
HAL Id: hal-01318369
https://hal.science/hal-01318369v1

Submitted on 19 May 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Learning interpretable fuzzy inference systems with
FisPro

S. Guillaume, Brigitte Charnomordic

To cite this version:
S. Guillaume, Brigitte Charnomordic. Learning interpretable fuzzy inference systems with FisPro.
Information Sciences, 2011, 181 (20), pp.4409-4427. �10.1016/j.ins.2011.03.025�. �hal-01318369�

https://hal.science/hal-01318369v1
https://hal.archives-ouvertes.fr

Learning interpretable Fuzzy Inference Systems with
FisPro

Serge Guillaumea, Brigitte Charnomordicb

aCemagref, UMR ITAP, BP 5095, 34196 Montpellier, France
bINRA/SupAgro, UMR MISTEA, 34060 Montpellier, France

Abstract

Fuzzy inference systems (FIS) are likely to play a significant part in system model-
ing, provided that they remain interpretable following learning from data. The aim
of this paper is to set up some guidelines for interpretable FIS learning, based on
practical experience with fuzzy modeling in various fields. An open source soft-
ware system called FisPro has been specifically designed to provide generic tools
for interpretable FIS design and learning. It can then be extended with the addition
of new contributions. This work presents a global approach to design data-driven
FIS that satisfy certain interpretability and accuracy criteria. It includes fuzzy par-
tition generation, rule learning, input space reduction and rule base simplification.
The FisPro implementation is discussed and illustrated through several detailed
case studies.

Keywords: Fuzzy rule bases, interpretability, modeling, rule induction, fuzzy
partitioning

1. Introduction

Fuzzy Inference Systems (FIS) have been shown to perform well in input-
output mapping identification because they satisfy the universal approximation
property and can be designed from expertise or data driven methods.

Furthermore, their inference engine implements approximate reasoning, which
provides a good framework for representing and manipulating a wide body of lin-
guistically expressed information, as pointed out in a recent survey [41]. The im-

Email addresses: serge.guillaume@montpellier.cemagref.fr (Serge
Guillaume), bch@supagro.inra.fr (Brigitte Charnomordic)

Published in International Journal of Information Sciences February 27, 2015

Author-produced version of the article published in Information Sciences, 2011, N°181(20), p.4409-4427.
The original publication is available at http://www.sciencedirect.com
Doi: 10.1016/j.ins.2011.03.025

plementation is done in the form of a set of potentially understandable IF-THEN
rules.

Nevertheless, these advantages are not sufficient for FIS to be truly useful in
modeling real world systems.

Indeed, generalization ability and interpretability are fundamental prerequi-
sites for a model to be used. By interpretability, we mean transparency and intel-
ligibility.

Although no one can question the need for automatic learning from data, data-
driven approaches still suffer from many drawbacks, as their performance strictly
depends both on the volume and on the quality of the data.

Even if FIS have the potential ability to express the system behavior in a lin-
guistic way, the use of a fuzzy formalism is not sufficient to ensure the trans-
parency and intelligibility of a fuzzy rule base. As shown in [20], several condi-
tions are required for interpretability, concerning the fuzzy partitioning, the con-
sistency and number of rules of the rule base, and the presence of incomplete
rules.

As the interpretability constraints may conflict with the objective of automatic
learning methods to minimize numerical error, several works have proposed a
tradeoff between interpretability and accuracy [10].

In this paper, our goal is to propose tools that can facilitate a modeling ap-
proach using supervised learning and data-driven FIS. The FisPro toolbox that we
present is a step in that direction. It stands out among fuzzy software products
because of the care taken to ensure the interpretability of the fuzzy systems that
are automatically learnt from data, at all steps of the design.

The original contribution of the paper is that it provides guidelines for inter-
pretable FIS learning based on practical experience with fuzzy modeling, acquired
during several years of work in this field. The modeling was supported by the
FisPro software.

The structure of the paper is as follows.
First, in Section 2, we investigate the learning steps required for interpretable

FIS design: the objectives and evaluation criteria, fuzzy partitioning methods, and
rule induction techniques. Special attention is paid to variable granularity and
selection.

Then, in Section 3, we present the FisPro open source software features that
are particularly useful for learning. Section 4 is dedicated to three case studies,
each illustrating some particular points of our approach. Finally, we offer some
concluding remarks and topics for further discussion.

2

Author-produced version of the article published in Information Sciences, 2011, N°181(20), p.4409-4427.
The original publication is available at http://www.sciencedirect.com
Doi: 10.1016/j.ins.2011.03.025

2. Learning steps for interpretable FIS

Since it was first introduced by Takagi and Sugeno [36], FIS design using
data-driven approaches has been a favorite topic of fuzzy logic researchers. Data
mining methods are available in large quantities, either originating from the field
of Statistics or inspired by Artificial Intelligence learning techniques, and they
are easily transferable to FIS with a few changes to adapt them to the particular
structure of FIS.

Following Sugeno’s early work, significant efforts have been dedicated to
the development of data-driven FIS design, focusing on numerical accuracy but
weakening the key innovation and competitive advantage of fuzzy logic. An
interpretability-oriented review of fuzzy inference system design from data can
be found in [36]. It analyzes the main methods of automatic rule generation and
structure optimization from that perspective.

At the beginning of the twenty-first century, a new research trend appeared
of a return to genuine principles of fuzzy logic. Renewed attention was paid to
system interpretability while taking advantage of the specific learning capabilities
of these methods, see [10].

Even so, not all researchers attribute the same meaning to the concepts of
interpretability and transparency for FIS. A detailed study can be found in [33].

Our purpose here is not to provide an in-depth discussion of these concepts.
Instead, we shall try to define some general learning principles and steps for an
interpretable FIS learning approach.

Both the fuzzy partition and the rule base are involved in the design of FIS,
and three main factors emerge as the primary determinants of interpretability.

First, all fuzzy partitions should obey some semantic integrity constraints, so
that each fuzzy set is associated with a non ambiguous meaning, and in order to
obtain a complete coverage of the variable domain ranges.

Second, the number of rules should be small and the rule base consistent.
The curse of dimensionality is a real problem for FIS learning from data, as a
full set of complete rules quickly leads to a combinatorial explosion when the
number of variables and of fuzzy sets rises. This is annoying as some rules may
be generated that cover a very small part of the input space, are matched only by
a few examples, and lack generality.

The third condition is specific to complex systems with a large number of input
variables: rules must not systematically include all input variables, but only the
important ones in the context of the rule. These rules are often called incomplete
rules.

3

Author-produced version of the article published in Information Sciences, 2011, N°181(20), p.4409-4427.
The original publication is available at http://www.sciencedirect.com
Doi: 10.1016/j.ins.2011.03.025

FIS learning methods are essentially rule generation techniques, and rule gen-
eration can be decomposed into two main steps: rule induction and rule base
optimization. Variable selection and rule simplification are two important stages
of the optimization process.They are usually referred to as structure optimization.
Apart from structure optimization, a FIS has many parameters that can also be
optimized, such as membership function (MF) parameters and rule conclusions.
This is called parameter optimization. A thorough study has been done by various
authors [26, 18], and the respective advantages and drawbacks of these methods
are well known.

Many methods perform fuzzy partitioning, rule induction and optimization in
the same procedure. Nevertheless, this approach has serious drawbacks.

It makes it difficult to reuse the fuzzy partitioning for other learning proce-
dures. However, a fuzzy partition can be valuable by itself, as it represents a
mapping between numerical values and symbolic concepts in the input space. Fur-
thermore, the use of the same fuzzy partitions in several rule bases makes it easier
to compare these bases.

For similar reasons, it is desirable for the optimization procedure to be distinct
from the induction procedure: new data sets can be used for the optimization as
they become available, and different criteria can be used depending on the context
of use.

All of this leads us to propose a FIS learning approach decomposed into seve-
ral steps: fuzzy input (plus fuzzy output if defined) partitioning, rule induction and
simplification. Optimization will not be discussed in this work, although FisPro
offers parameter optimization procedures based on evolutionist algorithms, which
can be applied to any FIS. The FisPro implementation pays attention to preserving
semantics, as do some other works. For instance, in [15], an index is proposed to
maintain the semantic interpretability in a multi-objective evolutionary optimiza-
tion algorithm. For the reasons given above, we concentrate our presentation on
the other points.

The following sections present each learning step in detail, and the last one
focuses on the choice of variable granularity and selection. As a preliminary to
presenting the method, we give some learning objectives and evaluation criteria.

2.1. Objectives and evaluation criteria
Machine learning techniques cannot produce results better than what they find

in the training data. The task of a supervised learner is to predict a value for any
valid input object after having seen a number of training examples (i.e., pairs of
inputs and target outputs). To achieve this, the learner has to generalize from the

4

Author-produced version of the article published in Information Sciences, 2011, N°181(20), p.4409-4427.
The original publication is available at http://www.sciencedirect.com
Doi: 10.1016/j.ins.2011.03.025

presented data to unseen situations in a reasonable way. FIS partition and rule
learning have the same objectives and constraints.

A reasonable level accuracy must be achieved while avoiding overfitting. Over-
fitting occurs when a model describes random errors or noise instead of the un-
derlying relationship. Overfitting generally happens when a model is excessively
complex, such as having too many degrees of freedom, in relation to the amount
of available data.

A model that has been overfit will generally have poor predictive performance
on a data set that is significantly different from the learning set, as it can exagge-
rate minor fluctuations in the data.

To limit this risk, some parameters will be made defined for the learning me-
thods; in particular, the learning will often be guided by a minimum rule matching
degree. Test sets will be used whenever possible.

The coverage index and the performance indices, which are different for re-
gression and classification cases, will be used as evaluation indices to assess the
prediction capabilities of a FIS for a given dataset.

Denote by (xi, yi) the ith row of the data set, where xi is a multidimensional
input vector and yi the corresponding output.

2.1.1. Coverage index
Data rows are labeled active or inactive for a given rule base. A row is active

if its maximum matching degree over all of the rules is greater than a user defined
threshold, and otherwise it is inactive.

Following this definition, a coverage index value is calculated by applying the

formula CI =
A

N
where A is the number of active rows, and N is the file size.

The coverage index value is a quality index that is complementary to the classical
accuracy index.

2.1.2. Performance indices
In the following, the error index only considers the number of active items

defined previously, denoted A.
For regression cases, the performance index available in FisPro is based on

the square root of the mean squared error:

RMSE =

√√√√ 1

A

A∑
i=1

(ŷi − yi)2 (1)

5

Author-produced version of the article published in Information Sciences, 2011, N°181(20), p.4409-4427.
The original publication is available at http://www.sciencedirect.com
Doi: 10.1016/j.ins.2011.03.025

where ŷi is the inferred value.
It allows to compute another error index that is often found in the literature,

called the Mean Absolute Error (MAE):

MAE =
1

A

A∑
i=1

|ŷi − yi| (2)

For classification cases, the error index used in FisPro is the sum of classifica-
tion errors (MC):

MC =
A∑
i=1

(erri|erri = 1 if Ĉi 6= Ci, 0 otherwise) (3)

where Ci is the observed class and Ĉi the inferred one.
Another classification index, not yet available in FisPro, that is differentiable

so that it can be used in gradient-based approaches, is the squared classification
error:

SCE =
1

A

1

K

A∑
i=1

K∑
k=1

(αk
i − µk

i)2 (4)

K is the number of classes, and αk
i is the activation of the kth class over the ith

item, with µk
i = 1 if the correct class for the ith item is k, and 0 otherwise.

2.2. Linguistic variable and fuzzy partitioning
Variable partitioning is the first step of FIS design. The necessary conditions

for fuzzy partitions to be interpretable and to implement the linguistic variable
concepts have been studied by several authors [35, 30, 18, 28]. The main points
are distinguishability, a justifiable number of fuzzy sets, normalization, sufficient
overlapping and coverage: each data point, x, should significantly belong
(µ(x) > ε, ε is called the coverage level) to at least one fuzzy set.

Even if other membership function shapes are available and if the fuzzy parti-
tions can be freely adjusted, the FisPro automatic procedures only generate strong
input fuzzy partitions (see Figure 1 for an example, with semi-trapezoidal shapes
at the edges and either triangular or trapezoidal MFs elsewhere).

The overlap between two neighboring MFs is:

∀x,
c∑

f=1

µf (x) = 1 and ∀f, ∃ x such as µf (x) = 1

6

Author-produced version of the article published in Information Sciences, 2011, N°181(20), p.4409-4427.
The original publication is available at http://www.sciencedirect.com
Doi: 10.1016/j.ins.2011.03.025

(x)µ
2

0

1 1 2 3 4 5

(x)µ
1

x

Figure 1: Example of a strong fuzzy partition

where c is the number of fuzzy sets in the partition and µf (x) is the member-
ship degree of x in the fth fuzzy set.

Using strong fuzzy partitions ensures semantic integrity, and compared to par-
titions made up of unbounded membership functions, such as the widely used
Gaussian partitions, they also lead to more robust systems because the number of
simultaneously fired rules is limited [12].

What should be the number of linguistic terms in the partition? The correct
answer is the one required for reasoning with rules. However, in an automatic
learning procedure, this number is unknown, so the question becomes: what is the
most suitable number of terms according to the data?

The FisPro approach is to generate a collection of fuzzy partitions of vari-
ous sizes from two to a user-defined maximum value, e.g., seven, allowing the
decision to be made later, based upon indices or an objective function. Three me-
thods are available. The first one generates regular grids without considering the
data distribution. Another option is to use the k-means algorithm with different
numbers of groups. The last proposed method is called hfp, which stands for Hi-
erarchical Fuzzy Partitioning. It is described in [22]. According to the generation
method, the partitions are either independent of each other (k-means), or the k-1
term partition is derived from the k term partition by fuzzy set merging (hfp).

Several indices have been defined to characterize fuzzy partitions. The follow-
ing indices are implemented in the GUAJE open source software [1] described in
[3, 4]. GUAJE is an upgraded version of KBCT (Knowledge Base Configuration
Tool). Let N be the data set size and µi(k) the membership degree of the ith item
in group k; we then have:

7

Author-produced version of the article published in Information Sciences, 2011, N°181(20), p.4409-4427.
The original publication is available at http://www.sciencedirect.com
Doi: 10.1016/j.ins.2011.03.025

PC =
1

N

N∑
k=1

c∑
i=1

µ2
i (k)

PE =− 1

N

{
N∑
k=1

c∑
i=1

[µi(k) loga(µi(k))]

}

CI =
1

N

N∑
k=1

max
i
µi(k)− 2

c(c− 1)

c−1∑
i=1

c∑
j=i+1

1

N

N∑
k=1

min(µi(k), µj(k))

The partition coefficient (PC) and the partition entropy (PE) were proposed by
Bezdek[6] in 1981; the Chen index (CI) is more recent[11].

The three indices described above can be applied to any partition, indepen-
dently of the derivation method. According to these criteria a good partition
should minimize the entropy and maximize the partition coefficient and the Chen
index.

As an illustration, consider data distributions for two variables of the auto-mpg
and wine data sets, which are described at the beginning of Section 4. The three
indices are computed for partitions of two to seven terms generated from these
data by the three available methods. Two fifteen class histograms are plotted in
Figure 2, with the x-axis representing the input values and the y-axis the number
of data items. The histogram on the left corresponds to the fifth variable of the
auto-mpg data set, and the one on the right to the tenth variable of the wine data
set. These two distributions are dissimilar in shape: a quasi Gaussian distribution
for the fifth variable, and a multimodal skewed one for the tenth variable.

The index behavior is also quite different between these two variables.
Tables 1 and 2 show the best partition size for the corresponding variable ac-

cording to each of the three indices. The index value is given in parentheses
following the partition size.

auto-v5 PC PE CI
km 2 (0.80) 2 (0.30) 5 (0.75)
hfp 7 (0.63) 7 (0.54) 7 (0.70)
reg 3 (0.69) 3 (0.47) 5 (0.75)

Table 1: Optimal partition size and index value for auto-v5 according to the indices

8

Author-produced version of the article published in Information Sciences, 2011, N°181(20), p.4409-4427.
The original publication is available at http://www.sciencedirect.com
Doi: 10.1016/j.ins.2011.03.025

Figure 2: Data distribution for v5 from auto-mpg (left) and v10 from wine (right) data sets: v5 is
the car weight and v10 is the wine color intensity.

wine-v10 PC PE CI
km 2 (0.82) 2 (0.26) 4 (0.80)
hfp 2 (0.86) 2 (0.21) 2 (0.80)
reg 7 (0.67) 7 (0.49) 7 (0.75)

Table 2: Optimal partition size and index value for wine-v10 according to the indices

For the auto-v5 variable, the best partitions according to PC and PE are the
k-means ones, while the CI index cannot differentiate between k-means and re-
gular grids. For wine-v10, PC and PE agree that hfp is the best, and CI yields
the same values for k-means and hfp. However the hfp partition size is smaller.

Recall that the indices cannot be compared with each other, the only valid
comparison is between the behavior of a given index for several partitions.

This simple example shows that none of the proposed methods can be consi-
dered as uniformly better than the others in all cases. Moreover, even if the indices
are useful for characterizing the fuzzy partitions, they are likely to differ in their
results. One way to use them is to select one index and to follow its evolution
throughout an optimization process.

2.3. Rule induction
There are many FIS rule learning methods, and our purpose in the present

paper is not to provide a review of them all, but to recall the principles of a few
techniques that yield interpretable FIS, which are implemented in FisPro. FIS

9

Author-produced version of the article published in Information Sciences, 2011, N°181(20), p.4409-4427.
The original publication is available at http://www.sciencedirect.com
Doi: 10.1016/j.ins.2011.03.025

learning involves the fitting of many parameters, so we find it reasonable to con-
sider only single output systems in the present study. Whatever their complexity
and their origin (fuzzy clustering, statistical methods, machine learning or ad hoc
data-driven ones specifically designed for fast fuzzy rule learning), rule learning
methods may be classified into two broad categories: region based methods and
prototype based ones. Indeed, once the input fuzzy partitions have been defined,
the naive method of generating the complete set of rules corresponding to all fuzzy
set combinations must be definitively rejected because it causes a very fast com-
binatorial explosion. The learning question then reduces to selecting the relevant
rule premises and to assigning them appropriate conclusions.

In the case of the region based methods, the rule premises are chosen by split-
ting the input domains into regions and selecting the relevant regions by applying
a given criterion to the data set.

In the case of prototype based methods, the rule premises are initialized from
the data by analyzing each row and constructing the corresponding rule. The
rule is kept if it satisfies a given criterion, and it is then assigned an appropriate
conclusion.

We now present some methods that are available in FisPro. We discuss their
advantages and drawbacks, and the parameters available for reaching our objec-
tives: generalization, robustness, accuracy.

2.3.1. Notations
A fuzzy rule is defined as:

IF x1 is A1
r and x2 is A2

r . . . and xp is Ap
r THEN y is Cr

The rth rule matching degree for x is calculated as:

mr(x) =

p∧
j=1

µAj
r
(xj) (5)

where ∧ is the conjunction operator.

2.3.2. Region based rule learning methods
Two methods are discussed in this section, first a fast but efficient technique

and then a more elaborate one.

• The Fast Prototyping Algorithm (FPA) [17] consists of generating the rules
that, out of all possible combinations of antecedents, satisfy the following

10

Author-produced version of the article published in Information Sciences, 2011, N°181(20), p.4409-4427.
The original publication is available at http://www.sciencedirect.com
Doi: 10.1016/j.ins.2011.03.025

criterion: the rule matching degree w is higher than a given threshold µt for
more than a given number of data rows.

Two strategies are available to compute the conclusion for a particular rule:
the first only retains the data rows that most activate the rule, the second one
all data rows that match it above µt. The subset so defined is called Dr.

The conclusion Cr of the rth rule is computed from the selected data in the
subset Dr, which are used as prototypes, whence the method name.

– for classification cases, the conclusion is assigned the majority class,

– for regression cases, it is equal to:

Cr =

∑
i∈Dr

mr(xi) ∗ yi∑
i∈Dr

mr(xi)
(6)

FPA gives a quick summary of the data set in the form of fuzzy rules that
can be further tuned through optimization procedures on a test set. It is
efficient for large data sets.

• Fuzzy Decision Trees (FDT), which are an extension of classical decision
trees [9, 31], constitute a popular elaborate application of region based me-
thods. The FDT proposed in FisPro are based on the algorithm presented
in [40]. The FisPro implementation relies on a predefined fuzzy partition of
the input variables, which is left untouched by the tree growing algorithm.

Starting from a root node including all data set items, the FDT uses a re-
cursive procedure to split each node into Mj child nodes, where Mj is the
number of fuzzy sets in the jth input variable partition selected for the split.
For each node, the algorithm selects the variable that maximizes the gain ac-
cording to a discriminant criterion:

Gj
n = In −

Mj∑
m=1

wmIn,m (7)

where In,l is the criterion for the node, created by the split onto the jth
variable into Mj MFs, and corresponding to the mth MF.

wm is the relative weight of the mth MF, µm(xji) the membership of xji in
the mth MF.

11

Author-produced version of the article published in Information Sciences, 2011, N°181(20), p.4409-4427.
The original publication is available at http://www.sciencedirect.com
Doi: 10.1016/j.ins.2011.03.025

Let µn
i = µn(xi) denote the membership of the ith example in the nth node,

the child of the (n-1)th node. It is recursively defined as:{
µ0
i = 1

µn
i = µn−1

i ∧ µm(xji)

An interesting feature of FDT is their ability to adapt to different kind of
outputs: continuous numerical outputs or discretized outputs that represent
classes, by using a suitable splitting criterion.

– If the output is a class, the absolute gain criterion is based on the
definition of the fuzzy entropy for the nth node:

In = −
K∑
k=1

pklog(pk) (8)

where k is an output class, K is the total number of classes and pk is
the fuzzy standardized kth class ratio at node n. It is calculated as
follows.
Let µk(yi) denote the membership of the output value yi in the MF
associated to the output class k.
Then pk is given by Equation 9:

pk =

A∑
i=1

µk(yi) ∧ µn
i

K∑
c=1

A∑
i=1

µc(yi) ∧ µn
i

(9)

where A is the number of active rows defined in section 2.1.1.
A relative entropy gain criterion is also available to avoid the bias
against variables with an unequal distribution of examples (not classes)
between the various MFs.

– If the output is continuous, the criterion is based on the output variance
of all examples attracted by the node:

In =
N∑
i=1

µn
i (yi − ȳi)2 (10)

12

Author-produced version of the article published in Information Sciences, 2011, N°181(20), p.4409-4427.
The original publication is available at http://www.sciencedirect.com
Doi: 10.1016/j.ins.2011.03.025

FDT have several assets. They provide a flexible, compact and interpretable
representation. They also determine a sorting order for influential variables,
with the most discriminating variables appearing near the root. Therefore,
they are useful for selecting the more relevant variables prior to applying
another learning technique.

Currently available parameters include the tree depth, the minimum mem-
bership µt for a data row to be considered in the process, and the accuracy
loss allowed for pruning a branch. A test set can be used for pruning, which
may be different from the set used for tree learning.

A tree equivalent FIS is obtained by creating a fuzzy rule for each path
leading to a terminal node (leaf). The assigned conclusion is based on the
majority class or average value, computed over all examples attracted by
the leaf. The tree equivalent FIS rule base is composed of incomplete rules,
where only the influential variables appear in each rule premise.

Their main drawbacks are their sensitivity to small variations in the data
set and the fast growth of the tree size, especially for continuous outputs.
Therefore a good practice is to prune the tree by transforming a node into a
leaf node, according to an accuracy criterion computed on a test set.

2.3.3. Prototype based rule learning methods
In contrast to region based learning methods, where it is easier to guarantee

interpretability because of the use of predefined regions, this is not so easy for
prototype based learning methods. Many works found in the literature use the
Gaussian unbounded MF or assign different MF centers for each data row.

In FisPro, we constrain the prototype based learning techniques to use a prede-
fined interpretable partitioning to overcome these difficulties. We now introduce
two such techniques: the first one was especially designed for fuzzy systems and
the second is inherited from statistical methods.

• Wang & Mendel [39] originally proposed the following procedure, called
WM:

1. Each variable of the input space is automatically divided into a user
defined number of triangular membership fuzzy sets.

2. One fuzzy rule is generated for each data row, in the form given in
Section 2.3.1.
The fuzzy sets Aj

i are those that maximize the matching degree of xji
for each input variable j from the ith row. The fuzzy set Ci is the one
that maximizes the observed output matching degree.

13

Author-produced version of the article published in Information Sciences, 2011, N°181(20), p.4409-4427.
The original publication is available at http://www.sciencedirect.com
Doi: 10.1016/j.ins.2011.03.025

3. A degree mr is assigned to each rule according to Equation 5. In case
two rules have identical premises, only the one with the higher degree
is kept.

4. The output is computed by centroid defuzzification.

In the FisPro implementation, to comply with our interpretability require-
ments, the first step is removed and the fuzzy rules are generated for the
preexisting fuzzy partitions.

Therefore the generated rules are not centered on the data set examples, and
WM is no longer a purely prototype based method, as the fuzzy partitions
delineate fuzzy regions. However, if we compare it with FPA, the main
difference stems from the way the rule conclusions are initialized. With
FPA, they are calculated using a subset of examples, whereas WM only
considers a single item.

The WM procedure allows the rule base to be adaptive: new rules compete
with existing ones. One drawback is the rough management of conflicts
between rule conclusions, which are resolved by selecting the more repre-
sentative one in the data set.

• Fuzzy Orthogonal Least squares (OLS) is an advanced example of a pro-
totype based learning method. The technique is inspired by linear regres-
sion model fitting. Wang and Mendel [38] introduced the use of Fuzzy
Basis Functions to map the input variables into a new linear space. In their
original implementation, OLS are even more prototype oriented than WM,
with each data row being used for straightforward rule initialization using a
Gaussian MF centered on the corresponding data values.

Figure 3 illustrates a flowchart describing the two pass method used in the
original OLS and the modifications introduced in the FisPro implementation
to increase interpretability. All details can be found in [12].

The algorithm allows us to use a test set for the second pass that is diffe-
rent from the learning set used for the first pass. Two stopping criteria are
available: the amount of explained variance and the number of rules.

Indeed a great advantage of fuzzy OLS rule learning is its ranking of the
rules in the rule base in decreasing order of explained output variance.

A side effect is the easy detection of outliers, by checking whether the rules
that come out first are matched by only a few data items. The sensitivity to
outliers could be a drawback, if it is not carefully monitored.

14

Author-produced version of the article published in Information Sciences, 2011, N°181(20), p.4409-4427.
The original publication is available at http://www.sciencedirect.com
Doi: 10.1016/j.ins.2011.03.025

N samples

r rules

Second Pass

Matrice P (Nxr)

r Rule conclusions

Least squares

First Pass

Matrice P (NxN)

r Selected Rules

Rule selection

MF design

FBF Building

N rule Initialization

Non linear

Linear

regression

Partition design

(sorted by explained variance)

Vocabulary reduction:

r rules with c < r
distinct conclusions

Figure 3: Flowchart for the modified OLS algorithm implemented in FisPro

15

Author-produced version of the article published in Information Sciences, 2011, N°181(20), p.4409-4427.
The original publication is available at http://www.sciencedirect.com
Doi: 10.1016/j.ins.2011.03.025

Table 3 gives a summary of the various features and parameters for the four
methods presented above. The method category and rule nature, complete or in-
complete, is specified. The minimum matching degree µ is relevant to all methods,
except WM, and refers to the minimum rule matching degree for a data item to be
significant. It increases the method robustness. The parameter #ro., which is the
minimum number of data rows that must match the rule to keep it in the rule base,
appears only in FPA. It could easily be introduced into WM, for the removal of
rules that are weakly represented within the data set, or into FDT.

Other specific parameters mentioned previously for each method are indicated
in the third parameter related column.

When the observed output is a continuous value, we have a regression case,
denoted R. When the objective is to predict a class label of the observed output,
we have a classification case, denoted C.

The FIS output type and the aptitude to model regression/classification cases
are indicated in the last two columns.

For all methods except OLS, which is designed for crisp outputs only, the FIS
output type is either crisp, corresponding to Sugeno FIS, or fuzzy for Mamdani
FIS. Because of the way rule conclusions are assigned, WM is well suited to clas-
sification cases. Although classical decision trees are often used for classification
purposes, fuzzy ones are of great interest also for modeling regression cases be-
cause of their interpolation capabilities. FDT were also found to be good rankers,
as shown in [24].

Method Category Rules Parameters Test set Output R/C
µ #ro. Specific

FPA region comp. x x strategy crisp/fuzzy R/C
FDT region incomp. x gain x crisp/fuzzy R/C
WM prototype comp. crisp/fuzzy C/R
OLS prototype comp. x expl. var. x crisp R

#rules

Table 3: Main features and parameters of some rule learning methods - R denotes regression, and
C denotes classification

2.4. Variable granularity and selection
Independently of the rule induction and partitioning methods, the selection

of variables and the choice of the appropriate granularity are recurrent questions

16

Author-produced version of the article published in Information Sciences, 2011, N°181(20), p.4409-4427.
The original publication is available at http://www.sciencedirect.com
Doi: 10.1016/j.ins.2011.03.025

in FIS design, and more generally in Machine Learning. The goal of this sec-
tion is not to offer a general and thorough view, which can be found in [23], but
to highlight original approaches implemented in FisPro to dealing with variable
granularity and rule base simplification.

Recall that FDT includes a selection variable process, as mentioned in section
2.3.2 and it yields incomplete rules.

2.4.1. Refinement
The refinement procedure aims to determine the suitable number of terms for a

given variable by exploiting the hierarchies of fuzzy partitions presented in section
2.2.

The key idea is to introduce as many variables, described by a sufficient num-
ber of fuzzy sets, as are necessary to get a good rule base. A good FIS represents a
reasonable trade-off between complexity, determined by the number of rules, and
accuracy, measured by the performance index, denoted Perf in the algorithms.

The refinement procedure is responsible for the selection of the variables or
fuzzy sets to be introduced in the FIS. Let p be the number of input variables,
FP

nj

j the fuzzy partition of the variable j of size nj , where the fuzzy set centers

are the coordinates given by the hierarchy, FP nj

j = {MF
k/nj

j , k = 1, . . . , nj},
where MF

k/nj

j refers to the kth membership function of the nj-term fuzzy parti-
tion for the jth variable.

The initial FIS is the simplest one possible with a single rule (Algorithm 1,
lines 1-2). The search loop (lines 5 to 14) builds up temporary fuzzy inference
systems, each of which corresponds to adding to the initial FIS one fuzzy set in
a given dimension. The dimension to retain is selected in lines 18-19. Following
this selection, the FIS to be kept is built up. It will serve as a base to iterate the
sequence (lines 3 to 23).

Thus, the result of the procedure is not a single FIS but a seriesFIS1, F IS2, . . .
of increased complexity.

When necessary, the procedure calls a FIS generation algorithm, denoted as
Algorithm 2, which is now detailed.

The rules are generated by combining the fuzzy sets of the FP nj

j partitions for
j = 1, . . . , p, as described by Algorithm 2. The algorithm then removes the less
influential rules and evaluates the rule conclusions.

wr(xk) is the matching degree of example k with rule r. The condition stated
in line 4, where CVt is a given threshold, ensures that the rule is significantly fired
by the training set examples.

17

Author-produced version of the article published in Information Sciences, 2011, N°181(20), p.4409-4427.
The original publication is available at http://www.sciencedirect.com
Doi: 10.1016/j.ins.2011.03.025

Algorithm 1: Refinement procedure
1 Initialization: iter = 1, ∀j nj = 1
2 CALL FIS Generation (Algorithm 2)
3 while iter ≤ itermax do
4 Store system as base system
5 for 1 ≤ j ≤ p do
6 if nj = nmax

j then
7 next j
8 // partition size limit for input j
9 nj = nj + 1

10 CALL FIS Generation (Algorithm 2)
11 Perfj = Perf
12 nj = nj - 1
13 Restore base system
14 end
15 if ∀j nj = nmax

j then
16 exit // no more inputs to refine
17 // Select input to refine
18 s = argmin {Perfj, j = 1, . . . , p, nj < nmax

j }
19 ns = ns + 1
20 CALL FIS Generation (Algorithm 2)
21 keep FISiter

22 iter = iter + 1

23 end

18

Author-produced version of the article published in Information Sciences, 2011, N°181(20), p.4409-4427.
The original publication is available at http://www.sciencedirect.com
Doi: 10.1016/j.ins.2011.03.025

Algorithm 2: FIS generation
input : {nj | j = 1, ..., p}, FP nj

j ∀j = 1, ..., p

1 Generate the
∏p

j=1 nj rule premises
2 forall the Rule r ∈ FIS do

3 CVr =
n∑

k=1

wr(xk)

4 if CVr < CVt then
5 remove rule r
6 else
7 initialize rule conclusion
8 end
9 end

10 Compute Perf

The rule conclusion initialization, line 7, depends on both the rule induction
method - either WM or FPA can be used - and on the system output type, regres-
sion or classification.

As noted above, the outcome of the procedure is not a single fuzzy inference
system, but K FIS of increasing complexity. The best one is selected based on the
performance and the coverage indices.

2.4.2. Simplification
Most of the induction methods, fuzzy decision trees being a noticeable excep-

tion, yield bases consisting of rules described by the same set of input variables.
We call such bases complete rule bases.

In these complete rule bases, it is somewhat difficult to give a meaning to the
rules. All variables are showing up equally in all rules. If we wish to interpret
the rules as interaction rules, it is important to think of a means to privilege the
strongest interactions. A good way to do so is to try out a simplification procedure
leading to an incomplete rule base, where some variables (one or more) appear in
some rules only.

The elimination of variables in order to obtain incomplete rules could be un-
dertaken at different levels. Many existing methods remove variables from the
whole rule base, on the faith of overall indicators which could be misleading.
Other techniques remove variables from one rule at a time, not considering any
relationship that could exist between the rules. We favor an intermediate selection

19

Author-produced version of the article published in Information Sciences, 2011, N°181(20), p.4409-4427.
The original publication is available at http://www.sciencedirect.com
Doi: 10.1016/j.ins.2011.03.025

level, which is an attempt to make up for these difficulties. This intermediate level
is chosen as the level of a group of rules with a common context. Our main axis
in the simplification procedure focuses on the merging of some rules into a more
generic incomplete rule.

A group of rules is a set of rules whose premises only differ by a single fuzzy
set label, corresponding to the same variable v.

The procedure consists of examining each group of rules to see if it can be
replaced by a generic incomplete rule, formed by removing the variable v in each
of the premises of the rules that constitute the group. These rules are all identical
within the group, so they can be replaced by a single new rule.

In the illustration of Figure 4, the group consists of three rules that only differ
by the label of V2. The procedure merges them into the Rg rule defined only by
the variables V1 and V3.

Rule 3 1 2 ⇐⇒ IF V1 is 3 and V2 is 1 and V3 is 2 THEN . . .

R1 : 3 1 2
R2 : 3 2 2
R3 : 3 3 2

⇐⇒ Rg : 3 0 2 If V1 is 3 and V3 is 2 then . . .

Figure 4: Group rule merging

The merging is guided by the performance index (as defined in section 2.1.2
for regression and classification cases), but also by a careful examination of the
heterogeneity of the output. For regression cases, it is computed as the ratio of
the output variance of the N r items matching the rule standardized by the similar
computation for the whole data set, according to Equation 11.

Hr =
σr

σ
(11)

The calculations of σr and σ are detailed in Equation 12.

σ =
1

N

N∑
i=1

(yi − ȳi)2, σr =

Nr∑
i=1

wr(xi)(yi − ȳi)2

Nr∑
i=1

wr(xi)

(12)

20

Author-produced version of the article published in Information Sciences, 2011, N°181(20), p.4409-4427.
The original publication is available at http://www.sciencedirect.com
Doi: 10.1016/j.ins.2011.03.025

For classification cases the index is computed as a normalized entropy as
shown in Equation 13, where pk is the ratio of examples with class k among those
matching the rule.

Hr =

−
K∑
k=1

pklog(pk)

logK
, pk =

Nr∑
i=1

wr(xi)dk(x)

Nr∑
i=1

wr(xi)

(13)

where dk is the characteristic function of class k; dk(x) = 1 if x belongs to
class k, 0 otherwise.

Why bother with this index?
To gain interpretability, we can tolerate a loss of performance. However, we

must be cautious about the consequences of the widening of the space potentially
covered by the new rule. If the output heterogeneity associated to the new rule
is too high, then the replacement should not be made. Nevertheless, some he-
terogeneity is unavoidable and even desirable. It keeps the rules from being too
specific.

The simplification procedure is an iterative one. If the rule belongs to at least
one group that is to be replaced by a generic rule, the replacement will be made
and the original rule will be removed from the base. Indeed, the generic rule
covers a wider multidimensional space than the original one.

Redundancy is likely to occur in the generated rule base, as there is no re-
dundancy control during the generation phase. To overcome this drawback, rules
of the base issued from the simplification procedure are tentatively removed one
after the other.

The simplification procedure can be applied to any rule base, whatever the
induction method.

These three approaches, fuzzy decision trees, refinement and simplification
are illustrated with case studies in Section 4.

2.5. Concluding remarks
Some general points are worth noting when using FIS learning methods. Some

regions of the input domains may not be handled by the FIS. For instance, this
could happen for regions that are hardly (or not at all) represented in the learning
data set. This is the price to pay to improve generalization.

Regarding the output domain, as the fuzzy inference engine classically inter-
polates between rules, some output values may be inferred even if they do not

21

Author-produced version of the article published in Information Sciences, 2011, N°181(20), p.4409-4427.
The original publication is available at http://www.sciencedirect.com
Doi: 10.1016/j.ins.2011.03.025

correspond to a rule conclusion. This possibility is interesting for modeling con-
tinuous phenomena, it but must be avoided in non-ordered classification cases by
choosing a suitable defuzzification operator, as illustrated in Section 4.2.

Learning methods implemented in FisPro yield coherent non-contradictory
rules.

However, the simplification of the rule base may lead to systems where a rule
is included within another. In that case, both rules are considered during the in-
ference process, which does not include any checking mechanism for such a phe-
nomenon. FisPro actually proposes another inference mechanism (see [27] for
details), adapted to fuzzy implicative rules, where partially redundant rules are
handled in a more proper way. The KBCT [2] software also has an option to
eliminate redundant rules from a fuzzy rule base.

A flowchart is displayed in Figure 5 to provide some guidelines for the main
choices during FIS generation. The main steps are summarized from top to bot-
tom. If expert knowledge is available, input partitioning can be done by hand;
otherwise, the input partitions can be designed entirely from the data, using
k-means or hfp.

The output design depends on the nature of output data: categorical data
(classes) or numerical continuous data.
In the first case, the output nature is crisp, whereas in the second case it can be
crisp for Sugeno FIS, or fuzzy for Mamdani FIS. The choice of the appropriate
defuzzification operator is described in Figure 5.

In FisPro, the rule aggregation operator is selected at the output level, with a
choice between max and sum (for conjunctive rule systems).

There is no universal best choice of the rule learning method. However, if the
number p of input variables is large, it is recommended to do first a variable se-
lection procedure, for which Fuzzy Decision Trees are particularly suitable. Once
p is sufficiently small, the appropriate rule method may be WM for classification
problems. For continuous outputs, when the number n of examples is not too
high, Fuzzy Decision Trees can be the best choice, as they have a good interpolat-
ing capability. When n is large, a statistically inspired method like OLS will do
very well to extract the most significant rules and pinpoint the outliers, while FPA
will run faster and give an image of the data prototypes.

Independently of the way the FIS was designed, the rule base can be simpli-
fied, as explained in section 2.4.2. FisPro also includes an optimization module,
which allows us to optimize any FIS component with interpretability constraints.
The simplification and optimization procedures can be performed using a valida-
tion data set.

22

Author-produced version of the article published in Information Sciences, 2011, N°181(20), p.4409-4427.
The original publication is available at http://www.sciencedirect.com
Doi: 10.1016/j.ins.2011.03.025

Crisp Max CrispClassif

AND input combination

Input
min: interpretable

product: differentiable

Expert Knowledge, regular grid

From data: k−means, hfp
Partition design

Fuzzy

Crisp Sugeno

Mean of Max

Area

(Interpolation)

(No interpolation)

Aggreg
max: interpretable

sum: differentiable

Continuous

DefuzType Nature

(No interpolation)

(Interpolation)

Generate FIS without rules

Rules

Rule base Simplification − System Optimization

p large FDT

p average

Classif

n average FDT

n large

OLS

FPA

Incomplete rules − Variable selection

WM

Continuous

Output

Figure 5: Flowchart for learning with FisPro - n is the number of data rows; p is the number of
input variables.

23

Author-produced version of the article published in Information Sciences, 2011, N°181(20), p.4409-4427.
The original publication is available at http://www.sciencedirect.com
Doi: 10.1016/j.ins.2011.03.025

Let us briefly consider the complexity of the rule learning methods. If we
neglect the number of MFs per variable, the time complexity only depends on the
number of rows n in the data set, and the number p of input variables. FPA and
WM have a complexity of O(np), FDT has a complexity of O(np!), while OLS
has a complexity of O(n3).

Obviously, FisPro current limits will first be reached for the rule induction
using the OLS algorithm, which may also be limited by the available memory
because it requires the storage of a square size n matrix. On an Intel Pentium 4
CPU 3.40GHz with 1 Gigabyte memory, an OLS rule learning procedure takes
about 30 s for a data set with 54000 rows.

Parallel computing could be used to circumvent the current limits of FisPro. It
is already available to speed up inference calculations with an OpenMp compliant
implementation.

3. FisPro

Fuzzy software was first developed for the needs of fuzzy control, the popu-
larity of which has been asserted in the 1990s. Industrial as well as academic
software became available, and the targeted audience was control engineers, who
used fuzzy software as an alternative in the domain of control system design.
When elaborate learning methods became more mature and when fuzzy logic ex-
panded to other fields of interest, more general fuzzy software appeared to provide
these methods.

A special session on software for soft computing was organized at the 2007
FuzzIEEE conference [25]. A comprehensive review of fuzzy software, an inter-
esting discussion of useful features, and a call for building a fuzzy tool kit that
supports the take-up of fuzzy systems in business applications can be found in
[29], which appeared in the proceedings. During the same conference, some ad-
vanced software projects were presented, such as FrlDA [7], a free intelligent data
analysis toolbox, or Xfuzzy [5]. Xfuzzy is a development environment that in-
tegrates a set of tools to help the user through the several stages involved in the
process of designing fuzzy logic-based inference systems.

The FisPro toolbox is an open source toolkit for interpretable FIS design
using expert knowledge and data. It stands out among fuzzy software products,
because of the interpretability of the fuzzy systems automatically learnt from data,
guaranteed in each step of the FIS design, according to the principles detailed in

24

Author-produced version of the article published in Information Sciences, 2011, N°181(20), p.4409-4427.
The original publication is available at http://www.sciencedirect.com
Doi: 10.1016/j.ins.2011.03.025

Section 2: variable partitioning, rule induction, optimization. We now present the
main features that are useful for FIS learning.

3.1. Sample generation
Sample files may be generated by random sampling from a data file. There are

two possibilities: to generate learning and test pairs or blocks.
In the first case, each pair includes a sample file and its complement, with a

given relative sample file size. In the second case, the procedure splits the data
file into K blocks for K-fold cross validation procedures.

Sampling can be done so as to respect the class proportions in a data file.

3.2. Fuzzy partitioning and FIS with no rules
Visualization tools are available to examine partitions and data jointly. An

example is given in Figure 6. The X axis range is set to the input variable range,
while the Y axis ranges from 0 to 1 for the fuzzy partition (bottom part) and from
0 to the maximum number of elements in a class (top part). This visualization is
useful to examine the concept significance in relation to actual data.

Figure 6: Examples of fuzzy partition and data distribution - auto data set, fourth variable (horse-
power)

25

Author-produced version of the article published in Information Sciences, 2011, N°181(20), p.4409-4427.
The original publication is available at http://www.sciencedirect.com
Doi: 10.1016/j.ins.2011.03.025

FIS with no rules can be generated by all partitioning methods: k-means, re-
gular grids, or hfp hierarchy, and it can be reused in any further rule learning
procedure.

3.3. FIS learning
When a data file is open in FisPro, it becomes available as a learning set.

Variable histograms, two and three dimensional plots are proposed to examine
the data distribution and the correlations between variables. Data rows can be
individually activated or deactivated from the plots or from the data array viewing
window.

Likewise, input variables may be activated or deactivated, and all modifica-
tions are automatically passed on to the learning set that will be used for learning.

Rule learning methods are assigned their parameters through a user-friendly
interface, with the possibility to use test files when they are relevant to the method.

Links between rules and data can be evaluated using a utility function that
creates several files. One contains the number of items that activate each rule
beyond the µ threshold parameter and the cumulative weight of the rule over the
data file. Another one indicates the rules matched by each data row, and the third
one contains a square matrix, whose size is equal to the number of rules, and for
which the i, j cell gives the corresponding linkage level, calculated as:

Li,j =
Ni,j

Ni

where Ni is the size of the subset Ei of the items that activate the ith rule, and
Ni,j is the size of Ei ∩ Ej .

3.4. Viewing results
After learning, the FIS performance can be calculated on a whole data set, and

a summary of coverage and accuracy results is displayed. For regression cases,
several plots are available: histograms, X-Y plots with or without a regression line,
error plots, and response surfaces. For small data files, an exploratory analysis
may be done by moving the mouse over a data point and displaying its row number
and the activated rule numbers (beyond a given µ).

For a classification system, the result is presented as a confusion matrix (an
example is given in Figure 9, Section 4.2).

26

Author-produced version of the article published in Information Sciences, 2011, N°181(20), p.4409-4427.
The original publication is available at http://www.sciencedirect.com
Doi: 10.1016/j.ins.2011.03.025

Specific graphical representations are available for FDT, in table or graph
form, with relevant information including the number of examples attracted by
a leaf, the fuzzy cardinality per leaf, and the entropy or deviance per leaf.

Examples of specific plots are given in section 4.

4. Case studies

In this section, the ability of FisPro to design accurate and interpretable FIS
is illustrated in three case studies. The two first case studies are well known data
sets from the UCI repository [14], one is a regression problem, and the other one
deals with classification. The data sets are the following:

• auto-mpg (392 samples):
From the StatLib library maintained at Carnegie Mellon University, this
case concerns the prediction of city-cycle fuel consumption in miles per
gallon from four continuous and three multi-valued discrete variables.

• wine (178 samples):
The data set contains samples that are grown in the same region of Italy
but derived from three different cultivars. The numbers of instances in each
class are: 59, 71 and 48. Each pattern consists of thirteen continuous fea-
tures resulting from chemical analysis.

The last data set used is related to pesticide losses during spraying.

4.1. Regression case
The first step for FIS design is to build the fuzzy partitions. This is done using

the Generate FIS without rules option. The number of terms is set to three for
all of the input variables, and the k-means algorithm is used. The min is used for
premise combination, the output is crisp, and the defuzzification operator is the
Sugeno weighted average, given in Equation 14.

ŷ =

R∑
r=1

mr(x)Cr

m∑
r=1

mr(x)
(14)

mr(x) is defined in Equation 5, and R is the number of rules.
The rules are then induced with the OLS method using a ten-fold cross vali-

dation. Ten pairs of training (75%) and test (25%) sets are randomly chosen. For

27

Author-produced version of the article published in Information Sciences, 2011, N°181(20), p.4409-4427.
The original publication is available at http://www.sciencedirect.com
Doi: 10.1016/j.ins.2011.03.025

each pair, the rule induction is based on the training set, while the performance
evaluation is based on the corresponding test one.

The number of induced rules is chosen to be equal to 19 in order to ensure a
sufficient accuracy. It is measured by the Mean Absolute Error (MAE) defined in
Equation 2.

The average results over the ten test sets yield a MAE of 2.23 with a coverage
index of 97%. The standard deviations of the MAE and coverage index are equal
to 0.18 and 1.9, respectively, which show a satisfactory robustness of the learning
procedure.

To illustrate the system’s behavior, we use the FIS generated by the third pair,
for which the results are close to the average ones.

Figure 7 shows a screenshot from FisPro.

Figure 7: Auto-mpg: Inference on test sample#3 with FIS built from training sample #3

Three examples do not fire any rules, and are set to a user defined default
output value of 5, in order to easily identify them. Mouse-over events are enabled
to get row number information (44, 54 and 70).

As said previously, OLS generates complete rules. We do not expect all of
the variables to be necessary in all of the rules. The simplification procedure is

28

Author-produced version of the article published in Information Sciences, 2011, N°181(20), p.4409-4427.
The original publication is available at http://www.sciencedirect.com
Doi: 10.1016/j.ins.2011.03.025

applied to the FIS induced from sample #3, with the same training data.
The new rule base is simpler: it has 12 rules instead of 19, and 5 of them

are incomplete rules. Nevertheless, the system is still accurate: the new RMSE,
measured over the whole data set is 0.0101 instead of 0.0098, i.e. a 3% loss.
Readers can refer to [12] for a compared study of performance results on these
data.

4.2. Classification case
First a FIS without rules is generated with three fuzzy sets by variable, us-

ing a k-means procedure. The output is crisp with a classification flag enabled,
meaning that the output is a class discrete value. To avoid rule interpolation the
defuzzification operator chosen is a special one called max crisp, defined below.

Let m be the number of distinct rule conclusion values and Cr the conclusion
of the rth rule. A given x input vector matches the rth rule to a degree denoted
wr(x). The cumulative weights are calculated for all distinct values j, and the
inferred output is the j value that corresponds to the maximum weight.W j =

∑
r

mr(x) | Cr = j

ŷ = argmax
(
W j
)
|j = 1 . . .m

(15)

WM is used for rule induction. As the input space is relatively large, the num-
ber of cells is 313 and there are few items in a given cell (subspace). This yields
133 rules. As the number of rules is comparable with the training set size, the rule
base cannot claim to be general.

FPA is an alternative for rule induction. The FisPro default parameters, at
least 3 samples that match a rule to a degree higher than 0.3, lead to a huge rule
base with 2506 rules. The number of rules could be reduced using the control
parameter, but this would give a poor image of the data. Despite the high number
of rules, the inference results are not really good: 50 misclassified items with FPA
and 15 with WM.

In such a case, it is better to reduce the input space before rule induction. The
refinement procedure is then applied, using WM as the rule induction method.

Table 4 summarizes the main results. The first variable to be introduced is
V 12. At this step, there are only two rules in the rule base, and 79 items are
misclassified.

As new variables are automatically introduced or refined, the number of error
cases decreases. The coverage index, as defined in Section 2.1.1, remains equal to
1 for all of these configurations.

29

Author-produced version of the article published in Information Sciences, 2011, N°181(20), p.4409-4427.
The original publication is available at http://www.sciencedirect.com
Doi: 10.1016/j.ins.2011.03.025

MC V1 V2 V3 V4 V8 V10 V11 V12 V13 #R
79 1 1 1 1 1 1 1 2 1 2
32 1 1 1 1 1 1 1 2 2 4
19 1 1 1 1 1 1 2 2 2 7
12 1 1 1 1 1 2 2 2 2 12
11 1 2 1 1 1 2 2 2 2 19

9 1 2 2 1 1 2 2 2 2 33
8 1 2 2 2 1 2 2 2 2 52
5 2 2 2 2 1 2 2 2 2 67
3 2 2 2 2 1 2 3 2 2 78
2 3 2 2 2 1 2 3 2 2 94
1 3 2 2 2 2 2 3 2 2 108

Table 4: Wine refinement procedure

The final choice results from a trade-off between accuracy and model com-
plexity. The 12 rule FIS, presented in Figure 8, appears to be a good compromise,
with a misclassification rate equal to 12/178, i.e. 6.7%.

Figure 8: Wine: The selected rule base

Figures 8 and 9 show the selected rule base and the corresponding confusion
matrix. Reference results are available in the literature [34]. We do not present a
detailed study here, but, as in the regression case introduced in Section 4.1, cross
validation procedures can be applied to sampled data sets to test the robustness of

30

Author-produced version of the article published in Information Sciences, 2011, N°181(20), p.4409-4427.
The original publication is available at http://www.sciencedirect.com
Doi: 10.1016/j.ins.2011.03.025

Figure 9: Wine: The confusion matrix

the algorithms.

4.3. Pesticide loss modeling
These data are part of an experiment whose goal is to study the influence of

micro-meteorological factors on pesticide loss to the air during vine spraying. A
thorough description of both the problem statement and the results can be found
in [16].

The spraying is achieved using air assisted devices to aid the transport of the
droplets toward the target. The modeling objective is to propose a relationship
between the proportion of product lost in the atmosphere, given as a percentage
of the total volume (%), and some micro-meteorological variables. The following
variables are considered:

• W : Wind speed (m/s)

• T : Air temperature (oC)

• ∆T : Wet bulb temperature depression (oC)

• z/L : Atmosphere stability parameter

The data are difficult to measure, and the sample size is small: 32 experiments.
We proceed as follows: first we use the refinement procedure described in Section
2.2 to select the best number of fuzzy sets per input variable, except for the Wind
speed, which is a three-term expert designed partition, shown in Figure 10. It is in
agreement with the Beaufort scale, leading to highly interpretable rules, as each
linguistic label corresponds to a Beaufort degree.

The refinement procedure selects four fuzzy sets for the second and fourth
variable, and two for the third one.

Then, a fuzzy regression decision tree is generated with a minimum µ equal to
0.3. It is pruned to allow different temporary accuracy losses: 5% and 30%. The

31

Author-produced version of the article published in Information Sciences, 2011, N°181(20), p.4409-4427.
The original publication is available at http://www.sciencedirect.com
Doi: 10.1016/j.ins.2011.03.025

Figure 10: Wind Speed fuzzy input partition for pesticide loss data

#rules Tree avg #var. per rule RMSE
29 initial tree 3.4 0.021
14 first pruned tree 2.4 0.016
6 final pruned tree 2.0 0.019

Table 5: Tree equivalent FIS features for pesticide loss - initial and pruned trees

results are shown in Table 5, including the accuracy and the average number of
variables per rule, and the six leaf pruned decision tree is displayed in Figure 11,
with each leaf labeled by the number of attracted data rows and their mean value.

The tree is very easy to interpret: two rules include only one variable, two
others include two variables, and the last two rules include three variables. This
kind of system can be used to recommend suitable spraying periods: avoid windy
times, but even if the wind velocity is moderate, prefer times when air temperature
is high to minimize losses.

32

Author-produced version of the article published in Information Sciences, 2011, N°181(20), p.4409-4427.
The original publication is available at http://www.sciencedirect.com
Doi: 10.1016/j.ins.2011.03.025

Figure 11: Fuzzy decision tree for pesticide loss data

33

Author-produced version of the article published in Information Sciences, 2011, N°181(20), p.4409-4427.
The original publication is available at http://www.sciencedirect.com
Doi: 10.1016/j.ins.2011.03.025

5. Conclusion

This work has endeavored to present a generic approach to the design of inter-
pretable data-driven FIS for system modeling and its implementation in an open
source software called FisPro1.

The approach addresses several FIS design related topics, including fuzzy par-
titioning, rule learning, variable selection and rule base simplification.

It has been illustrated on data sets of varying natures: regression and classifi-
cation benchmarks, and a short case study in the field of environmental modeling.

Several real world modeling problems in various fields - food science, image
analysis and agriculture - were treated in collaboration with the authors of FisPro.
The reader can find more details in the following references [16], [21], [19], [13],
[37].

The main features of FisPro related to FIS learning were described, as well the
available learning methods and the dynamical interface and exploratory analysis
tools that allow interactive design.

In addition to the user-friendly FisPro interface, the learning programs are
also available as C++ self contained source code, which allows them to be called
from a line command and easily included in batch scripts for cross validation
procedures. This functionality, associated with automatic sampling procedures,
allows the system to run intensively computational procedures and facilitates the
testing of the algorithm’s robustness and efficiency.

Modular and open source, the FisPro software project welcomes contributions
from artificial intelligence scientists or engineers. It has already been used for
modeling projects in application fields different from the ones cited above and
by researchers from different communities, as shown by the recent references
appearing in the literature [32, 8]. More references are available on the FisPro
Web Site. Hopefully the present paper will serve as a reference for users and will
help them accomplish their modeling tasks.

References

[1] Alonso, J.M., 2010. Guaje: Generating understand-
able and accurate fuzzy models in a java environment.
http://www.softcomputing.es/guaje.

1freely available at http://www.inra.fr/Internet/Departements/MIA/M/fispro

34

Author-produced version of the article published in Information Sciences, 2011, N°181(20), p.4409-4427.
The original publication is available at http://www.sciencedirect.com
Doi: 10.1016/j.ins.2011.03.025

[2] Alonso, J.M., Guillaume, S., Magdalena, L., 2003. Kbct:
A knowledge management tool for fuzzy inference systems.
http://www.mat.upm.es/projects/advocate/kbct.htm".

[3] Alonso, J.M., Magdalena, L., 2010. Guaje - a java environment for gener-
ating understandable and accurate models, in: XV Spanish conference for
Fuzzy Logic and Technology, Universidad de Huelva, Spain. pp. 399–404.

[4] Alonso, J.M., Magdalena, L., Guillaume, S., 2008. Hilk:a new methodology
for designing highly interpretable linguistic knowledge bases using the fuzzy
logic formalism. International Journal of Intelligent Systems 23, 761–794.

[5] Baturone, I., Moreno-Velo, F.J., Snchez-Solano, S., Barrios, A.B., Jimnez,
P.B., Gersnoviez, A., Brox, M., 2007. Using xfuzzy environment for the
whole design of fuzzy systems., in: [25]. pp. 1–6. pp. 1–6.

[6] Bezdek, J.C., 1981. Pattern Recognition with Fuzzy Objective Functions
Algorithms. Plenum Press, New York.

[7] Borgelt, C., Gonzáles-Rodrı́guez, G., 2007. Frida - a free intelligent data
analysis toolbox, in: [25]. pp. 1–5. pp. 1–5.

[8] Bossomaier, T., Standish, R.K., Harré, M., 2010. Simulation of trust in
client-wealth management adviser relationships. International Journal of
Simulation and Process Modelling 6, 40–49.

[9] Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J., 1984. Classification
and Regression Trees. Wadsworth International Group, Belmont CA.

[10] Casillas, J., Cordón, O., Herrera, F., Magdalena, L., 2003. Interpretability
improvements to find the balance interpretability-accuracy in fuzzy model-
ing: an overview, in: Interpretability Issues in Fuzzy Modeling, Springer.
pp. 3–22.

[11] Chen, M.Y., 2002. Establishing interpretable fuzzy models from numerica
data, in: Proceedings of the 4th World Congress on Intelligent Control and
Automation, IEEE. pp. 1857–1861.

[12] Destercke, S., Guillaume, S., Charnomordic, B., 2007. Building an inter-
pretable fuzzy rule base from data using orthogonal least squares- applica-
tion to a depollution problem. Fuzzy Sets and Systems 158, 2078–2094.

35

Author-produced version of the article published in Information Sciences, 2011, N°181(20), p.4409-4427.
The original publication is available at http://www.sciencedirect.com
Doi: 10.1016/j.ins.2011.03.025

[13] El Hajj, M., Bégué, A., Guillaume, 2009. Integrating spot-5 time series, crop
growth modeling and expert knowledge for monitoring agricultural practices
- the case of sugarcane harvest on reunion island. Remote Sensing of Envi-
ronment 113 (10), 2052–2061.

[14] Frank, A., Asuncion, A., 2010. UCI machine learning repository.

[15] Gacto, M.J., Alcalá, R., Herrera, F., 2010. Integration of an index to preserve
the semantic interpretability in the multiobjective evolutionary rule selection
and tuning of linguistic fuzzy systems. IEEE Transactions on Fuzzy Systems
18 (3), 515–531.

[16] Gil, Y., Sinfort, C., Guillaume, S., Brunet, Y., Palagos, B., 2008. Influence
of micrometeorological factors on pesticide loss to the air during vine spray-
ing: Data analysis with statistical and fuzzy inference models. Biosystems
Engineering 100(2), 184–197.

[17] Glorennec, P.Y., 1996. Quelques aspects analytiques des systèmes
d’inférence floue. Journal Européen des Systèmes automatisés 30 (2-3),
231–254.

[18] Glorennec, P.Y., 1999. Algorithmes d’apprentissage pour systèmes
d’inférence floue. Editions Hermès, Paris.

[19] Goelzer, A., Charnomordic, B., Colombié, S., Fromion, V., Sablayrolles, J.,
2009. Simulation and optimization software for alcoholic fermentation in
winemaking conditions. Food Control 20, 635 – 642.

[20] Guillaume, S., 2001. Designing fuzzy inference systems from data: an
interpretability-oriented review. IEEE Transactions on Fuzzy Systems 9 (3),
426–443.

[21] Guillaume, S., Charnomordic, B., 2004a. Fuzzy Inference Systems to Model
Sensory Evaluation. Intelligent Sensory Evaluation- Methodologies and Ap-
plications, Springer. pp. 197–216.

[22] Guillaume, S., Charnomordic, B., 2004b. Fuzzy models to deal with sensory
data in food industry. Journal of Donghua University 21 (3), 43–48.

[23] Guyon, I., Elisseeff, A., 2003. An introduction to variable and feature selec-
tion. Journal of Machine Learning Research 3, 1157–1182.

36

Author-produced version of the article published in Information Sciences, 2011, N°181(20), p.4409-4427.
The original publication is available at http://www.sciencedirect.com
Doi: 10.1016/j.ins.2011.03.025

[24] Hüllermeier, E., Vanderlooy, S., 2009. Why fuzzy decision trees are good
rankers. IEEE Transactions on Fuzzy Systems 17(6), 1233–1244.

[25] IEEE (Ed.), 2007. FUZZ-IEEE 2007, IEEE International Conference on
Fuzzy Systems, Imperial College, London, UK, 23-26 July, 2007, Proceed-
ings, IEEE.

[26] Jang, J.S.R., Sun, C.T., Mizutani, E., 1997. Neuro-Fuzzy and Soft Comput-
ing. Prentice Hall.

[27] Jones, H., Charnomordic, B., Dubois, D., Guillaume, S., 2009. Practical
inference with systems of gradual implicative rules. IEEE Transactions on
Fuzzy Systems 17 (1), 61–78.

[28] Mencar, C., Fanelli, A.M., 2008. Interpretability constraints for fuzzy infor-
mation granulation. Information Sciences 178 (24), 4585–4618.

[29] Nauck, D.D., 2007. Gnu fuzzy, in: [25]. pp. 1019–1024. pp. 1019–1024.

[30] de Oliveira, J.V., 1999. Semantic constraints for membership functions opti-
mization. IEEE Transactions on Systems, Man and Cybernetics. Part A 29,
128–138.

[31] Quinlan, J.R., 1986. Induction of decision trees. Machine Learning 1, 81–
106.

[32] Rajaram, T., Das, A., 2010. Modeling of interactions among sustainability
components of an agro-ecosystem using local knowledge through cognitive
mapping and fuzzy inference system. Expert Systems with Applications 37,
1734–1744.

[33] Riid, A., Rüstern, E., 2003. Transparent Fuzzy Systems in Modelling and
Control. Interpretability Issues in Fuzzy Modeling, Studies in Fuzziness and
Soft Computing, Vol 128, Springer. pp. 452–476.

[34] Roubos, J.A., Setnes, M., Abonyi, J., 2003. Learning fuzzy classification
rules from labeled data. Inf. Sci. Inf. Comput. Sci. 150, 77–93.

[35] Ruspini, E.H., 1982. Recent developments in fuzzy clustering. Pergamon
Press, New York. pp. 133–147.

37

Author-produced version of the article published in Information Sciences, 2011, N°181(20), p.4409-4427.
The original publication is available at http://www.sciencedirect.com
Doi: 10.1016/j.ins.2011.03.025

[36] Takagi, T., Sugeno, M., 1985. Fuzzy identification of systems and its ap-
plications to modeling and control. IEEE Transactions on System Man and
Cybernetics 15, 116–132.

[37] Tremblay, N., Bouroubi, M., Panneton, B., Guillaume, S., Vigneault, P.,
Bélec, C., 2010. Development and validation of fuzzy logic inference to
determine optimum rates of n for corn on the basis of field and crop features.
Precision Agriculture 11, 621–635.

[38] Wang, L.X., Mendel, J.M., 1992a. Fuzzy basis functions, universal approxi-
mation, and orthogonal least squares learning. IEEE Transactions on Neural
Networks 3, 807–814.

[39] Wang, L.X., Mendel, J.M., 1992b. Generating fuzzy rules by learning from
examples. IEEE Transactions on Systems, Man and Cybernetics 22 (6),
1414–1427.

[40] Weber, R., 1992. Fuzzy-id3: A class of methods for automatic knowledge
acquisition, in: 2nd International conference on fuzzy logic and neural net-
works, pp. 265–268.

[41] Yager, R.R., 2010. A framework for reasoning with soft information. Infor-
mation Sciences 180, 1390–1406.

38

Author-produced version of the article published in Information Sciences, 2011, N°181(20), p.4409-4427.
The original publication is available at http://www.sciencedirect.com
Doi: 10.1016/j.ins.2011.03.025

