Skip to content

Commit 91653d8

Browse files
committed
dfs
1 parent 6c5c632 commit 91653d8

File tree

1 file changed

+74
-0
lines changed

1 file changed

+74
-0
lines changed
Lines changed: 74 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,74 @@
1+
"""
2+
Given an integer matrix, find the length of the longest increasing path.
3+
4+
From each cell, you can either move to four directions: left, right, up or down. You may NOT move diagonally or move
5+
outside of the boundary (i.e. wrap-around is not allowed).
6+
7+
Example 1:
8+
9+
nums = [
10+
[9,9,4],
11+
[6,6,8],
12+
[2,1,1]
13+
]
14+
Return 4
15+
The longest increasing path is [1, 2, 6, 9].
16+
17+
Example 2:
18+
19+
nums = [
20+
[3,4,5],
21+
[3,2,6],
22+
[2,2,1]
23+
]
24+
Return 4
25+
The longest increasing path is [3, 4, 5, 6]. Moving diagonally is not allowed.
26+
"""
27+
__author__ = 'Daniel'
28+
29+
30+
class Solution(object):
31+
def __init__(self):
32+
self.cache = None
33+
self.dirs = ((-1, 0), (1, 0), (0, -1), (0, 1),)
34+
35+
def longestIncreasingPath(self, matrix):
36+
"""
37+
dfs + cache
38+
:type matrix: List[List[int]]
39+
:rtype: int
40+
"""
41+
if not matrix: return 0
42+
43+
m, n = len(matrix), len(matrix[0])
44+
self.cache = [[None for _ in xrange(n)] for _ in xrange(m)]
45+
gmax = 1
46+
for i in xrange(m):
47+
for j in xrange(n):
48+
gmax = max(gmax, self.longest(matrix, i, j))
49+
50+
return gmax
51+
52+
def longest(self, matrix, i, j):
53+
"""
54+
Strictly increasing, thus no need to have a visited matrix
55+
"""
56+
if not self.cache[i][j]:
57+
m, n = len(matrix), len(matrix[0])
58+
maxa = 1
59+
for d in self.dirs:
60+
I, J = i + d[0], j + d[1]
61+
if 0 <= I < m and 0 <= J < n and matrix[I][J] > matrix[i][j]:
62+
maxa = max(maxa, 1 + self.longest(matrix, I, J))
63+
64+
self.cache[i][j] = maxa
65+
66+
return self.cache[i][j]
67+
68+
69+
if __name__ == "__main__":
70+
assert Solution().longestIncreasingPath([
71+
[9, 9, 4],
72+
[6, 6, 8],
73+
[2, 1, 1]
74+
]) == 4

0 commit comments

Comments
 (0)
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy