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Abstract—A new method for segmentation and classification of
hyperspectral images is proposed. The method is based on the
construction of a minimum spanning forest (MSF) from region
markers. Markers are defined automatically from classification
results. For this purpose, pixelwise classification is performed, and
the most reliable classified pixels are chosen as markers. Each
classification-derived marker is associated with a class label. Each
tree in the MSF grown from a marker forms a region in the
segmentation map. By assigning a class of each marker to all the
pixels within the region grown from this marker, a spectral-spatial
classification map is obtained. Furthermore, the classification map
is refined using the results of a pixelwise classification and a ma-
jority voting within the spatially connected regions. Experimental
results are presented for three hyperspectral airborne images.
The use of different dissimilarity measures for the construction
of the MSF is investigated. The proposed scheme improves classi-
fication accuracies, when compared to previously proposed clas-
sification techniques, and provides accurate segmentation and
classification maps.

Index Terms—Classification, hyperspectral images, marker se-
lection, minimum spanning forest (MSF), segmentation.

I. INTRODUCTION

IMAGE CLASSIFICATION, which can be defined as iden-
tification of objects in a scene captured by a vision system,

is one of the important tasks of a robotic system. On the one
side, the procedure of accurate object identification is known
to be more difficult for computers than for people [1]. On the
other side, recently developed image acquisition systems (for
instance, radar, lidar, and hyperspectral imaging technologies)
capture more data from the image scene than a human vision
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Fig. 1. Structure of a hyperspectral image.

system. Therefore, efficient processing systems must be devel-
oped in order to use these data for accurate image classification.

Hyperspectral imagery records a detailed spectrum of light
arriving at each pixel [2]. Hyperspectral sensors measure the
energy of the received light in tens or hundreds of narrow spec-
tral bands (data channels) in each spatial position of the image
(Fig. 1 shows the structure of a hyperspectral image). This rich
information per pixel increases the capability to distinguish ma-
terials and objects and thus opens new perspectives for image
classification. However, a large number of spectral channels,
usually coupled with limited availability of reference data,1

present challenges to image analysis. While pixelwise classi-
fication techniques process each pixel independently without
considering the information about spatial structures [3]–[5],
further improvement of classification results can be achieved
by considering spatial dependences between pixels, i.e., by
performing spectral-spatial classification [6]–[11].

Segmentation is an exhaustive partitioning of the input image
into homogeneous regions [12]. Segmentation techniques are a
powerful tool to define spatial dependences. In previous works,
we have performed unsupervised segmentation of hyperspectral
images in order to define spatial structures [9], [13], [14].
Watershed, partitional clustering, and hierarchical segmentation
techniques have been used for this purpose. Segmentation
and pixelwise classification were performed independently, and
then, the results were combined using a majority voting rule.
Thus, every region from a segmentation map was considered
as an adaptive homogeneous neighborhood for all the pixels
within this region. The described technique led to a signification
improvement of classification accuracies and provided more

1By reference data, we mean manually labeled pixels which are used for
training classifiers followed by assessment of classification accuracies.

1083-4419/$26.00 © 2009 IEEE
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homogeneous (less noisy) classification maps when compared
to classification techniques using local neighborhoods in order
to include spatial information into a classifier.

However, unsupervised image segmentation is a challenging
task. Segmentation aims at dividing an image into homo-
geneous regions, but the measure of homogeneity is image
dependent [12]. Depending on this measure, the process can
result in undersegmentation (several regions are detected as
one) or oversegmentation (one region is detected as several
ones) of the image. In previous works [13], [14], we preferred
oversegmentation to undersegmentation in order not to miss
objects in the classification map. In this work, we aim to reduce
oversegmentation and thus further improve segmentation and
classification results. This can be achieved by using markers
or region seeds [12], [15]. In previous studies, a marker (an
internal marker) was defined as a connected component belong-
ing to the image and associated with an object of interest [12],
[15]–[17]. In our study, we define a marker as a set of image
pixels (not necessarily connected; it can be composed of several
spatially disjoint subsets of adjacent pixels) which is associated
with one object in the image scene.

The problem of automatic marker selection has previously
been discussed in the literature, mostly for gray-scale and
color images. Markers are often defined by searching flat zones
(i.e., connected components of pixels of constant gray-level
value), zones of homogeneous texture, or image extrema [15].
Gómez et al. [18] applied histogram analysis to obtain a set
of representative pixel values, and the markers were gener-
ated with all the image pixels with representative gray values.
Jalba et al. [16] used connected operators filtering on the
gradient image in order to select markers for a gray-scale
diatom image. Noyel et al. [17], [19] performed classification
of the hyperspectral image (using different techniques, such as
Clara [20] and linear discriminant analysis) and then filtered
the classification maps class by class, using morphological
operators, in order to select large spatial regions as markers.
Furthermore, the authors proposed to use random balls (con-
nected sets of pixels of randomly selected sizes) extracted from
these large regions as markers. In the discussed studies [16],
[17], [19], the objective was to segment specific structures
(blood cells, diatoms, glue occlusions, and cancerous growth).

In our study, the objective is to mark (select a marker for)
each significant spatial object in the image. Here, by significant,
we mean an object of at least one-pixel size that belongs to
one of the classes of interest. As remote sensing images contain
small and complex structures, automatic selection of markers is
an especially challenging task.

In this paper, a new scheme for marker-based segmenta-
tion and classification of hyperspectral images is proposed.
In particular, we propose to perform a probabilistic pixelwise
classification first in order to choose the most reliable classified
pixels as markers of spatial regions [21]. Furthermore, image
pixels are grouped into a minimum spanning forest (MSF)
[22], where each tree is rooted on a classification-derived
marker. The decision to connect the pixel, which is not yet
in the forest, to one of the trees in the forest is based on its
similarity to one of the adjacent pixels already belonging to
the forest. By assigning a class of the marker to all the pixels

within the region grown from the considered marker, a spectral-
spatial classification map is obtained. Furthermore, the classi-
fication map is refined using the results of a pixelwise classi-
fication and a majority voting within the spatially connected
regions [14].

The construction of an MSF belongs to graph-based ap-
proaches for image segmentation [22]–[25]. They introduce the
Gestalt principles of perceptual grouping to the field of com-
puter vision. The image is associated with a graph, the vertices
of which correspond to the image entities (pixels or regions)
and the edges correspond to relations between these entities. A
weight associated with each edge indicates the (dis)similarity
between two entities (pixels or regions). Morris et al. [23] have
proposed to perform a graph-based image segmentation into R
regions by constructing a shortest spanning tree on the image
graph and then removing the R − 1 edges with the highest
weight. Furthermore, several graph-cut-based algorithms have
been developed for image segmentation [24], [25]. However,
these methods perform unsupervised segmentation by splitting
at each iteration one region into two subregions. This approach
is fundamentally different from the work described in this
paper. Several recent publications describe the use of an MSF
rooted on markers for image segmentation [22], [26], [27].
However, the authors of these works do not investigate the
problem of automatic marker selection. Their segmentation is
based on markers provided by the user.

The proposed procedure of defining markers for each spatial
object from probabilistic classification results and of build-
ing a spectral-spatial classification map for hyperspectral
images by constructing an MSF rooted on classification-
derived markers is a major contribution of this paper. Please
note that, while, in previous studies, markers were used as
seeds for image segmentation, in this paper, we introduce a
new concept of the automatic marker-based spectral-spatial
classification.

1) Markers are derived from probabilistic pixelwise classifi-
cation results.

2) Each marker can be composed of several spatially disjoint
subsets of adjacent pixels, and each marker has a class
label.

3) By performing a region growing from the classification-
derived markers, a spectral-spatial classification map is
obtained.

Although the classification scheme proposed in this paper has
been designed for hyperspectral data, the method is general and
can successfully be applied for other types of data as well. Ex-
perimental results are demonstrated on hyperspectral airborne
images recorded by the Airborne Visible/Infrared Imaging
Spectrometer (AVIRIS) over Northwestern Indiana’s Indiana
Pine site and over the region surrounding the volcano Hekla
in Iceland, and the image acquired by the Reflective Optics
System Imaging Spectrometer (ROSIS) over the University of
Pavia in Italy.

The outline of this paper is as follows. In the next section,
a classification scheme based on an MSF rooted on markers
is presented. Experimental results are discussed in Section III.
Finally, conclusions are drawn in Section IV.
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II. SEGMENTATION AND CLASSIFICATION SCHEME

The flowchart of the proposed segmentation and classifica-
tion method is shown in Fig. 2. On the input, a B-band hyper-
spectral image is given, which can be considered as a set of n
pixel vectors X = {xj ∈ R

B , j = 1, 2, . . . , n}. Classification
consists in assigning each pixel to one of the K classes of
interest. In the following, each step of the proposed procedure
is described.

A. Pixelwise Classification

The first step consists in performing a probabilistic pixelwise
classification of the hyperspectral image. We propose to use a
support vector machine (SVM) classifier [28] for this purpose.
Other classifiers could be used. However, SVMs are extremely
well suited to classify hyperspectral data [5], [29], [30]. We
refer the reader to [5] and [28] for details on SVMs. The outputs
of this step are the following:

1) classification map, containing class labels for each pixel;
2) probability map, containing probability estimates for

each pixel to belong to the assigned class.
Two techniques for computing probability estimates for mul-

ticlass classification by pairwise coupling are described in [31].
We propose to use one of these methods, which is implemented
in the LIBSVM library [32]. The objective is to estimate, for
each pixel x, the probabilities to belong to each class of interest

p = {pk = p (y = k|x), k = 1, . . . ,K} . (1)

For this purpose, first, pairwise class probabilities rij ≈
p(y = i|y = i or j,x) are estimated using an improved imple-
mentation [33] of [34]

rij ≈ 1

1 + eAf̂+B
(2)

where A and B are estimated by minimizing the negative log-
likelihood function using known training data and decision
values f̂ . Furthermore, the probabilities in (1) are computed by
solving the following optimization problem:

min
p

K∑
i=1

∑
j:j �=i

(rjipi − rijpj)2

subject to
K∑

i=1

pi = 1, pi ≥ 0 ∀i. (3)

This problem has a unique solution and can be solved by a
simple linear system, as described in [31]. Finally, a probability
map is constructed by assigning to each pixel the maximum
probability estimate max(pk), k = 1, . . . , K.

B. Selection of the Most Reliable Classified Pixels

The aim of this step is to choose the most reliable classified
pixels in order to define suitable markers. We propose to use
probability estimates obtained as a result of the pixelwise
classification for this purpose in order to keep the most reliable

classified pixels as markers. A simple way of marker selection
consists in thresholding the probability map. In other words, if
the probability of the considered pixel belonging to the assigned
class k is higher than a given threshold, this pixel is selected to
join the markers. In the resulting map of markers, each marker
pixel is associated with the class defined by the pixelwise
classifier. The marker pixels form connected components in the
map of markers so that each connected component represents
one marker. The main advantage of this technique of marker
selection is its simplicity. However, this method has the fol-
lowing disadvantage: Each marker leads to one region in the
segmentation map. Therefore, we need as many markers as the
desired number of regions. However, if classes ki and kj are
spectrally similar, pixels belonging to one of those classes have
a quasi-equal probability to belong to each of them. From here,
these classified pixels are not reliable. Therefore, we risk to lose
the regions corresponding to either class ki or kj in the final
segmentation map. This leads to undersegmentation, which is
highly undesired.

To mitigate this problem, we propose the following method
of marker selection [see the flowchart in Fig. 3(a)].

1) Perform a connected-component labeling of the pixel-
wise classification map. For this purpose, a classical
connected-component algorithm using the union-find
data structure can be used [35].

2) Analyze each connected region as follows.
• If a region is large enough, it should contain a

marker, which is determined as P% of the pixels
within the connected component with the highest
probability estimates.

• If a region is small, it should lead to a marker only
if it is very reliable; a potential marker is formed
by pixels with probability estimates higher than a
defined threshold.

The proposed procedure is deducted from the following
analysis: Based on the results of our previous studies [9], [13],
[14], it is common that almost no undersegmentation is present
in a pixelwise classification map. Therefore, each connected
spatial region from the classification map is analyzed if it
corresponds most probably to the spatial structure or if it is
rather a classification noise [see the illustrative example in
Fig. 3(b)]. If the size of the component is large enough to
consider it as a relevant region, the most reliable pixels within
this region are selected as its marker. If a component contains
only a few pixels, it is investigated if these pixels were classified
to a particular class with a high probability. If this is the case,
the considered connected component represents a small spatial
structure. Thus, a marker associated with this region should
be defined. Otherwise, the component is the consequence of
classification noise, and we tend to eliminate it. Therefore, no
marker within this component is selected. When performing
labeling of connected components for a pixelwise classification
map, we propose to use an eight-neighborhood connectivity.

For the proposed marker selection procedure, the following
parameters must be chosen.

1) A parameter M defining if a region is considered as being
large or small. We propose to use a number of pixels in
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Fig. 2. Flowchart of the proposed segmentation and classification scheme.

Fig. 3. (a) Flowchart of the proposed marker selection procedure. (b) Illustrative example of the marker selection.

the region (i.e., an area of the region) as a criterion of
the region size. The threshold of the number of pixels
defining if the region is large depends on the resolution
of the image and typical sizes of the objects of interest.
For instance, if the image of the volcano is considered
(experimental results on the volcano image are illustrated
in Section III), where the goal is to classify lavas of
different eruption periods, it is known that the lava of dif-
ferent formations consists of large homogeneous regions.
Therefore, it can be assumed that the regions representing
structures (lavas) in the image scene have a size of at least
10 km2. Thus, for an airborne 20-m-resolution image, the
threshold of M = 20 pixels for dividing the regions in the
groups of large/small ones can be chosen.

2) A parameter P , defining the percentage of pixels within
the large region to be used as markers, depends on the
previous parameter. Since a marker for the large region

must be composed at least of one pixel, the following
condition must be fulfilled: P ≥ 100%/M .

3) The last parameter S, which is a threshold of probability
estimates defining potential markers for a small region,
depends on the probability of the presence of small
structures in the image (which also depends on the image
resolution and the classes of interest) and the importance
of the potential small structures (i.e., what is the cost of
losing the small structures in the classification map). For
instance, if we are interested in determining regions of
different lava formations in the volcano image, the small
objects in the image may have no importance for us, and a
high value of S can be chosen. However, if the classifica-
tion aims at determining regions of sick/damaged plants
in the field, it may be important not to lose any small
region of the damaged species. In this case, the threshold
S must be relaxed.
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In Section III-D, the dependence of the classification accu-
racies from the chosen parameters for the marker selection is
investigated experimentally. As a conclusion, each connected
set of pixels with the same class in the classification map
provides either one or zero marker. One should stress that a
marker is not necessarily a connected set of pixels: It can
spatially be split into several subsets [see Fig. 3(b)].

C. Construction of an MSF

The previous two steps result in a map of markers defining
regions of interest in the image. The next step consists in the
grouping of all the image pixels into an MSF [22], where each
tree is rooted on a classification-derived marker.

For this purpose, each pixel is considered as a vertex v ∈ V
of an undirected graph G = (V,E,W ), where V and E are the
sets of vertices and edges, respectively, and W is a mapping
of the set of edges E into R

+. Each edge ei,j ∈ E of this
graph connects a couple of vertices i and j corresponding to
the neighboring pixels (in the following, we simply call vertices
as pixels). Furthermore, a weight wi,j is assigned to each edge
ei,j , which indicates the degree of dissimilarity between two
pixels connected by this edge. Different dissimilarity measures
can be used for computing weights of edges, such as vector
norms, Spectral Angle Mapper (SAM), and spectral informa-
tion divergence (SID) [36].

The L1 vector norm between two pixel vectors xi =
(xi1, . . . , xiB)T and xj = (xj1, . . . , xjB)T is given as

L1(xi,xj) =
B∑

b=1

|xib − xjb|. (4)

The SAM distance between xi and xj determines the spectral
similarity between two vectors by computing the angle between
them. It is defined as

SAM(xi,xj) = arccos

⎛
⎜⎜⎜⎝

B∑
b=1

xibxjb

[
B∑

b=1

x2
ib

]1/2 [
B∑

b=1

x2
jb

]1/2

⎞
⎟⎟⎟⎠ . (5)

The SID measure [37] computes the discrepancy of proba-
bilistic behaviors between the spectral signatures of two pixels.
It is defined as

SID(xi,xj)=
B∑

b=1

{
qb(xi) log

[
qb(xi)
qb(xj)

]
+qb(xj) log

[
qb(xj)
qb(xi)

]}

(6)

where

qb(xi) =
xib∑B
l=1 xil

. (7)

Furthermore, more complex dissimilarity measures for im-
age segmentation have been proposed in [11] and [38].

Given a connected graph G = (V,E), a spanning tree T =
(V,ET ) of G is a connected graph without cycles such that

ET ⊂ E. A spanning forest F = (V,EF ) of G is a noncon-
nected graph without cycles such that EF ⊂ E.

Given a graph G = (V,E,W ), the minimum spanning tree
is defined as a spanning tree T ∗ = (V,ET∗) of G such that the
sum of the edge weights of T ∗ is minimal

T ∗ ∈ arg min
T∈ST

⎧⎨
⎩

∑
ei,j∈ET

wi,j

⎫⎬
⎭ (8)

where ST is a set of all spanning trees of G.
Given a graph G = (V,E,W ), the MSF rooted on a set of

m distinct vertices {t1, . . . , tm} consists in finding a spanning
forest F ∗ = (V,EF∗) of G, such that each distinct tree of F ∗ is
grown from one root ti, and the sum of the edge weights of F ∗

is minimal [22]

F ∗ ∈ arg min
F∈SF

⎧⎨
⎩

∑
ei,j∈EF

wi,j

⎫⎬
⎭ (9)

where SF is a set of all spanning forests of G rooted on
{t1, . . . , tm}.

In order to obtain the MSF rooted on markers, m additional
vertices ti, i = 1, . . . , m, are introduced. Each extra vertex
ti is connected by the edge with a null weight to the pixels
representing a marker i. Furthermore, an additional root vertex
r is added and is connected by the null-weight edges to the
vertices ti. The minimum spanning tree of the constructed
graph induces an MSF in G, where each tree is grown on a
vertex ti; the MSF is obtained after removing the vertex r. An
example of the construction of the MSF rooted on markers is
shown in Fig. 4. Prim’s algorithm can be used for building the
MSF (see Algorithm 1) [39]. The efficient implementation of
the algorithm using a binary min heap (for the implementation
of a min-priority queue) is possible [40]; the resulting time
complexity of the algorithm is O(|E| log |V |).

Algorithm 1 Prim’s Algorithm
Require: Connected graph G = (V,E,W )
Ensure: Tree T ∗ = (V ∗, E∗,W ∗)
V ∗ = {v}, v is an arbitrary vertex from V
whileV ∗ �= V do
Choose edge ei,j ∈ E with minimal weight such that i ∈

V ∗ and j /∈ V ∗

V ∗ = V ∗ ∪ {j}
E∗ = E∗ ∪ {ei,j}

end while

Each tree in the MSF forms a region in the segmentation
map (by mapping the resulting graph onto an image). Finally, a
spectral-spatial classification map is obtained by assigning the
class of each marker to all the pixels grown from this marker.

Thus, the proposed procedure of the construction of an
MSF from region markers is a region growing method, which
consists of the following steps: First, seed regions are chosen
to belong to the segmentation and classification maps. Then, at
each iteration, a new pixel i is added to the segmentation and
classification maps so that the dissimilarity criterion between
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Fig. 4. Example of the construction of an MSF rooted on markers. (a) Original image graph G, where colored vertices represent markers 1 and 2; nonmarker
pixels are denoted by “0.” (b) Addition of extra vertices t1, t2, and r to the graph. (c) Minimum spanning tree of the graph presented in (b); after removing the
vertex r, an MSF is obtained, where each tree grown from the vertex ti forms a region in the segmentation map.

this pixel and one of the pixels j already belonging to the
segmentation/classification map is minimal. When including
the new pixel to the classification map, a class of the pixel j
is assigned to the pixel i.

D. Majority Voting Within Connected Components

Although the most reliable classified pixels are selected as
markers, it may happen that a marker is classified to the wrong
class. In this case, all the pixels within the region grown from
this marker risk to be wrongly classified. In order to make
the proposed classification scheme more robust, we propose
to postprocess the classification map by applying a simple
majority voting technique which has shown good performances
for spectral-spatial classification [13], [14], [41]. For this pur-
pose, connected-component labeling is applied on the obtained
spectral-spatial classification map (using a four-neighborhood
connectivity). Furthermore, for every connected component
(region), all the pixels are assigned to the most frequent
class when analyzing a pixelwise classification map within
this region.

Note that an eight-neighborhood connectivity was used for
the construction of an MSF, whereas a four-neighborhood con-
nectivity was used for the majority voting. The use of the eight-
neighborhood connectivity in the first case allows obtaining
a more accurate (refined) segmentation map, without rough
borders. Since an MSF is built from the set of markers, the
number of regions does not depend on the chosen connectivity.
When performing the last majority voting step, the use of
the four-neighborhood connectivity results in a larger or the
same number of connected components as the use of the eight-
neighborhood connectivity. Therefore, the possible underseg-
mentation can be corrected in this step. One region from a
segmentation map can be split into two connected regions when
using the four-neighborhood connectivity. Furthermore, these
two regions can be assigned to two different classes by the
majority voting procedure.

III. EXPERIMENTAL RESULTS

Three different data sets were used for the experiments, with
different contexts (agricultural, volcano, and urban areas) and
acquired by different sensors (AVIRIS and ROSIS airborne
imaging spectrometers). These data sets and the corresponding
results are presented in the next three sections.

A. Classification of the Indiana Image

The Indiana image is of a vegetation area that was recorded
by the AVIRIS sensor over the Indian Pine test site in North-
western Indiana. The image has spatial dimensions of 145 by
145 pixels and a spatial resolution of 20 m/pixel. Twenty water
absorption bands have been removed [42], and a 200-band
image was used for the experiments. Sixteen classes of interest
are considered, which are detailed in Table I, with a number
of samples for each class in the reference data. A three-band
false color image and the reference data are shown in Fig. 5.
We have chosen randomly 50 samples for each class from the
reference data as training samples, except for classes alfalfa,
grass/pasture-mowed, and oats. These classes contain a small
number of samples in the reference data. Therefore, only 15
samples for each of these classes were chosen randomly to be
used as training samples. The remaining samples comprised the
test set.

A pixelwise classification on the 200-band Indiana image
was performed, using the multiclass one versus one SVM
classifier with the Gaussian radial basis function (RBF) kernel.
The optimal parameters C and γ were chosen by fivefold cross
validation: C = 128 and γ = 2−6. Global and class-specific
accuracies are presented in Table I. Fig. 5 shows the obtained
classification and probability maps.

Furthermore, a map of markers was created. For this pur-
pose, labeling of connected components on the pixelwise clas-
sification map was performed, using the eight-neighborhood
connectivity. For each connected component, the following are
observed.

1) If it contained more than M = 20 pixels, P = 5% of
its pixels with the highest probability estimates were
selected as a marker for this component.

2) Otherwise, if a connected component contained pixels
with the corresponding probability estimates not lower
than the threshold S, these pixels were used as a marker.

In order to define a threshold S, the probability estimates
for the whole image were sorted, and S was chosen equal
to the lowest probability within the highest T = 2% of all
probability estimates. The parameters for marker selection were
chosen based on the following analysis: It is known that the
image consists of the fields of different types of crops, i.e.,
large homogeneous regions. In the reference data, the class
oats is represented by the smallest field of a size of 20 pixels.
Therefore, the classification procedure must be able to
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TABLE I
INFORMATION CLASSES, NUMBER OF LABELED SAMPLES (NO. OF SAMP.), AND CLASSIFICATION ACCURACIES IN PERCENTAGE FOR THE

INDIANA IMAGE: OVERALL ACCURACY (OA), AVERAGE ACCURACY (AA), KAPPA COEFFICIENT (κ), AND CLASS-SPECIFIC ACCURACIES;
“MV” MEANS INCLUDING A MAJORITY VOTING STEP

Fig. 5. Indiana image. (a) Three-band color composite (837, 636, and 537 nm). (b) Reference data:

. (c) Pixelwise classification map. (d) Probability map (probability estimates for each pixel to belong to the assigned class). (e) Scale of colors to represent
the probability estimates in a probability map, from 0% probability at the bottom to 100% probability at the top. (f) Classification map obtained by the proposed
scheme, using the SAM dissimilarity measure and including a majority voting step.

recognize the 20-pixel regions. We select M = 20. The param-
eter P is computed as P = 100%/M = 5%. This means that,
for a region of 20 pixels, a one-pixel marker is selected. The
last parameter T is chosen to be low since we know that the
image does not contain small spatial structures. The correctness
and robustness of this theoretical deduction of parameters are
proved in Section III-D.

From 2250 connected components in the classification map,
107 markers were selected. Of the marker pixels presented in
the reference data, 95% are correctly classified. In the next
step, the image pixels were grouped into the MSF, built from
the selected markers. We have investigated the use of different
dissimilarity measures: the L1 vector norm,2 the SAM, and
the SID measures [36]. When the class of each marker was
assigned to all the pixels of the corresponding tree, the spectral-
spatial classification maps were obtained. Finally, the obtained
classification maps were combined with the pixelwise classifi-

2We have also considered the L2 vector norm as a dissimilarity measure
for the construction of the MSF. The corresponding classification accuracies
are not given in this paper because of space limitations. These accuracies are
mostly nonsignificantly lower than the ones obtained when using the L1 norm.

cation map, using the majority voting technique, as described
in Section II-D.

Table I summarizes the accuracies of the pixelwise SVM
and the proposed classification method (before and after the
majority voting step). In order to compare performances of
the proposed technique with the previously proposed methods,
we have included results of a classification using majority
vote within the adaptive neighborhoods defined by watershed
segmentation (WH + MV ) [13], as well as classification re-
sults obtained by performing watershed segmentation3 from
the same set of markers (M -WH) [21]; these are recently
proposed advanced techniques for spectral-spatial classification
of hyperspectral images.

First of all, almost no oversegmentation is present in the
obtained segmentation map (since one marker led to one region,
a segmentation map contains 107 regions). As can be seen
from Table I, both the global and most of the class-specific

3In [21], watershed segmentation is computed using the classical paradigm
of the morphological image segmentation [19]: A gradient of the image is
computed; then, a minima imposition technique is applied, followed by the
watershed algorithm based on flooding simulations.
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accuracies are improved by the proposed method. The majority
voting step additionally improves most of the accuracies (ex-
cept for the class soybeans-no till). The best global accuracies
are achieved by the proposed method when using the SAM
dissimilarity measure and including a majority voting step [the
corresponding classification map is shown in Fig. 5(f)]. In
this case, the overall accuracy is improved by 13.6 percentage
points and the average accuracy by 8.3 percentage points when
compared to the pixelwise classification. However, the use of
other dissimilarity measures also leads to high accuracies; the
highest accuracies for 7 of the 16 classes are achieved when
using each of the proposed measures.

Furthermore, McNemar’s test was performed in order to
evaluate the statistical significance of differences in classifica-
tion accuracies between the most accurate classification map
(SAM + MV ) and other classification maps [43]. According
to the results of the test, the SAM + MV classification ac-
curacies are significantly different (here and in the following,
we use 1% level of significance when reporting results of
McNemar’s test) from the accuracies of any other classification
method applied for the Indiana image. The improvement of the
accuracies after the majority voting step is also significant when
using any of the applied dissimilarity measures.

B. Classification of the Hekla Image

The Hekla image was acquired by the AVIRIS sensor over
the region surrounding the central volcano Hekla in Iceland
[44]. The AVIRIS sensor operates in the wavelength range from
0.4 to 2.4 μm and utilizes four spectrometers collecting 224 data
channels. During the data collection, spectrometer 4 was not
working properly. The 64 data channels recorded by this
spectrometer were deleted from the data, along with the first
channels for the other three spectrometers (those channels were
blank). Therefore, the 157 remaining data channels were used
for the experiments. The considered image has spatial dimen-
sions of 560 by 600 pixels. Twelve land cover classes of interest
are considered, which are detailed in Table II, with a number of
labeled samples for each class. Fig. 6 shows a three-band false
color image and the reference data. Fifty samples for each class
were randomly chosen from the reference data as training sam-
ples, and the rest of the samples were used as the test set.

A multiclass one versus one SVM classification on the orig-
inal image was performed using the Gaussian RBF kernel. The
parameters C = 100 and γ = 0.1 were determined by fivefold
cross validation. Table II gives the classification accuracies, and
the classification map is shown in Fig. 6(c).

In the next step, a map of markers was created, with the same
parameters as for the Indiana image. Furthermore, segmenta-
tion and classification of the image were performed by con-
structing an MSF based on the selected markers. The obtained
classification maps were further combined with the pixelwise
classification map using the majority voting technique.

Table II gives the accuracies of the proposed classification
method. As can be seen, both the global and most of the
class-specific accuracies are improved when compared to the
pixelwise classification. The majority voting step additionally
improves the accuracies. As for the Indiana image, the best

global accuracies are achieved when performing the proposed
classification with the SAM dissimilarity measure and the
majority voting step. Fig. 6(d) shows the corresponding clas-
sification map, which is much less noisy than a pixelwise
classification map. In this case, the overall accuracy is improved
by 10.4 percentage points and the average accuracy by 9.0 per-
centage points when compared to the pixelwise classification.
According to the results of McNemar’s test, all the obtained
classification maps are significantly different.

C. Classification of the University of Pavia Image

The proposed scheme was also tested on the University of
Pavia image of an urban area, acquired by the ROSIS-03 optical
sensor. The image is 610 by 340 pixels, with a spatial resolution
of 1.3 m/pixel and 103 spectral channels. The reference data
contain nine classes of interest. More information about the
image, with the number of test and training samples for each
class, can be found in [14].

Segmentation and classification of the University of Pavia
image were performed using the proposed scheme. The pa-
rameters for an SVM classification were chosen by fivefold
cross validation: C = 128 and γ = 0.125. Marker selection was
performed with the same parameters as for the two previous
data sets. Table III summarizes the classification accuracies
for a pixelwise and spectral-spatial classification. In order to
compare the performances of the proposed method with the
previously proposed techniques, we have included in the table
the accuracies of the classification of the University of Pavia
image using an SVM, principal components, and extended mor-
phological profiles; results are taken from [45]. This method
has been recently proposed by Benediktsson et al. [46] and is
considered as one of the most advanced methods for spectral-
spatial classification of a multiband datum. Furthermore, the re-
sults of the spectral-spatial classification using majority voting
within adaptive neighborhoods defined by spatial-based seg-
mentation techniques are included. The following segmentation
techniques are used for this purpose (leading to the best classifi-
cation results among all the spatial-based methods): watershed
segmentation (WH + MV ) [13] and recursive hierarchical
segmentation (RHSEG), with the possibility of merging only
adjacent regions (RHSEG0 + MV ) [9].

As can be seen from Table III, both the global and most
of the class-specific accuracies are improved by the proposed
method. The majority voting step additionally improves most of
the accuracies. The best global accuracies are achieved by the
proposed method when using the L1 vector norm for measuring
dissimilarity between pixels. The corresponding classification
map is significantly more accurate than any other obtained clas-
sification map, according to the results of McNemar’s test. In
this case, the overall accuracy is improved by 10.1 percentage
points and the average accuracy by 6.5 percentage points when
compared to the pixelwise classification. Those accuracies are
higher than the ones obtained by the previously proposed
techniques given for comparison. The use of the other two
measures also led to the high classification accuracies for most
of the classes. For instance, the use of the SAM measure led to
the best accuracy of classification for the class asphalt when
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TABLE II
INFORMATION CLASSES, NUMBER OF LABELED SAMPLES (NO. OF SAMP.), AND CLASSIFICATION ACCURACIES IN PERCENTAGE FOR THE HEKLA

IMAGE: OVERALL ACCURACY (OA), AVERAGE ACCURACY (AA), KAPPA COEFFICIENT (κ), AND CLASS-SPECIFIC ACCURACIES;
“MV” MEANS INCLUDING A MAJORITY VOTING STEP

Fig. 6. Hekla image. (a) Three-band color composite (1125, 636, and 567 nm). (b) Reference data:

, and snow (white). (c) Pixelwise classification map. (d) Classification map obtained by the proposed scheme, using the SAM dissimilarity
measure and including a majority voting step.

TABLE III
CLASSIFICATION ACCURACIES IN PERCENTAGE FOR THE UNIVERSITY OF PAVIA IMAGE: OVERALL ACCURACY (OA), AVERAGE ACCURACY (AA),

KAPPA COEFFICIENT (κ), AND CLASS-SPECIFIC ACCURACIES; “MV” MEANS INCLUDING A MAJORITY VOTING STEP

compared to all the previous results found in the literature.
However, the global accuracies are not as high as when using
the L1 vector norm mainly because of the low accuracy for
the class shadows. The SAM distance is actually designed
with the purpose that the poorly illuminated and more brightly
illuminated pixels from the same class would be mapped to the
same spectral angle despite the difference in illumination. It
can be an explanation of the fact why the SAM distance led to
the assimilation of the shadowed regions with the neighboring
structures.

D. Assessment of the Robustness of the Parameter Settings

In Section II-B, the procedure of the choice of parameters for
the marker selection procedure was explained. In this section,
the dependence of the classification accuracies from the chosen
parameters is investigated experimentally for the Indiana and
the Hekla images.

First, the choice of the parameter P is analyzed. For this pur-
pose, the other two parameters were fixed as M = 20 and T =
2. Classification using the proposed scheme was performed,
with the parameter P varying from 5 to 100. The L1 vector
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Fig. 7. Assessment of the robustness of the parameter settings. (a)–(f) Overall and (g)–(l) average classification accuracies as functions of parameters for the
marker selection procedure [(a), (d), (g), (j)] P (M = 20, T = 2), [(b), (e), (h), (k)] T (M = 20, P = 20), and [(c), (f), (i), (l)] M (P = 20, T = 5), for the
[(a)–(c), (g)–(i)] Indiana and [(d)–(f), (j)–(l)] Hekla images.

norm and the SAM dissimilarity measures were used. Fig. 7
shows the obtained overall [Fig. 7(a) and (d)] and average
[Fig. 7(g) and (j)] classification accuracies for both data sets. As

can be seen from the figures, for any value of P , the accuracies
are significantly improved when compared to the pixelwise
classification. When the value of P is low (a few marker pixels
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are chosen), the construction of the MSF from the markers gives
less accurate classification maps than when it is high. However,
the postprocessing majority voting step improves the accuracies
significantly. Thus, the complete classification procedure gives
the best performances for a low value of P . Then, with the
increase of P , the classification accuracies converge to a con-
stant value, for both dissimilarity measures, and the majority
step does not additionally increase the accuracies. Results are
coherent for both images. As a conclusion, this parameter
has no significant influence on the classification accuracies.
When a few marker pixels are chosen (for low values of P ),
the construction of an MSF using the SAM distance gives
better segmentation results (provides more accurate regions)
than a pixelwise classification. Therefore, after the additional
processing of the corresponding classification maps by majority
voting, the best classification results are achieved.

The choice of the parameter T is investigated, by fixing
parameters M = 20 and P = 2, varying T from 2 to 100, and
performing classification for both data sets. The overall and
average classification accuracies are shown in Fig. 7 (second
column). As can be seen, the results are coherent for both
dissimilarity measures and both data sets. The highest clas-
sification accuracies are achieved for the low values of T .
These results are coherent with the theoretical analysis given
in the previous sections. Since the Indiana and the Hekla
images contain large spatial structures (of crop fields and lava
formations, respectively), markers for small regions must be
selected only in the case if the probability of their correct
classification is very high. Therefore, with the increase of
T , the probability of selecting a marker for a misclassified
region increases, and the classification accuracies decrease. The
majority voting step becomes more important for higher values
of T , and for the Hekla image, the accuracies for the complete
proposed procedure (including the majority voting step) remain
almost unchanged, independently of the parameter T .

Furthermore, the choice of the parameter M is investigated,
with the other parameters being fixed (P = 20 and T = 5).
Fig. 7 (third column) shows the overall and average accuracies
of classification when varying the parameter M from 10 to
100. For the Hekla image, the accuracies are slightly lower
for M = 10, when compared to other values of this parameter,
for which the accuracies remain almost unchanged. This is
due to the fact that the image contains mostly large regions
of lava fields. Therefore, for any value of M higher than 20,
the classification procedure shows a good performance. For
the Indiana image, with the increase of the parameter M up
to 50, the overall accuracy slightly increases. However, the
average accuracy reaches its maximum for M = 20 and then
significantly decreases. These results confirm the theoretical
analysis: The smallest crop field in the image scene has a size
of 20 pixels. When a high value of M for identifying significant
regions is chosen, small crop fields risk to be assimilated with
the neighboring structures. If this happens, majority voting
cannot reconstitute these regions, and they disappear from the
final classification map.

In conclusion, the experimental analysis of the parame-
ter choice for the marker selection procedure has confirmed
that, by using some a priori information for the image, pa-

rameters leading to good classification performances can be
deducted.

IV. CONCLUSION

A large number of spectral channels in a hyperspectral im-
age increase the potential of discriminating physical materials
and structures in a scene. However, it presents challenges to
image analysis because of the huge volume of data that the
hyperspectral image usually consists of. Although pixelwise
classification techniques have given high classification accura-
cies when dealing with hyperspectral data, the incorporation of
the spatial information into the classifier is needed for further
improvement of the classification accuracies.

In this paper, a new spectral-spatial classification scheme
for hyperspectral images has been proposed. The method is
based on the construction of an MSF, rooted on the markers
selected by using pixelwise classification results. Experimental
results, presented on the three data sets, have shown that the
proposed method improves the classification accuracies, when
compared to previously proposed classification schemes, and
provides accurate segmentation and classification maps.

Different distances have been investigated for measuring the
dissimilarity between pixels when constructing an MSF. It is
shown that, in most of the cases, the SAM distance gives the
best performances. However, this distance does not discrimi-
nate some particular classes from urban areas, such as shadows,
and assimilate the pixels belonging to these classes with the
neighboring structures.

In conclusion, the proposed classification methodology suc-
ceeded in taking advantage of the spatial and the spectral
information simultaneously. The method performs well for
images representing different scenes: those containing large
spatial structures with spectrally confusing classes and those
containing small and complex structures. Furthermore, its effi-
cient implementation is possible.
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