Skip to content

Commit 0d59664

Browse files
authored
Merge pull request matplotlib#27965 from timhoffm/bxp-example
DOC: Rewrite the example illustrating bxp()
2 parents 47c96df + b1169d0 commit 0d59664

File tree

1 file changed

+43
-84
lines changed
  • galleries/examples/statistics

1 file changed

+43
-84
lines changed

galleries/examples/statistics/bxp.py

Lines changed: 43 additions & 84 deletions
Original file line numberDiff line numberDiff line change
@@ -1,107 +1,65 @@
11
"""
2-
=======================
3-
Boxplot drawer function
4-
=======================
5-
6-
This example demonstrates how to pass pre-computed box plot
7-
statistics to the box plot drawer. The first figure demonstrates
8-
how to remove and add individual components (note that the
9-
mean is the only value not shown by default). The second
10-
figure demonstrates how the styles of the artists can
11-
be customized.
12-
13-
A good general reference on boxplots and their history can be found
14-
here: http://vita.had.co.nz/papers/boxplots.pdf
15-
"""
16-
17-
import matplotlib.pyplot as plt
18-
import numpy as np
19-
20-
import matplotlib.cbook as cbook
2+
=============================================
3+
Separate calculation and plotting of boxplots
4+
=============================================
215
22-
# fake data
23-
np.random.seed(19680801)
24-
data = np.random.lognormal(size=(37, 4), mean=1.5, sigma=1.75)
25-
labels = list('ABCD')
26-
27-
# compute the boxplot stats
28-
stats = cbook.boxplot_stats(data, labels=labels, bootstrap=10000)
6+
Drawing a `~.axes.Axes.boxplot` for a given data set, consists of two main operations,
7+
that can also be used separately:
298
30-
# %%
31-
# After we've computed the stats, we can go through and change anything.
32-
# Just to prove it, I'll set the median of each set to the median of all
33-
# the data, and double the means
9+
1. Calculating the boxplot statistics: `matplotlib.cbook.boxplot_stats`
10+
2. Drawing the boxplot: `matplotlib.axes.Axes.bxp`
3411
35-
for n in range(len(stats)):
36-
stats[n]['med'] = np.median(data)
37-
stats[n]['mean'] *= 2
12+
Thus, ``ax.boxplot(data)`` is equivalent to ::
3813
39-
print(list(stats[0]))
14+
stats = cbook.boxplot_stats(data)
15+
ax.bxp(stats)
4016
41-
fs = 10 # fontsize
42-
43-
# %%
44-
# Demonstrate how to toggle the display of different elements:
17+
All styling keyword arguments are identical between `~.axes.Axes.boxplot` and
18+
`~.axes.Axes.bxp`, and they are passed through from `~.axes.Axes.boxplot` to
19+
`~.axes.Axes.bxp`. However, the *tick_labels* parameter of `~.axes.Axes.boxplot`
20+
translates to a generic *labels* parameter in `.boxplot_stats`, because the labels are
21+
data-related and attached to the returned per-dataset dictionaries.
4522
46-
fig, axs = plt.subplots(nrows=2, ncols=3, figsize=(6, 6), sharey=True)
47-
axs[0, 0].bxp(stats)
48-
axs[0, 0].set_title('Default', fontsize=fs)
23+
The following code demonstrates the equivalence between the two methods.
4924
50-
axs[0, 1].bxp(stats, showmeans=True)
51-
axs[0, 1].set_title('showmeans=True', fontsize=fs)
25+
"""
26+
# sphinx_gallery_thumbnail_number = 2
5227

53-
axs[0, 2].bxp(stats, showmeans=True, meanline=True)
54-
axs[0, 2].set_title('showmeans=True,\nmeanline=True', fontsize=fs)
28+
import matplotlib.pyplot as plt
29+
import numpy as np
5530

56-
axs[1, 0].bxp(stats, showbox=False, showcaps=False)
57-
tufte_title = 'Tufte Style\n(showbox=False,\nshowcaps=False)'
58-
axs[1, 0].set_title(tufte_title, fontsize=fs)
31+
from matplotlib import cbook
5932

60-
axs[1, 1].bxp(stats, shownotches=True)
61-
axs[1, 1].set_title('notch=True', fontsize=fs)
33+
np.random.seed(19680801)
34+
data = np.random.randn(20, 3)
6235

63-
axs[1, 2].bxp(stats, showfliers=False)
64-
axs[1, 2].set_title('showfliers=False', fontsize=fs)
36+
fig, (ax1, ax2) = plt.subplots(1, 2)
6537

66-
for ax in axs.flat:
67-
ax.set_yscale('log')
68-
ax.set_yticklabels([])
38+
# single boxplot call
39+
ax1.boxplot(data, tick_labels=['A', 'B', 'C'],
40+
patch_artist=True, boxprops={'facecolor': 'bisque'})
6941

70-
fig.subplots_adjust(hspace=0.4)
71-
plt.show()
42+
# separate calculation of statistics and plotting
43+
stats = cbook.boxplot_stats(data, labels=['A', 'B', 'C'])
44+
ax2.bxp(stats, patch_artist=True, boxprops={'facecolor': 'bisque'})
7245

7346
# %%
74-
# Demonstrate how to customize the display different elements:
75-
76-
boxprops = dict(linestyle='--', linewidth=3, color='darkgoldenrod')
77-
flierprops = dict(marker='o', markerfacecolor='green', markersize=12,
78-
linestyle='none')
79-
medianprops = dict(linestyle='-.', linewidth=2.5, color='firebrick')
80-
meanpointprops = dict(marker='D', markeredgecolor='black',
81-
markerfacecolor='firebrick')
82-
meanlineprops = dict(linestyle='--', linewidth=2.5, color='purple')
83-
84-
fig, axs = plt.subplots(nrows=2, ncols=2, figsize=(6, 6), sharey=True)
85-
axs[0, 0].bxp(stats, boxprops=boxprops)
86-
axs[0, 0].set_title('Custom boxprops', fontsize=fs)
87-
88-
axs[0, 1].bxp(stats, flierprops=flierprops, medianprops=medianprops)
89-
axs[0, 1].set_title('Custom medianprops\nand flierprops', fontsize=fs)
47+
# Using the separate functions allows to pre-calculate statistics, in case you need
48+
# them explicitly for other purposes, or to reuse the statistics for multiple plots.
49+
#
50+
# Conversely, you can also use the `~.axes.Axes.bxp` function directly, if you already
51+
# have the statistical parameters:
9052

91-
axs[1, 0].bxp(stats, meanprops=meanpointprops, meanline=False,
92-
showmeans=True)
93-
axs[1, 0].set_title('Custom mean\nas point', fontsize=fs)
53+
fig, ax = plt.subplots()
9454

95-
axs[1, 1].bxp(stats, meanprops=meanlineprops, meanline=True,
96-
showmeans=True)
97-
axs[1, 1].set_title('Custom mean\nas line', fontsize=fs)
55+
stats = [
56+
dict(med=0, q1=-1, q3=1, whislo=-2, whishi=2, fliers=[-4, -3, 3, 4], label='A'),
57+
dict(med=0, q1=-2, q3=2, whislo=-3, whishi=3, fliers=[], label='B'),
58+
dict(med=0, q1=-3, q3=3, whislo=-4, whishi=4, fliers=[], label='C'),
59+
]
9860

99-
for ax in axs.flat:
100-
ax.set_yscale('log')
101-
ax.set_yticklabels([])
61+
ax.bxp(stats, patch_artist=True, boxprops={'facecolor': 'bisque'})
10262

103-
fig.suptitle("I never said they'd be pretty")
104-
fig.subplots_adjust(hspace=0.4)
10563
plt.show()
10664

10765
# %%
@@ -112,4 +70,5 @@
11270
# in this example:
11371
#
11472
# - `matplotlib.axes.Axes.bxp`
73+
# - `matplotlib.axes.Axes.boxplot`
11574
# - `matplotlib.cbook.boxplot_stats`

0 commit comments

Comments
 (0)
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy