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The connection between Carnot-like and low-dissipation refrigerators is proposed by means of
their entropy generation and the optimization of two unified, compromise-based figures of merit.
Their optimization shows that only a limited set of heat transfer laws in the Carnot-like model are
compatible with the results stemming from the low-dissipation approximation, even though there
is an agreement of the related physical spaces of variables. A comparison between two operation
regimes and relations among entropy generation, efficiency, cooling-power and power-input are ob-
tained, with emphasis on the role of dissipation symmetries. The results extend previous findings
for heat engines at maximum power conditions.

I. INTRODUCTION

The pursue of energy converter models to describe
more accurately efficient real-life devices, and refrigera-
tors in particular, has brought a variety of models and op-
timization criteria according to the different nature and
scale range: from quantum [1–11] to macroscopic [12–19]
passing through mesoscopic [20–29] levels and including
solar-assisted cooling techniques [30, 31].

Most models are based on finite-time thermodynamics
considerations [32, 33]. Among them, but very different
in nature are the Carnot-like (CL) [13–18, 34] and the
low-dissipation (LD)[35–39] models whose predicted re-
sults are quite close to the region of experimental data
[12]. The key peculiarities of each model can be summa-
rized as follow. The CL engine makes use of thermal con-
ductances and heat transfer laws to model the heat fluxes
and entropy production, this gives information about the
heat-exchanges nature and thermal properties of the ma-
terial involved in the device. The LD model, on the
other hand, allows obtaining upper and lower perfor-
mance bounds under certain operation regime depend-
ing only on the dissipations’ symmetries, accounted by
an specific entropy generation without any information
about the heat-fluxes nature. The optimization variables
are, in the CL case, the working substance temperatures
at the isothermal processes, while in the LD case are the
contact-times at the isothermal processes. The general-
ity of the LD model reproduces behaviors of both en-
doreversible and irreversible engines, depending on time-
constraints [40]. For the CL engine the difference between
both behaviors is the presence of a heat-leak. This arise
the question of whether a correspondence between these
models can be established, and if so, to explain the role
of the heat-leak in time-constraints.

In recent years, the LD heat-engine (HE) perspectives
have increased with its applicability to models that incor-
porate fluctuations in microscopic and quantum systems
[39, 41–43]. Their relevance in microscopic refrigerator-
engines (RE’s), whose studies are mostly based in specific
heat transfer mechanisms, have not been widely explored,
making the unified study of HE’s and RE’s energetics an

on-going task.

In a recent paper [44] the connection between the CL
and the LD models was proposed for HE’s at maximum
power, showing that the set of variables that describe
each model can be related through the entropy genera-
tion. The particular case of an inverse-of-temperature
heat law has been recently addressed in [45]. The physi-
cal space of parameters is equivalent in the two descrip-
tions, however, maximum-power efficiencies do not match
exactly for arbitrary heat transfer laws. This could un-
derlay in the nature of each approach: the LD model
based on a specific entropy-generation law and the CL
model over the heat fluxes. Nevertheless, for a range
of heat transfer laws the correspondence between these
models is reasonably good.

Beyond models, another important point is the pro-
posal of unified figures of merit for any kind of energy
converter [19, 39, 46–51]. In particular, we consider in
this paper two optimization criteria: the so called χ [36]
and Ω [52] criteria, whose validity for both RE’s and HE’s
has been widely acknowledged [53–58].

To highlight the resemblance between the treatment of
HE’s and RE’s we present a parallel description to that
appearing in [44] for HE’s with special emphasis on the
role played by the heat-leaks and contact-times. We will
present how-well the efficiencies from the CL RE (for a
wide family of heat transfer laws) fit the LD assumption.

The article is organized as follows: In Section 2 we
present the unified criteria χ and Ω. In Section 3 the
mathematical correspondence among the characteristics
variables of both models for RE’s is proposed. In Sec-
tions 4 and 5, respectively, we analyze the maximum-χ
and Ω regimes in both models; in Section 6 we present
a comparison of the some relevant energetic magnitudes,
including the coefficient of performance (COP) and en-
tropy generation within the LD model framework. Fi-
nally, some concluding remarks are presented in Section
7.
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FIG. 1. Sketchs of a LD refrigeration (a) and of an irreversible Carnot-like RE with a heat-leak QL(b).

II. UNIFIED FIGURES OF MERIT χ AND Ω
FOR HE’S AND RE’S

The function χ is defined as the efficiency of the engine
times the heat-flux entering into the working substance
in a cycle period, that is,

χ =
zQin
t

, (1)

being z = η (ε) the efficiency of the energy converter and
Qin = Qh (Qc) for HE’s (RE’s), then

χ(HE) =
η Qh

t
= P, (2)

χ(RE) =
εQc

t
= εR, (3)

where P = (Qh −Qc) /t, is the power-output of the HE
and R = Qc/t is the cooling-power of the RE. For RE
the role of the efficiency is taken by the COP, ε, and the
analogue of Carnot efficiency ηC = 1 − τ and Curzon-
Ahlborn (CA) efficiency ηCA = 1 −

√
1− ηC is played

by εC = τ/ (1− τ) and εCA =
√

1 + εC − 1 [36], where
τ = Tc/Th being the cold-to-hot bath temperature ratio.

In the line of unified studies of HE’s and RE’s a rel-
evant role is played by the so-called Ω function. This
ecological-like figure of merit takes into account the un-
avoidable losses caused by the irreversible nature of the
finite-time periodic processes and is defined as follows
[53]

Ω ≡ (2z − zmax)
Ein
t
, (4)

where Ein is the heat input for HE’s and the work input
Win for RE’s. Then,

ΩHE = (2η − ηmax)
Qh

t
, (5)

ΩRE = (2ε− εmax)Pin, (6)

where Pin = (Qh −Qc)/t.

III. CORRESPONDENCE BETWEEN THE RE’S
VARIABLES OF BOTH MODELS

The LD model for RE considers a base-line Carnot
refrigerator working between the temperatures Tc and
Th > Tc (see Fig. 1a). A deviation from the reversible sce-
nario is modeled by additive terms in the entropy changes
at the heat reservoirs, given by [53]

∆STh
= ∆S +

Σh

th
, (7)

∆STc
= −∆S +

Σc

tc
, (8)

where Σh and Σc are some dissipative coefficients that
contain all the information of intrinsic dissipative device-
properties; th and tc are the contact-times with the hot
and cold reservoirs. We assume that the adiabatic pro-
cesses time can be neglected. ∆S is the entropy change
of the working fluid in the cold isothermal process. The
total entropy change is

∆Stot =
∆STh

Th
+

∆STc

Tc
=

Σh

th
+

Σc

tc
≥ 0. (9)

where the reversible scenario (∆Stot = 0) is achieved in
the limits th →∞ and tc →∞.

By means of the dimensionless variables defined in [60]
that take into account the size of the system: α ≡ tc/t,

Σ̃c ≡ Σc/ΣT and t̃ ≡ (t∆S)/ΣT, where t = th + tc and
ΣT ≡ Σh + Σc; we define a characteristic total entropy
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production per unit time

˙̃
∆Stot ≡

∆Stot

t̃∆S
=

∆Stot

t

ΣT

∆S2
=

1

t̃

[
1− Σ̃c

(1− α)t̃
+

Σ̃c

αt̃

]
.

(10)
In the CL-RE the entropy change of the internal re-

versible cycle is zero and the total entropy production is
that generated at the couplings with the external heat
reservoirs as depicted in Fig. 1b. According to this fig-
ure Qh = Thw ∆S ≥ 0 and Qc = Tcw ∆S ≥ 0, where ∆S
is the entropy generation at the heat reservoir Tcw, and
QL ≥ 0 is a heat-leak between the reservoirs Th and Tc,
then

∆STh
=
Qh

Th
−QL
Th

= ∆S+
(
−1 + a−1

h − τQ̃L
)

∆S, (11)

∆STc = −Qc

Tc
+
QL
Tc

= −∆S+
(
−ac + 1 + Q̃L

)
∆S, (12)

where ah = Th/Thw ≤ 1, ac = Tcw/Tc ≤ 1 and a char-

acteristic heat-leak is defined as Q̃L ≡ QL/ (Tc∆S). A
comparison between Eqs. (7) and (8) gives the expres-
sions associated to Σh and Σc,

Σh

th
=
(
−1 + a−1

h − τQ̃L
)

∆S (13)

Σc

tc
=
(
−ac + 1 + Q̃L

)
∆S. (14)

The heat-leak is not a feature appearing in the LD
model, nevertheless (as will be shown later) it’s possi-
ble to link it within the effects of the dissipation term

TcΣ̃c/tc. From the above two equations it is easy to ob-
tain the following relations between the variables of the
LD and CL models,

Σ̃−1
c = 1 +

(
1− α
α

)(
−1 + a−1

h − τQ̃L

−ac + 1 + Q̃L

)
, (15)

t̃ =
1

α
(
−ac + 1 + Q̃L

) [
1 +

(
1−α
α

) (−1+a−1
h −τQ̃L

−ac+1+Q̃L

)] ,
which can be summarized as:

Σ̃c

αt̃
= −ac + 1 + Q̃L. (16)

This equation allows for a consistent, thermodynamics
interpretation of the heat-leak in the LD model. It can
be rewritten as

QL = Tc
Σc

tc
− (Tc − Tcw) ∆S, (17)

where the first term of the right-hand-side is the heat dis-
sipated to the cold reservoir in the LD model (QLDc, diss).
Since ∆S is the working-substance entropy change while

in contact with the Tcw heat reservoir, then, Tc∆S cor-
responds to the heat exchanged when Tcw = Tc and
(Tc − Tcw) ∆S is the difference between the heat-input at
the totally reversible situation (Qc,rev) and that of non-
equilibrium (Qc, neq). We name this quantity Qendoc, loss ≡
Qc,rev − Qc, neq, a heat-input loss due to the endore-
versibility of the CL engine. In this way, Eq. (16) is

QL = QLDc, diss −Qendoc,loss. (18)

Thus, the heat-leak is the part of the dissipated heat to
the cold reservoir that has not an endoreversible origin
in the CL model. The term Qendoc, loss is very similar to the

one obtained in the so-called “geometric dissipation”[61],
where a dissipation-like term can be attached to a re-
versible cycle if one subtracts the heat released by a
Carnot cycle from the heat released by the reversible
cycle, when both cycles operate between the same heat
reservoirs and with the same heat input.

Regarding the physical region for the RE’s it can be
deduced from the Clausius inequality in Eq. (9). Thus we

require that for any ac,h and Q̃L values −∆STc ≥ 0 and
∆STh

≥ 0 (Eqs. (11) and (12), respectively). This yields

to a−1
h ≥ τQ̃L and ac ≥ Q̃L and since the latter condition

is achieved first it defines the physical constraint Q̃L ∈
[0, ac]. This heat-leak constraint (from CL model-based
arguments) applied to Eq. (16) gives a restriction upon
the LD RE variables

Σ̃c ≤ αt̃. (19)

Later on, we will show that this is equivalent to requiring
χ̃ ≥ 0 (with only LD model considerations), showing that
both physical spaces of variables are in agreement.

The correspondence among the variables of both mod-
els (Eq. (16)) is independent of heat transfer laws and
operation regime. Despite of this, it is possible to see the
influence of the heat-leak on Tcw and Thw (which usu-
ally requires an explicit heat transfer law) and on the
total operation time as can be seen in Fig. 2a and 2b,
respectively.

In Fig. 2a the temperatures Tc, Tcw, Thw and Th are

displayed as function of ac and Q̃L. For the CL RE it
is well-known that thermal equilibrium between internal
and external reservoirs (reversible situation) is achieved

only if Q̃L = 0. As the heat-leak increases the temper-
ature Thw departs from Th, producing a larger thermal
gradients, and preventing thermal equilibrium. On the
other hand, for the LD RE, t̃ as a function of ac and

Q̃L (see Eq. (16)) is depicted in Fig. 2b, showing that as
the heat-leak increases the total-time decreases and only

when ac → 1 and Q̃L → 0 the reversible limit t → ∞
can be achieved (if additionally ah → 1). Fig. 2, where
physical constraints are considered, displays a similar be-
havior of that reported for HE’s (see Fig. 2 of ref. [44]).
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FIG. 2. a) Thw and Tcw from Eq. (15). Note that as heat-leak appears both internal temperatures cannot be in thermal equi-

librium with the external reservoirs. b) Total operation time t̃(Q̃L, ac) according to Eq. (16). In both figures the representative

values α = 1
5
, τ = 0.4 and Σ̃c = 1

2
are considered, the qualitative behavior for other values is the same.

IV. MAXIMUM-χ REGIME

A. Low dissipation refrigerator engine

The input and output heats, (see Fig. 1a), are given
by [60]

˙̃
Qh ≡

Q̃h

t̃
=

Qh

Tc∆S

ΣT

t∆S
=

(
−1− 1− Σ̃c

(1− α)t̃

)
1

t̃
,(20)

˙̃
Qc ≡

Q̃c

t̃
=

Qc

Tc∆S

ΣT

t∆S
=

(
1− Σ̃c

α t̃

)
τ

t̃
= R̃, (21)

the corresponding dimensionless power input P̃in ≡
Pin/

(
Tc∆S t̃

)
=

˙̃
Qh −

˙̃
Qc is

P̃in =

(
1− τ +

1− Σ̃c

(1− α)t̃
+
τ Σ̃c

αt̃

)
1

t̃
, (22)

thus, ε̃ and χ̃ (see Eq. 3) are given by

ε̃ ≡ R̃

P̃in
=
Qc

W
= ε =

(
1− Σ̃c

αt̃

)
τ

1− τ + 1−Σ̃c

(1−α)t̃
+ τΣ̃c

αt̃

. (23)

χ̃ ≡ εQ̃c

t̃
=

εQc

Tc∆S

ΣT

t∆S
=

(
1− Σ̃c

αt̃

)2
τ2

t̃

1− τ + 1−Σ̃c

(1−α)t̃
+ τΣ̃c

αt̃

,(24)

Note that from Eqs. (23) and (24) ε and χ̃ are posi-

tive if Σ̃c ≤ αt̃, which is exactly the constraint appearing

in Eq. (19) from heat-leak arguments. The maximiza-

tion is achieved through α and t̃ by solving the system(
∂χ̃

∂t̃

)
α

= 0 and
(
∂χ̃
∂α

)
t̃

= 0. The first condition leads to

the optimum value t̃∗

t̃∗ =
Σ̃c

2α

3 +

√√√√9− τ + 8
(

α
1−α

)(
1−Σ̃c

Σ̃c

)
1− τ

 (25)

and the further maximization of χ̃∗(α; Σ̃c, τ) =

χ̃(α, t̃∗; Σ̃c, τ) with respect to α is made numerically. The
lower and upper bounds for εχ̃max are

ε−χ̃max = 0 ≤ εχ̃max ≤
√

9 + 8εC − 3

2
= ε+χ̃max (26)

corresponding to the Σ̃c = 0 and Σ̃c = 1, respectively.

The symmetric dissipation (Σ̃c = 1/2) optimized COP
is,

εsymχ̃max
=
√

1 + εC − 1 ≡ εCA, (27)

a result which could be considered as the counterpart
for refrigerators of the CA efficiency η = 1 −

√
τ = 1 −√

1− ηC [19].

B. CL refrigerator model without heat-leak
(endoreversible model).

Consider a reversible Carnot RE operating between the
absolute temperatures Thw and Tcw (see Fig. 1b) with Qh
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and Qc given by the heat transfer laws

Qh = σh

(
T khw − T kh

)
th = T kh σh

(
a−kh − 1

)
th ≥ 0,(28)

Qc = σc

(
T kc − T kcw

)
tc = T kc σc

(
1− akc

)
tc ≥ 0. (29)

where the exponent k 6= 0 is a real number, σh and σc

are the conductances in each process and th and tc are
the times at which isothermal processes are completed.
Adiabatic processes’ times are neglected. According to
Eq. (3) χ is a function depending on the variables ac,
ah, tc/th, k, τ and σhc. The endoreversible hypothesis
∆STcw

= −∆SThw
gives a constraint upon the time ratio

tc/th:

tc
th

= σhcacahτ
1−k

(
a−kh − 1

1− akc

)
, (30)

where σhc ≡ σh/σc. Whenever a heat-leak is not present
Tcw/Thw = acahτ = ε/(1 + ε) and the dependence on ah

can be replaced by ε. In terms of α = (1 + th/tc)−1,
Eq. (30) can be written as

α

1− α
= σhcτ

k

(
1 + ε

ε

)
(
ετac
1+ε

)k
− 1

1− akc

 . (31)

The optimization of χ = χ (ac, ε;σhc, τ, Th, k) is achieved

through ac and ε by solving
(
∂χ
∂ac

)
ε

= 0 for ac and(
∂χ
∂ε

)
ac

= 0 for ε. From the first condition (a∗c) we obtain

χ∗ as a function of ε

χ∗ (ε;σhc, τ, Th, k) = χ (a∗c , ε;σhc, τ, Th, k)

= σhT
k
h ε

τk−( ε
1+ε )

k(
√
σhc+( ε

1+ε )
k−1
2

)2 , (32)

which shows a unique maximum, obtained by solving

numerically
(
∂χ∗

∂ε

)
a∗c

= 0 for ε. Only for the cases

σhc → {0,∞} the solutions are analytical, which are dis-
played in Fig. 3a (dot-dashed curves, green online). In
Fig. 3, for σhc →∞ beyond k ≈ 2 there are no mathemat-
ical solutions for χmax, meanwhile, in the case σhc → 0
below k = −1 the solutions are non-physical (ε < 0). For
any σhc ∈ (0,∞) all εχmax ’s are located between those
curves. It can be seen that the LD bounds provided by
the LD-model (Eqs. (26) and (27)) are fulfilled by the en-
doreversible RE only for k = −1 which also occurred for
HE’s. Outside the region bounded by the two curves no
σhc value can reproduce the LD-model COP’s. The New-
tonian heat transfer law (k = 1) is the only case where
all possible values of σhc give the same COP (εCA). On
the other hand, in the LD model εCA is attached only to

Σ̃c = 1/2. To reconcile these situations it will be shown
that there is only one σhc corresponding to a symmetric
dissipation.

From the LD optimization α and t̃ for the case Σ̃c =
1/2 are

αsymχ̃max
=

1 +
√

1− τ
2 +
√

1− τ
, (33)

t̃symχ̃max
=

2 +
√

1− τ√
1− τ

. (34)

then, ac can be computed according to Eq. (16) and ah is
obtained from the condition Tcw/Thw = acahτ = ε

1+ε =

1−
√

1− τ by using ε = εCA, then,

asymc,χmax
=

2 +
√

1− τ
2
(
1 +
√

1− τ
) (35)

asymh,χmax
=

2

2 +
√

1− τ
(36)

that is, the above ac and ah are obtained from the LD
model optimization and the endoreversible hypothesis.
If the optimization of both models were equivalent it is
expected that by means of Eq. (31) the corresponding
σhc, given by the following expression

σsymhc = τk
(

1 +
√

1− τ
1−
√

1− τ

) 2k −
(

2+
√

1−τ
1+
√

1−τ

)k
(
2 +
√

1− τ
)k − 2k

 ,

(37)
would reproduce εCA. In Fig. 3b it can be seen that
the εCA value is not perfectly reproduced but only in the
cases k = {−1, 1}. However, there is a good agreement in
the region between these two values, a common feature
with the HE case. For k = 1, σhc = 1 +

√
1− τ and for

k = −1, σhc = (1−
√

1− τ)−2.

C. CL refrigerator with heat-leak.

Now, let us consider a heat-leak of the same kind than
Qc and Qh,

QL = σL

(
T kh − T kc

)
(th + tc)

= T kh σL

(
1− τk

)
(th + tc) ≥ 0, (38)

where σL is the heat-leak conductance. Then

Q̃L =
QL

Qc
= ac

T kh σL

(
1− τk

)
(th + tc)

T kc σc (akc − 1) tc

=
ac σLc

(
1− τk

)
τk (akc − 1)

(
th
tc

+ 1

)
(39)

where σLc ≡ σL/σL, in this case R takes into account the
heat transferred by QL, thus, ε and χ read as

ε ≡ R

Pin
=

(Qc −QL)

(Qh −Qc)
=

(
1− Q̃L

)
(
Qh

Qc
− 1
) , (40)

χ ≡ εR =
R2

Pin
=

(
1− Q̃L

)2

Qc(
Qh

Qc
− 1
)
t
, (41)
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FIG. 3. In a) the upper and lower bounds of the COP for the CL RE at maximum-χ regime versus the heat transfer law
exponent k. The σhc → {0,∞} along with the σsymhc case (Eq. (37)) are plotted. The bounds provided by Eqs. (26) and (27)
are labeled. In b) a close view of εχmax using σsymhc from Eq. (37). In all cases the representative value of τ = 0.7 is used.

where R = (Qc −QL) /t. The heat-leak diminishes the
COP and is responsible for the loop-like COP versus χ
curves.

The maximization of Eq. (41) is obtained through ah

and ac by solving numerically
(
∂χ
∂ac

)
ah

= 0 for ac and(
∂χ
∂ah

)
ac

= 0 for ah. In the limit situations {σc, σh} →
∞ the solutions can be obtained analytically but in the
general case their obtaining requires numerical methods.
In Fig. 4 they are depicted for three cases. The effect of
the heat-leak is more noticeable for higher COP values,
meanwhile for lower values it is scarce.

The similarity between the above results for RE and
those reported for HE [44] strengthen the road toward
unified studies of heat devices. In this sense, the Ω func-
tion will provide useful insights due to the capability of
obtaining analytical closed expressions.

V. MAXIMUM-Ω REGIME

From Eq. (6) and since Pin = W/t = (Qh −Qc) /t,
R = Qc/t and ε = Qc/W = R/Pin, if εmax = εC , then

ΩRE = Ω = 2R− τ

1− τ
Pin. (42)

A. Maximum-Ω regime for a LD RE

From Eqs. (21) and (22) Ω̃ ≡ Ω t/
(
Tc ∆S t̃

)
is given

by

Ω̃ =
τ

t̃

[
1− Σ̃c

α t̃

(
2− τ
1− τ

)
− 1− Σc

(1− α) (1− τ) t̃

]
. (43)

Its optimization is achieved through α and t̃ as in
the χ̃max case by solving simultaneously the conditions(
∂Ω̃
∂α

)
t̃

= 0 and
(
∂Ω̃
∂t̃

)
α

= 0, leading to

αΩ̃max
=

1

1 +

√
1−Σ̃c

Σ̃c(2−τ)

, (44)

t̃Ω̃max =
2

1− τ

(√
1− Σ̃c +

√
Σ̃c (2− τ)

)2

, (45)

Ω̃max and εΩ̃max are functions of Σ̃c and τ , the latter

being an increasing function of Σ̃c bounded by

ε−
Ω̃max

=
2

3
εC ≤ εΩ̃max ≤

3 + 2εC
4 + 3εC

εC = ε+
Ω̃max

, (46)

where the lower and upper bounds are obtained in the

limits Σ̃c → 0 and Σ̃c → 1, respectively. In the symmet-

ric case Σ̃c = 1/2,

εsym
Ω̃max

=
εC√

(1 + εC)(2 + εC)− εC
. (47)

These limits are in agreement with those reported in
[53], but obtained in a quite different manner.

B. Maximum-Ω regime for a CL endoreversible RE

The Ω function is given by

Ω = 2R− τ

1− τ
Pin =

Qc

(1− τ) t

(
2− τ − τQh

Qc

)
. (48)
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FIG. 4. Influence of the heat-leak on the upper and lower bounds of the COP at the χmax regime. The cases σL =
{0, 0.005, 0.015} are displayed. The representative value τ = 0.7 is used.

From the endoreversible hypothesis Qc

Qh
= Tcw

Thw
= acahτ

and since ε =
(
Thw

Tcw
− 1
)−1

it follows that

Qh

Qc
=
Thw

Tcw
=

1 + ε

ε
, (49)

and by means of Eqs. (28) and (29) it leads to

th
tc

=
τkφ (1− x)

σhc (x τkφk − 1)
(50)

where φ ≡ 1+ε
ε and x ≡ akc . Then, Ω is given by

Ω =
T kc σhτ

k

1− τ

 (1− x) (2− τ − τφ)

1 + τkφ(1−x)
σhc(x τkφk−1)

 . (51)

Its maximization is achieved by solving
(
∂Ω
∂x

)
φ

= 0 for

x and
(
∂Ω
∂φ

)
x

= 0 for φ. From the first condition one

obtains x∗, given by

x∗ =

√
φ1−k+τ−kφ−k√σhc√

φ1−k+
√
σhc

, k > 0,

=

√
φ1−k−τ−kφ−k√σhc√

φ1−k−√σhc

, k < 0, (52)

both cases lead to the same Ω∗ function, given by

Ω∗ (φ;Th, σc, σhc, τ, k) =

T kh σcσhc

1− τ

 (2− τ − τφ)
(
τk − φ−k

)(√
φ1−k −√σhc

)2

 . (53)

Finally, εΩmax (σhc, τ, k) is obtained from the condition(
∂Ω∗

∂φ

)
x∗

= 0. In Fig. 5 the limiting cases σhc → {0,∞}
of εΩmax are depicted (continuous lines, purple online),
these two curves bound any other possible values of the
COP; for k < −1 the lower bound is given by ε = 0.
Once more, the region of heat transfer laws where the
endoreversible and the LD RE results overlap is limited.
Only at k = −1 the upper and lower LD bounds are
recovered.

C. Maximum-Ω for a CL RE with heat-leak

From Eq. (48), with the use of Eqs. (28), (29), (30)
and (38),

Ω = 2(Qc−QL)
t − τ Qc

(1−τ)t

(
Qh

Qc
− 1
)

=

σcT
k
c

σhc
(2−τ)acah−1

(1−τk)

(
σhcacah
1−akc

+ τk−1

a
−k
h

−1

) − 2σLc
1−τk
τk

 (54)
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FIG. 5. COP of the endoreversible (QL = 0) RE operating at Ωmax and two cases with QL = {0.005, 0.015}. The representative
value of τ = 0.7 is used.

that is, the heat-leak contributes with an additive term
which does not alter the optimization in terms of ac and
ah. In Fig. 5 it is depicted the influence of the heat-leak
on ε for σhc → {0,∞}. A noticeable difference with re-
spect to the χmax (Fig. 4) is that here the entire bounds
are lowered by the heat-leak.

Below, we present a comparison between the two
regimes focused on the role of dissipation symmetries and
the entropy generation within the LD-model framework.

VI. χmax VERSUS Ωmax FOR A LD RE.

A comparison between energetic properties involving
entropy production and COP in the two regimes in the
LD model is quite illustrative to get insights about the
influence of the dissipation symmetries beyond the par-
ticularities on the heat transfer mechanisms, taking ad-
vantage that the LD approximation is good for certain
set of them.

In Fig. 6(a–f) we show the influence of the dissipation

symmetries on α, t̃, P̃in, R̃, ε and
˙̃

∆S under the χ̃max
and Ω̃max regimes (dashed lines and continuous lines,
respectively).

As expected, the operation time and COP are larger
for the latter. When the dissipation is mostly located in

the contact with the cold reservoir (Σ̃c → 1) the entropy
generation is the lesser (Fig. 6f), but not necessarily at-

tached to the smallest cooling power or power-input (see

Fig. 6(c–d)) nor the largest total-time t̃ (Fig. 6b). Notice
that ε increases and the entropy production diminishes
as the contact-time α increases.

On the right side of Fig. 6 the comparison of both
regimes is complemented. Fig. 6 (g–h) offers a measure
of the distance that each time variable has to be shifted
in order to change the operation regime. Note the exis-
tence of well defined maxima, while the ratios depicted
in Fig. 6(i–l) are monotonous functions bounded by

the limiting asymmetrical dissipation cases Σ̃c = {0, 1}.
Depending on the dissipation symmetry the transition of
one regime to another can offer certain advantages. For

example, for small values of Σ̃c (when the major part of
the dissipation occur at the hot reservoir) the transition
gives the largest gain in terms of the COP, however, it
requires also the largest changes in the cooling power,
power input and entropy production. Nevertheless the
changes of α as well as the total operation times are
small and a passing from one regime into the other
demands small changes of these control parameters.

In the opposite situation, when Σ̃c → 1 the switching
of regime demands also small variations of α and t̃,
with a small gaining in the COP, but also with small
increments of the entropy production, cooling power and
power input, resulting also in a suitable case since in
each regime the COP is the largest (see Fig. 6e).
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FIG. 6. Left: Ω̃max (dashed lines, blue online) and χ̃max (continuous lines, red online). Right: Comparison between Ω̃max and
χ̃max. In all cases we use τ = 0.7.

By incorporating the study of the entropy production,
relevant information regarding the benefits of having cer-
tain dissipation symmetries arise. In Fig. 7 a 3D-plot of
the total entropy production is shown under the time-
constraints t̃ = t̃χ̃max and t̃ = t̃Ω̃max . Over the surfaces,
curves of constant COP are displayed. As can be seen,
the entropy can significantly increase or decrease despite
of having the same COP. This is more noticeable for the
χmax regime. The curve ε = 0 bounds the physical region
of interest. As the COP value increases the set of possi-

ble α–Σ̃c combinations that produce such COP bound a
narrower region, until the limiting situation where only

α → Σ̃c → 1 produce the upper bounds ε+
Ω̃max,χ̃max

. As

can be seen, the maximum achievable COP does not cor-
respond to the minimum entropy production.

VII. CONCLUDING REMARKS

A relation between the variables that describe the low-
dissipation RE model and those that describe the Carnot-
like RE has been presented from considerations on the
entropy generation. The physical space of the variables
is consistent for both models. However, from the opti-
mization process the correspondence between both set of
variables is only valid for the heat transfer laws with ex-
ponent k = {−1, 1} and very close in the region (−1, 1).
Outside this range of exponents there are COP values
stemming from the Carnot-like RE that cannot be recov-
ered from the low-dissipation model. These results are
consistent with previous studies on HE’s, reinforcing the
concept of the unified criteria of merit by means of the χ
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FIG. 7.
˙̃

∆Stot under the time-constraints t̃ = t̃χ̃max (upper surface) and t̃ = t̃Ω̃max (lower surface). Over each surface the level

curves denote the configurations of Σ̃c and α that produce the same COP. We use the representative value τ = 0.7.

and the Ω functions.

The role of the entropy generation has been addressed
together with the criteria of merit, allowing for a com-
plementary vision of the role of dissipation symmetries
and the nature of the irreversibilities in the energetics
of these kind of energy converters. In this way a global
study of dissipation symmetries’ effects on the COP, en-
tropy generation, power input and cooling power can be
obtained. As a result, upper and lower bounds of the
relative gaining or loosing of such quantities in a change

of operation regime can be evaluated.
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