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Wavelet Leaders and Bootstrap

for Multifractal Analysis of Images

Herwig Wendt, Stéphane G. Roux, Stéphane Jaffard∗ and Patrice Abry†,

Abstract

Multifractal analysis is considered a promising tool for im-

age processing, notably for texture characterization. However,

practical operational estimation procedures based on a theoret-

ically well established multifractal analysis are still lacking for

image (as opposed to signal) processing. In the present contri-

bution, a wavelet Leader based multifractal analysis, known to

be theoretically strongly grounded, is described and assessed

for 2D functions (images). By means of Monte Carlo simula-

tions conducted over both self-similar and multiplicative cas-

cade synthetic images, it is shown here to benefit from much

better practical estimation performance than those obtained

from a 2D discrete wavelet transform coefficient analysis. Fur-

thermore, this is complemented by the original analysis and de-

sign of procedures aiming at practically assessing and handling

the theoretical function space embedding requirements faced

by multifractal analysis and certain image analysis methods. In

addition, a bootstrap based statistical approach developed in the

wavelet domain is proposed and shown to enable the practical

computation of accurate confidence intervals for multifractal

attributes from a given image. It is based on an original joint

time and scale block non parametric bootstrap scheme. Perfor-

mance are assessed by Monte Carlo simulations. Finally, the

use and relevance of the proposed wavelet Leader and boot-

strap based tools are illustrated at work on real-world images.

Key Words: Multifractal, Wavelet Leaders, Image regularity,

Bootstrap, Confidence intervals

1 Introduction: Multifractal analysis

for image processing

Nowadays, in a large number of applications of very different

natures, the data collected by sensors for analysis consist of

images, i.e., they are naturally bi-dimensional signals. This is

mostly due to the recent and significant progresses achieved in

digital sensor, fast rate and high resolution camera and video

camera design. For a number of these applications the corre-

sponding statistical analysis of the images amounts to perform-

ing texture characterization. This is the case notably for clouds
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or rainfalls analyses in geophysics [1–3], bio-medical diagnosis

for human body rhythms or structure (bones, tissues, mammog-

raphy,. . . ) [4–6], universe or galaxy structures in astronomy

[7], growth phenomena in physics [8, 9] or texture classifica-

tion in computer vision [10, 11], to name but a few examples.

Texture characterization is now often envisaged by measur-

ing the fluctuations (with respect to space) of the regularity of

the amplitude of the image. There is an increasing number

of research articles suggesting that regularity characterization

should be conducted within the mathematical framework of

multifractal analysis. In practice, multifractal analysis is quasi-

systematically performed using the coefficients of continuous

[12] or discrete [13,14] wavelet transforms. The regularity fluc-

tuations are then inferred from the behavior in the limit of fine

scales of the (sample mean estimators of the) moments of order

q. However, surveying the literature related to applications, one

realizes that image multifractal analysis suffers from two ma-

jor limitations: It remains either incomplete, as it is simplified

to the computation of Fourier spectra (via classical standard

spectral estimation) or of wavelet coefficients variograms (re-

gression of the variance against the scales), i.e., for both cases,

of a second order statistical quantity only (e.g. [15]); or it is re-

duced to the analyses of collections of 1D slices of data instead

of real 2D images (e.g. [16]).

The reasons for this are mostly associated to the theoreti-

cal requirement that a complete multifractal analysis involves,

namely a variety of negative statistical orders q as well as pos-

itive ones [17, 18]. However, wavelet coefficients, by nature,

consist of quantities that mostly concentrate around 0, ren-

dering the numerical computation of negative q moments ex-

tremely unstable or even theoretically infinite. To overcome

this limitation, using the Modulus Maxima of a Continuous

Wavelet Transform (MMWT) has been proposed for the 1D

case [12]. This method relies on the determination of the coeffi-

cients of a Continuous Wavelet Transform (CWT), from which

a skeleton, consisting of maxima along scales lines, is extracted

[19]. The wavelet coefficients living on this skeleton are then

involved in the computation of the fluctuations of the image

regularity. For details, the reader is referred to [12]. This tech-

nique has been further extended to image analysis, at the price

though of significant computational (2D-CWT + 2D-Skeleton)

and conceptual complexities (maxima lines become maxima

manifolds) [20]. Therefore, it remains hardly ever used for im-

ages (see, a contrario, [20]). In addition to the practical diffi-

culties related to its implementation, the MMWT approach, be
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it 1D or 2D, despite its showing satisfactory experimental per-

formance, is still lacking a theoretical mathematical support.

Recently, an alternative approach has been proposed [14, 17]:

The Wavelet Leader (WL) Multifractal Analysis (MA). This

method is theoretically backed up by a strong mathematical

framework [14, 17, 21, 26]. Also, its being defined from an

(orthonormal) Discrete Wavelet Transform (DWT) enables rea-

sonably easily its theoretical and practical extensions to higher

dimension [14, 21]. It has been shown to be one of the best

available tools for (1D) signals, enabling a relevant and gen-

eral multifractal analysis of empirical data, with both excellent

theoretical properties and statistical performance [22].

Therefore, elaborating on theoretical results proven for func-

tions in R
n and recently published in [14, 17, 21, 26], the first

goal of the present contribution is to provide practitioners with

an explicit formulation of a 2D wavelet Leader based multifrac-

tal analysis that can actually be applied to real-world images.

To this end, Section 2 reviews the key notions underlying mul-

tifractal analysis, introduces the 2D wavelet Leader multifrac-

tal analysis, and details the corresponding practical estimation

procedures. In addition, the validity and practical relevance of

these 2D multifractal analysis procedures are assessed in the

present work by numerical simulation studies of their estima-

tion performance in Sections 6.1 and 6.2. The performance of

the proposed procedures are shown to compare very favorably

to those obtained from wavelet coefficients. The synthetic self-

similar and multiplicative cascade images used in Monte Carlo

simulations are described in Section 5.

The second goal of the present contribution is to further

complement the theoretical understanding of a comprehensive

use of the wavelet Leader multifractal analysis. For this, we

address a number of theoretical issues, related to which func-

tion space data are embedded in, and constituting mandatory

prerequisites in the derivation of the wavelet Leader based mul-

tifractal analysis, as well as for any other procedure aiming at

performing a multifractal analysis of images or signals. No-

tably, the wavelet Leader multifractal analysis is well-defined

for bounded functions only. However, a digital image consist-

ing of an intensity local average, can naturally be seen as the

approximation – at a given resolution level – of a positive mea-

sure, and there is hence no a priori guarantee for it to belong to

the space of bounded functions. Section 3 addresses such issues

and proposes tools for an a priori analysis aiming at enabling

the characterization of which function space the data belong to,

and solutions to handle the bounded function requirement. This

part has pratical implications for the validation of many image

processing models, where an a priori assumption is made on

the function spaces that contain the image. The proposed so-

lutions are supported by mathematical proofs, whose founding

arguments are reported in Section 3 (yet in Section 3.3 detailed

versions of some proofs are beyond the scope of the present

article and will be published independently in a theoretically

oriented journal, see [34]). The performance of the proposed

procedures are assessed numerically. Also, their practical rele-

vance and usefulness are supported through the examination of

the large reference texture image database used in [11].

In the use of multifractal analysis in actual applications,

practitioners are potentially as much interested in the confi-

dence that should be granted to the estimates as in the value

of the estimates themselves. However, the (asymptotic) statis-

tical performance of the estimation procedures for multifractal

attributes – and hence the design of confidence intervals – is

beyond analytic derivation, mostly because of the involved sta-

tistical properties of multifractal images. To overcome such

limitations, we recently proposed, for 1D signal, the use of non

parametric bootstrap techniques [23,24], applied in the wavelet

domain [22, 25]. Therefore, the third goal of the present con-

tribution is to define an original bootstrap scheme that matches

the 2D wavelet Leader multifractal analysis and to validate its

performance in producing confidence intervals for multifractal

attributes from a single image. This 2D scheme differs from

the 1D one proposed earlier insofar as it consists of a joint time

and scale block bootstrap procedure, designed to better account

for the naturally joint time and scale correlation structure of

wavelet coefficients and wavelet Leaders. This bootstrap ap-

proach is detailed in Section 4. The statistical performance of

this bootstrap scheme, its relevance and usefulness are assessed

numerically and discussed in Section 6.3.

The relevance and practical use of the multifractal Leader

and bootstrap based analysis framework proposed here is il-

lustrated at work on a real-world image (cf. Section 6.4). Also,

comments and discussions related to the general applicability to

images conditions of the proposed Leader and bootstrap based

multifractal analysis procedures are proposed in Section 6.5.

2 Multifractal formalism and wavelet

Leaders

This section aims at providing to practitioners in image pro-

cessing actual procedures to conduct relevant multifractal anal-

ysis of real-world images. It is based on general theoretical

results published in [14,17,21,26] and makes explicit their for-

mulation and use for images.

2.1 Multifractal spectrum

Let X(t) : t ∈ R
d → X ∈ R denote the function to be an-

alyzed, assumed to belong to the space of bounded functions.

For an image, d = 2 and the variable t = (x1, x2) is com-

monly referred to as the space variable. Multifractal analy-

sis consists in describing the local regularity of X(t), around

t0 by comparing X(t0) against a local power law behavior:

|X(t) − Pt0(t)| ≤ C|t − t0|α, with α > 0, and where C > 0
and P is a polynomial such that deg(P ) < α. The Hölder ex-

ponent h(t0) is the largest such exponents α. The fluctuations

of h with respect to t are usually described via the multifrac-

tal spectrum. It collects the Hausdorff dimensions of the sets

of positions t, for which the Hölder exponents take the same

value : D(h) = dimH{t : h(t) = h}. Because of its being an
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Hausdorff dimension, the multifractal spectrum is confined to

0 ≤ D(h) ≤ d. By convention, D(h) = −∞ for the Hölder ex-

ponents that are not present in X . For theoretical introductions

to multifractal analysis, the reader is referred to e.g., [17, 18].

If X is a bounded function, its Hölder exponent is necessar-

ily nonnegative, so that D(h) = −∞,∀h < 0. For ease of ex-

position, we hereafter only consider images that are uniformly

singular, which implies that the Hölder exponent is bounded

from above, see [26]. From a practical point of view, multi-

fractal analysis consists in estimating D(h) from the finite size

image under analysis. This is commonly achieved via the so-

called multifractal formalisms. The wavelet Leader multifractal

analysis is defined in the next section.

2.2 Wavelet Leader Multifractal Analysis

Wavelet coefficients. Let H0(k), G0(k) denote the (low-

pass and high-pass, respectively) quadrature mirror filters

defining a 1D orthonormal DWT. The underlying mother

wavelet possesses Nψ ≥ 1 vanishing moment(s). A 2D or-

thonormal DWT can be defined via the use of 4 bi-dimensionel

filters G(m)(k1, k2), m = 0, 1, 2, 3 obtained as products of H0

and G0. By convention, G(0)(k1, k2) = H0(k1)H0(k2) cor-

responds to the 2D low pass filter providing a lower approxi-

mation, while G(m), m = 1, 2, 3, correspond to the high pass

filters yielding the wavelet coefficients. Let {X(k1, k2), k1 =
1, ..., N1, k2 = 1, ..., N2} denote the 2D grey level digi-

tized image to be analyzed, regarded as a sampled version

of X(x1, x2). The 2D wavelet coefficients D
(m)
X (j, k1, k2),

m = 1, 2, 3, are obtained by, first (j = 1), convolu-

tion of G(m)(k1, k2), m = 0, 1, 2, 3 with {X(k1, k2)} and

down-sampling, and then (j ≥ 2) iterative convolution of

G(m)(k1, k2), m = 0, 1, 2, 3 with D
(0)
X (j − 1, k1, k2) and

down-sampling. For detailed introduction to continuous time

and discrete time 1D or 2D WT, the reader is referred to, e.g.,

the tutorial books [19, 27].

For scaling analysis, it is more suitable (cf. [12, 13]) to re-

normalize the standard L2-norm wavelet coefficients according

to a L1-norm: d
(m)
X (j, k1, k2) = 2−jd/2D

(m)
X (j, k1, k2).

Wavelet Leaders. Let us now further assume that the

H0(k), G0(k) have finite impulse responses, and introduce a

dyadic indexing of squares as:

λj,k1,k2 =
{
[k12

j , (k1 + 1)2j), [k22
j , (k2 + 1)2j)

}
.

The union of nine such neighbor intervals is denoted as:

32λj,k1,k2 =
⋃

n1,n2={−1,0,1}

λj,k1+n1,k2+n2
.

Wavelet Leaders are theoretically defined by

LX(j, k1, k2) = sup
m=1,2,3, λ′⊂32λj,k1,k2

|d(m)
X (λ′)|, (1)

(see [17]). This definition is illustrated in Fig. 1 and practi-

cally means that the Leader LX(j, k1, k2) is obtained as the

Figure 1: Definition of Wavelet Leaders. The wavelet

Leader LX(j, k1, k2) at scale 2j and position (k1, k2) (black

cross) is defined as the largest of the wavelet coefficients

|d(m)
X (j′, k′

1, k
′
2)|, m = 1, · · · , 3 (red, green and blue dots)

within a spatial neighborhood of (k1, k2) and within all finer

scale 2j
′ ≤ 2j (red volume). The wavelet coefficients over

which the supremum is taken are marked by fat dots.

largest wavelet coefficient amongst those, |d(m)
X (j′, k′

1, k
′
2)|,

m = 1, 2, 3, existing in a (narrow) spatial neighborhood of

(k1, k2), at any finer scale 2j
′ ≤ 2j .

The central result underlying the use of wavelet Leaders for

multifractal analysis lies in them accurately measuring local

Hölder exponents (cf. [17] for the theoretical proof): If X
has Hölder exponent h(t0) ≥ 0 in t0, then, on condition that

Nψ > h(t0) and, if 2−jk is the dyadic point of scale j which

is closest to t0, then

LX(j,k) ∼2j→0 2jh(t0), (2)

where Xa ∼a→0 Ya means that both quantities share the same

lim inf on a log-log scale.

Structure functions and scaling. Let us now form the struc-

ture functions, i.e., spatial averages of (the q-th order of) the

Leaders at a given scale 2j :

S(2j , q) =
1

nj

∑

k1,k2

LX(j, k1, k2)
q. (3)

The scaling function ζ(q) is then defined as

ζ(q) = lim inf
2j→0

lnS(2j , q)

ln 2j
. (4)

In practice, this definition means that the S(2j , q) exhibit power

law behaviors with respect to the analysis scale 2j , in the limit

of small scales 2j → 0 [14]:

S(2j , q) ∼ λq2
jζ(q) when j → −∞. (5)

The ζ(q) are hence often termed the scaling exponents. This

power law behavior establishes a clear and deep connection

between the concepts of scale invariance and multifractal anal-

ysis. Eq. (4) also implies that the scaling function necessarily

is a concave function of q [14].
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Multifractal formalism. Let L(h) be the Legendre spectrum

defined from the scaling function through a Legendre trans-

form:

L(h) = inf
q∈R

(d + qh − ζ(q)). (6)

Under a mild uniform regularity condition for X (uniform

Hölder, cf. Section 3.2 below), it can be shown [14, 17] that

the Legendre spectrum and the multifractal spectrum are sim-

ply related : D(h) ≤ L(h). There exist (large) classes of func-

tions and processes X(t) for which this inequality turns to an

equality, referred to as the wavelet Leader based multifractal

formalism:

D(h) = L(h). (7)

Notably, for the self-similar and multiplicative cascade pro-

cesses used in the present contribution to evaluate the statistical

properties of the proposed estimation procedures (cf. Section

5), the wavelet Leader multifractal formalism holds. An

obvious necessary condition for it to hold is that the spectrum

D(h) of X(t) is a concave function. In practice, one cannot

have access to the spectrum of singularities of a real-life signal;

therefore the purpose of practical multifractal analysis focuses

on the estimation of the Legendre spectrum L(h).

Cumulant expansion. Let us now assume that the scaling ex-

ponents ζ(q) are a smooth function of q around 0; then, we can

consider a Taylor expansion of this scaling exponents at q = 0:

ζ(q) ≃
∑

p≥1

cpq
p/p ! (8)

It has been shown in [28, 29] that the log-cumulants cp are re-

lated to the cumulant of order p, C(2j , p), of lnLX(j,k) as:

C(2j , p) = c0,p + cp ln 2j . (9)

The concavity of ζ(q) implies that c2 ≤ 0. Recently, we

showed (detailed calculations reported in [30]), that Eq. (8)

can be cast into a polynomial expansion of the spectrum as:

L(h) = d +
c2

2!

(
h − c1

c2

)2

+
−c3

3!

(
h − c1

c2

)3

+

+
−c4 + 3c2

3/c2

4!

(
h − c1

c2

)4

+ · · · (10)

Also, it indicates that c1 corresponds to the location of the max-

imum of L(h), c2 to its width, while c3 is an asymmetry param-

eter.

In applications, practitioners cannot compute the entire func-

tions ζ(q) or L(h) and instead often concentrate on a small

number of well chosen representative multifractal attributes.

The cp are candidates of particular interest and one usually

computes c1 and c2 and, when data permit, c3. This is fur-

ther discussed in Section 6 for the specific context of image

analysis.

2.3 Estimation procedures

For images, estimation of the scaling or multifractal attributes

can be conducted as in the 1D case, mutatis mutandis. Estima-

tion procedures have been described at length in [22, 25] and

are only briefly outlined here. As suggested by Eqs. (5) and (8)

above, the estimation of the ζ(q) and of the cp can be performed

by means of linear regressions:

ζ̂(q) =

j2∑

j=j1

wj log2 S(2j , q), (11)

ĉp = (log2 e) ·
j2∑

j=j1

wjĈ(2j , p), (12)

where the estimates Ĉ(2j , p) for the cumulants of lnLX(j, ·)
are obtained from standard sample cumulant estimators. The

weights wj have to satisfy the constraints
∑j2
j1

jwj ≡ 1 and∑j2
j1

wj ≡ 0 and can be expressed as wj = bj
V0j−V1

V0V2−V 2
1

with

Vi =
∑j2
j1

jibj , i = 0, 1, 2. The freely selectable positive

numbers bj reflect the confidence granted to each Ĉ(2j , p) or

log2 S(2j , q).
To estimate L(h), it has been proposed [31] to handle

practically the Legendre transform via its parametric form,

h(q), L(q). Such a formulation efficiently matches the boot-

strap requirements for confidence interval derivation (cf. Sec-

tion 4) and is hence used here. Tedious yet simple calculations

lead to the following estimators:

ĥ(q) =

j2∑

j=j1

wjV (2j , q), L̂(q) =

j2∑

j=j1

wjU(2j , q), (13)

where

V (j, q) =

nj∑

k=1

LqX(j, k) log2 LX(j, k)

njS(j, q)
,

and U(j, q) =

nj∑

k=1

LqX(j, k)(log2 LqX(j, k) − log2 njS(j, q))

njS(j, q)
+ log2 nj .

2.4 Wavelet coefficients versus Leaders

Empirical scaling or multifractal analysis for images has so

far been mostly conducted using a multifractal analysis based

directly on the wavelet coefficients of a 2D DWT. The corre-

sponding structure functions are computed as:

Sd(2j , q) =
1

3nj

3∑

m=1

∑

k1,k2

|d(m)
X (j, k1, k2)|q. (14)

The remainder of the formalism (Eqs. (5) to (10)) and of the

estimation procedures (Eqs. (11) to (13)) can be obtained
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by replacing LX(j,k) with |dX(j,k)| (and similarly for the

bootstrap procedures defined in Section 4 below).

As pointed out earlier in Section 1, the wavelet coefficient

multifractal analysis suffers from a major theoretical draw-

back: A complete multifractal analysis cannot be conducted,

as negative q structure functions are numerically unstable and

diverge because wavelet coefficients are mostly concentrated

around the 0 value, see [14] where a precise mathematical

analysis of this phenomenon is carried out for some classes of

stochastic processes. The wavelet Leader multifractal analysis

is designed to overcome this difficulty and benefits from two

other key theoretical properties: It is proven to be valid for self-

similar and multiplicative cascade processes (while the wavelet

coefficient multifractal analysis holds only partially, and for

a restricted class), and the scaling exponents ζ(q) are shown

not to depend on the precise choice of the wavelet1 H0, G0

[14, 17]. In Section 6, we further compare (very favorably) the

Leader based multifractal analysis to the wavelet coefficient

based one both in terms of practical estimation performance

and bootstrap based confidence interval derivation.

However, an important limitation of the wavelet Leader

based multifractal analysis results from the fact that it can be

directly applied only to bounded functions, while the wavelet

coefficient multifractal analysis is not restricted to this class.

This question, together with a number of related theoretical is-

sues of importance for a practical use of multifractal analysis

on real images, is further addressed in the next section.

3 Advanced considerations on multi-

fractal analysis of images

As mentioned in Section 1, there is a priori no guarantee that

actual digital images are the discretization of a function that

belongs to an Lq(R2) space, q ≥ 1, (or, a fortiori, belongs

to the space of bounded variation (BV) functions, i.e. func-

tions whose gradient is a bounded measure). Along the same

line, one can hardly decide a priori whether the images under

analysis fall within the class of bounded functions, permitting

a straightforward application of the Leader multifractal analy-

sis. Indeed, scanning large image databases (such as the one

reported in [11]) confirms that there are roughly as many im-

ages which are bounded as images which are unbounded (see

in Section 3.2 how this can be can be practically determined

on discretized signals). Hence, the Leader based multifractal

analysis cannot be applied to images without prior checking.

Note that the violation of the bounded function requirement

can be related to the existence of negative Hölder exponents in

the data (see Section 3.2 below), and it is indeed commonly re-

ported in the literature dedicated to empirical multifractal anal-

ysis that images exhibit negative Hölder exponents [32]. There

1A precise mathematical statement of this result requires further elaboration

beyond the scope of this contribution, see e.g. [14, 17].

is no general consensus on a precise mathematical definition of

negative Hölder exponents, and a discussion of this notion re-

quires theoretical developments beyond the scope of this con-

tribution (this is addressed in [33,34]); we can however indicate

that the underlying heuristic remains yet the same: in some av-

eraged sense, |X(t) − X(t0)| ∼|t−t0|→0 |t − t0|h.

These involved issues have been partially addressed in [33]

and are further elaborated in this section. Furthermore, the

analyses reported here indicate that, though wavelet coeffi-

cients offer a restricted analysis of the multifractal properties

of an image, a number of useful information can still be ex-

tracted from the wavelet coefficient based structure functions.

3.1 Images and function space models

Let us define, for q > 0,

ζd(q) = lim inf
2j→0

lnSd(2j , q)

ln 2j
. (15)

Then, ζd(q) > 0 indicates that the image X belongs to Lq(R2).
Indeed, the wavelet characterization of the Sobolev spaces Lq,s

implies that

if q ≥ 1, then ζd(q) = sup{s : f ∈ Lq,s/q},

see [26]; therefore ζd(q) > 0 implies that f belongs to a

Sobolev space Lq,s for an s > 0; a fortiori, it belongs to Lq,0,

which coincides with the space Lq. For q = 2, this provides

the practitioners with tools helping to decide whether or not

X fits the assumptions of the Osher-Rudin-Fatemi model [38].

This remark is not only pertinent for this model: All other mod-

els which have been later proposed as alternatives (see for in-

stance the book of Y. Meyer [35] and references therein, or

[36]) are based on the hypothesis that the image considered be-

longs to a given function space (or a sum of function spaces).

Since all the function spaces which have been proposed in this

context either are Sobolev spaces, or satisfy sharp embeddings

with Sobolev spaces, it follows that the determination of the

wavelet scaling function of a given image allows to determine

if it satisfies a particular function space assumption, and, there-

fore, if the corresponding algorithm can be reasonably applied

in this case. When q = 1, the same argument as above yields

that, if ζd(1) > 0, then X belongs to L1(R2) and additionally,

ζd(1) > 1 implies that X belongs to the class of bounded vari-

ations images. Furthermore, X is a measure necessarily yields

ζd(1) ≥ 0.

Scanning image databases reveals that a non negligible pro-

portion of images (e.g. ≈ 10% for the database in [11]) are

characterized with ζd(2) < 0, with confidence intervals (com-

puted with the technique proposed in Section 4) clearly vali-

dating the negativity for the estimate. Also, ζd(1) is positive

for most images (as expected for positive measures), yet that

0 < ζd(1) < 1 for a large proportion of images (e.g. ≈ 90% for

the database in [11]), which are hence not within the bounded

variation class.

For illustration purpose, the image used in Section 6.4 (cf. Fig.
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7) is characterized by ζd(1) = −0.08 ± 0.03 and ζd(2) =
−0.17 ± 0.08, confidence intervals being obtained with the

bootstrap approach described in Section 4.

3.2 Uniform regularity

A measure or a function X(t) is said to belong to Cε, ε ∈ R,

when its wavelet coefficients satisfy:

∃C > 0 : ∀j, k1, k2,m |d(m)
X (j, k1, k2)| ≤ C2jε. (16)

A uniform regularity exponent can hence be defined by

hmin = sup{ε : X ∈ Cε}. (17)

A function or a measure is said to be uniformly Hölder if

hmin > 0. In turns, hmin > 0 implies that

∀t0, h(t0) ≥ hmin,

and also that X is a continuous function, hence bounded, hence

possesses finite wavelet Leaders in the limit of fine scales (all

implications are strict).

As stated in Section 2.2 above, the computation of wavelet

Leaders, hence the computation of the Legendre spectrum is

possible only for functions which are uniformly Hölder. Ap-

plied to images that do not respect this restriction, the wavelet

Leader based multifractal analysis produces results that are

meaningless. However, one can meet the following pitfall: In

practice, any image will yield empirical wavelet Leaders with

finite value (because the supremum in the definition of wavelet

leaders (1) is in practice always taken on a finite set), indepen-

dently of the fact that hmin is positive or not. Hence, practi-

tioners have little or no means to decide a posteriori whether

Leaders are meaningful or not and this needs to be checked

a priori. A sufficient condition is that the image is uniformly

Hölder and hence that hmin > 0. This can be evaluated via the

formulation:

hmin = lim inf
2j→0

ln supm,k1,k2 |d
(m)
X (j, k1, k2)|

ln 2j
, (18)

which is a direct consequence of Eq. (16) and practically

amounts to performing linear regressions of the log of the mag-

nitudes of the largest wavelet coefficients at scales 2j versus log

of scales. The performance of this estimator, assessed over 500
realizations of a synthetic multifractal stochastic images of size

1024× 1024 (cf. Section 5.3), are summarized in Tab. 1. They

clearly demonstrate that estimation of the uniform regularity

exponent is feasible from a standard size image.

Examination of image databases shows that images are

found as often with negative hmin as with positive one (e.g.

≈ 50% for the database in [11]). For a simple illustration pur-

pose, the image used in Section 6.4 (cf. Fig. 7 and Fig. 8) is

characterized by hmin = −0.24. This calls for a modification

of the Leader based multifractal analysis proposed in Section

2.2 for bounded functions. This is the subject of the next sec-

tion.

hmin CMC-LP

theo mean std mse

-0.391 -0.395 0.117 0.117

Table 1: Estimation of hmin. Mean, standard deviation and

root mean squared error (cf. Eq. (27)) of wavelet coefficient

based estimation of hmin (Eq. (18)) for CMC-LP, obtained by

numerical simulation as described in Section 5.3 below with

linear regressions over the finest scales 21 ≤ 2j ≤ 23. The

column on the left states the theoretical value of hmin.

3.3 Fractional integration

To overcome the negative hmin issue, it has been proposed to

fractionally integrate with an order larger than −hmin, which

implies that the uniform regularity exponent of the new image

is positive, and thus insures that all Hölder exponents are posi-

tive. This has been for instance abundantly used in [8, 20, 39].

The fractional integration (of order η) of a function or mea-

sure X is defined in the Fourier domain as:

(ÎηX)(ξ) = (1 + |ξ|2)η/2X̂(ξ). (19)

If X is such that hmin ≤ 0, then IηX is a uniformly Hölder

function as soon as

η > −hmin; (20)

this result is a direct consequence of the interpretation of hmin
in terms of the Lipschitz spaces Cα(Rn):

hmin = sup{α : X ∈ Cα(Rn)},

and of the fact that if X ∈ Cα, then ÎηX ∈ Cα+η. Indeed,

it follows that if η > −hmin, then ÎηX belongs to Cε for an

ε > 0, hence is a bounded function, see [34] for details.

Instead of actually computing the fractionally integrated ver-

sion of X and then applying the wavelet Leader multifractal

formalism to it, both operations can be combined into a single

one, as follows.

i) First compute the 2D WT coefficients d
(m)
X (j, k1, k2) and

replace them with:

d
(m),η
X (j, k1, k2) = 2ηjd

(m)
X (j, k1, k2).

This amounts to computing the wavelet coefficients of ĨηX ,

a pseudo-fractionally integrated version of X , whose local and

global regularity properties are identical to that of IηX , as soon

as η > −hmin, see [34].

ii) Wavelet Leaders are computed from these new wavelet

coefficients :

LηX(j, k1, k2) = sup
m,λ′⊂3λj,k1,k2

|d(m),η
X (λ′)|. (21)

Such modified Leader coefficients are equivalent to those com-

puted from IηX , in the sense that if IηX has Hölder expo-

nent h at t0 then, when 2−jk is the closest dyadic point of t0,

6



LηX(j, k1, k2) ∼ 2jh.

iii) Compute new structure functions:

Sη(j, q) =
1

nj

∑

k1,k2

LηX(j, k1, k2)
q. (22)

They behave as power laws with respect to the analyzing scale

2j , in the limit of fine scales 2j → 0 :

Sη(j, q) ≈ Gη
q2
jζη(q). (23)

yielding the multifractal spectrum of IηX:

Lη(h) = min
q 6=0

(1 + qh − ζη(q)). (24)

One can prove that the scaling function (and therefore the Leg-

endre spectrum) thus obtained is the same one as if a “true”

fractional integration had been performed, see [34]. Note that

Condition (20) does not prescribe a unique value for η. There-

fore one meets the following alternative:

-A thorough possibility consists in computing the Legendre

spectra Lη(h) for a wide range of values of η, and use this col-

lection of spectrums for classification, or in order to understand

the nature of the pointwise singularities of X . Preliminary re-

sults in this direction are given in [34].

-A simpler option consists in noticing that, for large classes of

mathematical functions and stochastic processes, one can prove

that all the functions Lη(h+η) are actually the same, and there-

fore define a unique function L(h):

∀η > −hmin, L(h) = Lη(h + η). (25)

A precise analysis of the validity of Eq. (25) is beyond the

scope of this paper and can be found in [34, 36]; let us just

mention that it is related to the absence of strongly oscillating

features in the image, such as the ones provided by chirps of

the form |x − x0|α sin(|x − x0|−β). Note however that some

classical models do not satisfy Eq. (25); typical examples are

supplied by lacunary wavelet series, see [37]. If Eq. (25) holds,

then the particular value of η which is picked is irrelevant (as

soon as it is large enough): In practice, one picks one value of η
and defines the Legendre spectrum by Eq. (25); the multifractal

analysis is performed using this function L(h) for spectrum.

Though this second option is successfully used for classifi-

cation in a number of applications, it is important to be aware

that this heuristic faces limitations: Besides the problem of the

validity of Eq. (25) which has already been mentioned, the

function L(h) can not generally be related to the multifractal

properties of X . Nonetheless, it is deeply related to the intrin-

sic properties of the original image X and can be used as such

(for classification, for instance).

Finally, note that fractional integration also increases the

ζd(q) (the counterpart of the heuristic translation in Eq. (25)

reads ζdη (q) = ζd(q)+ηq), hence ensuring, for large enough η,

that ζdη (1) > 1 and/or ζdη (2) > 0.

3.4 Validity of the multifractal formalism.

It is also of importance to be aware that theoretically Eq.

(7) does not hold in general. More precisely, let us assume

that X belongs to the class of mild functions, defined as:

∃C1, C2, A, B > 0 such that ∀j, k, C12
jA ≤ LX(j,k) ≤

C22
jB (this implies that X is nowhere C∞, but satisfies a min-

imal uniform regularity assumption). When X is a mild func-

tion, its ζ(q) is an admissible function, i.e., it satisfies:

i) ζ(0) = 0,

ii) ζ(q) is concave and increasing on R,

iii) 0 ≤ ζ(q) − qζ(q)/dq ≤ d.

Conversely, we can show [26] that any admissible function

corresponds to the ζ(q) of a mild function X . However, this

does not ensure that X satisfies the wavelet Leader multifrac-

tal formalism. Let, for instance, λ(q) be an admissible func-

tion. We can design the following trifractal function whose

ζ(q) = λ(q): It is constructed such that its multifractal spec-

trum reads D(hmin) = D(hmax) = 0, D(hmed) = d and

D(h) = −∞ elsewhere, with hmed = ζ ′(0), hmin =
ζ ′(+∞), and hmax = ζ ′(−∞). As soon as these three values

hmin, hmed, hmax differ, the multifractal formalism (as in Eq.

(7)) obviously ceases to hold, since the Legendre transform of

ζ(q) is a concave function. Another counterexample is detailed

in [26] where the generality of the validity of the multifractal

formalism is further investigated.

3.5 Wavelet coefficients versus Leaders

This section leads to the conclusion that wavelet coefficients

are providing preliminary information regarding the regularity

properties of X and should hence be used prior to applying the

wavelet Leader multifractal analysis, and in a complementary

manner, rather than with the usual competition perspective.

4 Space-scale block bootstrap

We now extend the line of work proposed in [22, 25] for the

design of bootstrap confidence limits for 1D multifractal pro-

cesses (signals) to 2D ones (images). While most scale invari-

ant processes are characterized by difficult statistical proper-

ties (non stationary, intricate dependence), their wavelet coef-

ficients often form stationary sequences with less involved de-

pendence structure [22]. Therefore, it is more natural to ap-

ply bootstrap schemes in the wavelet domain rather than in the

space one. We devise a specific construction of space-scale

blocks to ensure that the residual dependencies of Leaders,

both in space and in scale, are approximately reproduced by

the bootstrap resamples. Also, these space-scale blocks ensure

that bootstrapped wavelet Leaders preserve their key property

for multifractal analysis, namely Eq. (2).

For an overview of bootstrap and bootstrap methods for de-

pendent data, see e.g. [23, 40, 41].
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Figure 2: Space-scale block construction. The space-scale

block of Leaders I(k1, k2) at position (k1, k2) consists of the

collection of Leaders (fat black dots) that are within a box with

square base of base length 2l, centered at (k1, k2) and extend-

ing over all scales (red volume).

4.1 Space-scale blocks of wavelet Leaders.

For ease of notation and without loss of generality, we assume

square images (N1 = N2 = N ). The space-scale blocks of

Leaders are defined as 3D boxes, extending over all scales, with

a square base of a fixed number of pixels. All Leaders lying

within such a box form one space-scale block. The blocks are

constructed overlapping and on circularized Leaders, i.e. on

LcX(j, k1, k2) = LX(j, k1 mod nj , k2 mod nj), such that each

Leader has the same probability to be within a resample. More

precisely, the collection of Leaders LX(j′, k′
1, k

′
2) that form a

space-scale block I(k1, k2), of 2l×2l pixels, located at position

(k1, k2), is given by (cf. Fig. 2):

I(k1, k2) = {LX(j′, k′
1 mod nj′ , k

′
2 mod nj′) :

|k1 − k′
12
j′ | ≤ l, |k2 − k′

22
j′ | ≤ l, 1 ≤ j′ ≤ jmax}. (26)

4.2 Bootstrap resampling and estimation.

Each single bootstrap resample of Leaders L∗(r)
X , r =

1, · · · , R, is obtained as follows. First, B = ⌈N2l ⌉
blocks of Leaders I∗(k1, k2) are drawn at random, inde-

pendently and with replacement, from the available blocks

I(k1, k2), k1, k2 = 1, · · · , N . Then, blocks are concatenated

in space, such that each resampled Leader remains located at

its original scale 2j .
The bootstrap estimation procedure re-applies the estimation

procedure described above to each of this bootstrap resamples

L∗(r)
X : First, the bootstrap structure functions S(2j , q)∗ and

Ĉ(2j , q)∗ are obtained by applying Eqs. (3) and (8). Then,

bootstrap estimates ζ̂(q)∗, D̂(q)∗, ĥ(q)∗ and ĉ∗p are calculated

as in Eqs. (11), (13) and (12). These estimation and bootstrap

estimation procedures are sketched in Fig. 3. Note that the

bootstrap resampling and estimation procedures can as well be

applied directly to wavelet coefficients instead of Leaders.

4.3 Bootstrap confidence limits

For parameters θ ∈ {ζ(q), D(q), h(q), cp}, we use the

equi-tailed (1 − α) bootstrap percentile confidence interval,

real
world

{LX}
(3)

��

(8)
ss

s

yysss
s

{L∗(r)
X }

(8)

��
(3)

OO
O

''OO
OO

O

bootstrap
world

Ĉ(2j , p)
(12)

��

S(2j , q)
(11)

��

Ĉ(2j , p)∗(r)

(12)
��

S(2j , q)∗(r)

(11)

��
ĉp ζ̂(q) ĉ

∗(r)
p ζ̂(q)∗(r)

�� ��

�� ��

�� ��

�� ��
CIks

resample
+3

Figure 3: Estimation and bootstrap estimation procedures.

Overview of estimation procedure (left) and bootstrap estima-

tion procedure (right). "resample" corresponds to the space-

scale block bootstrap resampling procedure described in Sec-

tion 4, "CI" to confidence limit calculation from empirical boot-

strap distributions as in Section 4.3, and (·) on arrows indicates

the equation involved in estimation. The scheme can be written

equivalently for D̂(q) and ĥ(q).

defined as ĈIθ =
[
θ̂∗α

2
, θ̂∗1−α

2

]
, where θ̂∗α is the α quantile

of the empirical distribution of θ̂∗ obtained by the bootstrap

estimation procedure described above. Double bootstrap

estimates could be obtained and used for more sophisticated

confidence limit and hypothesis test constructions, such as

studentized or adjusted confidence limits and tests. Such issues

have been considered in [22, 25] for the 1D case. An extension

to images is currently investigated.

5 Performance assessment on synthetic

multifractal images

5.1 Methodology: Monte Carlo simulations

We assess the performance of the proposed estimation proce-

dures by applying them to a large number NMC of realizations

of synthetic stochastic 2D processes of size (N × N) with a

priori known and controlled multifractal properties. The aim

of the numerical study is to address the following issues: Do

the estimation procedures exhibit satisfactory statistical per-

formance? Should one prefer wavelet coefficients or Leaders

for the estimation of multifractal attributes of images? Are the

bootstrap confidence limits reliable, i.e., do they reproduce tar-

geted coverages?

5.2 Synthetic multifractal processes

We use two stochastic processes: Fractional Brownian Mo-

tion (FBM) and Canonical Mandelbrot’s Multiplicative Cas-

cade with log-Poisson multipliers (CMC-LP). They provide us

with simple yet representative examples of Gaussian monofrac-

tal processes and multifractal processes, respectively. Example

of such fields are shown in Fig. 4.
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Figure 4: Synthetic processes. One realization of FBM (left) and of CMC-LP (right). The bottom plane presents the images,

the axes on top an amplitude view of the images (amplitudes normalized to [0, 1]), illustrating the (ir)regularity of the images.

FBM. We use the 2D Gaussian self-similar Fractional Brown-

ian Motion, as defined in [42]. Its statistical properties are com-

pletely determined by a single parameter, the Hurst exponent

H . FBM has scaling properties as in Eq. (5), with ζ(q) = qH
and therefore c1 = H , cp ≡ 0, p ≥ 2. Its multifractal spectrum

reduces to one single point h = H where: D(H) = 2, hence,

FBM is monofractal.

CMC-LP. The multiplicative cascades of Mandelbrot (cf. [43])

have for long been the only example of multifractal processes

practically available. Their construction is based on an it-

erative split-and-multiply procedure on an interval. In this

work, we use a binary cascade and log-Poisson multipliers

s = 2γ exp (ln(β)πλ), where πλ is a Poisson random variable

with parameter λ = −γ ln(2)
(β−1) . In order to ensure that the pro-

cess has a minimum regularity, the cascade is integrated frac-

tionally with order η > 0. The CMC-LP are multifractal with

ζ(q) = (η − γ)q + γ(βq−1)
β−1 , c1 = η + γ

(
ln(β)
β−1 − 1

)
and

cp = − γ
β−1 (− ln(β))

p
,

D(h) = 2 + γ
β−1 + −η+γ+h

ln β ·
[
ln

(
(−η+γ+h)(β−1)

γ ln β

)
− 1

]
.

5.3 Simulation setup

Results are reported here with one specific selection of pro-

cess parameter settings. Similar results have been obtained for

a range of different process parameters, and are not reported

here for space reasons. Parameters for numerical simulations

are set to NMC = 500 and N = 1024. All results are obtained

with Daubechies’ wavelets with Nψ = 2 vanishing moments.

It has been checked that using wavelets with larger Nψ yields

identical results and conclusions. Linear regressions are per-

formed over the scales 23 ≤ 2j ≤ 27 with weights bj = nj ,
as proposed in [22]. We use R = 99 bootstrap resamples

and block lengths l = 85 (FBM) and l = 128 (CMC-LP).

The target significance for bootstrap confidence limits is set to

90%. The process parameters are fixed to H = 0.7 for FBM,

and β = 0.84, η = 0.42, η = 0.5 for CMC-LP, such that

[c1, c2, c3] = [0.538,−0.080, 0.014].
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Figure 5: Structure Functions. Structure functions

log2 S(2j , q) for q = 2 (top row) and q = −2 (second row),

and deviation of structure functions from theoretical slope,

log2 S(2j , q) − j · ζ(q), for q = 2 (third row) and q = −2
(bottom row), obtained by mean over Monte Carlo realizations

for FBM (left) and CMC-LP (right). Red circles correspond to

wavelet Leader, blue crosses to wavelet coefficient based esti-

mations. The error bars correspond to 1.96 Monte Carlo stan-

dard deviation.

6 Results

6.1 Structure functions

Fig. 5 shows, for FBM (left) and CMC-LP (right), means over

Monte Carlo realizations of structure functions log2 S(2j , q)
for q = 2 (top row) and for q = −2 (second row), and the de-

viations of the structure functions from their theoretical slope,

log2 S(2j , q) − jζ(q), for q = 2 (third row) and q = −2 (bot-

tom row). The 95% asymptotic confidence limits are obtained

by Monte Carlo simulation. As structure functions for wavelet

coefficients diverge for negative qs, only positive qs are shown.

Scaling range. A first investigation (top and second row) sug-

gests that for both wavelet coefficients and Leaders, structure

functions display scaling behavior as in Eq. (5) over the range

of scales 22 ≤ 2j ≤ 27. A closer look at the deviations from

the theoretical slope (third and last row) confirms this obser-

vation for coefficients. However, it reveals that for Leaders,

log2 S(2j , q) becomes a linear function of j only for 2j ≥ 23.
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Figure 6: Estimates ζ(q) and D(h). Estimates ζ(q) (top) and

D(h) (bottom) for FBM (left) and CMC-LP (right), obtained

from Leaders (red circles, dashed lines) and wavelet coefficient

(blue crosses, dashed lines) by mean over Monte Carlo real-

izations, and the corresponding theoretical values (black solid

lines with dots). The error bars correspond to 1 Monte Carlo

standard deviation. The error bars for coefficient based esti-

mates for D(h) are not shown for better visibility of the spec-

tra. The insert for D(h) of FBM corresponds to the area shaded

around the theoretical spectra location.

This can be explained by the fact that, theoretically, a Leader

is defined as the sup of coefficients at all finer scales down to

infinitely fine scales, whereas practically, the sup can be taken

only down to the finest available, first scale. Hence, in practice,

Leaders need one or two scales for initialization, whereas coef-

ficients do not.

Projection step. The non-scaling behavior of S(2j , q) of co-

efficients at the first scale j = 1 is due to the fact that the pre-

filtering or projection step theoretically necessary for a clean

wavelet analysis has been omitted (cf. [44]).

Regressions. We observe further that the error bars for struc-

ture functions for CMC-LP are substantially larger than those

for FBM, suggesting a smaller variability of the S(2j , q) and

better subsequent estimation performance for the monofractal

process. Moreover, it is interesting to note that whereas the er-

ror bars for FBM behave approximately as 1/
√

nj , this is not

the case for CMC-LP, where the size of the confidence inter-

vals varies only slightly with j. This confirms that the choice

of weights for weighted linear fits, as proposed in [22], is ap-

propriate for FBM. Though not optimal for multiplicative cas-

cades, it has been shown to perform better than non-weighted

regression.

6.2 Performance of parameter estimation

We quantify the performance of the estimators θ̂ ∈ {ζ̂(q), ĉp}
by their root mean squared error,

mseθ̂NMC
=

√(
ÊNMC

θ̂ − θ
)2

+ V̂arNMC
θ̂, (27)

where ÊNMC
and V̂arNMC

stand for the sample mean and

variance, respectively, over NMC independent realizations.

Estimation performance results are summarized in Tab. 2 and

illustrated in Fig. 6, both for wavelet coefficients and Leaders,

for medium size images (N = 1024). In addition, Tab. 2

shows complementary results for large images of CMC-LP

(N = 2048). On overall, we observe that Leader based

estimations are more efficient than coefficient based ones.

Positive statistical moments q. For q > 0, both estimation

procedures have approximately equal mse and std. Coefficient

based estimations are slightly more efficient for monofractal

FBM while Leader based ones are for multifractal CMC-LP.

Negative statistical moments q. For q ≤ −1, the wavelet

coefficient based estimates of ζ̂(q) are not meaningful as they

exhibit very large mse. Therefore, a wavelet coefficient based

multifractal analysis of images allows to explore exclusively

the range q > −1 and thus, in practice, only the increasing part

of the multifractal spectrum D(h). In contrast, the proposed

wavelet Leader based procedure permits a complete analysis

of the multifractal properties of an image, and notably of the

decreasing part of the multifractal spectrum (cf. Fig. 6).

Log-cumulants. Tab. 2 shows that the wavelet Leader based

estimations of cp exhibit consistently smaller std and mse

than their wavelet coefficient based counterparts. Whereas

the difference in performance is only small for the estimation

of c1, it becomes more significant for c2 and c3, with gains

in mse of up to more than one order of magnitude. This is

of crucial importance, since non-zero c2 and c3 discriminate

self-similar from multiplicative cascade processes. Further,

for N = 2048, Tab. 2 (last line) enables to deduce that an

asymptotic 85% confidence interval for the Leader based

estimation of c3 excludes zero, hence that the real c3 is

different from zero with high probability. To the best of

our knowledge, this had never been achieved on multifractal

images. It also clearly shows that for images of smaller

size, the estimation of parameter c3, a fortiori of higher

order cp, should be used with care: CIs might be so large

that they may not exclude 0 even if the parameters are non zero.

Self-similar vs. multiplicative cascade processes. Finally, for

both the Leader and coefficient based procedures, estimation is

more difficult for multifractal CMC-LP than for FBM, resulting

in larger mse for estimations on the multifractal process.

6.3 Bootstrap estimation performance

We evaluate the reliability of the bootstrap percentile confi-

dence limits ĈIθ by their recentered empirical coverage:

Cθ = ÊNMC
I

{
θ +

(
ÊNMC

θ̂ − θ
)
∈ ĈIθ

}
, (28)

where I {·} is the indicator function of the event {·}. The re-

centered coverage Cθ allows to assess the performance of the

confidence limits without the contribution of a potential bias in

the estimation of θ. The results for θ ∈ {ζ(q), cp} are sum-

marized in Tab. 3 for coefficient (top) and Leader (bottom)

based estimation and for a target coverage of 90%. We ob-

serve that for wavelet coefficient based estimation, the perfor-

mance of the bootstrap confidence limits is excellent. Their
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FBM - N = 1024
DWT LWT

Est theo mean std mse mean std mse

ζ(−2) −1.400 −3.461 2.315 3.100 −1.388 0.022 0.025
ζ(−1) −0.700 −0.895 0.544 0.578 −0.695 0.011 0.012

ζ(1) 0.700 0.699 0.010 0.010 0.696 0.012 0.013
ζ(2) 1.400 1.398 0.021 0.021 1.393 0.025 0.026

c1 0.700 0.699 0.012 0.012 0.696 0.011 0.012
c2 0.000 0.000 0.029 0.029 0.001 0.003 0.003
c3 0.000 0.001 0.150 0.150 −0.001 0.001 0.001

CMC-LP - N = 1024
DWT LWT

Est theo mean std mse mean std mse

ζ(−2) −1.256 −3.115 2.507 3.121 −1.227 0.064 0.070
ζ(−1) −0.580 −0.718 0.546 0.563 −0.570 0.025 0.027

ζ(1) 0.500 0.484 0.017 0.023 0.493 0.021 0.022
ζ(2) 0.933 0.902 0.036 0.047 0.920 0.045 0.046

c1 0.538 0.519 0.018 0.027 0.530 0.022 0.023
c2 −0.080 −0.073 0.032 0.033 −0.077 0.015 0.015
c3 0.014 0.005 0.152 0.152 0.011 0.013 0.013

CMC-LP - N = 2048
DWT LWT

Est theo mean std mse mean std mse

c1 0.538 0.521 0.010 0.019 0.532 0.012 0.013
c2 −0.080 −0.073 0.016 0.018 −0.078 0.009 0.009
c3 0.014 0.012 0.075 0.075 0.012 0.008 0.009

Table 2: Estimation performance. Mean, standard devia-

tion and root mean squared error of wavelet coefficient (center

columns) and Leader (columns on the right) based estimation

for FBM (top) and CMC-LP (center) for N = 1024, and for

CMC-LP (bottom) for N = 2048. The columns on the left

identify the parameters and their theoretical values.

actual coverage are very close to the target coverage, with er-

ror in coverage smaller than 5% both for ζ(q) and cp, and for

both processes. The performance of the wavelet Leader con-

fidence intervals is slightly inferior, with an average coverage

error of approximately 9%. This can be interpreted as the re-

sult of the non linear operation underlying the construction of

Leaders from coefficients, yielding an additional difficulty for

bootstrap estimation. Still, the bootstrap confidence limits re-

main satisfactorily reliable. The use of more sophisticated and

potentially more accurate double bootstrap confidence limits is

currently under consideration.

6.4 Analysis of real-world image

The proposed estimation procedures have been used for the

systematic analysis of large databases of real-world images

(such as the texture image database in [11]). For illustrating

its practical use, we present here the performance of the pro-

Recentered coverage of confidence limits - Target: 90%

DWT ζ(−2) ζ(−1) ζ(1) ζ(2) c1 c2 c3

FBM 91.8 88.8 94.4 87.8 89.4
CMC-LP 89.0 89.2 88.2 89.8 88.2

LWT ζ(−2) ζ(−1) ζ(1) ζ(2) c1 c2 c3

FBM 79.4 79.8 79.0 78.6 78.8 82.0 85.0
CMC-LP 80.8 82.0 82.6 81.2 81.0 81.2 83.0

Table 3: Bootstrap estimation performance. Recentered em-

pirical coverage (in %) of bootstrap percentile confidence limits

for wavelet coefficient (top) and Leader (bottom) based estima-

tion. The empirical coverage equals the percentage of realiza-

tions for which the theoretical value of an estimate lies within

the estimated confidence limits (target coverage 90%).

posed estimation procedures for one real-world image of size

1024 × 768, taken by ourselves with a standard digital cam-

era. It consists of trees in the Reichraminger Hintergebirge,

Upper Austria (cf. Fig.7, top). Fig.7 shows structure functions

(center), scaling exponents (bottom left) and the spectrum (bot-

tom right) estimated from this image, obtained with the Lead-

ers based estimation procedure proposed in this work, with a

Nψ = 3 Daubechies’ wavelet. Results on log-cumulants are

summarized in Tab. 4. Fig. 8 illustrates the uniform regular-

ity exponent hmin Eq. (18) estimate. The linear behavior of

log2 supm,k1,k2 |d
(m)
X (j, k1, k2)| with respect to scales j indi-

cates the relevance of estimation of hmin, which is found to

be clearly negative. Therefore, the image has been fraction-

ally integrated with an order η = 0.5 before analysis to ensure

a minimum regularity (this order is assumed to be sufficient,

since the estimated uniform regularity exponent for this image

is hmin = −0.24). Multifractal attribute estimates are obtained

by weighted fits over the scales 23 ≤ 2j ≤ 26, for which Fig.

7 (center) indicates that log2 S(2j , q) are approximately linear

functions of j. Results demonstrate that the proposed method

can be readily applied to real-world images for their complete

multifractal characterization. They demonstrate further that the

bootstrap percentile 90% CIs are of significant practical use-

fulness: First, the confidence limits on structure functions help

to verify that the chosen scaling range is appropriate. Second,

confidence limits on multifractal attributes allow to decide that

the image shows with high probability a multifractal signature,

since confidence intervals for c2 and c3 exclude zero. The con-

fidence limits thus provide information that might be of signifi-

cant importance for e.g., detection or classification tasks, or for

the understanding of physical or biological processes underly-

ing the data. Finally, note that the entire estimation procedure

with WMLF (without bootstrap) takes less then a minute on

a standard PC, whereas the same estimation with MMWT in-

creases computation time by a factor larger than 20.
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Figure 7: Analysis of Real-World Image. Real world image

(top) and estimates: Structure functions (center) for q = −2
(left) and q = 2 (right), scaling exponents ζ̂(q) (bottom left)

and spectrum D(h) (bottom right). The bootstrap percentile

90% confidence limits are obtained from R = 99 resamples.

ĉ1 ĉ2 ĉ3

estimate 0.472 −0.016 0.020
CI [0.433, 0.502] [−0.029,−0.006] [0.005, 0.046]

Table 4: Real-World Image Log-Cumulants. Log-cumulant

estimates and bootstrap percentile 90% confidence limits (R =
99) for the real-world image in Fig. 7 (top).

6.5 Discussion

Numerical simulations, equivalent to those reported above,

have been performed on other multifractal processes and lead

to similar conclusions: Wavelet coefficients do not allow to

meaningfully explore negative qs and thus to measure the

decreasing part of the spectrum D(h) whereas wavelet Leaders

do, estimation of cp is better when based on Leaders than on

coefficients, and significantly so for cp, p ≥ 2.

Selection of scaling range. We have seen in Section 6.1 that

the range of scales over which the linear fits are to be per-

formed are likely to be narrower (requiring the use of a larger

j1) for Leaders than for wavelet coefficients. For practical

multifractal analysis and real-world images, the choice of this

0 2 4 6 8
−3.5

−3

−2.5

−2

−1.5
h

min
 = −0.24273

j

Figure 8: Real-World Image hmin. Estimate of hmin Eq. (18)

for the real-world image in Fig. 7 (top).

regression range is a crucial, difficult and controversial issue,

further complicated by the use of Leaders. In practice however,

bootstrap confidence intervals for the structure functions, as

obtained by the proposed procedure and illustrated in Fig.

5, constitute a precious support for solving this non-trivial

issue and can be regarded as a first step towards statistical

procedures for automatized or intelligently assisted detection

of scales over which data are scale invariant.

Vanishing moments of wavelet. Another critical practical

issue is the choice of the number of vanishing moments Nψ

for the wavelet with which the data are analyzed. Condition

Nψ > h, where h is the largest singularity exponent present in

the data, is expected to be sufficient for a relevant multifractal

analysis. However, in practice, the choice of Nψ results

from a trade-off: A larger Nψ stabilizes the estimates of

the negative q structure functions and enables to get rid of

potentially superimposed smooth trends such as polynomial,

hence improves estimation and brings robustness; A larger

Nψ also implies a larger support for the wavelet and thus

produces border effects of wider size, such that no coefficients

may remain unaffected at large scales, hence in itself degrades

estimation performance. Therefore, a reasonable practical rule

of thumb is to choose the smallest Nψ for which the estimated

multifractal attributes do not significantly change when Nψ is

increased (i.e, remain within confidence intervals, emphasizing

again the need for and the importance of such confidence

intervals).

Real-world data and multifractal analysis. In Section 2.2,

we recalled how the estimates of ζ(q), cp, D(q) and h(q)
are theoretically intimately tied to the multifractal spectrum

D(h) of the field X and hence to the analysis of its local

regularity fluctuations. This relation is known to hold the-

oretically for all the synthetic images used here for Monte

Carlo simulations and illustrations. For real-world images, this

interpretation in terms of multifractal spectrum and singularity

description might not always be completely relevant. However,

this, in no way, prevents practitioners to make use of the

measured ζ(q), cp, D(q) and h(q) to analyze the data in

terms of a less mathematically stringent formulation of scale

invariance property, or to perform standard image processing

tasks such as classification or retrieval based on such quantities.

Computational costs. The proposed 2D wavelet Leader multi-

fractal analysis is simple both conceptually (2D DWT, Leaders

and linear regressions) and practically (very low computational

cost, both with respect to time and memory, of the order of a

2D DWT). As an example, a 2048 × 2048 gray level image

is processed in a couple of seconds on a standard PC under

MATLAB. The bootstrap based CIs are obtained essentially by

repeating the linear regression procedures. The larger the repe-

tition number and therefore the computational load, the higher

the precision of the CIs. This is the unavoidable price to pay

to obtain reliable CIs from a single image. All the analysis and
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estimation procedures are designed by ourselves in MATLAB.

The 2D DWT is performed using (a corrected version of) the

Rice Wavelet Toolbox.

7 Conclusions and perspectives

The present contribution proposes a procedure to perform a

fast, efficient and accurate analysis of the scaling and multi-

fractal properties of images. It outperforms significantly the

previous propositions based on 2D DWT or 2D CWT in es-

timation performance, and 2D-WTMM in computation time,

memory cost and implementation complexity. It is fast and ef-

ficient since simply based on a 2D orthogonal DWT. Our pro-

cedure enables an accurate and complete characterization of the

(ir)regularities of the texture of an image thanks to the use of

original multiresolutions quantities called wavelet Leaders, and

is backed up by a strong mathematical framework.

Furthermore, the present contribution proposes and validates

procedures for assessing function space model conditions for

data – notably for the bounded function requirement – and han-

dling them in practice.

The low memory and time costs together with the satisfactory

estimation performance of the procedure opens for the first time

the possibility to perform the multifractal analysis of volumi-

nous databases of images with possibly large sizes. Therefore,

multifractal analysis may be incorporated in procedures aiming

at image retrieval, computer vision or robotic purposes. We are

currently investigating such databases.

Moreover, for applications such as surface roughness, where

one wants to understand the fracture process, or biomedicine,

where one wants to detect and classify pathologies, confidence

intervals are crucial. The bootstrap approach, tailored here to

match image processing via the proposition of a 2D space-scale

block bootstrap procedure, provides reliable and straightfor-

wardly usable confidence intervals. This is, to the best of our

knowledge, the only procedure that has been proposed to pro-

vide accurate and operational confidence intervals for multi-

fractal analysis of images. It can be further extended to devise

statistical tests. This is currently investigated.
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