linux-64/pip-24.2-py313h06a4308_0.conda#59f8 # pip ninja @ https://files.pythonhosted.org/packages/6b/35/a8e38d54768e67324e365e2a41162be298f51ec93e6bd4b18d237d7250d8/ninja-1.11.1.3-py3-none-manylinux_2_12_x86_64.manylinux2010_x86_64.whl#sha256=a27e78ca71316c8654965ee94b286a98c83877bfebe2607db96897bbfe458af0 # pip numpy @ https://files.pythonhosted.org/packages/f1/5a/e572284c86a59dec0871a49cd4e5351e20b9c751399d5f1d79628c0542cb/numpy-2.2.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl#sha256=f74e6fdeb9a265624ec3a3918430205dff1df7e95a230779746a6af78bc615af # pip packaging @ https://files.pythonhosted.org/packages/88/ef/eb23f262cca3c0c4eb7ab1933c3b1f03d021f2c48f54763065b6f0e321be/packaging-24.2-py3-none-any.whl#sha256=09abb1bccd265c01f4a3aa3f7a7db064b36514d2cba19a2f694fe6150451a759 -# pip pillow @ https://files.pythonhosted.org/packages/44/ae/7e4f6662a9b1cb5f92b9cc9cab8321c381ffbee309210940e57432a4063a/pillow-11.0.0-cp313-cp313-manylinux_2_28_x86_64.whl#sha256=c6a660307ca9d4867caa8d9ca2c2658ab685de83792d1876274991adec7b93fa +# pip pillow @ https://files.pythonhosted.org/packages/de/7c/7433122d1cfadc740f577cb55526fdc39129a648ac65ce64db2eb7209277/pillow-11.1.0-cp313-cp313-manylinux_2_28_x86_64.whl#sha256=3764d53e09cdedd91bee65c2527815d315c6b90d7b8b79759cc48d7bf5d4f114 # pip pluggy @ https://files.pythonhosted.org/packages/88/5f/e351af9a41f866ac3f1fac4ca0613908d9a41741cfcf2228f4ad853b697d/pluggy-1.5.0-py3-none-any.whl#sha256=44e1ad92c8ca002de6377e165f3e0f1be63266ab4d554740532335b9d75ea669 -# pip pygments @ https://files.pythonhosted.org/packages/f7/3f/01c8b82017c199075f8f788d0d906b9ffbbc5a47dc9918a945e13d5a2bda/pygments-2.18.0-py3-none-any.whl#sha256=b8e6aca0523f3ab76fee51799c488e38782ac06eafcf95e7ba832985c8e7b13a -# pip pyparsing @ https://files.pythonhosted.org/packages/be/ec/2eb3cd785efd67806c46c13a17339708ddc346cbb684eade7a6e6f79536a/pyparsing-3.2.0-py3-none-any.whl#sha256=93d9577b88da0bbea8cc8334ee8b918ed014968fd2ec383e868fb8afb1ccef84 +# pip pygments @ https://files.pythonhosted.org/packages/20/dc/fde3e7ac4d279a331676829af4afafd113b34272393d73f610e8f0329221/pygments-2.19.0-py3-none-any.whl#sha256=4755e6e64d22161d5b61432c0600c923c5927214e7c956e31c23923c89251a9b +# pip pyparsing @ https://files.pythonhosted.org/packages/1c/a7/c8a2d361bf89c0d9577c934ebb7421b25dc84bf3a8e3ac0a40aed9acc547/pyparsing-3.2.1-py3-none-any.whl#sha256=506ff4f4386c4cec0590ec19e6302d3aedb992fdc02c761e90416f158dacf8e1 # pip pytz @ https://files.pythonhosted.org/packages/11/c3/005fcca25ce078d2cc29fd559379817424e94885510568bc1bc53d7d5846/pytz-2024.2-py2.py3-none-any.whl#sha256=31c7c1817eb7fae7ca4b8c7ee50c72f93aa2dd863de768e1ef4245d426aa0725 # pip six @ https://files.pythonhosted.org/packages/b7/ce/149a00dd41f10bc29e5921b496af8b574d8413afcd5e30dfa0ed46c2cc5e/six-1.17.0-py2.py3-none-any.whl#sha256=4721f391ed90541fddacab5acf947aa0d3dc7d27b2e1e8eda2be8970586c3274 # pip snowballstemmer @ https://files.pythonhosted.org/packages/ed/dc/c02e01294f7265e63a7315fe086dd1df7dacb9f840a804da846b96d01b96/snowballstemmer-2.2.0-py2.py3-none-any.whl#sha256=c8e1716e83cc398ae16824e5572ae04e0d9fc2c6b985fb0f900f5f0c96ecba1a @@ -76,7 +76,7 @@ https://repo.anaconda.com/pkgs/main/linux-64/pip-24.2-py313h06a4308_0.conda#59f8 # pip pytest @ https://files.pythonhosted.org/packages/11/92/76a1c94d3afee238333bc0a42b82935dd8f9cf8ce9e336ff87ee14d9e1cf/pytest-8.3.4-py3-none-any.whl#sha256=50e16d954148559c9a74109af1eaf0c945ba2d8f30f0a3d3335edde19788b6f6 # pip python-dateutil @ https://files.pythonhosted.org/packages/ec/57/56b9bcc3c9c6a792fcbaf139543cee77261f3651ca9da0c93f5c1221264b/python_dateutil-2.9.0.post0-py2.py3-none-any.whl#sha256=a8b2bc7bffae282281c8140a97d3aa9c14da0b136dfe83f850eea9a5f7470427 # pip requests @ https://files.pythonhosted.org/packages/f9/9b/335f9764261e915ed497fcdeb11df5dfd6f7bf257d4a6a2a686d80da4d54/requests-2.32.3-py3-none-any.whl#sha256=70761cfe03c773ceb22aa2f671b4757976145175cdfca038c02654d061d6dcc6 -# pip scipy @ https://files.pythonhosted.org/packages/56/46/2449e6e51e0d7c3575f289f6acb7f828938eaab8874dbccfeb0cd2b71a27/scipy-1.14.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl#sha256=5149e3fd2d686e42144a093b206aef01932a0059c2a33ddfa67f5f035bdfe13e +# pip scipy @ https://files.pythonhosted.org/packages/82/4d/ecef655956ce332edbc411ab64ab843d767dd86e646898ac721dbcc7910e/scipy-1.15.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl#sha256=36be480e512d38db67f377add5b759fb117edd987f4791cdf58e59b26962bee4 # pip tifffile @ https://files.pythonhosted.org/packages/d8/1e/76cbc758f6865a9da18001ac70d1a4154603b71e233f704401fc7d62493e/tifffile-2024.12.12-py3-none-any.whl#sha256=6ff0f196a46a75c8c0661c70995e06ea4d08a81fe343193e69f1673f4807d508 # pip lightgbm @ https://files.pythonhosted.org/packages/4e/19/1b928cad70a4e1a3e2c37d5417ca2182510f2451eaadb6c91cd9ec692cae/lightgbm-4.5.0-py3-none-manylinux_2_28_x86_64.whl#sha256=960a0e7c077de0ca3053f1325d3edfc92ea815acf5176adcacdea0f635aeef9b # pip matplotlib @ https://files.pythonhosted.org/packages/ea/3a/bab9deb4fb199c05e9100f94d7f1c702f78d3241e6a71b784d2b88d7bebd/matplotlib-3.10.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl#sha256=ad2e15300530c1a94c63cfa546e3b7864bd18ea2901317bae8bbf06a5ade6dcf diff --git a/build_tools/azure/pymin_conda_forge_mkl_win-64_conda.lock b/build_tools/azure/pymin_conda_forge_mkl_win-64_conda.lock index 71a25c1d2e984..aa94ff9d6cbaf 100644 --- a/build_tools/azure/pymin_conda_forge_mkl_win-64_conda.lock +++ b/build_tools/azure/pymin_conda_forge_mkl_win-64_conda.lock @@ -36,7 +36,7 @@ https://conda.anaconda.org/conda-forge/win-64/libsqlite-3.47.2-h67fdade_0.conda# https://conda.anaconda.org/conda-forge/win-64/libwebp-base-1.5.0-h3b0e114_0.conda#33f7313967072c6e6d8f865f5493c7ae https://conda.anaconda.org/conda-forge/win-64/libzlib-1.3.1-h2466b09_2.conda#41fbfac52c601159df6c01f875de31b9 https://conda.anaconda.org/conda-forge/win-64/ninja-1.12.1-hc790b64_0.conda#a557dde55343e03c68cd7e29e7f87279 -https://conda.anaconda.org/conda-forge/win-64/openssl-3.4.0-h2466b09_0.conda#d0d805d9b5524a14efb51b3bff965e83 +https://conda.anaconda.org/conda-forge/win-64/openssl-3.4.0-ha4e3fda_1.conda#fb45308ba8bfe1abf1f4a27bad24a743 https://conda.anaconda.org/conda-forge/win-64/pixman-0.44.2-had0cd8c_0.conda#c720ac9a3bd825bf8b4dc7523ea49be4 https://conda.anaconda.org/conda-forge/win-64/qhull-2020.2-hc790b64_5.conda#854fbdff64b572b5c0b470f334d34c11 https://conda.anaconda.org/conda-forge/win-64/tk-8.6.13-h5226925_1.conda#fc048363eb8f03cd1737600a5d08aafe @@ -69,7 +69,7 @@ https://conda.anaconda.org/conda-forge/noarch/munkres-1.1.4-pyh9f0ad1d_0.tar.bz2 https://conda.anaconda.org/conda-forge/noarch/packaging-24.2-pyhd8ed1ab_2.conda#3bfed7e6228ebf2f7b9eaa47f1b4e2aa https://conda.anaconda.org/conda-forge/noarch/pluggy-1.5.0-pyhd8ed1ab_1.conda#e9dcbce5f45f9ee500e728ae58b605b6 https://conda.anaconda.org/conda-forge/win-64/pthread-stubs-0.4-h0e40799_1002.conda#3c8f2573569bb816483e5cf57efbbe29 -https://conda.anaconda.org/conda-forge/noarch/pyparsing-3.2.0-pyhd8ed1ab_2.conda#4c05a2bcf87bb495512374143b57cf28 +https://conda.anaconda.org/conda-forge/noarch/pyparsing-3.2.1-pyhd8ed1ab_0.conda#285e237b8f351e85e7574a2c7bfa6d46 https://conda.anaconda.org/conda-forge/noarch/setuptools-75.6.0-pyhff2d567_1.conda#fc80f7995e396cbaeabd23cf46c413dc https://conda.anaconda.org/conda-forge/noarch/six-1.17.0-pyhd8ed1ab_0.conda#a451d576819089b0d672f18768be0f65 https://conda.anaconda.org/conda-forge/noarch/threadpoolctl-3.5.0-pyhc1e730c_0.conda#df68d78237980a159bd7149f33c0e8fd @@ -100,7 +100,7 @@ https://conda.anaconda.org/conda-forge/win-64/fonttools-4.55.3-py39hf73967f_1.co https://conda.anaconda.org/conda-forge/noarch/importlib-resources-6.4.5-pyhd8ed1ab_1.conda#59561d9b70f9df3b884c29910eba6593 https://conda.anaconda.org/conda-forge/noarch/meson-python-0.17.1-pyh70fd9c4_1.conda#7a02679229c6c2092571b4c025055440 https://conda.anaconda.org/conda-forge/win-64/mkl-2024.2.2-h66d3029_15.conda#302dff2807f2927b3e9e0d19d60121de -https://conda.anaconda.org/conda-forge/win-64/pillow-11.0.0-py39h5ee314c_0.conda#0c57206c5215a7e56414ce0332805226 +https://conda.anaconda.org/conda-forge/win-64/pillow-11.1.0-py39h73ef694_0.conda#281e124453ea6dc02e9638a4d6c0a8b6 https://conda.anaconda.org/conda-forge/noarch/pytest-cov-6.0.0-pyhd8ed1ab_1.conda#79963c319d1be62c8fd3e34555816e01 https://conda.anaconda.org/conda-forge/noarch/pytest-xdist-3.6.1-pyhd8ed1ab_1.conda#59aad4fb37cabc0bacc73cf344612ddd https://conda.anaconda.org/conda-forge/win-64/harfbuzz-10.1.0-ha6ce084_0.conda#ad1da267c13505dbcc7fb9f0d21f24ae @@ -108,7 +108,7 @@ https://conda.anaconda.org/conda-forge/win-64/libblas-3.9.0-26_win64_mkl.conda#e https://conda.anaconda.org/conda-forge/win-64/mkl-devel-2024.2.2-h57928b3_15.conda#a85f53093da069c7c657f090e388f3ef https://conda.anaconda.org/conda-forge/win-64/libcblas-3.9.0-26_win64_mkl.conda#652f3adcb9d329050a325416edb14246 https://conda.anaconda.org/conda-forge/win-64/liblapack-3.9.0-26_win64_mkl.conda#0a717f5fda7279b77bcce671b324408a -https://conda.anaconda.org/conda-forge/win-64/qt6-main-6.8.1-h1259614_1.conda#2b5d5b1943a7e3be2c6e2f3b9f00ba15 +https://conda.anaconda.org/conda-forge/win-64/qt6-main-6.8.1-h1259614_2.conda#070e8c90ab39a63d9ee0d2155bc668b4 https://conda.anaconda.org/conda-forge/win-64/liblapacke-3.9.0-26_win64_mkl.conda#759830e09248cc0fd7fe2cbb79c83b03 https://conda.anaconda.org/conda-forge/win-64/numpy-2.0.2-py39h60232e0_1.conda#d8801e13476c0ae89e410307fbc5a612 https://conda.anaconda.org/conda-forge/win-64/pyside6-6.8.1-py39h0285922_0.conda#a8d806c618d9ae1836b56e0771ee6abe diff --git a/build_tools/azure/pymin_conda_forge_openblas_min_dependencies_linux-64_conda.lock b/build_tools/azure/pymin_conda_forge_openblas_min_dependencies_linux-64_conda.lock index 29130c3773764..0e063b91fed4d 100644 --- a/build_tools/azure/pymin_conda_forge_openblas_min_dependencies_linux-64_conda.lock +++ b/build_tools/azure/pymin_conda_forge_openblas_min_dependencies_linux-64_conda.lock @@ -28,7 +28,7 @@ https://conda.anaconda.org/conda-forge/linux-64/libntlm-1.8-hb9d3cd8_0.conda#7c7 https://conda.anaconda.org/conda-forge/linux-64/libstdcxx-14.2.0-hc0a3c3a_1.conda#234a5554c53625688d51062645337328 https://conda.anaconda.org/conda-forge/linux-64/libwebp-base-1.5.0-h851e524_0.conda#63f790534398730f59e1b899c3644d4a https://conda.anaconda.org/conda-forge/linux-64/libzlib-1.3.1-hb9d3cd8_2.conda#edb0dca6bc32e4f4789199455a1dbeb8 -https://conda.anaconda.org/conda-forge/linux-64/openssl-3.4.0-hb9d3cd8_0.conda#23cc74f77eb99315c0360ec3533147a9 +https://conda.anaconda.org/conda-forge/linux-64/openssl-3.4.0-h7b32b05_1.conda#4ce6875f75469b2757a65e10a5d05e31 https://conda.anaconda.org/conda-forge/linux-64/pthread-stubs-0.4-hb9d3cd8_1002.conda#b3c17d95b5a10c6e64a21fa17573e70e https://conda.anaconda.org/conda-forge/linux-64/xorg-libice-1.1.2-hb9d3cd8_0.conda#fb901ff28063514abb6046c9ec2c4a45 https://conda.anaconda.org/conda-forge/linux-64/xorg-libxau-1.0.12-hb9d3cd8_0.conda#f6ebe2cb3f82ba6c057dde5d9debe4f7 @@ -58,7 +58,7 @@ https://conda.anaconda.org/conda-forge/linux-64/libxcb-1.17.0-h8a09558_0.conda#9 https://conda.anaconda.org/conda-forge/linux-64/libxcrypt-4.4.36-hd590300_1.conda#5aa797f8787fe7a17d1b0821485b5adc https://conda.anaconda.org/conda-forge/linux-64/lz4-c-1.10.0-h5888daf_1.conda#9de5350a85c4a20c685259b889aa6393 https://conda.anaconda.org/conda-forge/linux-64/mpg123-1.32.9-hc50e24c_0.conda#c7f302fd11eeb0987a6a5e1f3aed6a21 -https://conda.anaconda.org/conda-forge/linux-64/mysql-common-9.0.1-h266115a_3.conda#9411c61ff1070b5e065b32840c39faa5 +https://conda.anaconda.org/conda-forge/linux-64/mysql-common-9.0.1-h266115a_4.conda#9a5a1e3db671a8258c3f2c1969a4c654 https://conda.anaconda.org/conda-forge/linux-64/ncurses-6.5-he02047a_1.conda#70caf8bb6cf39a0b6b7efc885f51c0fe https://conda.anaconda.org/conda-forge/linux-64/nspr-4.36-h5888daf_0.conda#de9cd5bca9e4918527b9b72b6e2e1409 https://conda.anaconda.org/conda-forge/linux-64/pixman-0.44.2-h29eaf8c_0.conda#5e2a7acfa2c24188af39e7944e1b3604 @@ -96,7 +96,7 @@ https://conda.anaconda.org/conda-forge/linux-64/libopenblas-0.3.25-pthreads_h413 https://conda.anaconda.org/conda-forge/linux-64/libsystemd0-256.9-h0b6a36f_2.conda#135bbeb376345b6847c065115be4221a https://conda.anaconda.org/conda-forge/linux-64/libtiff-4.7.0-hd9ff511_3.conda#0ea6510969e1296cc19966fad481f6de https://conda.anaconda.org/conda-forge/linux-64/libxml2-2.13.5-h8d12d68_1.conda#1a21e49e190d1ffe58531a81b6e400e1 -https://conda.anaconda.org/conda-forge/linux-64/mysql-libs-9.0.1-he0572af_3.conda#dd9da69dd4c2bf798c0b8bd4786cafb5 +https://conda.anaconda.org/conda-forge/linux-64/mysql-libs-9.0.1-he0572af_4.conda#af19508df9d2e9f6894a9076a0857dc7 https://conda.anaconda.org/conda-forge/linux-64/python-3.9.21-h9c0c6dc_1_cpython.conda#b4807744af026fdbe8c05131758fb4be https://conda.anaconda.org/conda-forge/linux-64/xcb-util-image-0.4.0-hb711507_2.conda#a0901183f08b6c7107aab109733a3c91 https://conda.anaconda.org/conda-forge/linux-64/xkeyboard-config-2.43-hb9d3cd8_0.conda#f725c7425d6d7c15e31f3b99a88ea02f @@ -128,7 +128,7 @@ https://conda.anaconda.org/conda-forge/linux-64/openjpeg-2.5.3-h5fbd93e_0.conda# https://conda.anaconda.org/conda-forge/noarch/packaging-24.2-pyhd8ed1ab_2.conda#3bfed7e6228ebf2f7b9eaa47f1b4e2aa https://conda.anaconda.org/conda-forge/noarch/pluggy-1.5.0-pyhd8ed1ab_1.conda#e9dcbce5f45f9ee500e728ae58b605b6 https://conda.anaconda.org/conda-forge/noarch/ply-3.11-pyhd8ed1ab_3.conda#fd5062942bfa1b0bd5e0d2a4397b099e -https://conda.anaconda.org/conda-forge/noarch/pyparsing-3.2.0-pyhd8ed1ab_2.conda#4c05a2bcf87bb495512374143b57cf28 +https://conda.anaconda.org/conda-forge/noarch/pyparsing-3.2.1-pyhd8ed1ab_0.conda#285e237b8f351e85e7574a2c7bfa6d46 https://conda.anaconda.org/conda-forge/noarch/pytz-2024.2-pyhd8ed1ab_1.conda#f26ec986456c30f6dff154b670ae140f https://conda.anaconda.org/conda-forge/linux-64/setuptools-59.8.0-py39hf3d152e_1.tar.bz2#4252d0c211566a9f65149ba7f6e87aa4 https://conda.anaconda.org/conda-forge/noarch/six-1.17.0-pyhd8ed1ab_0.conda#a451d576819089b0d672f18768be0f65 @@ -151,7 +151,7 @@ https://conda.anaconda.org/conda-forge/linux-64/libflac-1.4.3-h59595ed_0.conda#e https://conda.anaconda.org/conda-forge/linux-64/liblapack-3.9.0-20_linux64_openblas.conda#6fabc51f5e647d09cc010c40061557e0 https://conda.anaconda.org/conda-forge/noarch/meson-1.6.1-pyhd8ed1ab_0.conda#0062fb0a7f5da474705d0ce626de12f4 https://conda.anaconda.org/conda-forge/linux-64/openldap-2.6.9-he970967_0.conda#ca2de8bbdc871bce41dbf59e51324165 -https://conda.anaconda.org/conda-forge/linux-64/pillow-11.0.0-py39h538c539_0.conda#a2bafdf8ae51c9eb6e5be684cfcedd60 +https://conda.anaconda.org/conda-forge/linux-64/pillow-11.1.0-py39h15c0740_0.conda#d6e7eee1f21bce11ae03f40a77c699fe https://conda.anaconda.org/conda-forge/noarch/pip-24.3.1-pyh8b19718_2.conda#04e691b9fadd93a8a9fad87a81d4fd8f https://conda.anaconda.org/conda-forge/noarch/pyproject-metadata-0.9.0-pyhd8ed1ab_1.conda#1239146a53a383a84633800294120f17 https://conda.anaconda.org/conda-forge/noarch/pytest-8.3.4-pyhd8ed1ab_1.conda#799ed216dc6af62520f32aa39bc1c2bb diff --git a/build_tools/azure/pymin_conda_forge_openblas_ubuntu_2204_linux-64_conda.lock b/build_tools/azure/pymin_conda_forge_openblas_ubuntu_2204_linux-64_conda.lock index 96519331c01e3..35efc02036955 100644 --- a/build_tools/azure/pymin_conda_forge_openblas_ubuntu_2204_linux-64_conda.lock +++ b/build_tools/azure/pymin_conda_forge_openblas_ubuntu_2204_linux-64_conda.lock @@ -30,7 +30,7 @@ https://conda.anaconda.org/conda-forge/linux-64/libntlm-1.8-hb9d3cd8_0.conda#7c7 https://conda.anaconda.org/conda-forge/linux-64/libstdcxx-14.2.0-hc0a3c3a_1.conda#234a5554c53625688d51062645337328 https://conda.anaconda.org/conda-forge/linux-64/libwebp-base-1.5.0-h851e524_0.conda#63f790534398730f59e1b899c3644d4a https://conda.anaconda.org/conda-forge/linux-64/libzlib-1.3.1-hb9d3cd8_2.conda#edb0dca6bc32e4f4789199455a1dbeb8 -https://conda.anaconda.org/conda-forge/linux-64/openssl-3.4.0-hb9d3cd8_0.conda#23cc74f77eb99315c0360ec3533147a9 +https://conda.anaconda.org/conda-forge/linux-64/openssl-3.4.0-h7b32b05_1.conda#4ce6875f75469b2757a65e10a5d05e31 https://conda.anaconda.org/conda-forge/linux-64/pthread-stubs-0.4-hb9d3cd8_1002.conda#b3c17d95b5a10c6e64a21fa17573e70e https://conda.anaconda.org/conda-forge/linux-64/xorg-libice-1.1.2-hb9d3cd8_0.conda#fb901ff28063514abb6046c9ec2c4a45 https://conda.anaconda.org/conda-forge/linux-64/xorg-libxau-1.0.12-hb9d3cd8_0.conda#f6ebe2cb3f82ba6c057dde5d9debe4f7 @@ -52,7 +52,7 @@ https://conda.anaconda.org/conda-forge/linux-64/libstdcxx-ng-14.2.0-h4852527_1.c https://conda.anaconda.org/conda-forge/linux-64/libuuid-2.38.1-h0b41bf4_0.conda#40b61aab5c7ba9ff276c41cfffe6b80b https://conda.anaconda.org/conda-forge/linux-64/libxcb-1.17.0-h8a09558_0.conda#92ed62436b625154323d40d5f2f11dd7 https://conda.anaconda.org/conda-forge/linux-64/libxcrypt-4.4.36-hd590300_1.conda#5aa797f8787fe7a17d1b0821485b5adc -https://conda.anaconda.org/conda-forge/linux-64/mysql-common-9.0.1-h266115a_3.conda#9411c61ff1070b5e065b32840c39faa5 +https://conda.anaconda.org/conda-forge/linux-64/mysql-common-9.0.1-h266115a_4.conda#9a5a1e3db671a8258c3f2c1969a4c654 https://conda.anaconda.org/conda-forge/linux-64/ncurses-6.5-he02047a_1.conda#70caf8bb6cf39a0b6b7efc885f51c0fe https://conda.anaconda.org/conda-forge/linux-64/pixman-0.44.2-h29eaf8c_0.conda#5e2a7acfa2c24188af39e7944e1b3604 https://conda.anaconda.org/conda-forge/linux-64/tk-8.6.13-noxft_h4845f30_101.conda#d453b98d9c83e71da0741bb0ff4d76bc @@ -87,7 +87,7 @@ https://conda.anaconda.org/conda-forge/linux-64/libglx-1.7.0-ha4b6fd6_2.conda#c8 https://conda.anaconda.org/conda-forge/linux-64/libhiredis-1.0.2-h2cc385e_0.tar.bz2#b34907d3a81a3cd8095ee83d174c074a https://conda.anaconda.org/conda-forge/linux-64/libtiff-4.7.0-hd9ff511_3.conda#0ea6510969e1296cc19966fad481f6de https://conda.anaconda.org/conda-forge/linux-64/libxml2-2.13.5-h8d12d68_1.conda#1a21e49e190d1ffe58531a81b6e400e1 -https://conda.anaconda.org/conda-forge/linux-64/mysql-libs-9.0.1-he0572af_3.conda#dd9da69dd4c2bf798c0b8bd4786cafb5 +https://conda.anaconda.org/conda-forge/linux-64/mysql-libs-9.0.1-he0572af_4.conda#af19508df9d2e9f6894a9076a0857dc7 https://conda.anaconda.org/conda-forge/linux-64/openblas-0.3.28-pthreads_h6ec200e_1.conda#8fe5d50db07e92519cc639cb0aef9b1b https://conda.anaconda.org/conda-forge/linux-64/python-3.9.21-h9c0c6dc_1_cpython.conda#b4807744af026fdbe8c05131758fb4be https://conda.anaconda.org/conda-forge/linux-64/xcb-util-image-0.4.0-hb711507_2.conda#a0901183f08b6c7107aab109733a3c91 @@ -100,7 +100,7 @@ https://conda.anaconda.org/conda-forge/linux-64/brotli-python-1.1.0-py39hf88036b https://conda.anaconda.org/conda-forge/linux-64/cairo-1.18.2-h3394656_1.conda#b34c2833a1f56db610aeb27f206d800d https://conda.anaconda.org/conda-forge/linux-64/ccache-4.10.1-h065aff2_0.conda#d6b48c138e0c8170a6fe9c136e063540 https://conda.anaconda.org/conda-forge/noarch/certifi-2024.12.14-pyhd8ed1ab_0.conda#6feb87357ecd66733be3279f16a8c400 -https://conda.anaconda.org/conda-forge/noarch/charset-normalizer-3.4.0-pyhd8ed1ab_1.conda#6581a17bba6b948bb60130026404a9d6 +https://conda.anaconda.org/conda-forge/noarch/charset-normalizer-3.4.1-pyhd8ed1ab_0.conda#e83a31202d1c0a000fce3e9cf3825875 https://conda.anaconda.org/conda-forge/noarch/colorama-0.4.6-pyhd8ed1ab_1.conda#962b9857ee8e7018c22f2776ffa0b2d7 https://conda.anaconda.org/conda-forge/noarch/cycler-0.12.1-pyhd8ed1ab_1.conda#44600c4667a319d67dbe0681fc0bc833 https://conda.anaconda.org/conda-forge/linux-64/cyrus-sasl-2.1.27-h54b06d7_7.conda#dce22f70b4e5a407ce88f2be046f4ceb @@ -130,7 +130,7 @@ https://conda.anaconda.org/conda-forge/noarch/packaging-24.2-pyhd8ed1ab_2.conda# https://conda.anaconda.org/conda-forge/noarch/pluggy-1.5.0-pyhd8ed1ab_1.conda#e9dcbce5f45f9ee500e728ae58b605b6 https://conda.anaconda.org/conda-forge/noarch/pycparser-2.22-pyh29332c3_1.conda#12c566707c80111f9799308d9e265aef https://conda.anaconda.org/conda-forge/noarch/pygments-2.18.0-pyhd8ed1ab_1.conda#b38dc0206e2a530e5c2cf11dc086b31a -https://conda.anaconda.org/conda-forge/noarch/pyparsing-3.2.0-pyhd8ed1ab_2.conda#4c05a2bcf87bb495512374143b57cf28 +https://conda.anaconda.org/conda-forge/noarch/pyparsing-3.2.1-pyhd8ed1ab_0.conda#285e237b8f351e85e7574a2c7bfa6d46 https://conda.anaconda.org/conda-forge/noarch/pysocks-1.7.1-pyha55dd90_7.conda#461219d1a5bd61342293efa2c0c90eac https://conda.anaconda.org/conda-forge/noarch/python-tzdata-2024.2-pyhd8ed1ab_1.conda#c0def296b2f6d2dd7b030c2a7f66bb1f https://conda.anaconda.org/conda-forge/noarch/pytz-2024.1-pyhd8ed1ab_0.conda#3eeeeb9e4827ace8c0c1419c85d590ad @@ -156,7 +156,7 @@ https://conda.anaconda.org/conda-forge/noarch/babel-2.16.0-pyhd8ed1ab_1.conda#3e https://conda.anaconda.org/conda-forge/linux-64/cffi-1.17.1-py39h15c3d72_0.conda#7e61b8777f42e00b08ff059f9e8ebc44 https://conda.anaconda.org/conda-forge/linux-64/fonttools-4.55.3-py39h9399b63_1.conda#5cd3b942589049b43ef3a65d1f63c488 https://conda.anaconda.org/conda-forge/noarch/h2-4.1.0-pyhd8ed1ab_1.conda#825927dc7b0f287ef8d4d0011bb113b1 -https://conda.anaconda.org/conda-forge/linux-64/harfbuzz-9.0.0-hda332d3_1.conda#76b32dcf243444aea9c6b804bcfa40b8 +https://conda.anaconda.org/conda-forge/linux-64/harfbuzz-10.1.0-h0b3b770_0.conda#ab1d7d56034814f4c3ed9f69f8c68806 https://conda.anaconda.org/conda-forge/noarch/importlib-metadata-8.5.0-pyha770c72_1.conda#315607a3030ad5d5227e76e0733798ff https://conda.anaconda.org/conda-forge/noarch/importlib_resources-6.4.5-pyhd8ed1ab_1.conda#15798fa69312d433af690c8c42b3fb36 https://conda.anaconda.org/conda-forge/noarch/jinja2-3.1.5-pyhd8ed1ab_0.conda#2752a6ed44105bfb18c9bef1177d9dcd @@ -167,7 +167,7 @@ https://conda.anaconda.org/conda-forge/linux-64/liblapacke-3.9.0-26_linux64_open https://conda.anaconda.org/conda-forge/noarch/meson-1.6.1-pyhd8ed1ab_0.conda#0062fb0a7f5da474705d0ce626de12f4 https://conda.anaconda.org/conda-forge/linux-64/numpy-2.0.2-py39h9cb892a_1.conda#be95cf76ebd05d08be67e50e88d3cd49 https://conda.anaconda.org/conda-forge/linux-64/openldap-2.6.9-he970967_0.conda#ca2de8bbdc871bce41dbf59e51324165 -https://conda.anaconda.org/conda-forge/linux-64/pillow-11.0.0-py39h538c539_0.conda#a2bafdf8ae51c9eb6e5be684cfcedd60 +https://conda.anaconda.org/conda-forge/linux-64/pillow-11.1.0-py39h15c0740_0.conda#d6e7eee1f21bce11ae03f40a77c699fe https://conda.anaconda.org/conda-forge/noarch/pip-24.3.1-pyh8b19718_2.conda#04e691b9fadd93a8a9fad87a81d4fd8f https://conda.anaconda.org/conda-forge/noarch/pyproject-metadata-0.9.0-pyhd8ed1ab_1.conda#1239146a53a383a84633800294120f17 https://conda.anaconda.org/conda-forge/noarch/pytest-8.3.4-pyhd8ed1ab_1.conda#799ed216dc6af62520f32aa39bc1c2bb @@ -185,7 +185,7 @@ https://conda.anaconda.org/conda-forge/linux-64/zstandard-0.23.0-py39h08a7858_1. https://conda.anaconda.org/conda-forge/linux-64/blas-2.126-openblas.conda#057a3d8aebeae33d971bc66ee08cbf61 https://conda.anaconda.org/conda-forge/linux-64/matplotlib-base-3.9.4-py39h16632d1_0.conda#f149592d52f9c1ab1bfe3dc055458e13 https://conda.anaconda.org/conda-forge/linux-64/pyamg-5.2.1-py39hf59e57a_1.conda#720dbce3188cecd95fc26525394d1e65 -https://conda.anaconda.org/conda-forge/linux-64/qt6-main-6.8.1-h9d28a51_0.conda#7e8e17c44e7af62c77de7a0158afc35c +https://conda.anaconda.org/conda-forge/linux-64/qt6-main-6.8.1-h588cce1_2.conda#5d2f1f29c025a110a43f9946527623ab https://conda.anaconda.org/conda-forge/noarch/urllib3-2.3.0-pyhd8ed1ab_0.conda#32674f8dbfb7b26410ed580dd3c10a29 https://conda.anaconda.org/conda-forge/linux-64/pyside6-6.8.1-py39h0383914_0.conda#45e71bee7ab5236b01ec50343d70b15e https://conda.anaconda.org/conda-forge/noarch/requests-2.32.3-pyhd8ed1ab_1.conda#a9b9368f3701a417eac9edbcae7cb737 diff --git a/build_tools/circle/doc_linux-64_conda.lock b/build_tools/circle/doc_linux-64_conda.lock index 6df3444a6b22a..d41fd4072dccd 100644 --- a/build_tools/circle/doc_linux-64_conda.lock +++ b/build_tools/circle/doc_linux-64_conda.lock @@ -38,7 +38,7 @@ https://conda.anaconda.org/conda-forge/linux-64/libntlm-1.8-hb9d3cd8_0.conda#7c7 https://conda.anaconda.org/conda-forge/linux-64/libstdcxx-14.2.0-hc0a3c3a_1.conda#234a5554c53625688d51062645337328 https://conda.anaconda.org/conda-forge/linux-64/libwebp-base-1.5.0-h851e524_0.conda#63f790534398730f59e1b899c3644d4a https://conda.anaconda.org/conda-forge/linux-64/libzlib-1.3.1-hb9d3cd8_2.conda#edb0dca6bc32e4f4789199455a1dbeb8 -https://conda.anaconda.org/conda-forge/linux-64/openssl-3.4.0-hb9d3cd8_0.conda#23cc74f77eb99315c0360ec3533147a9 +https://conda.anaconda.org/conda-forge/linux-64/openssl-3.4.0-h7b32b05_1.conda#4ce6875f75469b2757a65e10a5d05e31 https://conda.anaconda.org/conda-forge/linux-64/pthread-stubs-0.4-hb9d3cd8_1002.conda#b3c17d95b5a10c6e64a21fa17573e70e https://conda.anaconda.org/conda-forge/linux-64/xorg-libice-1.1.2-hb9d3cd8_0.conda#fb901ff28063514abb6046c9ec2c4a45 https://conda.anaconda.org/conda-forge/linux-64/xorg-libxau-1.0.12-hb9d3cd8_0.conda#f6ebe2cb3f82ba6c057dde5d9debe4f7 @@ -65,7 +65,7 @@ https://conda.anaconda.org/conda-forge/linux-64/libuuid-2.38.1-h0b41bf4_0.conda# https://conda.anaconda.org/conda-forge/linux-64/libxcb-1.17.0-h8a09558_0.conda#92ed62436b625154323d40d5f2f11dd7 https://conda.anaconda.org/conda-forge/linux-64/libxcrypt-4.4.36-hd590300_1.conda#5aa797f8787fe7a17d1b0821485b5adc https://conda.anaconda.org/conda-forge/linux-64/lz4-c-1.10.0-h5888daf_1.conda#9de5350a85c4a20c685259b889aa6393 -https://conda.anaconda.org/conda-forge/linux-64/mysql-common-9.0.1-h266115a_3.conda#9411c61ff1070b5e065b32840c39faa5 +https://conda.anaconda.org/conda-forge/linux-64/mysql-common-9.0.1-h266115a_4.conda#9a5a1e3db671a8258c3f2c1969a4c654 https://conda.anaconda.org/conda-forge/linux-64/ncurses-6.5-he02047a_1.conda#70caf8bb6cf39a0b6b7efc885f51c0fe https://conda.anaconda.org/conda-forge/linux-64/pixman-0.44.2-h29eaf8c_0.conda#5e2a7acfa2c24188af39e7944e1b3604 https://conda.anaconda.org/conda-forge/linux-64/rav1e-0.6.6-he8a937b_2.conda#77d9955b4abddb811cb8ab1aa7d743e4 @@ -73,7 +73,7 @@ https://conda.anaconda.org/conda-forge/linux-64/snappy-1.2.1-h8bd8927_1.conda#3b https://conda.anaconda.org/conda-forge/linux-64/svt-av1-2.3.0-h5888daf_0.conda#355898d24394b2af353eb96358db9fdd https://conda.anaconda.org/conda-forge/linux-64/tk-8.6.13-noxft_h4845f30_101.conda#d453b98d9c83e71da0741bb0ff4d76bc https://conda.anaconda.org/conda-forge/linux-64/zfp-1.0.1-h5888daf_2.conda#e0409515c467b87176b070bff5d9442e -https://conda.anaconda.org/conda-forge/linux-64/zlib-ng-2.2.2-h5888daf_0.conda#135fd3c66bccad3d2254f50f9809e86a +https://conda.anaconda.org/conda-forge/linux-64/zlib-ng-2.2.3-h7955e40_0.conda#01cf93c645fa03d44ffe603f51f3d27f https://conda.anaconda.org/conda-forge/linux-64/aom-3.9.1-hac33072_0.conda#346722a0be40f6edc53f12640d301338 https://conda.anaconda.org/conda-forge/linux-64/brotli-bin-1.1.0-hb9d3cd8_2.conda#c63b5e52939e795ba8d26e35d767a843 https://conda.anaconda.org/conda-forge/linux-64/charls-2.4.2-h59595ed_0.conda#4336bd67920dd504cd8c6761d6a99645 @@ -118,7 +118,7 @@ https://conda.anaconda.org/conda-forge/linux-64/libglx-1.7.0-ha4b6fd6_2.conda#c8 https://conda.anaconda.org/conda-forge/linux-64/libjxl-0.11.1-hdb8da77_0.conda#32b23f3487beae7e81495fbc1099ae9e https://conda.anaconda.org/conda-forge/linux-64/libtiff-4.7.0-hd9ff511_3.conda#0ea6510969e1296cc19966fad481f6de https://conda.anaconda.org/conda-forge/linux-64/libxml2-2.13.5-h8d12d68_1.conda#1a21e49e190d1ffe58531a81b6e400e1 -https://conda.anaconda.org/conda-forge/linux-64/mysql-libs-9.0.1-he0572af_3.conda#dd9da69dd4c2bf798c0b8bd4786cafb5 +https://conda.anaconda.org/conda-forge/linux-64/mysql-libs-9.0.1-he0572af_4.conda#af19508df9d2e9f6894a9076a0857dc7 https://conda.anaconda.org/conda-forge/linux-64/openblas-0.3.28-pthreads_h6ec200e_1.conda#8fe5d50db07e92519cc639cb0aef9b1b https://conda.anaconda.org/conda-forge/linux-64/python-3.9.21-h9c0c6dc_1_cpython.conda#b4807744af026fdbe8c05131758fb4be https://conda.anaconda.org/conda-forge/linux-64/xcb-util-image-0.4.0-hb711507_2.conda#a0901183f08b6c7107aab109733a3c91 @@ -132,7 +132,7 @@ https://conda.anaconda.org/conda-forge/linux-64/brunsli-0.1-h9c3ff4c_0.tar.bz2#c https://conda.anaconda.org/conda-forge/linux-64/c-compiler-1.8.0-h2b85faf_1.conda#fa7b3bf2965b9d74a81a0702d9bb49ee https://conda.anaconda.org/conda-forge/linux-64/cairo-1.18.2-h3394656_1.conda#b34c2833a1f56db610aeb27f206d800d https://conda.anaconda.org/conda-forge/noarch/certifi-2024.12.14-pyhd8ed1ab_0.conda#6feb87357ecd66733be3279f16a8c400 -https://conda.anaconda.org/conda-forge/noarch/charset-normalizer-3.4.0-pyhd8ed1ab_1.conda#6581a17bba6b948bb60130026404a9d6 +https://conda.anaconda.org/conda-forge/noarch/charset-normalizer-3.4.1-pyhd8ed1ab_0.conda#e83a31202d1c0a000fce3e9cf3825875 https://conda.anaconda.org/conda-forge/noarch/click-8.1.8-pyh707e725_0.conda#f22f4d4970e09d68a10b922cbb0408d3 https://conda.anaconda.org/conda-forge/noarch/colorama-0.4.6-pyhd8ed1ab_1.conda#962b9857ee8e7018c22f2776ffa0b2d7 https://conda.anaconda.org/conda-forge/noarch/cycler-0.12.1-pyhd8ed1ab_1.conda#44600c4667a319d67dbe0681fc0bc833 @@ -170,7 +170,7 @@ https://conda.anaconda.org/conda-forge/noarch/pluggy-1.5.0-pyhd8ed1ab_1.conda#e9 https://conda.anaconda.org/conda-forge/linux-64/psutil-6.1.1-py39h8cd3c5a_0.conda#287b29f8df0363b2a53a5a6e6ce4fa5c https://conda.anaconda.org/conda-forge/noarch/pycparser-2.22-pyh29332c3_1.conda#12c566707c80111f9799308d9e265aef https://conda.anaconda.org/conda-forge/noarch/pygments-2.18.0-pyhd8ed1ab_1.conda#b38dc0206e2a530e5c2cf11dc086b31a -https://conda.anaconda.org/conda-forge/noarch/pyparsing-3.2.0-pyhd8ed1ab_2.conda#4c05a2bcf87bb495512374143b57cf28 +https://conda.anaconda.org/conda-forge/noarch/pyparsing-3.2.1-pyhd8ed1ab_0.conda#285e237b8f351e85e7574a2c7bfa6d46 https://conda.anaconda.org/conda-forge/noarch/pysocks-1.7.1-pyha55dd90_7.conda#461219d1a5bd61342293efa2c0c90eac https://conda.anaconda.org/conda-forge/noarch/python-tzdata-2024.2-pyhd8ed1ab_1.conda#c0def296b2f6d2dd7b030c2a7f66bb1f https://conda.anaconda.org/conda-forge/noarch/pytz-2024.1-pyhd8ed1ab_0.conda#3eeeeb9e4827ace8c0c1419c85d590ad @@ -203,7 +203,7 @@ https://conda.anaconda.org/conda-forge/linux-64/cxx-compiler-1.8.0-h1a2810e_1.co https://conda.anaconda.org/conda-forge/linux-64/fonttools-4.55.3-py39h9399b63_1.conda#5cd3b942589049b43ef3a65d1f63c488 https://conda.anaconda.org/conda-forge/linux-64/fortran-compiler-1.8.0-h36df796_1.conda#6b57750841d53ade8d3b47eafe53dd9f https://conda.anaconda.org/conda-forge/noarch/h2-4.1.0-pyhd8ed1ab_1.conda#825927dc7b0f287ef8d4d0011bb113b1 -https://conda.anaconda.org/conda-forge/linux-64/harfbuzz-9.0.0-hda332d3_1.conda#76b32dcf243444aea9c6b804bcfa40b8 +https://conda.anaconda.org/conda-forge/linux-64/harfbuzz-10.1.0-h0b3b770_0.conda#ab1d7d56034814f4c3ed9f69f8c68806 https://conda.anaconda.org/conda-forge/noarch/importlib-metadata-8.5.0-pyha770c72_1.conda#315607a3030ad5d5227e76e0733798ff https://conda.anaconda.org/conda-forge/noarch/importlib_resources-6.4.5-pyhd8ed1ab_1.conda#15798fa69312d433af690c8c42b3fb36 https://conda.anaconda.org/conda-forge/noarch/jinja2-3.1.5-pyhd8ed1ab_0.conda#2752a6ed44105bfb18c9bef1177d9dcd @@ -215,7 +215,7 @@ https://conda.anaconda.org/conda-forge/noarch/memory_profiler-0.61.0-pyhd8ed1ab_ https://conda.anaconda.org/conda-forge/noarch/meson-1.6.1-pyhd8ed1ab_0.conda#0062fb0a7f5da474705d0ce626de12f4 https://conda.anaconda.org/conda-forge/linux-64/numpy-2.0.2-py39h9cb892a_1.conda#be95cf76ebd05d08be67e50e88d3cd49 https://conda.anaconda.org/conda-forge/linux-64/openldap-2.6.9-he970967_0.conda#ca2de8bbdc871bce41dbf59e51324165 -https://conda.anaconda.org/conda-forge/linux-64/pillow-11.0.0-py39h538c539_0.conda#a2bafdf8ae51c9eb6e5be684cfcedd60 +https://conda.anaconda.org/conda-forge/linux-64/pillow-11.1.0-py39h15c0740_0.conda#d6e7eee1f21bce11ae03f40a77c699fe https://conda.anaconda.org/conda-forge/noarch/pip-24.3.1-pyh8b19718_2.conda#04e691b9fadd93a8a9fad87a81d4fd8f https://conda.anaconda.org/conda-forge/noarch/plotly-5.24.1-pyhd8ed1ab_1.conda#71ac632876630091c81c50a05ec5e030 https://conda.anaconda.org/conda-forge/noarch/pyproject-metadata-0.9.0-pyhd8ed1ab_1.conda#1239146a53a383a84633800294120f17 @@ -242,7 +242,7 @@ https://conda.anaconda.org/conda-forge/linux-64/blas-2.126-openblas.conda#057a3d https://conda.anaconda.org/conda-forge/noarch/lazy_loader-0.4-pyhd8ed1ab_2.conda#bb0230917e2473c77d615104dbe8a49d https://conda.anaconda.org/conda-forge/linux-64/matplotlib-base-3.9.4-py39h16632d1_0.conda#f149592d52f9c1ab1bfe3dc055458e13 https://conda.anaconda.org/conda-forge/linux-64/pyamg-5.2.1-py39hf59e57a_1.conda#720dbce3188cecd95fc26525394d1e65 -https://conda.anaconda.org/conda-forge/linux-64/qt6-main-6.8.1-h9d28a51_0.conda#7e8e17c44e7af62c77de7a0158afc35c +https://conda.anaconda.org/conda-forge/linux-64/qt6-main-6.8.1-h588cce1_2.conda#5d2f1f29c025a110a43f9946527623ab https://conda.anaconda.org/conda-forge/linux-64/statsmodels-0.14.4-py39hf3d9206_0.conda#f633ed7c19e120b9e6c0efb79f20a53f https://conda.anaconda.org/conda-forge/noarch/tifffile-2024.6.18-pyhd8ed1ab_0.conda#7c3077529bfe3b86f9425d526d73bd24 https://conda.anaconda.org/conda-forge/noarch/towncrier-24.8.0-pyhd8ed1ab_1.conda#820b6a1ddf590fba253f8204f7200d82 @@ -294,10 +294,9 @@ https://conda.anaconda.org/conda-forge/noarch/sphinxext-opengraph-0.9.1-pyhd8ed1 # pip webcolors @ https://files.pythonhosted.org/packages/60/e8/c0e05e4684d13459f93d312077a9a2efbe04d59c393bc2b8802248c908d4/webcolors-24.11.1-py3-none-any.whl#sha256=515291393b4cdf0eb19c155749a096f779f7d909f7cceea072791cb9095b92e9 # pip webencodings @ https://files.pythonhosted.org/packages/f4/24/2a3e3df732393fed8b3ebf2ec078f05546de641fe1b667ee316ec1dcf3b7/webencodings-0.5.1-py2.py3-none-any.whl#sha256=a0af1213f3c2226497a97e2b3aa01a7e4bee4f403f95be16fc9acd2947514a78 # pip websocket-client @ https://files.pythonhosted.org/packages/5a/84/44687a29792a70e111c5c477230a72c4b957d88d16141199bf9acb7537a3/websocket_client-1.8.0-py3-none-any.whl#sha256=17b44cc997f5c498e809b22cdf2d9c7a9e71c02c8cc2b6c56e7c2d1239bfa526 -# pip anyio @ https://files.pythonhosted.org/packages/a0/7a/4daaf3b6c08ad7ceffea4634ec206faeff697526421c20f07628c7372156/anyio-4.7.0-py3-none-any.whl#sha256=ea60c3723ab42ba6fff7e8ccb0488c898ec538ff4df1f1d5e642c3601d07e352 +# pip anyio @ https://files.pythonhosted.org/packages/46/eb/e7f063ad1fec6b3178a3cd82d1a3c4de82cccf283fc42746168188e1cdd5/anyio-4.8.0-py3-none-any.whl#sha256=b5011f270ab5eb0abf13385f851315585cc37ef330dd88e27ec3d34d651fd47a # pip argon2-cffi-bindings @ https://files.pythonhosted.org/packages/ec/f7/378254e6dd7ae6f31fe40c8649eea7d4832a42243acaf0f1fff9083b2bed/argon2_cffi_bindings-21.2.0-cp36-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl#sha256=b746dba803a79238e925d9046a63aa26bf86ab2a2fe74ce6b009a1c3f5c8f2ae # pip arrow @ https://files.pythonhosted.org/packages/f8/ed/e97229a566617f2ae958a6b13e7cc0f585470eac730a73e9e82c32a3cdd2/arrow-1.3.0-py3-none-any.whl#sha256=c728b120ebc00eb84e01882a6f5e7927a53960aa990ce7dd2b10f39005a67f80 -# pip bleach @ https://files.pythonhosted.org/packages/fc/55/96142937f66150805c25c4d0f31ee4132fd33497753400734f9dfdcbdc66/bleach-6.2.0-py3-none-any.whl#sha256=117d9c6097a7c3d22fd578fcd8d35ff1e125df6736f554da4e432fdd63f31e5e # pip doit @ https://files.pythonhosted.org/packages/44/83/a2960d2c975836daa629a73995134fd86520c101412578c57da3d2aa71ee/doit-0.36.0-py3-none-any.whl#sha256=ebc285f6666871b5300091c26eafdff3de968a6bd60ea35dd1e3fc6f2e32479a # pip jupyter-core @ https://files.pythonhosted.org/packages/c9/fb/108ecd1fe961941959ad0ee4e12ee7b8b1477247f30b1fdfd83ceaf017f0/jupyter_core-5.7.2-py3-none-any.whl#sha256=4f7315d2f6b4bcf2e3e7cb6e46772eba760ae459cd1f59d29eb57b0a01bd7409 # pip markdown-it-py @ https://files.pythonhosted.org/packages/42/d7/1ec15b46af6af88f19b8e5ffea08fa375d433c998b8a7639e76935c14f1f/markdown_it_py-3.0.0-py3-none-any.whl#sha256=355216845c60bd96232cd8d8c40e8f9765cc86f46880e43a8fd22dc1a1a8cab1 @@ -310,6 +309,7 @@ https://conda.anaconda.org/conda-forge/noarch/sphinxext-opengraph-0.9.1-pyhd8ed1 # pip terminado @ https://files.pythonhosted.org/packages/6a/9e/2064975477fdc887e47ad42157e214526dcad8f317a948dee17e1659a62f/terminado-0.18.1-py3-none-any.whl#sha256=a4468e1b37bb318f8a86514f65814e1afc977cf29b3992a4500d9dd305dcceb0 # pip tinycss2 @ https://files.pythonhosted.org/packages/e6/34/ebdc18bae6aa14fbee1a08b63c015c72b64868ff7dae68808ab500c492e2/tinycss2-1.4.0-py3-none-any.whl#sha256=3a49cf47b7675da0b15d0c6e1df8df4ebd96e9394bb905a5775adb0d884c5289 # pip argon2-cffi @ https://files.pythonhosted.org/packages/a4/6a/e8a041599e78b6b3752da48000b14c8d1e8a04ded09c88c714ba047f34f5/argon2_cffi-23.1.0-py3-none-any.whl#sha256=c670642b78ba29641818ab2e68bd4e6a78ba53b7eff7b4c3815ae16abf91c7ea +# pip bleach @ https://files.pythonhosted.org/packages/fc/55/96142937f66150805c25c4d0f31ee4132fd33497753400734f9dfdcbdc66/bleach-6.2.0-py3-none-any.whl#sha256=117d9c6097a7c3d22fd578fcd8d35ff1e125df6736f554da4e432fdd63f31e5e # pip isoduration @ https://files.pythonhosted.org/packages/7b/55/e5326141505c5d5e34c5e0935d2908a74e4561eca44108fbfb9c13d2911a/isoduration-20.11.0-py3-none-any.whl#sha256=b2904c2a4228c3d44f409c8ae8e2370eb21a26f7ac2ec5446df141dde3452042 # pip jsonschema-specifications @ https://files.pythonhosted.org/packages/d1/0f/8910b19ac0670a0f80ce1008e5e751c4a57e14d2c4c13a482aa6079fa9d6/jsonschema_specifications-2024.10.1-py3-none-any.whl#sha256=a09a0680616357d9a0ecf05c12ad234479f549239d0f5b55f3deea67475da9bf # pip jupyter-client @ https://files.pythonhosted.org/packages/11/85/b0394e0b6fcccd2c1eeefc230978a6f8cb0c5df1e4cd3e7625735a0d7d1e/jupyter_client-8.6.3-py3-none-any.whl#sha256=e8a19cc986cc45905ac3362915f410f3af85424b4c0905e94fa5f2cb08e8f23f @@ -317,12 +317,12 @@ https://conda.anaconda.org/conda-forge/noarch/sphinxext-opengraph-0.9.1-pyhd8ed1 # pip jupyterlite-core @ https://files.pythonhosted.org/packages/ff/51/0812a39260335c708c6f150e66e5d0ff2adcc40885f0a8b7244639286960/jupyterlite_core-0.4.5-py3-none-any.whl#sha256=2c30b815b0699d50160bfec35ff612295f8518ac66cf52acd7bfe41aa42ce0be # pip mdit-py-plugins @ https://files.pythonhosted.org/packages/a7/f7/7782a043553ee469c1ff49cfa1cdace2d6bf99a1f333cf38676b3ddf30da/mdit_py_plugins-0.4.2-py3-none-any.whl#sha256=0c673c3f889399a33b95e88d2f0d111b4447bdfea7f237dab2d488f459835636 # pip jsonschema @ https://files.pythonhosted.org/packages/69/4a/4f9dbeb84e8850557c02365a0eee0649abe5eb1d84af92a25731c6c0f922/jsonschema-4.23.0-py3-none-any.whl#sha256=fbadb6f8b144a8f8cf9f0b89ba94501d143e50411a1278633f56a7acf7fd5566 -# pip jupyterlite-pyodide-kernel @ https://files.pythonhosted.org/packages/8e/25/93209596b04c7751a5933ea96b2f4de986fc432b53a2837036a6492fcd26/jupyterlite_pyodide_kernel-0.4.6-py3-none-any.whl#sha256=e32ce447496c94baacb00340a77bcf3d8f7040c923152a8b2281ab64cfa9ce56 +# pip jupyterlite-pyodide-kernel @ https://files.pythonhosted.org/packages/3f/9e/ab31828d7d0c12bf4bb3f46c44d20cbff961ea2bdebd254354e066dc81c0/jupyterlite_pyodide_kernel-0.4.7-py3-none-any.whl#sha256=3e597f213921cad0439c04c554f57e4e626356ab337bd259a396fb1a9a88324b # pip jupyter-events @ https://files.pythonhosted.org/packages/3f/8c/9b65cb2cd4ea32d885993d5542244641590530836802a2e8c7449a4c61c9/jupyter_events-0.11.0-py3-none-any.whl#sha256=36399b41ce1ca45fe8b8271067d6a140ffa54cec4028e95491c93b78a855cacf # pip nbformat @ https://files.pythonhosted.org/packages/a9/82/0340caa499416c78e5d8f5f05947ae4bc3cba53c9f038ab6e9ed964e22f1/nbformat-5.10.4-py3-none-any.whl#sha256=3b48d6c8fbca4b299bf3982ea7db1af21580e4fec269ad087b9e81588891200b # pip jupytext @ https://files.pythonhosted.org/packages/f4/02/27191f18564d4f2c0e543643aa94b54567de58f359cd6a3bed33adb723ac/jupytext-1.16.6-py3-none-any.whl#sha256=900132031f73fee15a1c9ebd862e05eb5f51e1ad6ab3a2c6fdd97ce2f9c913b4 # pip nbclient @ https://files.pythonhosted.org/packages/34/6d/e7fa07f03a4a7b221d94b4d586edb754a9b0dc3c9e2c93353e9fa4e0d117/nbclient-0.10.2-py3-none-any.whl#sha256=4ffee11e788b4a27fabeb7955547e4318a5298f34342a4bfd01f2e1faaeadc3d -# pip nbconvert @ https://files.pythonhosted.org/packages/b8/bb/bb5b6a515d1584aa2fd89965b11db6632e4bdc69495a52374bcc36e56cfa/nbconvert-7.16.4-py3-none-any.whl#sha256=05873c620fe520b6322bf8a5ad562692343fe3452abda5765c7a34b7d1aa3eb3 +# pip nbconvert @ https://files.pythonhosted.org/packages/8f/9e/2dcc9fe00cf55d95a8deae69384e9cea61816126e345754f6c75494d32ec/nbconvert-7.16.5-py3-none-any.whl#sha256=e12eac052d6fd03040af4166c563d76e7aeead2e9aadf5356db552a1784bd547 # pip jupyter-server @ https://files.pythonhosted.org/packages/e2/a2/89eeaf0bb954a123a909859fa507fa86f96eb61b62dc30667b60dbd5fdaf/jupyter_server-2.15.0-py3-none-any.whl#sha256=872d989becf83517012ee669f09604aa4a28097c0bd90b2f424310156c2cdae3 # pip jupyterlab-server @ https://files.pythonhosted.org/packages/54/09/2032e7d15c544a0e3cd831c51d77a8ca57f7555b2e1b2922142eddb02a84/jupyterlab_server-2.27.3-py3-none-any.whl#sha256=e697488f66c3db49df675158a77b3b017520d772c6e1548c7d9bcc5df7944ee4 # pip jupyterlite-sphinx @ https://files.pythonhosted.org/packages/ea/cd/b47668fdb492702e2373429c41eb7fa5b8379fb068901b3ff7328e3c4841/jupyterlite_sphinx-0.17.1-py3-none-any.whl#sha256=1e36fe2300175fe3afa9d4c46514764c98078000f96b2c726bf20b755c4061f2 diff --git a/build_tools/circle/doc_min_dependencies_linux-64_conda.lock b/build_tools/circle/doc_min_dependencies_linux-64_conda.lock index a4550e14965d8..e8c27ccd85378 100644 --- a/build_tools/circle/doc_min_dependencies_linux-64_conda.lock +++ b/build_tools/circle/doc_min_dependencies_linux-64_conda.lock @@ -36,7 +36,7 @@ https://conda.anaconda.org/conda-forge/linux-64/libntlm-1.8-hb9d3cd8_0.conda#7c7 https://conda.anaconda.org/conda-forge/linux-64/libstdcxx-14.2.0-hc0a3c3a_1.conda#234a5554c53625688d51062645337328 https://conda.anaconda.org/conda-forge/linux-64/libwebp-base-1.5.0-h851e524_0.conda#63f790534398730f59e1b899c3644d4a https://conda.anaconda.org/conda-forge/linux-64/libzlib-1.3.1-hb9d3cd8_2.conda#edb0dca6bc32e4f4789199455a1dbeb8 -https://conda.anaconda.org/conda-forge/linux-64/openssl-3.4.0-hb9d3cd8_0.conda#23cc74f77eb99315c0360ec3533147a9 +https://conda.anaconda.org/conda-forge/linux-64/openssl-3.4.0-h7b32b05_1.conda#4ce6875f75469b2757a65e10a5d05e31 https://conda.anaconda.org/conda-forge/linux-64/pthread-stubs-0.4-hb9d3cd8_1002.conda#b3c17d95b5a10c6e64a21fa17573e70e https://conda.anaconda.org/conda-forge/linux-64/xorg-libice-1.1.2-hb9d3cd8_0.conda#fb901ff28063514abb6046c9ec2c4a45 https://conda.anaconda.org/conda-forge/linux-64/xorg-libxau-1.0.12-hb9d3cd8_0.conda#f6ebe2cb3f82ba6c057dde5d9debe4f7 @@ -73,7 +73,7 @@ https://conda.anaconda.org/conda-forge/linux-64/libxcb-1.17.0-h8a09558_0.conda#9 https://conda.anaconda.org/conda-forge/linux-64/libxcrypt-4.4.36-hd590300_1.conda#5aa797f8787fe7a17d1b0821485b5adc https://conda.anaconda.org/conda-forge/linux-64/lz4-c-1.10.0-h5888daf_1.conda#9de5350a85c4a20c685259b889aa6393 https://conda.anaconda.org/conda-forge/linux-64/mpg123-1.32.9-hc50e24c_0.conda#c7f302fd11eeb0987a6a5e1f3aed6a21 -https://conda.anaconda.org/conda-forge/linux-64/mysql-common-9.0.1-h266115a_3.conda#9411c61ff1070b5e065b32840c39faa5 +https://conda.anaconda.org/conda-forge/linux-64/mysql-common-9.0.1-h266115a_4.conda#9a5a1e3db671a8258c3f2c1969a4c654 https://conda.anaconda.org/conda-forge/linux-64/ncurses-6.5-he02047a_1.conda#70caf8bb6cf39a0b6b7efc885f51c0fe https://conda.anaconda.org/conda-forge/linux-64/nspr-4.36-h5888daf_0.conda#de9cd5bca9e4918527b9b72b6e2e1409 https://conda.anaconda.org/conda-forge/linux-64/pixman-0.44.2-h29eaf8c_0.conda#5e2a7acfa2c24188af39e7944e1b3604 @@ -83,7 +83,7 @@ https://conda.anaconda.org/conda-forge/linux-64/svt-av1-2.3.0-h5888daf_0.conda#3 https://conda.anaconda.org/conda-forge/linux-64/tk-8.6.13-noxft_h4845f30_101.conda#d453b98d9c83e71da0741bb0ff4d76bc https://conda.anaconda.org/conda-forge/linux-64/yaml-0.2.5-h7f98852_2.tar.bz2#4cb3ad778ec2d5a7acbdf254eb1c42ae https://conda.anaconda.org/conda-forge/linux-64/zfp-1.0.1-h5888daf_2.conda#e0409515c467b87176b070bff5d9442e -https://conda.anaconda.org/conda-forge/linux-64/zlib-ng-2.2.2-h5888daf_0.conda#135fd3c66bccad3d2254f50f9809e86a +https://conda.anaconda.org/conda-forge/linux-64/zlib-ng-2.2.3-h7955e40_0.conda#01cf93c645fa03d44ffe603f51f3d27f https://conda.anaconda.org/conda-forge/linux-64/aom-3.9.1-hac33072_0.conda#346722a0be40f6edc53f12640d301338 https://conda.anaconda.org/conda-forge/linux-64/brotli-bin-1.1.0-hb9d3cd8_2.conda#c63b5e52939e795ba8d26e35d767a843 https://conda.anaconda.org/conda-forge/linux-64/charls-2.4.2-h59595ed_0.conda#4336bd67920dd504cd8c6761d6a99645 @@ -134,7 +134,7 @@ https://conda.anaconda.org/conda-forge/linux-64/liblapack-3.9.0-8_h3b12eaf_netli https://conda.anaconda.org/conda-forge/linux-64/libsystemd0-256.9-h0b6a36f_2.conda#135bbeb376345b6847c065115be4221a https://conda.anaconda.org/conda-forge/linux-64/libtiff-4.7.0-hd9ff511_3.conda#0ea6510969e1296cc19966fad481f6de https://conda.anaconda.org/conda-forge/linux-64/libxml2-2.13.5-h8d12d68_1.conda#1a21e49e190d1ffe58531a81b6e400e1 -https://conda.anaconda.org/conda-forge/linux-64/mysql-libs-9.0.1-he0572af_3.conda#dd9da69dd4c2bf798c0b8bd4786cafb5 +https://conda.anaconda.org/conda-forge/linux-64/mysql-libs-9.0.1-he0572af_4.conda#af19508df9d2e9f6894a9076a0857dc7 https://conda.anaconda.org/conda-forge/linux-64/python-3.9.21-h9c0c6dc_1_cpython.conda#b4807744af026fdbe8c05131758fb4be https://conda.anaconda.org/conda-forge/linux-64/xcb-util-image-0.4.0-hb711507_2.conda#a0901183f08b6c7107aab109733a3c91 https://conda.anaconda.org/conda-forge/linux-64/xkeyboard-config-2.43-hb9d3cd8_0.conda#f725c7425d6d7c15e31f3b99a88ea02f @@ -148,7 +148,7 @@ https://conda.anaconda.org/conda-forge/linux-64/brunsli-0.1-h9c3ff4c_0.tar.bz2#c https://conda.anaconda.org/conda-forge/linux-64/c-compiler-1.8.0-h2b85faf_1.conda#fa7b3bf2965b9d74a81a0702d9bb49ee https://conda.anaconda.org/conda-forge/linux-64/cairo-1.18.2-h3394656_1.conda#b34c2833a1f56db610aeb27f206d800d https://conda.anaconda.org/conda-forge/noarch/certifi-2024.12.14-pyhd8ed1ab_0.conda#6feb87357ecd66733be3279f16a8c400 -https://conda.anaconda.org/conda-forge/noarch/charset-normalizer-3.4.0-pyhd8ed1ab_1.conda#6581a17bba6b948bb60130026404a9d6 +https://conda.anaconda.org/conda-forge/noarch/charset-normalizer-3.4.1-pyhd8ed1ab_0.conda#e83a31202d1c0a000fce3e9cf3825875 https://conda.anaconda.org/conda-forge/noarch/click-8.1.8-pyh707e725_0.conda#f22f4d4970e09d68a10b922cbb0408d3 https://conda.anaconda.org/conda-forge/noarch/cloudpickle-3.1.0-pyhd8ed1ab_2.conda#1f76b7e2b3ab88def5aa2f158322c7e6 https://conda.anaconda.org/conda-forge/noarch/colorama-0.4.6-pyhd8ed1ab_1.conda#962b9857ee8e7018c22f2776ffa0b2d7 @@ -189,7 +189,7 @@ https://conda.anaconda.org/conda-forge/noarch/ply-3.11-pyhd8ed1ab_3.conda#fd5062 https://conda.anaconda.org/conda-forge/linux-64/psutil-6.1.1-py39h8cd3c5a_0.conda#287b29f8df0363b2a53a5a6e6ce4fa5c https://conda.anaconda.org/conda-forge/noarch/pycparser-2.22-pyh29332c3_1.conda#12c566707c80111f9799308d9e265aef https://conda.anaconda.org/conda-forge/noarch/pygments-2.18.0-pyhd8ed1ab_1.conda#b38dc0206e2a530e5c2cf11dc086b31a -https://conda.anaconda.org/conda-forge/noarch/pyparsing-3.2.0-pyhd8ed1ab_2.conda#4c05a2bcf87bb495512374143b57cf28 +https://conda.anaconda.org/conda-forge/noarch/pyparsing-3.2.1-pyhd8ed1ab_0.conda#285e237b8f351e85e7574a2c7bfa6d46 https://conda.anaconda.org/conda-forge/noarch/pysocks-1.7.1-pyha55dd90_7.conda#461219d1a5bd61342293efa2c0c90eac https://conda.anaconda.org/conda-forge/noarch/pytz-2024.2-pyhd8ed1ab_1.conda#f26ec986456c30f6dff154b670ae140f https://conda.anaconda.org/conda-forge/linux-64/pyyaml-6.0.2-py39h8cd3c5a_1.conda#76e82e62b7bda86a7fceb1f32585abad @@ -233,7 +233,7 @@ https://conda.anaconda.org/conda-forge/noarch/meson-1.6.1-pyhd8ed1ab_0.conda#006 https://conda.anaconda.org/conda-forge/linux-64/openldap-2.6.9-he970967_0.conda#ca2de8bbdc871bce41dbf59e51324165 https://conda.anaconda.org/conda-forge/noarch/partd-1.4.2-pyhd8ed1ab_0.conda#0badf9c54e24cecfb0ad2f99d680c163 https://conda.anaconda.org/conda-forge/noarch/patsy-1.0.1-pyhd8ed1ab_1.conda#ee23fabfd0a8c6b8d6f3729b47b2859d -https://conda.anaconda.org/conda-forge/linux-64/pillow-11.0.0-py39h538c539_0.conda#a2bafdf8ae51c9eb6e5be684cfcedd60 +https://conda.anaconda.org/conda-forge/linux-64/pillow-11.1.0-py39h15c0740_0.conda#d6e7eee1f21bce11ae03f40a77c699fe https://conda.anaconda.org/conda-forge/noarch/pip-24.3.1-pyh8b19718_2.conda#04e691b9fadd93a8a9fad87a81d4fd8f https://conda.anaconda.org/conda-forge/noarch/plotly-5.14.0-pyhd8ed1ab_0.conda#6a7bcc42ef58dd6cf3da9333ea102433 https://conda.anaconda.org/conda-forge/linux-64/polars-0.20.30-py39ha963410_0.conda#322084e8890afc27fcca6df7a528df25 From 1f43fd2307c13593ea5ba194dcc5e7a814cfade9 Mon Sep 17 00:00:00 2001 From: Deepak Saldanha Date: Tue, 7 Jan 2025 05:14:35 +0530 Subject: [PATCH 150/159] DOC: Updates to Macro vs micro-averaging in plot_roc.py (#29845) Co-authored-by: Xiao Yuan Co-authored-by: Lucy Liu --- examples/model_selection/plot_roc.py | 24 ++++++++++++++++++++---- 1 file changed, 20 insertions(+), 4 deletions(-) diff --git a/examples/model_selection/plot_roc.py b/examples/model_selection/plot_roc.py index f453399959896..1fc2dedf2943e 100644 --- a/examples/model_selection/plot_roc.py +++ b/examples/model_selection/plot_roc.py @@ -218,6 +218,12 @@ # Obtaining the macro-average requires computing the metric independently for # each class and then taking the average over them, hence treating all classes # equally a priori. We first aggregate the true/false positive rates per class: +# +# :math:`TPR=\frac{1}{C}\sum_{c}\frac{TP_c}{TP_c + FN_c}` ; +# +# :math:`FPR=\frac{1}{C}\sum_{c}\frac{FP_c}{FP_c + TN_c}` . +# +# where `C` is the total number of classes. for i in range(n_classes): fpr[i], tpr[i], _ = roc_curve(y_onehot_test[:, i], y_score[:, i]) @@ -441,7 +447,17 @@ # global performance of a classifier can still be summarized via a given # averaging strategy. # -# Micro-averaged OvR ROC is dominated by the more frequent class, since the -# counts are pooled. The macro-averaged alternative better reflects the -# statistics of the less frequent classes, and then is more appropriate when -# performance on all the classes is deemed equally important. +# When dealing with imbalanced datasets, choosing the appropriate metric based on +# the business context or problem you are addressing is crucial. +# It is also essential to select an appropriate averaging method (micro vs. macro) +# depending on the desired outcome: +# +# - Micro-averaging aggregates metrics across all instances, treating each +# individual instance equally, regardless of its class. This approach is useful +# when evaluating overall performance, but note that it can be dominated by +# the majority class in imbalanced datasets. +# +# - Macro-averaging calculates metrics for each class independently and then +# averages them, giving equal weight to each class. This is particularly useful +# when you want under-represented classes to be considered as important as highly +# populated classes. From afaa07062bfd77c5ec15cfc62f0102c257092563 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?J=C3=A9r=C3=A9mie=20du=20Boisberranger?= Date: Wed, 8 Jan 2025 16:11:39 +0100 Subject: [PATCH 151/159] bump version --- sklearn/__init__.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/sklearn/__init__.py b/sklearn/__init__.py index 5371519202313..34aaea702787c 100644 --- a/sklearn/__init__.py +++ b/sklearn/__init__.py @@ -42,7 +42,7 @@ # Dev branch marker is: 'X.Y.dev' or 'X.Y.devN' where N is an integer. # 'X.Y.dev0' is the canonical version of 'X.Y.dev' # -__version__ = "1.6.0" +__version__ = "1.6.1" # On OSX, we can get a runtime error due to multiple OpenMP libraries loaded From 73cca70befaa3167903f1fbe15e81df587598f11 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?J=C3=A9r=C3=A9mie=20du=20Boisberranger?= Date: Wed, 8 Jan 2025 16:16:53 +0100 Subject: [PATCH 152/159] generate changelog --- .../changed-models/30187.fix.rst | 2 - .../many-modules/30573.fix.rst | 4 - .../sklearn.metrics/30454.fix.rst | 3 - .../sklearn.model_selection/30451.fix.rst | 3 - .../sklearn.tree/30557.fix.rst | 2 - .../sklearn.utils/30187.enhancement.rst | 4 - .../sklearn.utils/30516.fix.rst | 4 - doc/whats_new/v1.6.rst | 112 +++++++++++++----- 8 files changed, 85 insertions(+), 49 deletions(-) delete mode 100644 doc/whats_new/upcoming_changes/changed-models/30187.fix.rst delete mode 100644 doc/whats_new/upcoming_changes/many-modules/30573.fix.rst delete mode 100644 doc/whats_new/upcoming_changes/sklearn.metrics/30454.fix.rst delete mode 100644 doc/whats_new/upcoming_changes/sklearn.model_selection/30451.fix.rst delete mode 100644 doc/whats_new/upcoming_changes/sklearn.tree/30557.fix.rst delete mode 100644 doc/whats_new/upcoming_changes/sklearn.utils/30187.enhancement.rst delete mode 100644 doc/whats_new/upcoming_changes/sklearn.utils/30516.fix.rst diff --git a/doc/whats_new/upcoming_changes/changed-models/30187.fix.rst b/doc/whats_new/upcoming_changes/changed-models/30187.fix.rst deleted file mode 100644 index 001b8840d9a7b..0000000000000 --- a/doc/whats_new/upcoming_changes/changed-models/30187.fix.rst +++ /dev/null @@ -1,2 +0,0 @@ -- The `tags.input_tags.sparse` flag was corrected for a majority of estimators. - By :user:`Antoine Baker ` diff --git a/doc/whats_new/upcoming_changes/many-modules/30573.fix.rst b/doc/whats_new/upcoming_changes/many-modules/30573.fix.rst deleted file mode 100644 index dcf4393518133..0000000000000 --- a/doc/whats_new/upcoming_changes/many-modules/30573.fix.rst +++ /dev/null @@ -1,4 +0,0 @@ -- `_more_tags`, `_get_tags`, and `_safe_tags` are now raising a - :class:`DeprecationWarning` instead of a :class:`FutureWarning` to only notify - developers instead of end-users. - By :user:`Guillaume Lemaitre ` in diff --git a/doc/whats_new/upcoming_changes/sklearn.metrics/30454.fix.rst b/doc/whats_new/upcoming_changes/sklearn.metrics/30454.fix.rst deleted file mode 100644 index a53850e324e90..0000000000000 --- a/doc/whats_new/upcoming_changes/sklearn.metrics/30454.fix.rst +++ /dev/null @@ -1,3 +0,0 @@ -- Fix regression when scikit-learn metric called on PyTorch CPU tensors would - raise an error (with array API dispatch disabled which is the default). - By :user:`Loïc Estève ` diff --git a/doc/whats_new/upcoming_changes/sklearn.model_selection/30451.fix.rst b/doc/whats_new/upcoming_changes/sklearn.model_selection/30451.fix.rst deleted file mode 100644 index 5ebfb5992d832..0000000000000 --- a/doc/whats_new/upcoming_changes/sklearn.model_selection/30451.fix.rst +++ /dev/null @@ -1,3 +0,0 @@ -- :func:`~model_selection.cross_validate`, :func:`~model_selection.cross_val_predict`, - and :func:`~model_selection.cross_val_score` now accept `params=None` when metadata - routing is enabled. By `Adrin Jalali`_ diff --git a/doc/whats_new/upcoming_changes/sklearn.tree/30557.fix.rst b/doc/whats_new/upcoming_changes/sklearn.tree/30557.fix.rst deleted file mode 100644 index 86ba5c9a88e9d..0000000000000 --- a/doc/whats_new/upcoming_changes/sklearn.tree/30557.fix.rst +++ /dev/null @@ -1,2 +0,0 @@ -- Use `log2` instead of `ln` for building trees to maintain behavior of previous - versions. By `Thomas Fan`_ diff --git a/doc/whats_new/upcoming_changes/sklearn.utils/30187.enhancement.rst b/doc/whats_new/upcoming_changes/sklearn.utils/30187.enhancement.rst deleted file mode 100644 index de75f70cb552e..0000000000000 --- a/doc/whats_new/upcoming_changes/sklearn.utils/30187.enhancement.rst +++ /dev/null @@ -1,4 +0,0 @@ -- :func:`utils.estimator_checks.check_estimator_sparse_tag` ensures that - the estimator tag `input_tags.sparse` is consistent with its `fit` - method (accepting sparse input `X` or raising the appropriate error). - By :user:`Antoine Baker ` diff --git a/doc/whats_new/upcoming_changes/sklearn.utils/30516.fix.rst b/doc/whats_new/upcoming_changes/sklearn.utils/30516.fix.rst deleted file mode 100644 index 6e008f3beeb3c..0000000000000 --- a/doc/whats_new/upcoming_changes/sklearn.utils/30516.fix.rst +++ /dev/null @@ -1,4 +0,0 @@ -- Raise a `DeprecationWarning` when there is no concrete implementation of `__sklearn_tags__` - in the MRO of the estimator. We request to inherit from `BaseEstimator` that - implements `__sklearn_tags__`. - By :user:`Guillaume Lemaitre ` \ No newline at end of file diff --git a/doc/whats_new/v1.6.rst b/doc/whats_new/v1.6.rst index 56b09f2d97931..50edd9e1af8bb 100644 --- a/doc/whats_new/v1.6.rst +++ b/doc/whats_new/v1.6.rst @@ -15,6 +15,60 @@ For a short description of the main highlights of the release, please refer to .. towncrier release notes start +.. _changes_1_6_1: + +Version 1.6.1 +============= + +**January 2025** + +Changed models +-------------- + +- |Fix| The `tags.input_tags.sparse` flag was corrected for a majority of estimators. + By :user:`Antoine Baker ` :pr:`30187` + +Changes impacting many modules +------------------------------ + +- |Fix| `_more_tags`, `_get_tags`, and `_safe_tags` are now raising a + :class:`DeprecationWarning` instead of a :class:`FutureWarning` to only notify + developers instead of end-users. + By :user:`Guillaume Lemaitre ` in :pr:`30573` + +:mod:`sklearn.metrics` +---------------------- + +- |Fix| Fix regression when scikit-learn metric called on PyTorch CPU tensors would + raise an error (with array API dispatch disabled which is the default). + By :user:`Loïc Estève ` :pr:`30454` + +:mod:`sklearn.model_selection` +------------------------------ + +- |Fix| :func:`~model_selection.cross_validate`, :func:`~model_selection.cross_val_predict`, + and :func:`~model_selection.cross_val_score` now accept `params=None` when metadata + routing is enabled. By `Adrin Jalali`_ :pr:`30451` + +:mod:`sklearn.tree` +------------------- + +- |Fix| Use `log2` instead of `ln` for building trees to maintain behavior of previous + versions. By `Thomas Fan`_ :pr:`30557` + +:mod:`sklearn.utils` +-------------------- + +- |Enhancement| :func:`utils.estimator_checks.check_estimator_sparse_tag` ensures that + the estimator tag `input_tags.sparse` is consistent with its `fit` + method (accepting sparse input `X` or raising the appropriate error). + By :user:`Antoine Baker ` :pr:`30187` + +- |Fix| Raise a `DeprecationWarning` when there is no concrete implementation of `__sklearn_tags__` + in the MRO of the estimator. We request to inherit from `BaseEstimator` that + implements `__sklearn_tags__`. + By :user:`Guillaume Lemaitre ` :pr:`30516` + .. _changes_1_6_0: Version 1.6.0 @@ -697,31 +751,35 @@ the project since version 1.5, including: Aaron Schumacher, Abdulaziz Aloqeely, abhi-jha, Acciaro Gennaro Daniele, Adam J. Stewart, Adam Li, Adeel Hassan, Adeyemi Biola, Aditi Juneja, Adrin Jalali, Aisha, Akanksha Mhadolkar, Akihiro Kuno, Alberto Torres, alexqiao, Alihan -Zihna, antoinebaker, Antony Lee, Anurag Varma, Arif Qodari, Arthur Courselle, -Arturo Amor, Aswathavicky, Audrey Flanders, aurelienmorgan, Austin, awwwyan, -AyGeeEm, a.zy.lee, baggiponte, BlazeStorm001, bme-git, brdav, Brigitta Sipőcz, -Cailean Carter, Carlo Lemos, Christian Lorentzen, Christian Veenhuis, claudio, -Conrad Stevens, datarollhexasphericon, Davide Chicco, David Matthew Cherney, -Dea María Léon, Deepak Saldanha, Deepyaman Datta, dependabot[bot], dinga92, -Dmitry Kobak, Drew Craeton, dymil, Edoardo Abati, EmilyXinyi, Eric Larson, -Evelyn, fabianhenning, Farid "Freddie" Taba, Gael Varoquaux, Giorgio Angelotti, -Gleb Levitski, Guillaume Lemaitre, Guntitat Sawadwuthikul, Henrique Caroço, -hhchen1105, Ilya Komarov, Inessa Pawson, Ivan Pan, Ivan Wiryadi, Jaimin -Chauhan, Jakob Bull, James Lamb, Janez Demšar, Jérémie du Boisberranger, -Jérôme Dockès, Jirair Aroyan, João Morais, Joe Cainey, John Enblom, +Zihna, Aniruddha Saha, antoinebaker, Antony Lee, Anurag Varma, Arif Qodari, +Arthur Courselle, ArthurDbrn, Arturo Amor, Aswathavicky, Audrey Flanders, +aurelienmorgan, Austin, awwwyan, AyGeeEm, a.zy.lee, baggiponte, BlazeStorm001, +bme-git, Boney Patel, brdav, Brigitta Sipőcz, Cailean Carter, Camille +Troillard, Carlo Lemos, Christian Lorentzen, Christian Veenhuis, Christine P. +Chai, claudio, Conrad Stevens, datarollhexasphericon, Davide Chicco, David +Matthew Cherney, Dea María Léon, Deepak Saldanha, Deepyaman Datta, +dependabot[bot], dinga92, Dmitry Kobak, Domenico, Drew Craeton, dymil, Edoardo +Abati, EmilyXinyi, Eric Larson, Evelyn, fabianhenning, Farid "Freddie" Taba, +Gael Varoquaux, Giorgio Angelotti, Gleb Levitski, Guillaume Lemaitre, Guntitat +Sawadwuthikul, Haesun Park, Hanjun Kim, Henrique Caroço, hhchen1105, Hugo +Boulenger, Ilya Komarov, Inessa Pawson, Ivan Pan, Ivan Wiryadi, Jaimin Chauhan, +Jakob Bull, James Lamb, Janez Demšar, Jérémie du Boisberranger, Jérôme +Dockès, Jirair Aroyan, João Morais, Joe Cainey, Joel Nothman, John Enblom, JorgeCardenas, Joseph Barbier, jpienaar-tuks, Julian Chan, K.Bharat Reddy, -Kevin Doshi, Lars, Loic Esteve, Lucy Liu, lunovian, Marc Bresson, Marco Edward -Gorelli, Marco Maggi, Marco Wolsza, Maren Westermann, MarieS-WiMLDS, Martin -Helm, Mathew Shen, mathurinm, Matthew Feickert, Maxwell Liu, Meekail Zain, -Michael Dawson, Miguel Cárdenas, m-maggi, mrastgoo, Natalia Mokeeva, Nathan -Goldbaum, Nathan Orgera, nbrown-ScottLogic, Nikita Chistyakov, Nithish -Bolleddula, Noam Keidar, NoPenguinsLand, Norbert Preining, notPlancha, Olivier -Grisel, Omar Salman, ParsifalXu, Piotr, Priyank Shroff, Priyansh Gupta, Quentin -Barthélemy, Rachit23110261, Rahil Parikh, raisadz, Rajath, renaissance0ne, -Reshama Shaikh, Roberto Rosati, Robert Pollak, rwelsch427, Santiago M. Mola, -scikit-learn-bot, sean moiselle, SHREEKANT VITTHAL NANDIYAWAR, Shruti Nath, -Søren Bredlund Caspersen, Stefanie Senger, Steffen Schneider, Štěpán -Sršeň, Sylvain Combettes, Tamara, Thomas, Thomas Gessey-Jones, Thomas J. Fan, -Thomas Li, Tialo, Tim Head, Tuhin Sharma, Tushar Parimi, vedpawar2254, Victoria -Shevchenko, viktor765, Vince Carey, Virgil Chan, Wang Jiayi, Xiao Yuan, Xuefeng -Xu, Yao Xiao, yareyaredesuyo, Zachary Vealey, Ziad Amerr +Kevin Doshi, Lars, Loic Esteve, Lucas Colley, Lucy Liu, lunovian, Marc Bresson, +Marco Edward Gorelli, Marco Maggi, Marco Wolsza, Maren Westermann, +MarieS-WiMLDS, Martin Helm, Mathew Shen, mathurinm, Matthew Feickert, Maxwell +Liu, Meekail Zain, Michael Dawson, Miguel Cárdenas, m-maggi, mrastgoo, Natalia +Mokeeva, Nathan Goldbaum, Nathan Orgera, nbrown-ScottLogic, Nikita Chistyakov, +Nithish Bolleddula, Noam Keidar, NoPenguinsLand, Norbert Preining, notPlancha, +Olivier Grisel, Omar Salman, ParsifalXu, Piotr, Priyank Shroff, Priyansh Gupta, +Quentin Barthélemy, Rachit23110261, Rahil Parikh, raisadz, Rajath, +renaissance0ne, Reshama Shaikh, Roberto Rosati, Robert Pollak, rwelsch427, +Santiago Castro, Santiago M. Mola, scikit-learn-bot, sean moiselle, SHREEKANT +VITTHAL NANDIYAWAR, Shruti Nath, Søren Bredlund Caspersen, Stefanie Senger, +Stefano Gaspari, Steffen Schneider, Štěpán Sršeň, Sylvain Combettes, +Tamara, Thomas, Thomas Gessey-Jones, Thomas J. Fan, Thomas Li, ThorbenMaa, +Tialo, Tim Head, Tuhin Sharma, Tushar Parimi, Umberto Fasci, UV, vedpawar2254, +Velislav Babatchev, Victoria Shevchenko, viktor765, Vince Carey, Virgil Chan, +Wang Jiayi, Xiao Yuan, Xuefeng Xu, Yao Xiao, yareyaredesuyo, Zachary Vealey, +Ziad Amerr \ No newline at end of file From f159b78dc59f250cdde8fe391a21f0bc871960ad Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?J=C3=A9r=C3=A9mie=20du=20Boisberranger?= Date: Thu, 9 Jan 2025 16:15:29 +0100 Subject: [PATCH 153/159] trigger wheel builder [cd build] From 99bf3d8e4eed5ba5db19a1869482a238b6223ffd Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?J=C3=A9r=C3=A9mie=20du=20Boisberranger?= Date: Fri, 10 Jan 2025 10:52:38 +0100 Subject: [PATCH 154/159] REL Add 1.6.1 to news (#30619) --- doc/templates/index.html | 1 + 1 file changed, 1 insertion(+) diff --git a/doc/templates/index.html b/doc/templates/index.html index 890bd2da00855..ef0ec45787433 100644 --- a/doc/templates/index.html +++ b/doc/templates/index.html @@ -207,6 +207,7 @@

News

  • On-going development: scikit-learn 1.7 (Changelog).
  • +
  • January 2025. scikit-learn 1.6.1 is available for download (Changelog).
  • December 2024. scikit-learn 1.6.0 is available for download (Changelog).
  • September 2024. scikit-learn 1.5.2 is available for download (Changelog).
  • July 2024. scikit-learn 1.5.1 is available for download (Changelog).
  • From fe9660ae64f51082d2351a34f9f7acd943a774f7 Mon Sep 17 00:00:00 2001 From: Tim Head Date: Tue, 28 Jan 2025 13:26:40 +0100 Subject: [PATCH 155/159] Backport docs updates (conda-forge link, canonical URL) to 1.6.x (#30727) MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit Co-authored-by: Loïc Estève --- doc/conf.py | 5 +++++ doc/developers/advanced_installation.rst | 8 ++++---- doc/install_instructions_conda.rst | 2 +- 3 files changed, 10 insertions(+), 5 deletions(-) diff --git a/doc/conf.py b/doc/conf.py index 4a5d2a6ec9c6b..e2f1c837a65dd 100644 --- a/doc/conf.py +++ b/doc/conf.py @@ -207,6 +207,11 @@ # Sphinx are currently 'default' and 'sphinxdoc'. html_theme = "pydata_sphinx_theme" +# This config option is used to generate the canonical links in the header +# of every page. The canonical link is needed to prevent search engines from +# returning results pointing to old scikit-learn versions. +html_baseurl = "https://scikit-learn.org/stable/" + # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. diff --git a/doc/developers/advanced_installation.rst b/doc/developers/advanced_installation.rst index 6ae944bd0305d..ee75579c46405 100644 --- a/doc/developers/advanced_installation.rst +++ b/doc/developers/advanced_installation.rst @@ -59,7 +59,7 @@ feature, code or documentation improvement). instead. #. Install a recent version of Python (3.9 or later at the time of writing) for - instance using Miniforge3_. Miniforge provides a conda-based distribution of + instance using Condaforge_. Conda-forge provides a conda-based distribution of Python and the most popular scientific libraries. If you installed Python with conda, we recommend to create a dedicated @@ -258,8 +258,8 @@ to enable OpenMP support: For Apple Silicon M1 hardware, only the conda-forge method below is known to work at the time of writing (January 2021). You can install the `macos/arm64` -distribution of conda using the `miniforge installer -`_ +distribution of conda using the `conda-forge installer +`_ macOS compilers from conda-forge ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ @@ -482,4 +482,4 @@ the base system and these steps will not be necessary. .. _Homebrew: https://brew.sh .. _virtualenv: https://docs.python.org/3/tutorial/venv.html .. _conda environment: https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html -.. _Miniforge3: https://github.com/conda-forge/miniforge#miniforge3 +.. _Condaforge: https://conda-forge.org/download/ diff --git a/doc/install_instructions_conda.rst b/doc/install_instructions_conda.rst index fe1c14bbb78d3..0b5a57b747021 100644 --- a/doc/install_instructions_conda.rst +++ b/doc/install_instructions_conda.rst @@ -1,5 +1,5 @@ Install conda using the -`miniforge installers `__ (no +`conda-forge installers `__ (no administrator permission required). Then run: .. prompt:: bash From 2d1c71a146a4eea7b80f50e6bf99ec98327bcb76 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Lo=C3=AFc=20Est=C3=A8ve?= Date: Tue, 28 Jan 2025 15:19:16 +0100 Subject: [PATCH 156/159] DOC Fix 1.6 doc build now that OpenML is back (#30716) Co-authored-by: Olivier Grisel --- examples/applications/plot_time_series_lagged_features.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/examples/applications/plot_time_series_lagged_features.py b/examples/applications/plot_time_series_lagged_features.py index edb27ade48007..87b3c1f62c9ce 100644 --- a/examples/applications/plot_time_series_lagged_features.py +++ b/examples/applications/plot_time_series_lagged_features.py @@ -40,7 +40,7 @@ pl.Config.set_fmt_str_lengths(20) bike_sharing_data_file = fetch_file( - "https://openml1.win.tue.nl/datasets/0004/44063/dataset_44063.pq", + "https://github.com/scikit-learn/examples-data/raw/refs/heads/master/bike-sharing-demand/dataset_44063.pq", sha256="d120af76829af0d256338dc6dd4be5df4fd1f35bf3a283cab66a51c1c6abd06a", ) bike_sharing_data_file From 160fe6719a1f44608159b0999dea0e52a83e0963 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Lo=C3=AFc=20Est=C3=A8ve?= Date: Thu, 30 Jan 2025 09:27:26 +0100 Subject: [PATCH 157/159] DOC Update social links in 1.6 website (#30735) Co-authored-by: Reshama Shaikh --- README.rst | 3 +-- doc/developers/maintainer.rst.template | 2 +- doc/templates/index.html | 3 +-- doc/whats_new/_contributors.rst | 2 +- 4 files changed, 4 insertions(+), 6 deletions(-) diff --git a/README.rst b/README.rst index 40bce7399701a..e560b2269c17c 100644 --- a/README.rst +++ b/README.rst @@ -187,17 +187,16 @@ Communication - Logos & Branding: https://github.com/scikit-learn/scikit-learn/tree/main/doc/logos - Blog: https://blog.scikit-learn.org - Calendar: https://blog.scikit-learn.org/calendar/ -- Twitter: https://twitter.com/scikit_learn - Stack Overflow: https://stackoverflow.com/questions/tagged/scikit-learn - GitHub Discussions: https://github.com/scikit-learn/scikit-learn/discussions - Website: https://scikit-learn.org - LinkedIn: https://www.linkedin.com/company/scikit-learn - Bluesky: https://bsky.app/profile/scikit-learn.org +- Mastodon: https://mastodon.social/@sklearn@fosstodon.org - YouTube: https://www.youtube.com/channel/UCJosFjYm0ZYVUARxuOZqnnw/playlists - Facebook: https://www.facebook.com/scikitlearnofficial/ - Instagram: https://www.instagram.com/scikitlearnofficial/ - TikTok: https://www.tiktok.com/@scikit.learn -- Mastodon: https://mastodon.social/@sklearn@fosstodon.org - Discord: https://discord.gg/h9qyrK8Jc8 diff --git a/doc/developers/maintainer.rst.template b/doc/developers/maintainer.rst.template index dc39f68784b46..631ea125a40ce 100644 --- a/doc/developers/maintainer.rst.template +++ b/doc/developers/maintainer.rst.template @@ -136,7 +136,7 @@ Reference Steps {%- if key != "rc" %} * [ ] Publish to https://github.com/scikit-learn/scikit-learn/releases {%- endif %} - * [ ] Announce on mailing list and on LinkedIn, Bluesky, Twitter + * [ ] Announce on mailing list and on social media platforms (LinkedIn, Bluesky, etc.) {%- if key != "rc" %} * [ ] Update SECURITY.md in main branch {%- endif %} diff --git a/doc/templates/index.html b/doc/templates/index.html index ef0ec45787433..0f0cecf7fed96 100644 --- a/doc/templates/index.html +++ b/doc/templates/index.html @@ -231,12 +231,11 @@

    Community

  • Calendar: calendar
  • LinkedIn: linkedin/scikit-learn
  • Bluesky: bluesky/scikit-learn.org
  • -
  • Twitter: @scikit_learn
  • +
  • Mastodon: @sklearn
  • YouTube: youtube.com/scikit-learn
  • Facebook: @scikitlearnofficial
  • Instagram: @scikitlearnofficial
  • TikTok: @scikit.learn
  • -
  • Mastodon: @sklearn
  • Discord: @scikit-learn
  • Communication on all channels should respect PSF's code of conduct.
diff --git a/doc/whats_new/_contributors.rst b/doc/whats_new/_contributors.rst index 83f6ca5448b24..c74a2964e57bc 100644 --- a/doc/whats_new/_contributors.rst +++ b/doc/whats_new/_contributors.rst @@ -20,7 +20,7 @@ .. |API| replace:: :raw-html:`API Change` :raw-latex:`{\small\sc [API Change]}` -.. _Olivier Grisel: https://twitter.com/ogrisel +.. _Olivier Grisel: https://bsky.app/profile/ogrisel.bsky.social .. _Gael Varoquaux: http://gael-varoquaux.info From 6a0838c416c7c2a6ee7fe4562cd34ae133674b2e Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Lo=C3=AFc=20Est=C3=A8ve?= Date: Tue, 4 Feb 2025 03:48:02 +0100 Subject: [PATCH 158/159] DOC Update Pyodide version to 0.27.2 in JupyterLite deployment for 1.6 doc (#30765) --- doc/jupyter-lite.json | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/doc/jupyter-lite.json b/doc/jupyter-lite.json index 65ec9ca3006dc..9ad29615decb6 100644 --- a/doc/jupyter-lite.json +++ b/doc/jupyter-lite.json @@ -3,7 +3,7 @@ "jupyter-config-data": { "litePluginSettings": { "@jupyterlite/pyodide-kernel-extension:kernel": { - "pyodideUrl": "https://cdn.jsdelivr.net/pyodide/v0.26.0/full/pyodide.js" + "pyodideUrl": "https://cdn.jsdelivr.net/pyodide/v0.27.2/full/pyodide.js" } } } From 98ed9dc73a86f5f11781a0e21f24c8f47979ec67 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Lo=C3=AFc=20Est=C3=A8ve?= Date: Thu, 20 Feb 2025 08:16:31 +0100 Subject: [PATCH 159/159] MNT Fix Binder on 1.6 doc (#30862) Co-authored-by: Yuvi Panda --- .binder/postBuild | 8 ++++---- 1 file changed, 4 insertions(+), 4 deletions(-) mode change 100644 => 100755 .binder/postBuild diff --git a/.binder/postBuild b/.binder/postBuild old mode 100644 new mode 100755 index c33605a68456c..00e8d39b93549 --- a/.binder/postBuild +++ b/.binder/postBuild @@ -6,9 +6,9 @@ set -e # inside a git checkout of the scikit-learn/scikit-learn repo. This script is # generating notebooks from the scikit-learn python examples. -if [[ ! -f /.dockerenv ]]; then - echo "This script was written for repo2docker and is supposed to run inside a docker container." - echo "Exiting because this script can delete data if run outside of a docker container." +if [[ -z "${REPO_DIR}" ]]; then + echo "This script was written for repo2docker and the REPO_DIR environment variable is supposed to be set." + echo "Exiting because this script can delete data if run outside of a repo2docker context." exit 1 fi @@ -23,7 +23,7 @@ find . -delete GENERATED_NOTEBOOKS_DIR=.generated-notebooks cp -r $TMP_CONTENT_DIR/examples $GENERATED_NOTEBOOKS_DIR -find $GENERATED_NOTEBOOKS_DIR -name '*.py' -exec sphx_glr_python_to_jupyter.py '{}' + +find $GENERATED_NOTEBOOKS_DIR -name '*.py' -exec sphinx_gallery_py2jupyter '{}' + NON_NOTEBOOKS=$(find $GENERATED_NOTEBOOKS_DIR -type f | grep -v '\.ipynb') rm -f $NON_NOTEBOOKS pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy