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The local stability of a weakly dissipative heat engine is analyzed and linked to an energetic multi-
objective optimization perspective. This constitutes a novel issue in the unified study of cyclic energy
converters, opening the perspective to the possibility that stability favors self-optimization of thermody-
namic quantities including efficiency, power and entropy generation. To this end, a dynamics simulating the
restitution forces, which mimics a harmonic potential, bringing the system back to the steady state is
analyzed. It is shown that relaxation trajectories are not arbitrary but driven by the improvement of several
energetic functions. Insights provided by the statistical behavior of consecutive random perturbations show
that the irreversible behavior works as an attractor for the energetics of the system, while the endoreversible
limit acts as an upper bound and the Pareto front as a global attractor. Fluctuations around the operation
regime reveal a difference between the behavior coming from fast and slow relaxation trajectories: while
the former are associated to an energetic self-optimization evolution, the latter are ascribed to better
performances. The self-optimization induced by stability and the possible use of instabilities in the
operation regime to improve the energetic performance might usher into new useful perspectives in the

control of variables for real engines.
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Introduction.—The optimization of energy converters,
particularly of heat engines (HE), is usually focused on
relationships among the operational parameters of a sys-
tem. As the panacea of thermodynamic optimization, the
simultaneous optimization of all energetic functions is
impossible; one must look for compromise solutions with
given constraints. New hints reveal that fluctuations could
be valuable insights in the optimization analysis when
pushing the system to optimum power and efficiency
altogether [1]. Moreover, the role of limited control on
system operation variables is a challenging issue [2—4]. The
appearance of trade-off relations involving efficiency,
power, and constancy [5,6] suggests that there is an
inherent energetic preference stemming from the restitution
mechanism in charge of the HE stability and whether
thermodynamical optimization underlies stability.

Due to the impossibility of obtaining the Carnot effi-
ciency for irreversible heat devices and the high energetic
cost of the maximum power regime [7—14], trade-off based
figures of merit (including atop minimization of entropy
as a desirable requirement) have played a key role in the
optimization of heat devices. This is the case of the
ecological [15], Omega [16], and efficient power [17]
functions; see also [18-20]. Beside this, studies on the
fluctuations of relevant energetic properties show subtle
differences for quasistatic and steady state HE models
providing different strategies to account for control of
parameters and engine layouts in macroscopic, mesoscopic,
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and quantum frameworks [5,6,21-23]. Preliminary studies
[24,25] suggest a connection between stability around a
steady state and the energetic self-optimization of cyclic
HEs for figures of merit that balances power, entropy, and
efficiency. Consequently, the evolution of the heat engine
to a steady state could be itself an optimization strategy
whenever facing a limitation in variables control. Here this
is addressed for a weakly dissipative HE driven by
dynamics simulating restitution forces that bring the system
back to the steady state. The low-dissipation (LD) model
[26] is a first order irreversible deviation from a Carnot
cycle, independent of a specific heat transfer law. It focuses
on the symmetries and asymmetries of the dissipations
on the system while in contact with external heat baths,
allowing for a general time-dependent formulation on
entropy generation [27,28]. Its validity [29-33] comprises
a broad temperature range and applications for macro-
scopic, mesoscopic, and microscopic models [8,30,33-40].
A stability dynamics linking variations on the heat
exchanges and the contact times with the external baths
around the stable point is assumed. Altogether, the model
and the dynamics provide a suitable way to explore general
behaviors not linked with particularities in the heat transfer
mechanism but to time evolution.

These features are explored for maximum power (MP)
and maximum omega (MQ), as a representative trade-off
function. After a brief background of both regimes, the
stability dynamics is analyzed and joined to the energetic
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optimization in the context of the Pareto front and the MP
and MQ regimes. Stochastic perturbations on the operation
regimes are also explored together with the consequences
on the energetic self-optimization. Finally, some perspec-
tives are discussed.

The control variables.—The low-dissipation model con-
siders irreversible deviations from a Carnot cycle working
between two thermal reservoirs at constant temperatures 7',
and T, (> T.) assuming finite contact times {7, #,, } of each
isothermal process (the duration of adiabatic processes is
neglected). The information regarding irreversibilities in
the contacts with each reservoir are accounted by the
coefficients {Z.,X,}. The total entropy change is AS,,; =
X./t. + X, /t;,. The reversible limit is recovered whenever
{t,,ty} = 0 or {Z.,%,} - 0. An useful description is
achieved by means of the dimensionless variables
f.=t.A8/%,, f, =1,AS/%,, accounting for the system
size, and where AS is the entropy change at the hot
isotherm of the baseline Carnot cycle. Expressing the
energy in T,AS units, the exchanged heats with the hot
and cold reservoirs Q;, and Q, are Q, = —t — t¥/f,, and
Q, =1f,""'=1,wheret=T,/T), and L=X_/Z,. Similarly,
the efficiency, n = (Q, + Q.)/Q), power output, P=
(0, +0.)/(t.+1,), entropy production 6=AS/(t.+1;)
and Q= (27-1¢)Q), [16] (yc =1—7 is the Carnot
efficiency) are given by the following:
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All of them have a dependence on {7, X,7.,7,} [28,31];
{%.,1,} for MP and MQ conditions are as follows:
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{z,%} can be considered as fixed parameters. This allows
to define total operation times 24F = PMP 4 PP and 7V =
M2+ M2 Under time constraints parabolic and looplike
P vs n curves (typical in endoreversible and irreversible
models, respectively) are obtained [28,41].

The best energetic performance: the Pareto front.—
There are no configurations fulfilling altogether the maxi-
mization of efficiency, power, Q, and entropy minimiza-
tion. The multiobjective optimization problem involves the
simultaneous maximization or minimization of a number of
objective functions [42] and the so-called Pareto front gives
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FIG. 1. Pareto front for the LD heat engine. Endoreversible and

irreversible limits are depicted. Here 7 = 2/5 and X = 1. The
introduced algorithm to obtain the Pareto front is addressed in
more detail in the companion paper [41].

the best compromise among all of them. Thus, the Pareto
front is obtained (Fig. 1), showing that the endoreversible
limit is linked with the multiobjective optimization. The
Kullback-Leibler divergence (KLD) [41,43] is used to
assure statistical convergence.

Stability dynamics.—A dynamical evolution of the
engine is now addressed. It will be considered a time
evolution of the heats absorbed and released associated to
a dimensionless dynamical time, 7 (with a characteristic
timescale to be chosen later). The steady state where the
system, at fixed control variables, is working either at
maximum power or maximum £ represents an stable point
with associated contact times i where x refers to {c, h}
and * to either MP or MQ [Egs. (3) and (4)]. Heat transfers
at the steady state can be thus denoted as O, (7). Within
the LD model it is straightforward to assume that time
evolution in heat transfers is implicitly associated to
contact times. In other words, heat transfers evolve from
one cycle to another because contact times evolve, i.e.,
Q, = 0.(i,) and 7, = 7.(t). So, a small perturbation
over the stationary regime leads to an evolution of heat
transfers that can be considered as associated to an
oscillatory behavior around a stable fixed point. The most
simple evolution of contact times is given by the linear case
d(f, —75)/dt « —(i, — ;) [41,44]. Besides, a first order
expansion of the heat is given by O,.(7,) — O.(%) =
[dQ,(7,)/di,] 7 (fx —1;). Allowing to formulate a dynam-
ics of contact times in the form of

i, - )

c;—t} = B(Qh(fh*) - Qh(fh))’ (6)

where {A, B} are positive constants giving the restitution
strengths (the larger the system, the faster it returns to the
steady state). In the linear approximation the solution is
determined by the eigenvectors and the eigenvalues,
{A1,4,}, of the corresponding Jacobian matrix (see
[24]), related to the relaxation times by 7; = /1;1 so that
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(a) Trajectories according to Egs. (5)—(6) in the phase space for MP and MQ. Corresponding trajectories for MP in the #-&

plane (b) and in the ;7-13-6 surface (c). Similar results are obtained for MQ (see the companion paper [41]). Note the region in which
stability induces a simultaneous optimization of # and &, delineated by the SO boundary. Note also the trend in the relaxation trajectories
to approach the Pareto front (this feature is more obvious for the MQ regime). In all figures £ = 1,7 = 2/5,A = B, and 1%}, = 7},,. The

relax

self-optimization and stability compromise is better pictured in the behavior change from optimization to a backwards evolution due to

the need of the system to reach the steady state.
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where i = {1,2}, I, = A and I, = B. It is straightforward
to express the relaxation time in terms of the operation time,
e, 1 =10 +16=2/nc)(A™ + B, connecting
optimization and stability. In a cyclic process the system
should return to the steady state within a cycle, constraining
{A,B} to A= + B7! <n¢/2.

Figure 2(a) shows in the phase space the location of the
two stable points (MP and MQ) and some representative
relaxation trajectories following the dynamics defined in
Egs. (5) and (6), with different colors for each quadrant
(I-IV). Figure 2(b) shows their corresponding behaviors in
the 7 vs & plane. In this plane the trajectories tend to evolve
in a narrow zone: while those in quadrants I (purple color)
and III (yellow) arrive to the steady state in a direct way,
those in quadrants II (cyan) and IV (orange) get the steady
state after more or less abrupt turns. In Fig. 2(c) the
behavior of P is incorporated in a 3D view showing the
location of the Pareto front. The trajectories evolving
straight to the steady state are located in a small neighbor-
hood of the Pareto front.

In Fig. 2 two kinds of trajectories stand out. Some with a
simultaneous improvement of 5, P, and &. This behavior is
enclosed in the so-called self-optimization (SO) region,
bounded by the SO curve (black color in Fig. 2). Outside,
the relaxation to the steady state exhibits another behavior
with either an increasing of entropy or a decreasing in
efficiency or power output. In the phase space the charac-
terization of the SO boundary is given by the relaxation

25(1 —n¢) g
2_7’7CC+1) (2-nc), (8

velocity vgy, = [(d7./d1)* + (dF,/dt)*]"/%. When dvgy,/dt
reaches certain values c; or ¢, (for the horizontal or vertical
branches) in the energetic space there is an inflection
behavior [see Fig. 2(b)]. More details can be found in
the companion paper [41]. Figure 3, displays constant
velocities contours, showing that the MP regime exhibits
a faster evolution to the stable point than the MQ regime.
For both regimes the fastest transitions mostly occur in
quadrant III.

By gathering the information from the phase and
energetic spaces a kind of “preference” on fast trajectories
to improve their performance is exhibited. If the system is
already in a “better” state, the relaxation is slower.

Random perturbations on the operation regime.—Now it
is assumed that the system undergoes N consecutive
perturbations equally distributed in time along one cycle
in subintervals of length Az. The N steps are computed by
solving the stochastic differential equation based on
Egs. (5) and (6), using normally distributed random variables

Optimal set

FIG. 3. Representative stream plot of the velocity field.
Dynamical velocity contours show the speed in the relaxation
toward the steady states. t =2/5, X =1 and ¢*

_ Fx
relax — Tiot-
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(a) Average states for 5 x 10* cycles [green (blue) points are for those states outside (inside) the self-optimization region] and

the Pareto front. Yellow and blue stars are the geometric center of the points inside each region; accordingly, blue points are closer to the
steady state in the phase space. Behaviors of P vs , P vs ¢ and n vs ¢ are depicted in (b), (c), and (d), respectively. N = 10*,
6, =0a"/10,0;=7/10,A=B=4/(1 —7) 50 1}, = lio, 7=2/5,and T = 1.

following a two-dimensional Gaussian distribution, {&,, &, },
in the {7.,7,} directions, as additive white noise by means of
the Euler-Maruyama method [45]

AR, = A(Qc(7". 1) = Qe (17, 13,)) At + & VAL,
ATy, = B(Oy (&7, 1) — Ou(fs,. 1)) At + & VAL,

where £, and &, follow the Gaussian distribution

2
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and S is such that the standard deviations are given by
o; = 1;/p and o3 =1 /p. The initial state is (7. .7, ) =
(7.*,1,%); Ar is 75 /N, so that after N steps one cycle
is fulfilled. After one cycle has been completed, the system
starts another random trajectory from the steady state,
without any information regarding previous cycles.

o\ PDFP

4x1073}

Fluc(n)

i3
Steady State

FIG. 5. (a) Probability distribution functions of the averages
of P, 5, and &. Distributions for MP (dots) and MQ (solid) are
superposed centered in the steady state. Blue (green) stands for
averages in the self-optimization (better-performance) regions.
(b) Fluctuations around the steady state.

This procedure is repeated for 5 x 10* cycles. Statistical
convergence is tested using the Kullback-Leibler divergence
of the system energetic distributions [41].

The averaged loci in the phase space for each cycle are
shown in Fig. 4(a), together with the Pareto optimal set.
States within the region of better performance (green color,
slow transitions) and of self-optimization (blue, fast tran-
sitions) are distinguished. Faster transitions keep the
system closer to the steady state (see stars indicating the
geometric center of points in each region). The states with a
better performance are less spread out than those of rapid
relaxation and they comprise the 47% of the cases for MP
and 44.3% for MQ; i.e., there is a larger density of average
states in the better performance zone. In Figs. 4(b)—4(d) the
corresponding averages of P, &, and # are shown. For both
operation regimes the states of better performance (green
points) are closer to the Pareto front, with notorious smaller
variations in efficiency and an overall performance with
higher efficiency and smaller entropy production.

Deviations from the steady state are illustrated by the
probability distribution function (PDF) of P, 5 and &
[Fig. 5(a)]. The MP case has a sharper profile in P (larger
concentration of points near the steady state) but a larger
dispersion in n and & with respect to the MQ regime.
Figure 5(b) shows the fluctuations around the steady state,
given by Fluc(¢p) = (¢p* — (@))% where () is the average
over a cycle. Fluctuations in the self-optimization zone for
MQ are larger for P but smaller for # and & compared with
the MP case. Those on & and # are of the same order in both
regimes with a sharper profile and slightly lesser entropy
production in the MQ case.

Concluding remarks and perspectives.—It is shown that
local stability of an operation regime around a steady state
can be analyzed by heat exchange perturbations that induce
an energetic trade-off self-optimization mechanism accord-
ing to the velocity of trajectories and in agreement with
results from a multiobjective optimization. The presented
results are general in the weakly dissipative regime since
the LD framework focuses in the relation between time

050603-4



PHYSICAL REVIEW LETTERS 124, 050603 (2020)

constraints and entropy production. The equivalence of LD
heat devices with many other cyclic and noncyclic models
at very different scales [29-33] could provide a path to
explore these behaviors when the particularities of the heat
exchanges are considered. In such cases the dynamical
equations will lastly depend on the particular operation
variables. Some representative examples are (i) a macro-
scopic solarized irreversible Brayton engine with fluctua-
tions induced by variable solar irradiance [46], (ii)) a LD
micrometric HE experimentally realized by a single particle
in an optical trap through an optical harmonic potential
[47,48], and (iii) a spin vortex confined on a disc with a
harmonic potential [49,50].

In the companion paper [41], one different dynamic
yielding a basin of attraction (instead of an stable equilib-
rium point) is also analyzed. A possible perspective of this
work is its incorporation into the thermodynamic price of
control analysis, where the self-optimization induced by a
limited control could be useful. Finally, in the used multi-
objective optimization all functions are equally weighted
but a reverse study could be made. For a given local
stability in natural systems, an inference on a different
trade-off with specific weights could be an interesting path
towards the analysis of natural optimization requirements
[51-56]. This could lead to a hierarchy in the objective
functions during evolutionary adaptation in specialized
systems [57]. The role of analysis like the one performed
here in the trade-off between power, efficiency, and con-
stancy [5,6] as the system approaches 7 requires a further
study as it is not clear if external perturbations could reveal
intrinsic properties of constancy.
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