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Learning Wheel Odometry and IMU Errors for
Localization

Martin BROSSARD and Silvère BONNABEL
MINES ParisTech, PSL Research University, Centre for Robotics, 60 Boulevard Saint-Michel, 75006 Paris, France

Abstract—Odometry techniques are key to autonomous robot
navigation, since they enable self-localization in the environ-
ment. However, designing a robust odometry system is particu-
larly challenging when camera and LiDAR are uninformative or
unavailable. In this paper, we leverage recent advances in deep
learning and variational inference to correct dynamical and
observation models for state-space systems. The methodology
trains Gaussian processes on the residual between the original
model and the ground truth, and is applied on publicly available
datasets for robot navigation based on two wheel encoders, a
fiber optic gyro, and an Inertial Measurement Unit (IMU).
We also propose to build an Extended Kalman Filter (EKF)
on the learned model using wheel speed sensors and the fiber
optic gyro for state propagation, and the IMU to update the
estimated state. Experimental results clearly demonstrate that
the (learned) corrected models and EKF are more accurate than
their original counterparts.

Index Terms—Gaussian process, odometry estimation, varia-
tional inference, Kalman filter

I. INTRODUCTION

Self-localization and odometry based dead-reckoning esti-
mation are a backbone for numerous robotics applications.
However, designing an efficient odometry system based on
mechanics is an engineering challenge which leads to com-
plex models [1–3], whose performances still depend on un-
modeled effects, e.g., in slippery and unequal terrains such
as outdoors or for planetary rover exploration [1].

The caveats of wheel speed based odometry have in part
prompted the recent interest in visual inertial navigation
systems [4–6]. State-of-the-art odometry systems rely on a
camera or a LiDAR which may be coupled with wheel
speed and/or inertial sensors [4–9]. When camera and LiDAR
become uninformative [8], that is, at night, in the presence
of snow, or in military applications where active sensors are
prohibited, localization based on wheel encoders and inertial
sensors proves useful to select key-frames and more generally
to obtain robust estimates [6].

This paper introduces a method to correct a state-space
observed dynamical model by leveraging recent advances
from the deep learning and variational inference communi-
ties [10–12]. Along the lines of [13,14], we combine the
deterministic model with a Gaussian Process (GP) model to
give more accurate state predictions. Deep kernel learning
and stochastic variational inference [15–17] are then used
for optimizing the GP parameters from a set of training
data and to cope with high dimensionality in the input
sequence and large amount of training data. We summarize
our contributions as:

• Training a GP to learn the residuals between ground
truth and deterministic models based on wheel speed
sensors, or alternatively IMU;

• Using the recent methodology [16,17] from machine
learning based on stochastic variational inference [15]
and deep neural networks to ensure scalability of the
approach;

• Experimental demonstration on recent datasets [18,19]
that efficient odometry corrections may be learned both
for a consumer car and a Segway;

• Building an Extended Kalman Filter (EKF) based on the
corrected model and using automatic differentiation [20]
for Jacobians computation to address robot localization.

A. Related Works

GPs have proved consequential in machine leaning and
are used as a practical tool to solve various robotics prob-
lems [12,21], notably inverse dynamics learning [22]. Non-
systematic errors have be shown to be partly identifiable, as
in [13,14] for the the control of a blimp, and recent works
advocate the use of GPs for learning error residuals such as
LiDAR bias [23]. Close of our work is the recent reference
[1], which models the odometry error as residual between a
realistic parametric model and odometry output, and trains
a GP that serves to efficiently compute image key-frames at
low frequency. The main difference with our approach is that
we inspire from deep kernel learning to improve scalability
and accuracy [17], address the problem through multi-output
GP to account for correlation in the residual components,
and provide novel experimental results for a Segway and
a customer car, whereas [1] is concerned with a 6 wheels
ExoMars Test Rover. Moreover, in contrast to [1] we also
address correction of the IMU outputs, and use corrections
for EKF-based localization.

Deep learning and recently variational inference [11,15]
are gaining much interest in robotics. Deep neural networks
are used in [24] for odometry estimation of an autonomous
electric cart, and in [25] for learning corrections for a
specific estimator, sensor and environment through a deep
pose correction network. [26] applies deep learning in an
end-to-end manner for pure inertial odometry estimation, and
obtains extremely low drift estimates on shopping trolley or
baby-stroller trajectories. [27] studies visual odometry from
the perspective of end-to-end deep learning. [28] combines
a machine learning technique with an EKF for fusion of
wheel speed sensors and GPS. Finally, [29] considers the



problem of system identification of helicopter dynamics, and
poses the dynamics modeling problem as a high-dimensional
regression problem which is solved with the help of stochastic
variational inference.

B. Paper’s Organization

Section II presents the physical model for robot motion
based on wheel speeds an one axis FoG gyro. Section III
introduces our GP-based model correction. Section IV shows
experimental evaluation of the method using recent datasets.
Section V evidences that the corrected models may be used
to improve the estimates of an EKF that combines wheel
speed sensors and fiber optic gyro with IMU for localiza-
tion. The codes for reproducing the results of the paper
are available at https://github.com/CAOR-MINES-
ParisTech/lwoi.

II. ODOMETRY MODEL

We consider a navigating robot equipped with: (i) two
wheel encoders; (ii) an accurate one axis gyro such as a Fiber
optic Gyro (FoG); and (iii) low-cost three axis gyros and
accelerometers embedded in a commodity IMU. The wheel
encoders measure the wheel angular velocity, the FoG gyro
obtains accurate heading velocity. At this stage, the IMU is
not used in our odometry model, but will prove useful at
Section V.

The state is defined as the position, orientation, and angular
velocities of the robot, i.e.,

xn = (xn, yn, zn, φn, θn, ψn, pn, qn, rn)
T
, (1)

where (xn, yn, zn) represents the robot’s position,
(φn, θn, ψn) are the Euler angles that parameterize the
rotation matrix Rn whose columns are the axes of the robot
frame, and (pn, qn, rn) are the body-frame angular rates.

Let δt be the wheel encoder time rate, and assume time
stamp n corresponds to time nδt. The wheel speed and gyro
measurements are un = (vl, vr, δψ)

T , where vl and vr are
the vehicle speed according to respectively the left and right
wheels, and δψ is the change in heading measured by the
FoG gyro. The state evolution model is then defined through
the following kinematic equation under planar motion and
constant angular velocity assumptions:

xn+1 = xn + znδt+ wn, (2)

with zTn =
(
v cos (ψn) , v sin (ψn) , 0, φ̇n, θ̇n, δψ/δt, 0, 0, 0

)
and where v = (vr + vl) /2 is the speed of the vehicle at the
center of the wheelbase, and wn is a Gaussian noise. See
[18] for the expressions of the roll and pitch velocities φ̇n
and θ̇n.

III. GAUSSIAN PROCESS ESTIMATION OF DYNAMICAL
SYSTEMS MODELING ERRORS

A. Preliminaries

A Gaussian process [12,21] defines distribution

f (·) ∼ GP (m(·), k(·, ·)) (3)

over functions f : Rl → R, with m : Rl → R and
k : Rl × Rl → R≥0, and characterized by the fact
that given any u1, . . . ,un the vector f(u1), . . . , f(un) is
assumed to be a multivariate Gaussian with E [f(ui)] =
m(ui) and Cov (f(ui), f(uj)) = k(ui,uj). The training
set D = {u1, . . . ,ud; z1, . . . , zd} consists of d input-output
pairs under the assumption that zi = f(ui) + εi, with
εi ∼ N (0, σ2) a Gaussian noise. For convenience we denote
U = (u1, . . . ,ud), Z = (z1, . . . , zd) and let the Gram
matrix K be defined by Kij = k(ui,uj). In this paper m(·)
will be assumed known and fixed, and k(·, ·) belongs to a
class of covariance functions [21] parameterized by some
parameters θ. Given the training set D, model estimation is
done through maximization of the log likelihood log p (Z|U)
which is easily expressed (and maximized) as a function
of hyperparameters (θ, σ2) yielding optimized covariance
matrix K∗ and variance σ2

∗. When considering a new input
u′, inference is performed by Gaussian conditioning [21]

p (f(u′)|Z,U) = N (µ′,Σ′), where (4)

µ′ = m(u′) + K∗(u
′,U)

[
K∗(U,U) + σ2

∗I
]−1

(Z−m(U)),

Σ′ = K∗(u
′,u′)−

K∗(u
′,U)

[
K∗(U,U) + σ2

∗I
]−1

K∗(U,u
′).

Note that, for a training set of size d, exact GP inference
requires a matrix inversion having complexity O(d3).

B. Gaussian Process for Dynamical Discrete Time Systems

Consider a discrete time dynamical system

xn+1 = xn � f (un, wn) , (5)

where xn ∈ X denotes the state, un the control input,
wn ∼ N (0,Qn) a Gaussian noise. The operator � :
X×X → X symbolizes state addition that extends the vector
space addition to a combination of vector and orientation
(quaternion) additions. Furthermore, we assume that the time
rate of the state model is slower than the time rate of input
measurements, such that the input at time n

un = (un,0, . . . , un,k−1) (6)

contains a sequence of k sub-inputs un,i, i = 0, . . . , k − 1
and we define ∆t = kδt as the time between the instants
n− 1 and n, whereas we let δt being the time between two
consecutive sub-inputs un,i−1 and un,i. Treating the input
stream un,i into independent windows of the form (6) is
well suited to machine learning approaches [25,26], and also
particularly suits well pseudo-measurements such as a planar-
motion constraints, see [8,30].

We can then model the increment function f(·) as non-zero
mean Gaussian process

f (·) ∼ GP (mf (·) , kf (·, ·)) . (7)

Model (2) (with noise turned off) is reasonable and we
postulate it provides the mean mf (·) along the lines of [1,13].



Looking at (5), training data outputs are of the form xi+1�xi

(a proper sense must be given depending on operation �), and
thus the training set writes Df = {u1, . . . ,ud; z1, . . . , zd}
with zi = xi+1�xi. The GP machinery of Section III-A can
then be used, and the hyperparameters to be learnt consist
of the kernel kf (·, ·) and the likelihood p(Df |f), i.e., the
magnitude of the noise.

C. Multi-Output Gaussian Processes

The standard basic GP approach recapped in Section III-A
focuses on scalar outputs GP model, whereas our outputs
consist of p dimensional increments of the state (5), with
p = dimX , and are thus multi-dimensional. In contrast to
e.g., [1,23], we do not model and treat each degree of freedom
separately, but propose instead to address directly GP regres-
sion with vector outputs of dimension p. In odometry model
correction, it makes particularly sense for pose residual where
the orientation error highly influences the translation residual.
We thus resort to a multi-output model where correlations be-
tween output components are explicitly represented through a
shared input space [31]. The hyperparameter σ2 (which leads
to diagonal output covariance noise) is then replaced with a
semidefinite positive (covariance) matrix Σ̃.

D. Neural Networks for Kernel Learning

It is of major importance to take into account:
(i) The sequential and high dimensional nature of one

single input un, see (6): considering e.g. a class of radial
basis functions for the kernel would be inefficient for
accurate inference [21];

(ii) The computational complexity of (4) which scales as
O(d3), rendering it computationally intractable for large
datasets.

To fix ideas, in the dataset [18] of Section IV, we dispose of
d = 1.1 · 105 training points ui, with each ui ∈ R3×100.

To accommodate (i), we advocate combining convolu-
tional or recurrent neural network with a base kernel to create
a deep kernel [12,16], i.e., we design the kernel as

kf (·, ·) = k′f (gf (·), gf (·)) , (8)

with k′f (·, ·) a base (radial basis function, Matern) kernel, and
gf (·) a function parameterized by neural networks that maps
the high dimensional vector un to a small vector gf (un). The
function gf (·) produces thus intermediate low-dimensional
inputs that are then integrated into the base kernel k′f (·, ·).
Beyond decreasing the evaluation execution time, the interest
of the method is to obtain flexible kernels able to explain
outliers and more accurate estimates [17].

Regarding (ii), we use approximate kernel learning based
on inducing points, where m inducing points (a.k.a. pseudo-
inputs) encode an O(m2) approximation to the original
Gram matrix K(U,U). The approximate model has O(dm2)
complexity for training and O(m3) complexity for eval-
uation on u′, see (4). Resorting to stochastic variational
inference [11,16] for optimization, and following [17], we
jointly optimize over the hyperparameters (θ, Σ̃), the m
inducing pseudo-inputs Ū = (ū1, . . . , ūm), and the weights

Fig. 1. The considered datasets [18] (left) and [19] (right) contain data logs
of two wheel encoders, a fiber optic gyro and a consumer IMU, recorded,
respectively on a Segway and a consumer car.

in the deep neural network gf (·). In our experiments, we
set m = 100 and have gf (ūi) ∈ R20 yielding a scalable
approach that allows handling large datasets.

E. Extension to the Observation Model

Suppose dynamical model (5) is partially observed through
noisy non-linear observations

yn = h (xn, en) , (9)

with en ∼ N (0,Jn) a Gaussian measurement noise. To
evaluate errors in the observation map as well we can model
the observation map as a Gaussian process

h (·) ∼ GP (mh (·) , kh (·, ·)) , (10)

and corrections may be made along the lines of the preceding
section. Note that, similar treatments based on kernels of the
form (8) may be used for the measurement kernel kh(·, ·)
that thus combines a base kernel k′h(·, ·) with neural networks
gh(·) if the number of measurements at instant n is large.

IV. EXPERIMENTAL RESULTS

We evaluate the proposed approach on two publicly avail-
able datasets [18,19] containing data of two wheel encoders,
a FoG gyro and an additional consumer IMU embarked on
two different platforms, see Figure 1:

1) the University of Michigan North Campus long-term
dataset [18], which contains 35 hours of data recorded
on a Segway platform over the course of 15 months in
27 sequences. The vehicle repeatedly explores a campus,
both indoors and outdoors, on varying trajectories;

2) the complex urban LiDAR dataset [19], that consists
of data recorded on a consumer car which moves in
complex urban environments, e.g. metropolitan areas,
large building complexes and underground parking lots.

We extract from each dataset the sensor logs that we inter-
polate and synchronize when necessary at 1/δt = 100 Hz. We
use the provided calibration parameters and transformation
matrices to move from one sensor frame to another, and we
consider the provided ground truth poses as a benchmark
for training and evaluating our approach. The ground-truth
is used for learning SE(3) position and heading increment
corrections inspired from [25]. We compute the ground truth
speed from differentiation of the ground truth position to



Dataset
m-ATE translation (m) m-ATE rotation (deg)
physical corrected physical corrected

[18] 0.160 0.091 2.75 1.78

[19] 0.035 0.024 0.49 0.24

Fig. 2. Mean Absolute Trajectory Error (m-ATE) averaged on segments of
duration 1 s on test data. “Physical” corresponds to standard wheel speed
based model (2) with noise turned off, and “corrected” to its counterpart
using method of Section III. The corrected model reduces the physical error
residual both for translation and rotation errors for each dataset [18,19].
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Fig. 3. Ground truth and estimated trajectories of a car from the physical and
corrected models on the large 21 km test sequence urban16 of dataset [19].
The corrected model improves its physical counterpart by clearly reducing
the drift error of the estimates. Figure best seen in color.

compute the measurement residuals (13)-(14), see Section
V. Each dataset is treated independently from the other, i.e.
we have two distinct corrected models, one for each dataset.

To evaluate the performances of the models and the filters,
we use the following error metrics [25]:

1) mean Absolute Trajectory Error (m-ATE), that averages
the error with respect to a ground truth trajectory for a
given sequence;

2) cumulative Absolute Trajectory Error (c-ATE), which
sums the error m-ATE up to a given point in a trajectory.
c-ATE can show clearer trends than m-ATE, because it
is less affected by fortunate trajectory overlaps.

In the following, we call the “physical model” the standard
wheel speed based model (2), and “corrected model” its
counterpart using the proposed approach of Section III.

A. Parameter Setting & Training

For each dataset, we divide data into three sets: training
data for optimizing the hyperparameters (70 %); cross-
validation data to tune the prior physical model and optimizer
parameters (15%); and test data that are never used in the
learning process and allow assessing the performance of
the approach (15%) [10]. Data is divided as follows: for
[18], we use the first 19 sequences as training, the four
following for cross-validation and the four last for testing;

for [19], urban14 and urban17 is cross-validation data,
urban15-16 is test data, and the remaining sequences are
training data1. We thus dispose of training set of size d
respectively 1.1 · 105 and 2.8 · 103 for datasets [18] and [19].

Based on results on the cross-validation data, we set for the
two datasets the same: model frequency rate, 1/∆t = 1 Hz;
number of optimized inducing points, m = 100; kernel archi-
tecture; optimizer learning rate, 0.01; and number of epochs
for training, 100. The kernel architecture consists in defining:
the warping function gf (·) as a two-layer 1D Convolutional
Neural Networks (CNN) followed by a full layer that outputs
a vector of dimension 20; and the kernel k′f (·, ·) as Matern 5/2
kernels [where kf (·, ·) = k′f (gf (·), gf (·)), see (8) in Section
III]. In this setting we set the propagation input un ∈ R3×k

as a sequence of k = 100 measurements. We learn the
parameters on normalized data using the Adam optimizer
[32] on the deep probabilistic software Pyro2. Specifically, we
build our code on the Gaussian Process “Contributed Code”
of the Pyro development branch.

B. Posterior Model Evaluation

Once the model parameters are optimized, we compare the
performances of the corrected models on test data as follow.
We first analyze the decrease of the residuals by computing
the m-ATE on segments of duration 1 s both for the physical
and corrected models. Estimates from the corrected model
are averaged over 100 samples, see (4). Results are given
in Figure 2 and show a clear improvement both for the
translation and rotation residuals, with minimal improvement
29 % and up to 51 % of the m-ATE rotation for car dataset
[19].

We then compare the physical and corrected dynamical
models for long term sequences by comparing trajectories in
dataset [19], see Figure 3. For each test sequence, we run the
dynamical model over the full sequence, where the state is
initialized with ground truth.

We still sample 100 corrected model estimates and average
the trajectory output to compute m-ATE and c-ATE, see
Figures 4-5. Both errors are favorable to the corrected model,
and particularly the c-ATE that clearly reveals a tread: the
corrected models accumulate lower errors. Video attachment
allows visualizing benefits of the approach, that essentially
yield corrections to the model during turns. We also indicate
that directly taking the output mean of the corrections instead
of sampling and averaging leads to similar results.

V. ROBOT DEAD RECKONING WITH CORRECTED WHEEL
ENCODERS AND IMU OUTPUTS

In this section, we utilise IMU measurements as comple-
mentary sensors for localization. As explained previously,
f(·) may be corrected using GPs and a dataset Df containing
ground truth of the pose of the robot, wheel speeds and FoG
measurements. Similarly, as explained in Section III-E, h(·)
may be corrected using ground truth and IMU measurements
in a dataset Dh.

1We use the sequences without IMU log for the propagation model alone.
2http://pyro.ai/
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Fig. 4. Translation (above) and rotation (bottom) cumulative Absolute
Trajectory Error (c-ATE) as function of time for physical and corrected
models for four sequences of Segway dataset [18]. Errors are set to zero
when starting a new sequence. The proposed corrected model accumulates
lower error residual than the physical model.

A. Integrated IMU Measurement Model

To utilize the IMU measurements as complementary sen-
sors in an EKF to update the state (1), we integrate the
measurements on a sliding window, i.e., we consider the pre-
integrated measurements of [33]. This leads to the observa-
tion model

yn =
(

logSO(3) (∆Rn) ,∆vn,∆pn

)T
, (11)

where logSO(3)(·) is the logarithm map of the Lie group
SO(3), that is, logSO(3)(∆R) = ω ∈ R3 is the angular
velocity vector such that ∆R is obtained by starting from
the identity and turning around ω during one unit of time,
and expSO(3)(·) is the inverse map of logSO(3)(·). In (11)
we let

∆Rn = RT
nRn+1 =

r−1∏
i=0

δRi, (12)

∆vn = RT
n (vn+1 − vn − g∆t) =

r−1∑
i=0

δvi, (13)

∆pn = RT
n

(
pn+1 − pn − vn∆t−∆t2/2

)
, (14)

with g representing the gravity vector, vn = (ẋn, ẏn, żn)
is the robot velocity and pn = (xn, yn, zn) the robot
position (by assuming planar motion we set żn = 0
[18]). We dispose of a sequence of r accelerations and
angular velocities (ai,ωi), i = 0, . . . , r − 1 measured
in the robot frame by the IMU such that the quan-
tities δRi =

∏i−1
j=0 expSO(3) (ωj∆t/r) , (δR0 = I),

δvi =
∑i−1

j=0 δRjaj∆t/r, and ∆pn =
∑r−1

i=0 δvi∆t/r +

δRiai∆t
2/(2r2), and thus (11), are computed without the

need for any state estimates.

B. Extended Kalman filter (EKF) Based on Corrected Models

Model (5) with observation (9) yield a system with state
xn and observation yn of the form

xn+1 = xn � f (un, wn) , (15)
yn = h (xn, en) . (16)

Using measurements yn of (11), corrections may be
learned for the observation model following the methodology
of Section III-A, we may want to use the corrected model
for real time (online) state estimation of system (15)-(16)
when no ground truth is available, that is, on test data. To do
so, we suggest to design an Extended Kalman Filter (EKF)
using as model the mean of the posterior Gaussian process
models, that is, f̄ (·) = E [f(·)|Df ], and h̄ (·) = E [h(·)|Dh].
One could also use posterior covariance for EKF tuning, but
this increases the execution time, and we decided to tune the
corrected EKF with the propagation noise covariance matrix
Qn and measurement noise covariance matrix Jn that we
have set for the uncorrected EKF.

The standard EKF methodology is based on Jacobian
computation. Those used for propagating and updating the
covariance matrix are computed by adding the Jacobian of the
model (2)-(11) to the Jacobian of the corrections. The latter
are computed through automatic differentiation in PyTorch
[20].

C. Extended Kalman Filter Implementation

Our filter follows the state delayed EKF of [18]: it uses
a differential-drive process model to integrate measurements
from the wheel encoders, the FoG gyro are used for prop-
agating heading, a constant velocity model for the roll and
pitch is assumed, and we adapt the IMU measurements in
[18] into the form of pre-integrated measurements [33].

We consider two EKFs. The first is a standard EKF for
non-corrected dynamical system (5) with sub-increment (2)
and observations (11). The second one is a corrected model
based EKF using our correction methodology of Section
III. We implement these error-state extended Kalman filters
yielding state and error covariance estimates x̂n|n, Pn|n,
where we use the small angle quaternion error [34] for
representing the error on the Euler angles, enabling proper
representation of the angle uncertainties. Since measurement
yn in (11) requires state estimates at time n− 1 and n [see
(12)-(14)], we use stochastic cloning [35] such that the matrix
covariance error Pn|n−1 contains the required error at both
time n−1 and n as in, e.g., [5]. Finally, Jacobian required for
updating the state are computed after [33], see equations (42)-
(43) therein. The remaining Jacobian w.r.t. the corrections are
computed by automatic differentiation [20].

D. Corrected Model Based EKF Evaluation

We now compare in this section the performances of
the filters based on the corrected (expected) model and
the filters based on the physical model on test data. We
set the same noise standard-deviation parameters for both
physical and corrected filters for each dataset as: 0.7 m/s
for wheel velocities, 0.005 deg /s for FoG gyro, 1 deg /s for
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Fig. 5. Translation (above) and rotation (bottom) cumulative Absolute
Trajectory Error (c-ATE) as function of time for physical and corrected
models for sequences urban15-16 of the car dataset [19]. Errors are set
to zero when starting a new sequence. Plots show that the proposed corrected
model accumulates lower error.
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Fig. 6. The translation and rotation mean Absolute Trajectory Error (m-
ATE) computed between position estimates and ground truth on the datasets
[18,19]. The proposed corrected models and filters (EKF) clearly outperform
their physical counterpart for each dataset.

angular rate, 1 deg /s2 for angular acceleration, and 2 deg /s,
0.05 m/s2 for the IMU noise standard deviation. Results
are displayed on Figure 6. An example of the trajectory
estimates in dataset [18] is displayed in Figure 7. The c-
ATE is displayed over time on Figure 8. The results show a
very clear improvement over the use of physical model (2)-
(11) both for wheel odometry based dead-reckoning, and for
EKF-based navigation using additional IMU data.

VI. CONCLUSION

This paper introduces a methodology for Gaussian pro-
cesses combined with neural networks and stochastic varia-
tional inference to improve both the propagation and mea-
surement functions of a state-space dynamical model by
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Fig. 7. Ground truth and estimated trajectories of the Segway, from the
physical and corrected filters on the validation sequence 2013-01-10 of
dataset [18]. The corrected filter improves its physical counterpart both for
translation and rotation rotation mean Absolute Trajectory Error (m-ATE).
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Fig. 8. Translation cumulative Absolute Trajectory Error (c-ATE) as function
of time for physical and corrected filters for datasets [18,19]. Errors are set
to zero when starting a new sequence. The proposed corrected filters obtains
better results than the physical filter. Trend are similar for the rotational error.

learning error residuals between physical prediction and
ground truth data. These corrections are also shown to be
usable for EKF design. The applications on publicly available
datasets for consumer car and Segway navigation systems
based on wheel encoders, gyro and IMU clearly reveals the
gains of performances of the proposed approach.

Future work includes the evaluation and generalization of
what the algorithm is actually learning. This concerns testing
the training Gaussian processes on different datasets. Another
works concerns on-line learning with standard devices and
inaccurate, but many, ground truth data, since the proposed
method are independent w.r.t. data size once training is done.
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[1] J. Hidalgo-Carrió, D. Hennes, J. Schwendner, et al., “Gaus-
sian Process Estimation of Odometry Errors for Localization
and Mapping,” in International Conference on Robotics and
Automation, IEEE, 2017, pp. 5696–5701.

[2] R. Jazar, Vehicle Dynamics: Theory and Application, ser.
Springer. 2017.

[3] R. Wang and J. Wang, “Fault-Tolerant Control With Ac-
tive Fault Diagnosis for Four-Wheel Independently Driven
Electric Ground Vehicles,” Transactions on Vehicular Tech-
nology, IEEE, vol. 60, no. 9, pp. 4276–4287, 2011.

[4] S. Leutenegger, S. Lynen, M. Bosse, et al., “Keyframe-
based Visual-Inertial Odometry using Nonlinear Optimiza-
tion,” The International Journal of Robotics Research, vol.
34, no. 3, pp. 314–334, 2015.

[5] K. Sun, K. Mohta, B. Pfrommer, et al., “Robust Stereo Visual
Inertial Odometry for Fast Autonomous Flight,” Robotics
and Automation Letters, IEEE, vol. 3, no. 2, pp. 965–972,
2018.

[6] R. Mur-Artal and J. D. Tardos, “Visual-Inertial Monocular
SLAM With Map Reuse,” Robotics and Automation Letters,
IEEE, vol. 2, no. 2, pp. 796–803, 2017.

[7] M. Quan, S. Piao, M. Tan, et al., “Tightly-Coupled Monoc-
ular Visual-Odometric SLAM Using Wheels and a MEMS
Gyroscope,” 2018.

[8] K. Wu, C. Guo, G. Georgiou, et al., “VINS on Wheels,”
in International Conference on Robotics and Automation,
IEEE, 2017, pp. 5155–5162.

[9] J.-E. Deschaud, “IMLS-SLAM: Scan-to-Model Matching
Based on 3D Data,” in International Conference on Robotics
and Automation, IEEE, 2018.

[10] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning.
The MIT press, 2016.

[11] D. Blei, A. Kucukelbir, and J. McAuliffe, “Variational Infer-
ence: A Review for Statisticians,” Journal of the American
Statistical Association, Taylor & Francis, vol. 112, no. 518,
pp. 859–877, 2017.

[12] A. Damianou and N. Lawrence, “Deep Gaussian Processes,”
AISTATS, 2013.

[13] J. Ko, D. J. Klein, D. Fox, et al., “Gaussian Processes
and Reinforcement Learning for Identification and Control
of an Autonomous Blimp,” in International Conference on
Robotics and Automation, IEEE, 2007, pp. 742–747.

[14] J. Ko, D. Kleint, D. Fox, et al., “GP-UKF: Unscented
Kalman Filters with Gaussian Process Prediction and Ob-
servation Models,” in International Conference on Intelligent
Robots and Systems, IEEE, 2007, pp. 1901–1907.

[15] M. Hoffman, “Stochastic Variational Inference,” Journal of
Machine Learning Research, vol. 14, no. 1, pp. 1303–1347,
2013.

[16] A. Wilson, Z. Hu, R. Salakhutdinov, et al., “Stochastic
Variational Deep Kernel Learning,” in Advances in Neural
Information Processing Systems, 2016, pp. 2586–2594.

[17] A. Wilson, Z. Hu, R. Salakhutdinov, et al., “Deep Kernel
Learning,” in International Conference on Artificial Intelli-
gence and Statistics, Curran Associates, Inc., 2016, pp. 370–
378.

[18] N. Carlevaris-Bianco, A. Ushani, and R. Eustice, “The
University of Michigan North Campus Long-Term Vision
and Lidar Dataset,” The International Journal of Robotics
Research, vol. 35, no. 9, pp. 1023–1035, 2015.

[19] J. Jeong, Y. Cho, Y.-S. Shin, et al., “Complex Urban LiDAR
Data Set,” in International Conference on Robotics and
Automation, IEEE, 2018.

[20] A. Paszke, S. Gross, S. Chintala, et al., “Automatic Differ-
entiation in PyTorch,” in Advances in Neural Information
Processing Systems, 2017.

[21] C. E. Rasmussen and C. Williams, Gaussian Processes for
Machine Learning, ser. Adaptive computation and machine
learning. Cambridge, Mass: MIT Press, 2006.

[22] C. Williams, S. Klanke, S. Vijayakumar, et al., “Multi-task
Gaussian Process Learning of Robot Inverse Dynamics,” in
Advances in Neural Information Processing Systems, 2009,
pp. 265–272.

[23] T. Tang, D. Yoon, F. Pomerleau, et al., “Learning a Bias
Correction for Lidar-Only Motion Estimation,” 2018.
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