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Abstract The emission of mineral dust aerosols in arid and semiarid regions is a complex process
whose representation in atmospheric models remains crude, due to insufficient knowledge about the
aerosol lifting process itself, the lack of global data on soil characteristics, and the impossibility for the
models to resolve the fine-scale variability in the wind field that drives some of the dust events. As a result,
there are large uncertainties in the total emission flux of mineral dust, its natural variability at various
timescales, and the possible contribution from anthropogenic land use changes. This work aims for
estimating dust emissions and reduces their uncertainty over the Sahara desert and the Arabian
Peninsula—the largest dust source region of the globe. We use a data assimilation approach to constrain
dust emission fluxes at a monthly resolution for 18 subregions. The Moderate Resolution Imaging
Spectroradiometer satellite-derived aerosol optical depth is assimilated in a regional configuration of a
general circulation model coupled to an aerosol model. We describe this data assimilation system and apply
it for 1 year, resulting in a total mineral dust emissions flux estimate of 2900 Tg yr−1 over the Sahara desert
and the Arabian Peninsula for the year 2006. The analysis field of aerosol optical depth shows an improved
fit relative to independent Aerosol Robotic Network measurements as compared to the model prior field.

1. Introduction

The role of desert dust in the climate system has been studied intensively in the past years [Knippertz and
Stuut, 2014, and references therein]. It has been shown that atmospheric mineral dust has a number of impacts
on a wide range of components and scales in the Earth system. Saharan dust has a fertilization effect in the
Atlantic Ocean and the Mediterranean Sea because of its iron content that can become biologically available
to phytoplankton when dust is deposited at the ocean surface [Jickells et al., 2005; Mahowald et al., 2014]. It
also brings a large fraction of the aeolian input of phosphorus (a limiting nutrient) over the Amazon forest
ecosystem [Koren et al., 2006; Mahowald et al., 2014]. Mineral dust has impacts on air quality and human health
[Goudie, 2014]. Finally, mineral dust also interacts with radiation and clouds in the atmosphere [e.g., Haywood
et al., 2005; Atkinson et al., 2013], with gas-phase species through heterogeneous chemistry [Dentener et al.,
1996], and it has been hypothesized that it may influence microphysical-related processes in the cyclogenesis
over the Atlantic Ocean [Bretl et al., 2015].

Despite the important and central roles of desert dust in the Earth system, the total mass of aerosol emis-
sions is still highly uncertain [Huneeus et al., 2011]. Observations, modeling, and combined approaches have
been used to narrow the uncertainty in emissions both at the global [Cakmur et al., 2006; Huneeus et al., 2012]
and regional [Yumimoto et al., 2008; Huneeus et al., 2011] scales. Models continue to experience difficulties
to simulate the correct seasonal cycle of dust emissions probably for a variety of reasons. First of all, the
emission process is not well understood even though dust lifting models have been improved and complex-
ified [Woodward, 2001; Zender et al., 2003; Kok, 2011]. We also lack reliable data on soil characteristics (size
distribution, mineral composition, crusting effect, etc.) despite recent progress in mapping soil mineralogy
[Journet et al., 2014]. Furthermore, atmospheric models do not resolve the fine-scale variability in the surface
wind, and parametrizations have to be introduced to represent these effects [Zhang et al., 2016].

The amount of dust in the atmosphere can be estimated from satellite-borne passive instruments, both in the
ultraviolet-visible part of the electromagnetic spectrum with, e.g., the Moderate Resolution Imaging Spectro-
radiometer (MODIS) [Levy et al., 2013], the Multiangle Imaging Spectroradiometer (MISR) [Kahn et al., 2009],
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and the Polarization and Anisotropy of Reflectances for Atmospheric Sciences Coupled with Observations
from a Lidar (PARASOL) [Tanré et al., 2011], and in the infrared with, e.g., the Infrared Atmospheric Sounder
Interferometer (IASI) [Peyridieu et al., 2013], as well as from ground-based passive instruments (e.g., Sun
photometers). Active remote sensing methods can also be used in the visible part of the spectrum with
either ground-based or satellite-based lidar systems. All these measurements are based on the interpre-
tation of the interactions between dust aerosols and radiation, which introduces some uncertainty in the
estimate because of uncertainties in dust morphology and particle shape, size distribution, and hence optical
properties, as well as in the surface scattering properties. Several aerosol chemical and physical proper-
ties have been assessed in intensive measurement campaigns [Redelsperger et al., 2006; Washington et al.,
2006; Ansmann et al., 2011; Washington et al., 2012], giving valuable information on dust aerosol emissions,
transport, deposition processes, and chemical and physical properties. However, such surface or atmospheric
measurements are very sparse in space and time, which limits their usefulness for constraining the regional
or global cycle of mineral dust. Many studies rely on long-term series of observations (e.g., ground-based Sun
photometers, ground-based lidar, and satellite-borne instruments) to constrain the dust cycle. Regrettably,
these long-term observations report the amount of atmospheric dust; they cannot be directly translated into
estimates of dust fluxes, and they are not enough on their own to constrain dust fluxes for large areas (such as
the Sahara desert or eastern Asia). In this context, data assimilation is an attractive tool that allows combining
available observations with existing modeling tools in order to estimate emissions.

Data assimilation techniques are widely used in atmospheric chemistry to improve the modeled concen-
trations of various chemical species [Bocquet et al., 2015] and are necessary to produce realistic forecasts
[Benedetti et al., 2009]. These techniques also constitute a useful tool to constrain the atmospheric fluxes of a
number of chemical species whether they are short-lived such as HCHO and CO [e.g., Fortems-Cheiney et al.,
2012] or longer-lived such as CO2 [e.g., Chevallier et al., 2010] or CH4 [e.g., Bousquet et al., 2006]. Such tech-
niques have also been used for aerosol species, assimilating surface concentration observations [e.g., Hakami
et al., 2005], aerosol extinction coefficients from lidar instruments [e.g., Yumimoto et al., 2008], or aerosol opti-
cal depth [e.g., Dubovik et al., 2008; Schutgens et al., 2012; Huneeus et al., 2012; Yumimoto and Takemura, 2013].
One of the difficulties associated with aerosols is that aerosol optical depth (AOD) observations do not usually
distinguish the chemical composition of the aerosol, which makes the inversion problem particularly under-
constrained. For mineral dust, there is an additional difficulty in that the background emission flux needs to
be computed in the model rather than prescribed from an emission inventory.

The aim of this study is to quantify the dust flux emissions over the Sahara desert and the Arabian Peninsula
with sufficient temporal and spatial resolution to be able to capture the main emission features and variability
over a 1 year period. For this reason our emphasis is on a regional source inversion that can take full benefit
of satellite data and increased model resolution.

Section 2 presents the data assimilation system used in this work, including the meteorological model,
the dust emission model, the aerosol model, and the assimilated observations. We show results of the
AOD assimilation in section 3, comparing model simulations with observations and estimating dust fluxes.
Results and performance of the assimilation system are discussed in section 4. We present our conclusions in
section 5.

2. Data and Methods
2.1. LMDz-SPLA Model
2.1.1. Meteorological and Aerosol Model
We use the simplified aerosol (SPLA) model [Huneeus et al., 2009] coupled to the general circulation model of
the Laboratoire de Météorologie Dynamique (LMDz) [Hourdin et al., 2013]. The LMDz is a hydrostatic model
with hybrid vertical coordinate and a stretchable latitude-longitude horizontal grid. The model numerically
solves the advection equations on a three-dimensional grid (the so-called “dynamics”). Subgrid-scale pro-
cesses, including radiative transfer, cloud, and boundary layer processes, are parameterized as part of the
“physics” part of the model. The SPLA model is an aerosol model of intermediate complexity that is fully
embedded in the LMDz model; it was originally designed for data assimilation purposes but has evolved in
several aspects since then. Major changes of SPLA are listed in the next paragraphs of this section, mainly
associated to updates in emissions of natural aerosols and in physical processes parameterizations and also
associated to changes in aerosol bin definitions (with a consistent update of sedimentation velocities and
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optical aerosol properties). The SPLA model has been used to estimate global aerosol emissions in Huneeus
et al. [2012].

The following processes are included in the aerosol model for aerosols and their gaseous precursors:
surface and elevated emissions, dry deposition, boundary layer mixing, transport from subgrid-scale thermals
[Hourdin et al., 2015], sedimentation for coarse mode aerosols, gas-to-particle conversions, in-cloud and
below-cloud scavenging, convective transport, and large-scale transport.

As stated above, we have performed major updates to the SPLA model. The number of modeled species has
been increased. The model presented in Huneeus et al. [2009] had four tracers: gaseous precursors of aerosols,
coarse mode sea salt (with diameters between 1 and 40 μm), fine mode aerosols, and coarse mode dust. In the
present work, mineral dust aerosols are distributed in three bins that represent supercoarse dust (between
6 and 30 μm of diameter), coarse mode dust (between 1 and 6 μm of diameter), and fine mode dust (with
diameter smaller than 1μm). After emission, fine mode dust is included in the fine mode aerosols tracer (which
also includes black carbon, particulate organic matter, and sulfate aerosols), so in practice the SPLA model
has only five tracers now. Additional work has been done to update the SPLA model according to the latest
developments of the LMDz model, including the parameterization of thermals in the boundary layer [Hourdin
et al., 2015] and the convective transport and scavenging scheme [Pilon et al., 2015].

2.1.2. Dust Emission Model
Over the Sahara desert and the Arabian Peninsula, the mineral dust emissions are calculated online using a
parametrization described below.

The dust production module (DPM) originally used in the CHIMERE-DUST air quality model [Menut et al., 2013]
has been embedded in the SPLA model. Our implementation is based on the DPM adaptation from Hourdin
et al. [2015], which calculates mineral dust emissions online and only over the Sahara desert and the Arabian
Peninsula. The DPM is composed essentially of a saltation flux scheme from Marticorena and Bergametti [1995]
and a sandblasting model from Alfaro and Gomes [2001]. Threshold friction velocities are estimated following
Shao and Lu [2000] and corrected by a drag efficiency coefficient as in Marticorena et al. [1997]. Input soil
data over the Sahara desert and the Arabian Peninsula are taken from the Laboratoire Interuniversitaire des
Systèmes Atmosphériques (LISA) database (available at http://www.lisa.univ-paris12.fr/mod/data/index.php).

The DPM scheme includes a Weilbull-like wind speed distribution to represent subgrid-scale variability as
explained in Hourdin et al. [2015]. The dust fluxes are calculated and summed over the bins of the discretized
wind speed distribution, for each grid box and each time step of the physics of the model (set to 15 min).
The subgrid wind speed distribution, in its continuous form, is given by the following probability density
function:

p(u, k,A) = k
A

(u
A

)k−1
exp

[
−
(u

A

)k
]
, (1)

where u is the subgrid-scale wind speed and (k,A) are parameters of the Weibull distribution. The shape
parameter k has been set equal to 3 as in Hourdin et al. [2015], and the A parameter is calculated for each grid
cell and each time step to fit the Weibull distribution expectancy with the mean wind velocity from the LMDz
model: U = AΓ(1 + 1∕k), where U is the 10 m mean wind for each grid cell and Γ the Gamma function.

For each soil type from the LISA database, the horizontal saltation flux Fh is calculated according to Marticorena
and Bergametti [1995] as

Fh(Dp, s) =
K𝜌aU∗(s)3 Srel(Dp, s)

g

(
1 +

U∗
t (Dp, s)
U∗(s)

)(
1 −

U∗
t (Dp, s)2

U∗(s)2

)
, (2)

where s is the soil type, Dp is the soil particle diameter, K is a constant value, 𝜌a is the air density, g is the grav-
itational constant, U∗ is the friction velocity (which depends on the soil type through the saltation roughness
length parameter), U∗

t is the threshold friction velocity, and Srel is the proportion of the surface covered by par-
ticles of type s with diameter Dp. In the case of U∗

t (Dp, s)>U∗(s), the friction velocity threshold is not reached
by the model and there are no emissions (Fh(Dp, s) = 0). In this work, the value of K is set to its original value
of 2.61 [Marticorena and Bergametti, 1995] instead of the value of 1.0 used in Hourdin et al. [2015] and in Menut
et al. [2013].
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After the saltation scheme, the sandblasting model is used to calculate the vertical dust flux assuming that it
is emitted by three soil modes [Alfaro and Gomes, 2001]. For each soil type s, soil particle diameter Dp and soil
mode i, the vertical flux Fv is

Fv,i(Dp, s) = 𝜋

6
𝛽 𝜌p

pi(Dp, s)d3
i

ei
Fh(Dp, s), (3)

where 𝛽 = 16, 300 cm s−2, 𝜌p is the particle density, di is the mass median diameter for the mode i, ei is the
binding energy for the mode i, and pi is the fraction of kinetic energy for the binding energy ei, calculated as
in Alfaro and Gomes [2001]. The total dust flux for the mode i is calculated by the sum of the contributions of
all the soil types:

Fv,i =
∑

s
∫

Dmax
p

Dmin
p

Fv,i(Dp, s) dDp, (4)

where Dmax
p and Dmin

p are the maximum and minimum particle diameters for the soil size distribution. Finally,
the vertical flux of the three modes from Alfaro and Gomes [2001] scheme is redistributed into the SPLA tracers
for fine, coarse, and supercoarse mode dust.

Some of the key parameters of this scheme are the binding energy parameters, which account for the neces-
sary energy to release particles in the sandblasting processes for each soil mode used in the scheme. The work
by Sow et al. [2011] shows that these binding energy parameters should not be constant to fit in situ emission
flux measurements; instead, they may depend on the strength of the dust event. Sow et al. [2011] divide the
binding energy parameters by a factor 2.5 in the case of a strong dust event, and by a factor of 5 in the case of
a weaker event to fit in situ emission flux measurements. We also choose to tune the binding energy parame-
ters and divide it by a sixfold factor. This is somewhat an arbitrary choice but is partly justified by the fact that
we are interested in simulating the dust flux emission for a long period (and not only for dust events).

Data assimilation systems are sensitive to biases in the observations and in the observation operator (the
LMDz-SPLA model in our case). Biases can be propagated to the analysis and deteriorate the analysis perfor-
mance [e.g., Dee, 2005]. The simulated AOD from the LMDz-SPLA model is systematically low over the region
of focus, and the study of the source of this bias is out of the scope of this work. To avoid a bias in the obser-
vation operator and in order to have a mean simulated AOD in the range of the (satellite and ground-based)
observations, we apply a tuning multiplicative factor equal to 3.25 to the coarse and supercoarse dust emis-
sions and 0.8 to the fine mode dust emissions. The tuning factor is not the same for the three emission bins
due to the known overestimation of fine mode dust emissions in the DPM relative to the coarser modes [Nabat
et al., 2012].

Although our focus is over the Sahara and the Arabian Peninsula, it is likely that dust emitted outside this
region can be advected to our region of interest. To address this, dust emissions outside the Sahara and the
Arabian Peninsula are calculated off-line from ERA-Interim 10 m wind speed as in Huneeus et al. [2013].

2.1.3. Other Emissions
Emissions of remaining aerosol species and gaseous precursors, except dimethyl sulfide (DMS), are similar to
those used in Huneeus et al. [2013]. The climatology of ocean near-surface dimethyl sulfide (DMS) concen-
tration has been updated with the work of Lana et al. [2011], and the DMS emission flux is calculated (like
in Huneeus et al. [2013]) with the parameterization by Nightingale et al. [2000]. Anthropogenic emissions for
the year 2000 from Lamarque et al. [2010] have been used. Daily biomass burning (BB) emissions fluxes are
taken from the GFED 3.1 inventory [van der Werf et al., 2010]. In the region of interest, almost all BB emissions
fluxes are located south to the Saharan desert, and they have a strong annual cycle with BB emissions being
maximum between November and February.

2.2. Observations
Total AOD at 550 nm is assimilated from satellite retrievals, while ground-based measurements are used only
for validation purposes. We use total 550 nm AOD retrievals from the daily Level 3 Merged Dark Target/Deep
Blue [Levy et al., 2013] product from the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument,
on board the polar Sun-synchronous orbit satellite Aqua.

For validation purpose, we use daily 500 nm AOD Level 2 retrievals from the Aerosol Robotic Network
(AERONET) Sun photometers [Holben et al., 1998], without any postprocessing or preprocessing. For satellite
data only, we regrid the AOD retrievals into the model grid.
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Figure 1. Numbered subregions for fine dust and coarse and supercoarse dust correction factors (composing the
control vector elements). AERONET sites used in this study (Figure 5 and Table 1) are shown with letters A–F (squares).
Remaining AERONET sites (circles) of Table 1 are shown with letters G–M. The AERONET sites are Granada (A), Ilorin (B),
La Parguera (C, not shown in this figure), Santa Cruz Tenerife (D), Sede Boker (E), Solar Village (F), Bahrain (G), Blida (H),
Dhabi (I), Dhadnah (J), Forth Crete (K), Hamim (L), and Nes Ziona (M).

2.3. Data Assimilation System
Our objective is to find the best emission estimate, combining information from models and observations.
The optimality of the assimilated emissions is formulated in terms of the minimization, over the control vector
x, of the following cost function:

J(x) = 1
2

(
x − xb

)T
B−1

(
x − xb

)
+ 1

2

(
yo − H(x)

)T
R−1

(
yo − H(x)

)
, (5)

where xb is the background (or prior) control vector, yo is the observation vector, H is the observation operator,
B is the covariance matrix of the background errors, and R is the covariance matrix of the observations errors.
The minimum of the cost function is achieved for the “analysis”; it is denoted xa and calculated in this work
through the use of a constrained minimization algorithm, given the constraints over the control vector, as
explained in the next sections.
2.3.1. Control Vector
The control vector x is composed of multiplicative correction factors of the model emissions. We split the spa-
tial domain of interest in a number of “subregions,” and the temporal domain in a number of “subperiods.” We
also define a number of emission “categories,” which are related to the type of aerosol (or aerosol precursor)
included in the emission scheme of the model.

We assume constant correction factors over each subregion, subperiod, and emission category. The number of
subregions and subperiods depend on the category of emission. Following the approach applied in Huneeus
et al. [2013], we define six emission categories: fine desert dust, coarse and supercoarse desert dust, biomass
burning emissions, fine mode sea salt, coarse mode sea salt, and anthropogenic SO2 and fossil fuel emissions.
Only one region is considered for fine sea salt, coarse sea salt, anthropogenic SO2, and fossil fuel emissions,
which covers the entire globe. The seasonality of sea salt emissions is assumed to be correct in the model,
and only one time period (of 1 year) is used for sea salt. For biomass burning emissions, two subregions are
constructed based on the land cover class map of Kaiser et al. [2012], one for grassland-like (including savan-
nah) land cover and a second one for forest-like land cover. The correction factors have a monthly resolution
for biomass burning.

We define 18 dust subregions over the area of interest (Figure 1) as we expect that most of the AOD observed in
the assimilation region (Figure 2) is due to aerosol emitted over the Sahara desert, the Arabian Peninsula, and
over the Atlantic Ocean. However, a nineteenth dust subregion is also defined for the rest of the globe, because
its emissions can also occasionally influence the AOD in the region of interest. The subregions are the same
for the three categories of dust. Their number is a trade-off between the expected spatial resolution of the
analysis and the computational cost of our inversion system. The maximum possible number of subregions
would correspond to the number of model grid boxes. The main idea is to construct subregions that are as
large as possible and also homogeneous, so as to get an affordable quantity of subregions consistent with
the information content of the observations.
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Figure 2. Representation of the LMDz grid. The blue rectangle depicts the assimilation region as described in the text.

We define the dust subregions in the following way: first, the distribution of the dust-emitted flux is calcu-
lated for a long period (1 year in our case) at an hourly output resolution. We then compute the temporal
correlation of the emission flux in each grid box with the other grid boxes. With this calculation, we obtain a
correlation map for each grid box in the region of interest (not shown). The idea is then to group the most sim-
ilar grid boxes into subregions, so that the temporal emission patterns of grid boxes within a given subregion
are similar. For this purpose, two clustering methods have been used: K means and Gaussian Mixture Model
(implemented by Pedregosa et al. [2011]). These two methods allow creating a spatial partition of the region
of interest, but they only use information from the model dust fluxes. The final step is to manually modify the
subregions created by the clustering analysis by including information on the dust source that is available in
the literature [Schepanski et al., 2007; Ginoux et al., 2012] and to join or split the subregions in order to (i) keep
a known dust source location into a single subregion and (ii) keep well-known dust sources as separate sub-
regions. This last step in the subregion construction has an arbitrary or subjective component but is a way to
include key information in the construction process.

Alternatively, it would be possible to define the subregions based on the AOD retrievals within the inversion
process itself [Bocquet et al., 2011]. However, given the associated substantial increase of the computational
burden, we prefer to define the subregions using model information only.

In terms of temporal resolution, our inversion system allows for a different number of subperiods for each
category of correction factors in the control vector. In this work, coarse sea salt and fine sea salt are defined
with one element per year, which means that the correction factors for fine and coarse sea salt emissions have
a yearly resolution. For the rest of the elements in the control vector, we set a monthly resolution, which means
that we have one element in the control vector per category of emissions, subregion, and month. In summary,
for a 1 year assimilation, the number of elements in the control vector is 19 × 12 for fine dust, 19 × 12 for
coarse and supercoarse mode dust (lumped together), 2 × 12 for biomass burning, 1 × 12 for anthropogenic
and fossil fuel emissions, 1 for fine sea salt, and 1 for coarse sea salt, which gives a total of 494 elements for
the control vector.
2.3.2. Observation Operator and Minimization Procedure
The 550 nm AOD estimation by the LMDz-SPLA model from the emissions is used as the observation operator.
To compare the model output with the MODIS/Aqua retrievals, the model AOD is sampled at 13:30 equatorial
local time to match the satellite overpass time. We discard all the pixels with an AOD difference larger than
1 with regard to the prior simulation because large differences between the prior simulation and the obser-
vations can deteriorate the quality of the analysis [Lorenc and Hammon, 1988]. The number of observations
discarded by this filter is less than the 2% of the total number of observations. Comparison with AERONET
is done using the model daily mean AOD at the model grid box level. We extrapolate the simulated 550 nm
AOD into a 500 nm AOD using the 550–670 Ångström coefficient that is also computed in the model. As nei-
ther the linear tangent nor the adjoint model has been coded for the new version of LMDz-SPLA model, the
minimization of equation (5) is done only using the forward model. In order to minimize equation (5), the
observation operator is approximated by

H(x) = H(xb) + H
(

x − xb
)
, (6)
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where H is the Jacobian of the nonlinear observation operator H, evaluated at the xb point, and calculated
trough finite differences. Perturbations are chosen equal to one, and they are within the expected order of
magnitude of correction factor differences between the analysis and the prior.

In principle it is necessary to perform a number of forward simulations (at least) equal to the number of ele-
ments in the control vector plus one (for the background or prior simulation), to fully construct the H matrix.
With the aim of saving computing time, only the background simulation is made for the whole 1 year period.
To compute the AOD due to perturbations in the elements of the control vector (and to reduce the computing
time), we take advantage of the relative short residence time of atmospheric aerosols and we assume that the
effect of the perturbation in emission is negligible beyond 15 days after the end of the perturbation for each
subperiod and, by definition, is equal to zero for all the days before the emission perturbation is perturbed.
Under this assumption, each simulation associated with a 1 month subperiod is calculated by simulating only
one and a half month instead of a whole year, thus saving a considerable amount of computing time.

With the linear approximation of H, the cost function is a quadratic function, and the solution space is bounded
by the constraint of the nonnegativeness of the control vector that we choose to impose. As the solution
space of the optimization problem is bounded, we cannot use the standard linear algebra solution from
the unconstrained problem. Instead, we directly minimize the cost function using an appropriate numerical
solver, which takes advantage of the convexity of the optimization problem. The minimization is performed
for all the elements of the control vector simultaneously.

We use the inverse of the Hessian of the cost function (evaluated at the analysis point) to estimate the analysis
error covariance matrix A. In an unconstrained framework, the A matrix is estimated as

A = (HT R−1H + B−1)−1. (7)

In the constrained case, the computation of A is the same as in equation (7), because the bounds do not
change the Hessian of the cost function in the solution space. Standard deviations of analysis errors are
estimated as the square root of the diagonal terms of A.

2.3.3. B and R Matrices
In principle we use variances of background (B) and observation (R) errors from Huneeus et al. [2013].
Standard deviations of the observational errors are set to 0.2 for MODIS AOD over land and 0.1 for MODIS
AOD over ocean in R. Standard deviation of the model error is set to 0.02 in R. Errors associated with dust bin
discretization and other model equation discretizations are implicitly embedded in the model error in the R
matrix. Huneeus et al. [2012] show that 0.02 is an appropriate value for the model error of the LMDz-SPLA AOD
observation operator. Standard deviations of the background errors are set as 3.0 for dust emissions (coarse
and supercoarse modes lumped together and fine mode), 1.3 for biomass burning emissions, 2.0 for sea salt
emissions (fine and coarse), and 0.18 for anthropogenic and fossil fuel emissions in B. Unlike Huneeus et al.
[2013], we have included two types of nondiagonal terms in the B matrix. The first accounts for the correlation
between the errors in the dust emission of the two dust categories in a same subperiod. We have fixed this
through a correlation coefficient of 0.6. A second correlation has been introduced between different subperi-
ods for the same subregion and category of emission. We assume a Gaussian correlation [Pannekoucke et al.,
2008], and we use a timescale L of 20 days so that

𝜌L = exp
(
−(ΔT)2

2L2

)
, (8)

where ΔT is the time between the two subperiods associated to the pair of elements in the control vector, in
the same units as the timescale L.

The matrices B and R have been inflated to satisfy two of the a posteriori diagnostics presented in Desroziers
et al. [2005] for the trace of the matrices, and specifically the diagnostic related to the observational errors and
the one related to the analysis errors. In other words, we have calculated two scalars 𝛼B and 𝛼R such that

Tr(do
a(d

o
b)

T ) = Tr(R𝛼R
), (9)

Tr(da
b(d

o
a)

T ) = Tr(HA𝛼B ,𝛼R
HT ), (10)
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where Tr is the trace of the matrix and

do
b = yo − H(xb), (11)

da
b = H(xa) − H(xb), (12)

do
a = yo − H(xa), (13)

R𝛼R
= 𝛼RR, (14)

A𝛼B ,𝛼R
=

(
HT

(
𝛼RR

)−1
H +

(
𝛼BB

)−1
)−1

, (15)

H(x) = H(xb) + H(x − xb), (16)

and

xa = argminx≥0

{1
2
(x − xb)T B−1

𝛼B
(x − xb) + 1

2
(yo − H(x))T R−1

𝛼R
(yo − H(x))

}
. (17)

After calculations, the inflation factor for the R matrix (𝛼R) is equal to 1.09 and the inflation factor for the
B matrix (𝛼B) is 4.08. Consequently, we define B′ = 4.08 × B and R′ = 1.09 × R. The factor 𝛼B = 4.08 may
account for missing covariances of the background errors. The factor is calculated in the observational space
using diagnostics of the analysis; thus, the interpretation of the factor 𝛼B in the parameter space is not direct.
However, this factor leads to a prior uncertainty of the dust fluxes in the expected range (see section 3.5).

2.4. Experimental Configuration
We focus this study on the Sahara desert and Arabian Peninsula region, and we take advantage of the zoom
capability of the atmospheric model to choose a model grid with a horizontal resolution close to 1∘ by 1∘ over
the Sahara desert (Figure 2). The model grid has an average resolution of 1∘ in latitude and 1.4∘ in longitude
in the latitude-longitude box defined by the corners [0∘N,70∘W] and [40∘N,70∘E]. This grid is a compromise
between the computing cost of the system and our computing capabilities; it is also selected to reduce the
impact of the regridding process of the dust emission model input data, which is provided at the 1∘ by 1∘
resolution, into the atmospheric model grid. The global atmospheric model has a horizontal grid of 128 by
88 points, and 39 levels in the vertical coordinate. The model zonal and meridional winds are nudged to the
European Centre for Medium-Range Weather Forecasts (ECMWF) ERA-Interim reanalysis [Dee et al., 2011], as
described in Hourdin et al. [2015]. The nudging of the model is performed with a relaxation time of 48 h inside
the zoom and 3 h outside the zoom. The nudging (or relaxation) of the model winds consists of adding a
nonphysical term into the model equations to push the model to follow the reanalysis winds. Outside the
zoom, the short relaxation time forces the model to follow closely the reanalysis winds. However, inside the
zoom, the model is able to develop its own diurnal cycle and the features of the model physics and dynamics
can fully develop (for example, the near-surface wind in Hourdin et al. [2015]). Sea surface temperature and
surface ice and snow cover are also prescribed from ERA-Interim. The simulation period is the year 2006 for all
our simulations and analysis, and the spin-up was performed over 1 year with nudged winds from ERA-Interim
reanalysis.

Despite the global coverage of the model and the observations, we only assimilate observations in a reduced
region of the globe. The selected assimilation region, defined as a rectangle with coordinates ranging from
70∘W to 65∘E in longitude and 0∘N to 40∘N in latitude, allows the system to assimilate both the aerosol AOD
over Africa and the adjacent Atlantic Ocean (Figure 2).

3. Results
3.1. Cost Function Decrease
The data assimilation system successfully reduces the cost function J(x) (equation (5)) to a value close to two
thirds of the prior cost function value. In a consistent data assimilation system, the final value of J(x) should
be close to half the number of the observations [Talagrand, 1998]. In our case, with ≈709, 000 observations
and with an initial value of the cost function equal to ≈ 650, 000, the system reaches the cost function value
of ≈431, 000 in the analysis, which is somewhat larger than the ideal expected value of the cost function
minimum.

This result could be explained by an imbalance between the prescribed R matrix and the covariance matrix of
the innovation vector (y − H(xb)) and/or a systematic bias in the observation or in the observation operator
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Figure 3. Analysis correction factors by subperiod (months) on the ordinate axis and subregion and category of emission on the abscissa axis. BB stands for
biomass burning, IND for anthropogenic and fossil fuel emissions, and SS for sea salt emissions.

(model simulated AOD). In our case, the use of the Desroziers diagnostics to inflate R prevents the unbalance
between the diagonal terms of the R matrix and the innovation vector, so we think that the difficulty to reach
the theoretical minimum is more likely to be due to a combination of a bias in the observations, a bias in the
observation operator, and the lack of off-diagonal terms in the R matrix.

It is interesting to note that the value of the cost function in the analysis is equal to ≈ 431, 000 when the
full nonlinear model is used as observation operator, and ≈434, 000 when the linear approximation of the
model is used instead. The small difference between the two values gives a qualitative confidence to the linear
assumption of the observation operator, which is applied in the cost function minimization.

3.2. Correction Factors
Figure 3 shows the analysis control vector values (xa), i.e., the optimal correction factors for the emission fluxes
calculated with the data assimilation system. Given the information provided, the analysis is the most likely
assignment for different aerosol types, subregions and subperiods. In Figure 3 the control vector elements are
grouped by subregion and by category of emission in the abscissa and by subperiod (months) in the ordinate.

For fine mode dust, 84% of the analysis correction factors are less than unity, which means that most correc-
tions reduce fine dust model emissions. For the fine mode emissions, 60% of the elements of the analysis xa

equal zero, but some elements have relatively large values.

For the coarse and supercoarse mode dust, 77% of the analysis correction factors are less than unity, but
unlike for the fine mode dust, the correction factors have a rather homogeneous distribution, with only 15%
of the values close to zero and 8% of values greater than 2. It seems to be contradictory to have, for the same
subregion and subperiod, positive coarse and supercoarse dust emission and zero fine mode dust emissions.
We will address this in section 4.

We can identify three groups of dust subregions in Figure 3. The eastern group includes subregions ranging
from 1 to 8, where coarse and supercoarse dust correction factors are mostly smaller than 1 and fine mode
dust correction factors are predominantly either close to zero or larger than 2 (except in November). In partic-
ular, the transatlantic dust plume between March and September is generated by strongly emitting fine mode
dust and decreasing coarse and supercoarse mode dust emissions. We distinguish a second group of subre-
gions numbered between 9 and 14 where coarse and supercoarse dust correction factors are larger than the
correction factors of the first group, and between May and November fine mode correction factors are small.
A third group (composed by subregions numbered between 15 and 18) has a more heterogeneous behavior
of dust correction factors than the two previous groups. This last group of correction factors is sensitive to
the assimilated observations over the Arabian Peninsula and the Arabian Sea, while the other two previous
groups are sensitive to assimilated AOD over the Sahara, the Sahel, and the Atlantic Ocean.

Forest biomass burning correction factors are greater than 2 between February and November, but these large
correction factors do not strongly impact the analysis because the months with more forest biomass burning
emission fluxes are December and January. On the other side, grass biomass burning correction factors in
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November, December, and between January and April do impact the analysis emissions. For sea salt emissions,
Figure 3 shows an optimal correction factor of 3.2 for coarse mode sea salt emissions and 0.6 for fine mode
emissions. This is associated with a strong posterior error anticorrelation (correlation factor of −0.9) between
both elements in the control vector. As both fine and coarse mode sea salt correction factors share the same
geographical emission region, the data assimilation system is unable to separate their relative contributions
to the total 550 nm AOD, and thus, what is really optimized is the sum of both contributions to the total AOD.

3.3. Comparison With MODIS
The internal consistency of the inversion system can be qualitatively assessed by comparing the assimilated
observations with the simulated AOD. A quantitative validation is given later in section 3.4.

Qualitatively, the prior model can reproduce the main features in AOD observed in the monthly averages
(Figure 4). To some extent, the transported dust plume is well represented in the months when the dust emis-
sion is maximum, from June to August, and the model can produce dust levels in the Bodélé depression (17∘N,
18∘E) throughout the year. The local maximum of AOD in the Arabian Sea is also simulated. The westward
transport of biomass burning aerosols to Central and South America in the boreal winter, as visible in the
southern part of the panels, is noticeable.

The analysis efficiently reduces emissions in the northern part of the Sahara desert and achieves a better
agreement with the assimilated AOD than the prior, as can be seen between March and August. A similar
feature is found in the reduction of model emissions in the prior emission hot spot close to 10∘W in longitude
and 20∘N in latitude and in the prior emission hot spot in the Iranian desert.

It appears that generally speaking the data assimilation system is more efficient in decreasing emissions than
in increasing them. However, there are cases where the assimilation system can effectively increase emissions.
For example, in the dust outbreak of 7–13 March (showed in Figure 4 as an AOD maximum close to [10∘E,7∘N]
given the MODIS/Aqua sampling), it is clear that the assimilation system improves the fit with the observations
by increasing emissions of fine mode dust in subregions 12 and 14. Even though this increase is not large
enough to allow reproducing the AOD maximum, it represents an improvement with respect to the prior.
Another example of the increase of AOD is for the month of July, when the analysis AOD over the Sahara is, in
general, larger than the prior AOD.

The inversion system is designed to optimize not only dust emissions but rather all the emissions detailed
in Figure 3. In particular, an increase of AOD of the analysis with respect to the prior can be seen over the
Atlantic Ocean close to 35∘N, which is the least dust-influenced area of Figure 4. These increase of AOD can
be likely attributed to an increase in the local sea spray emissions or/and to an increase in emissions outside
the assimilation region that are transported into the ocean.

3.4. Comparison With AERONET
To evaluate the performance of the analysis in comparison to the prior simulation, we select AERONET stations
in the region of interest with a number of daily observations greater than half of the maximum number of
observations in the year, i.e., stations with at least 182 daily AOD retrievals. This resulted in 13 stations for
which the statistics against the two model simulations are presented in Table 1. We group the 13 stations
into six groups according to their geographic locations, and for each group we select the one station with
the longest record for which we show the time series of the simulated and observed AOD in Figure 5. The
geographic location of AERONET sites is shown in Figure 1.

The overall statistics of the model performance against AERONET are summarized in Table 1. It should be
noted that the AOD of the analysis is smaller than the AOD of the prior at all AERONET stations except Ilorin
and La Parguera. The increase in AOD over the Caribbean station La Parguera is consistent with the larger fine
mode dust fluxes of the analysis, as we will show in section 3.5. There is a clear improvement of the analysis
simulation with respect to the prior one in two of our skill scores: the root-mean-square error (RMSE) is smaller
for all the stations in the analysis run, and the Pearson correlation coefficient is also closer to unity in all the
analysis simulations. The absolute value of the bias is reduced in five stations, and it is increased in other
seven stations, and in general terms, the prior simulation is positively biased, while the analysis simulation is
negatively biased.

Time series of simulated and observed AOD are shown in Figure 5. In general terms, the analysis simulation is
capable of reducing a large number of AOD peaks of the prior simulations that are not observed by AERONET
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Figure 4. Monthly averages of 550 nm AOD from (left column) the MODIS/Aqua product, (middle column) the prior simulation, and (right column) the analysis
simulation. The latitude is in the ordinate (in ∘N) and the longitude in the abscissa (∘E). All the monthly averages were calculated by sampling only times when
the MODIS product reports valid data. Complete lack of data for the month is depicted in white.
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Table 1. AERONET Sites Used in This Study and Statistics of the Simulated 550 nm AOD Against Daily AERONET Measurementsa

Latitude Longitude Elevation Mean Bias RMSE 𝜌

Station (∘N) (∘E) (m above sea level) N Obs. Obs FG AN FG AN FG AN FG AN

Bahrain 26.21 50.61 25 201 0.433 0.476 0.385 0.044 −0.047 0.365 0.237 0.275 0.516

Blida 36.51 2.88 230 195 0.258 0.321 0.244 0.063 −0.013 0.356 0.188 0.59 0.647

Dhabi 24.48 54.38 15 243 0.434 0.412 0.32 −0.022 −0.114 0.397 0.254 0.231 0.509

Dhadnah 25.51 56.32 81 324 0.404 0.456 0.318 0.052 −0.086 0.465 0.251 0.147 0.428

Forth Crete 35.33 25.28 20 283 0.196 0.267 0.247 0.071 0.05 0.254 0.182 0.37 0.38

Granada 37.16 −3.6 680 276 0.177 0.216 0.186 0.039 0.009 0.246 0.138 0.653 0.719

Hamim 22.97 54.3 209 263 0.314 0.349 0.273 0.035 −0.041 0.264 0.168 0.449 0.675

Ilorin 8.32 4.34 350 270 0.705 0.431 0.46 −0.274 −0.245 0.6 0.537 0.073 0.371

La Parguera 17.97 −67.05 12 251 0.148 0.147 0.155 −0.001 0.008 0.148 0.103 0.28 0.38

Nes Ziona 31.92 34.79 40 185 0.226 0.242 0.21 0.016 −0.016 0.141 0.115 0.463 0.529

Santa Cruz Tenerife 28.47 −16.25 52 233 0.171 0.182 0.146 0.011 −0.025 0.183 0.117 0.385 0.556

Sede Boker 30.86 34.78 480 335 0.2 0.263 0.24 0.063 0.04 0.235 0.161 0.537 0.55

Solar Village 24.91 46.40 764 335 0.372 0.373 0.367 0.001 −0.005 0.273 0.252 0.393 0.497
aFG stands for the prior simulation and AN for the analysis simulation. The statistics shown are the mean 550 nm AOD (Mean), the mean bias (Bias), the

root-mean-square error (RMSE), and the Pearson correlation coefficient (𝜌).

(e.g., at the Granada site in April, Santa Cruz Tenerife site in October, or Solar Village site in September). In
some cases the assimilation system increases the AOD toward the observations, as, for example, in March
at the Ilorin site. Even though the bias in La Parguera site is increased in the analysis, the variability of the
observed minus simulated AOD is improved by the analysis. Part of the errors in the analysis simulation can
be attributed to the mismatch between AERONET and MODIS AOD, the assimilated product. For example,
most of the model inaccuracy at Ilorin site (see Table 1) comes from the first 3 months of simulation, where
the AERONET observations are considerably larger than both the model simulations and the MODIS/Aqua
retrievals.

On monthly to seasonal temporal scales (not shown), the analysis performance is rather homogeneous, with
calculated statistics similar to those of the whole year (Table 1) except for the bias and root-mean-square error
(RMSE) for Granada and Blida stations (northern stations of Figure 1) where the improvement of the analysis
is better in April, May, and June; in La Parguera, where there is a significant improvement of the bias and RMSE
in September; and in Santa Cruz Tenerife where the bias and RMSE of the analysis are smaller than the prior
simulation in September and October.

3.5. Emission Fluxes
Dust and biomass burning emission fluxes are summarized in Figure 6. The total amount of emitted dust in
the prior simulation is 6690 Tg, of which 4095 Tg are emitted in Northern Africa and 2595 Tg in the rest of
the domain (subregions 16, 17, and 18 of Figure 1). The total dust flux is reduced to 2897 Tg in the analysis
simulation (2179 Tg emitted in Northern Africa and 718 Tg in the rest of the domain). The AEROCOM project
[Huneeus et al., 2011] reports a plausible range of emissions between 400 and 2200 Tg yr−1 for North Africa
and between 26 and 526 Tg yr−1 for Middle East. Although the analysis simulation is in the higher limit of this
range, more recent studies suggest larger values of Saharan [Evan et al., 2014] (4500± 1500 Tg yr−1) and global
[Zhao et al., 2013] (≈ 6000 Tg yr−1) dust emission fluxes.

Dust emission of coarse and supercoarse mode bins are orders of magnitude larger than that for the fine mode,
so the total amount of dust fluxes (in terms of mass) is controlled by the emission of the coarser particles.
In the prior simulation, the flux of the coarse and supercoarse modes is 6662 Tg, while in the analysis this
flux is 2866 Tg, with the reduction occurring for all months. The seasonal cycle of the coarser emissions is
slightly different between the analysis and the prior simulations. Both of them show larger values in boreal
summer than in winter, but the months of maximum emission are not the same: July, September, and March
for the prior and June, August, and April for the analysis. In the spatial distribution, only two subregions (11
and 15) have more coarse and supercoarse dust emissions in the analysis simulation than in the prior one.
The data assimilation system identifies large observational departures of AOD over subregion 18 (see Figure 4)
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Figure 5. Model/AERONET comparison over six selected AERONET sites. Time series of AERONET 500 nm AOD (in black) and the two simulations with the prior
simulation in green and the analysis simulation in orange. The name of each AERONET station is indicated on each panel. MODIS/Aqua retrievals are shown in
purple. Simulated AOD is shown only for days when AERONET reports valid data.

and consequently produces a strong decrease of the analysis dust coarse mode emissions in this subregion
(compared to prior emission).

On the contrary, fine mode dust emissions are larger in the analysis (30 Tg) than in the prior simulation
(27.6 Tg), despite the suppression of the fine mode dust emissions in several subregions of the analysis due
to the null correction factor shown in Figure 3. Fine mode dust emissions are less important in terms of mass
flux, but they are crucial for the 550-nm AOD field due to their larger mass extinction coefficient and longer
residence time than the coarser dust. There is an important decrease of emissions between the prior and the
analysis in subregions 3 and 11, but in both cases, an adjacent subregion (4 and 12, respectively) strongly
increases emissions. The fine mode emission increase in July is due to values of the analysis correction factor
larger than 3 in the eastern part of the region (subregions between 15 and 18), and it is also reflected in the
large value of the overall emission flux for subregion 18.

In terms of flux uncertainty, we deliberately inflate the background error covariance matrix to obtain a prior
dust emission flux uncertainty in the range of the dust flux spread reported in Huneeus et al. [2011]. The stan-
dard deviation of the prior dust flux error for the whole region is therefore close to 4140 Tg. For the analysis,
this uncertainty measure is reduced to 31 Tg, which seems to be unrealistically low and will be discussed in
section 4.
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Figure 6. Dust emission fluxes in teragrams for the two model (prior and analysis) simulations. (top row) The emission fluxes for the fine mode; (bottom row) the
coarse and supercoarse modes. (left column) Monthly sums of emissions; (right column) yearly 2006 emissions disaggregated by subregion. Total flux for
Northern Africa (subregions 1 to 15) is indicated with a hatch pattern in Figure 6 (left column).

4. Discussion

The data assimilation system successfully modifies the dust fluxes in order to improve the agreement with the
AOD observations, but there are pending challenges to be solved.

Over the Sahara, the shorter residence time of the coarse mode dust (relative to the fine mode) incites the
assimilation system to preferably adjust the coarse mode dust emissions to get closer to the MODIS observa-
tions over land, while MODIS observations over the ocean are more relevant to the fine mode dust because
of its longer residence time (Figure 4, left column). However, dust AOD over the ocean results from dust emit-
ted over a large source area [e.g., Schepanski et al., 2007; Ginoux et al., 2012] in the Sahara and is subject to
long-range transport and mixing along the air mass trajectory. The convergence of the fine mode dust emit-
ted over the desert into a single dust plume over the Atlantic Ocean results in a difficult inversion problem for
fine mode dust. In order to reduce the model AOD departures with respect to MODIS over the dust plume,
the data assimilation system has various ways to adjust the fine mode dust emissions (Huneeus et al. [2016]
showed how different emissions lead to a similar AOD behavior after long-range transport). In this context, the
assimilation system prefers strongly decreasing the emissions for a large number of subregions and increas-
ing the emissions for some subregions. It should be noticed that zero emissions for the fine mode dust cannot
realistically coexist with nonzero emissions for the coarse and supercoarse mode dust.

In order to address the above, a higher quality total AOD and fine mode AOD product over land would be
needed. The impact of including this product into assimilated observations has not been addressed yet, but
we think that it could help the assimilation system to differentiate between fine and coarse mode dust emis-
sions and hopefully avoid the problem of having zero dust fluxes in the fine mode. Preliminary tests indicate
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that assimilating MODIS fine mode AOD over ocean in addition to total AOD does not significantly improve
neither the simulated comparison against AERONET nor the issue of having large number of subregions with
zero fine mode emissions. For this reason, we think that fine mode AOD over land would be a more beneficial
piece of information that is not currently available from MODIS.

A valuable product of the data assimilation is the quantification the analysis uncertainty. Our system under-
estimates the uncertainty of the analysis fluxes (see section 3.5). We have performed several sensitivity
experiments (not shown) over the inflation parameters of R and B matrices (see section 2.3.3), concluding that
neither the analysis control vector nor the A matrix is highly sensitive to these parameters. Off-diagonal terms
in R are usually omitted, and the inflation of the R matrix should be enough to compensate the lack of these
terms in most of the variational suboptimal assimilations systems [Rabier, 2005]. We would like to investigate
if this holds for our inversion system, but more work is needed in order to properly define the off-diagonal
terms of R and to quantify the impact of these terms in our analysis uncertainty.

Another question is whether there is a possible bias in the assimilated observations that should be corrected.
MODIS AOD is retrieved from the Dark Target algorithm over ocean, and we use the retrievals either from the
Deep Blue algorithm (for bright surfaces, as the desert) or from the Dark Target algorithm over land [Levy et al.,
2013]. Therefore, a discontinuity in the AOD field is possible close to the coast. In Figure 4, this discontinuity
can be noted mostly between the months of June and September, where the AOD close to the coast over land
is smaller than that over the ocean at the same latitude. In this region, the AOD maximum is due to mineral dust
emissions, which are only emitted over land and then transported westward. Over the desert, the Deep Blue
algorithm systematically underestimates the AOD [Sayer et al., 2013], and the (assimilated) combined product
could have discontinuities in regions where both Deep Blue and Dark Target algorithms report successful
retrievals [Sayer et al., 2014]. This systematic bias between both MODIS AOD retrievals close to the coast may
affect the analysis, providing contradictory information to the assimilation system. However, our tests indicate
that assimilating data over the desert leads to better results than assimilating only the Dark Target product.

Besides the land/ocean bias described above, recent progress has been done to properly define and narrow
the expected error (EE) estimates for the MODIS AOD products [Levy et al., 2013; Sayer et al., 2013]. In order
to take advantage of these developments in a data assimilation framework, it would be necessary to include
these EE in the R matrix. Preliminary tests show that the analysis performance decreases when the obser-
vational error is defined by a linear function of the MODIS AOD, and thus, we set a constant value for the
observational error. However, these could change if the full EE derived in Sayer et al. [2013] is used (includ-
ing the dependence of the error to the satellite viewing geometry). This EE has not been addressed yet in the
source inversion system and would be interesting to implement it in the near future.

An additional source of error could come from the design of the data assimilation system. We assimilate daily
AOD observations, but the control vector has only a monthly resolution. The variability of dust emissions at the
scale of the subregions and subperiods is completely determined by the atmospheric and the dust production
model, and errors at these scales negatively impact the inversion system, as they cannot be corrected by
the assimilation system. Manual inspection of the model performance suggests that the issues discussed in
the previous paragraphs are not necessarily associated with errors of submonthly scales of dust emission or
transport, but further work should be done to quantify these errors.

5. Conclusions

We have estimated 1 year of dust fluxes over the Sahara and the Arabian Peninsula, by assimilating total AOD
from MODIS in the aerosol transport model coupled to a dust production model and to the zoomed version
of a general circulation model. Our adjoint-free assimilation system allows calculating correction factors for
18 subregions at a monthly resolution, and at an affordable computational cost over a 1 year period.

We present and apply an assimilation system that can perform natural aerosol source inversions over larger
time windows and spatial coverage (e.g., by including the Arabian Peninsula) than previous regional studies
with reasonable results.

In general terms, the analysis simulation is closer to the AOD observations than the prior simulation over the
available AERONET stations. The data assimilation system is capable of improving spatial features observed
in MODIS AOD with respect to the free-assimilation simulation.
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The total amount of dust emitted in the region is estimated to be approximately 2900 Tg for the 2006 year,
with most of the mass flux emitted by the coarse and supercoarse mode bins of the DPM (with diameters over
1 μm).

A large temporal window for the source inversion (of at least one decade) is needed in order to create a useful
data set to be used by the aerosol and climate community and would help to have a more robust estimate of
the annual dust emission over the region. The well-known interannual variability of dust sources is an inter-
esting question to address, but before applying our framework to this problem, it is necessary to solve some
critical issues detailed in the previous section.

The quality of the analysis partially depends on the quality of the atmospheric model. In particular, dust flux
calculations improve when the model resolution increases. The source estimation approach presented in this
work is applicable to other modeling systems (without needing an adjoint model) with increased horizontal
resolution. We expect that the application of this inversion system in higher-resolution models will lead to a
better and more accurate estimate of mineral dust fluxes.

This inversion system could be applied to tune parameters in the dust emission model instead of correction
factors of the emissions, but this could be done in this framework only if perturbations of the parameters lead
to linear (or approximatively linear) perturbations in the simulated observations. In this case, the assimilation
system would need minimal modifications to attempt this task. More work is needed in order to identify and
estimate plausible dust emission parameters in the DPM that can be efficiently adjusted through this method.

In the near future, we will try to assimilate more information than the total 550 nm AOD in order to improve
our results in terms of fine mode emissions. To this end, a satellite retrieval with similar spatial and temporal
coverage of MODIS total AOD but only for fine mode aerosols 550 nm AOD over the desert would be useful.
Alternatively, it is also possible to modify the SPLA model to have more dust bins, but with cutoff diameters
that are compatible with the small, medium, and large AOD retrievals from the MISR satellite, or with the small
and coarse cutoff radii of the POLDER/PARASOL instrument.
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