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Abstract. Solar-based energy is an intermittent power resource whose
potential pattern varies in space and time. Planning the penetration
of such resource into a regional power network is a strategic problem
that requires both to locate and bound candidate parcels subject to
multiple geographical restrictions and to determine the subset of these
and their size so that the solar energy production is maximized and
the associated costs minimized. The problem is also permeated with
uncertainty present in the estimated forecast energy demand, resource
potential and technical costs. This paper presents a novel combination of
Geographic Information Systems (GIS) and Robust Optimization (RO)
to develop strategic planning scenarios of a collection of parcels that
accounts for their spatio-temporal characteristics, and specifically their
hourly radiation patterns that are location dependent, to best fit the
network temporal demand and minimize technical costs.

The problem is formulated as a GIS spatial placement problem and a
RO fractional knapsack problem to plan the effective power penetration
and geographical suitability of new PV facilities. The combination GIS-
RO generates an excellent decision support system that allows for the
computation of optimized parcel scenarios (locations, sizes and power).
The qualitative and quantitative effectiveness of the approach is demon-
strated on real data on the French Guiana region. Results show that
the proposed approach provides reliable fine grained planning that also
accounts for the risk adversity of the decision maker towards forecast
demand and solar potentials.

Keywords: Renewable energy planning · Geographic Information sys-
tems · Robust optimization.

1 Introduction and related work

Energy transition from a high-carbon regime born of fossil fuels to low-carbon
solutions is a major challenge of current societies [10]. Most of the energy plan-
ning strategies therefore aim at enhancing the share of renewable energy (RE)
sources within power networks [23]. When those energies are dispatchable, the
integration remains pretty straightforward [16,36]. However, when it comes to
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volatile, or intermittent RE sources, this is no longer true. Their unstable and
variability nature implies that the resulting aggregated power injected into the
grid may threaten network’s stability by not matching the power demand [23].

Thus, the full problem of integrating intermittent RE sources in power net-
works involves irregular spatio-temporal energy potential patterns, related to
the location and dimensions of power facilities. It is a multi-criteria uncertain
optimization and planning problem that combines the spatial placement of can-
didate parcels for installing power facilities subject to geographical constraints
and temporal resource constraints, and the selection (location, size and capacity)
of optimal plants such that the power into the network is increased at minimal
costs and short-term unpredictability is limited to an acceptable level.

Taking into account spatio-temporal energy potential data, together with
heterogeneous land, network, and technico-economic constraints for effective re-
newable energy planning remains a challenging multi-dimensional problem per-
meated with uncertain data [37]. The computational approaches are broadly di-
vided into two research streams: 1) geographical information system (GIS) mod-
eling with multi-criteria decision-making (MCDM) [6,13,34,3], and 2) bottom-up
engineering approaches [23,35,7,37]. GIS models with MCDM focus on providing
suitability maps based on static resource assessment and expert-based decision
criteria. The maps depict areas with their respective weighted criteria values
to be used in the MCDM model, such as economic, environmental or techni-
cal ones. These approaches do not aim at optimizing the actual parcel selection
that would require taking into consideration the short-term temporal variation
of both the resource and power demand, or their evolution in the long-term.
On the other hand, bottom-up engineering approaches allow for time simulation
and optimization of given energy system configurations. Their main objective
is to guide energy policy road map often at a national scale and longer time
horizon. This systemic approach gives a significant insight into the potential
contribution of RE sources [12,11], but does not aim at identifying physical par-
cel locations. Similarly [22] addresses the resource management problem as a
knapsack problem, that shows the suitability of linear programming to select
among experts’ given parcels, the ones with highest resource potential. It does
not consider the hourly temporal patterns of the different sites and their pro-
jected uncertainty, the possibility to consider a fraction of a given parcel, nor
the impact of geographical restrictions and distances, and the complexity of the
associated technical costs.

In summary, to date we are not aware of computational approaches that
tackle the spatio-temporal optimization problem consisting of identifying the
best parcels that increase solar energy penetration into the network at minimal
cost, while satisfying a region’s specific constraints (terrain, resource, infrastruc-
tures, etc) and related costs. This paper addresses this problem by proposing a
two-steps specification in terms of a spatial placement and a resource planning
problem, and we propose an integrated computational approach. The approach
contributes a novel framework based on GIS spatio-temporal data and constraint
processing, connected to a Robust Optimization (RO) knapsack model to plan
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renewable energy scenarios. The combination GIS-RO generates an excellent de-
cision support system that allows for the planning of parcel scenarios (locations
and areas) that will best increase the RE power into the network at minimal
cost, according to the decision maker risk adversity. A GIS can handle very
large volumes of data, including remote sensing images for solar radiation in-
dicators, land use maps, and various networks maps (electrical, roads, water).
The application of global and multi-layers geographical constraints and various
control parameters allow for an effective deterministic pruning of the region,
to determine suitable candidate parcels, and their relevant properties without
impairing the optimization problem.

The core contributions of this paper are: 1) the specification of a complex
spatial placement and planning problem, 2) a computational approach that ef-
ficiently exploits GIS geographical constraints, and makes powerful use of large
scale spatio-temporal environmental data, and 3) an integration of the spatial
analysis with a robust optimization module through a comprehensive set of re-
source and contextual features. Through the use of Robust Optimization, data
uncertainty present in the forecast figures for the planned horizon is tackled with
a measure of robustness, allowing best and worst case scenarios to be studied
according to various risk adversity positions of the decision maker.

The GIS-RO framework presented in this paper, is applied to a real world
challenge of PV solar power plants planning in the region of French Guiana. It
illustrates the qualitative and quantitative efficiency of the approach as a decision
support system providing solution scenarios. The paper is organized as follows:
Section 2 describes the problem and overall approach; section 3 presents the GIS
module; section 4 the robust optimization model; section 5 is the experimental
section based on a real-world case study for robust spatial decision making from
time series resources; and section 6 concludes the paper.

2 Problem description, application and approach

The problem is motivated by a renewable energy scenario planning problem
from the 2015 Energy Transition Act. France’s energy policy has the target for
overseas regions, in particular French Guiana, of 50 % of renewable energy in
final consumption in 2020 and full energy self-sufficiency by 2030 [15]. The chal-
lenge is to identify suitable candidate parcels for RE parks and determine the
ones, and their optimal size, that would maximize power network contribution
at minimal costs. A candidate parcel must satisfy a number of geographical con-
straints, including topographic land use restrictions, type of ground surface, be
at a maximum distance threshold from the electrical grid, and have a maximum
surface with limited land slope. These constraints bound the areas for candidate
parcels.

The scenarios for the best parcels selection deal with the resource potential
and costs associated with each candidate parcel. The intermittent resource fol-
lows a temporal pattern specific to the geographic location. The costs are mainly
technical costs (installation, maintenance, grid connection) that depend on the
size of the parcel and its distance to the grid. These data have a degree of un-
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certainty in terms of their future value. The full problem can actually be defined
as a spatial placement problem to identify candidate parcels, and a fractional
uncertain knapsack problem with forecast time-series resource, to compute sce-
narios of optimal parcel selection and sizes. This paper aims at defining and
showing the strengths of a combined GIS and RO computational approach to
tackle complex spatial decision making problems with time-series resources, with
application here to solar energy placement and planning.

Integrated computational work-flow The work-flow depicted in Fig. 1 best de-
scribes the computational process and integration of the two modules. We first
describe the main inputs, then each module. Geographical data layers and con-
trol parameters input the developed GIS GREECE module, which implements
methods to determine the candidate parcels, and contributes a despatialization
of the relevant features for each parcel (resource pattern, maximal size and costs),
needed to enrich the RO model.

Fig. 1: GIS-RO integrated workflow

Data, constraints and control parameters In GIS terminology, the concept of 
layer corresponds to geographic datasets. When the dataset is an image, the term 
Raster is commonly used. The geometric objects are in vector mode and can be 
specified as polygons, lines or points. As depicted in Fig. 1, input data layers 
correspond to: 1) the study region or base layer, 2) the restricted area layers, 3) 
specific objects for which distance to resulting polygons must be computed (e.g. 
road, grid), 4) terrain features (land use and topography) and 5) the resource of 
interest (here solar radiation maps).

The restricted area layers stand for polygons where facilities cannot or should
not be established. Typically, they include urban areas, ecological zones, water-
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courses, military sectors, cultural heritage, etc. They may also represent zones
too far from specific objects (e.g. electrical grid). Geographic elements for which
distance must be computed can be of any kind but are generally related to con-
nection and accessibility costs such as road and grid networks. Topography and
land use allow terrain to be characterized within each polygon. Finally, resource
dataset is a set of raster or vector processed images, potentially with time series.
Data layers and maps are retrieved from national and international geographic
databases or remote sensing image processing.

The range control parameters are set by the user, and allow for different land
management scenarios to be generated. Buffers surrounding geographic objects
depend both on their type and on the kind of power station. Distance thresholds
to given layers (e.g. road network, electrical grid) stand for the limit beyond
which establishing a facility is not economically viable. Finally, land surface area
specify a region’s land management in terms of minimum and maximum allowed
surface thresholds. Smaller or larger parcels might respectively be excluded from
the study, or partitioned into suitable smaller parcels.

3 GIS module: GREECE

We specify the Geographical REnewable Energy Candidate Extraction problem
below, then describe our spatial partitioning and placement solution methods.

Given:

Blayer Base layer (i.e. a set of polygons)
Rlayer Restricted area layers
Dlayer Distance threshold layers (i.e. sets of geometries)
h Matrix of elevation values (DEM) associated to the base layer
Rmaps Set of resource raster maps
LUlayer Land-use layer
NETlayers Layers (e.g. grid, roads, ...) for which distance to each resulting

polygon must be calculated
Buffers Control parameter: Set of buffer values, each associated with a given layer
DistT Control parameter: Set of distance threshold values, defined for each Dlayer

smin, smax Control parameter: Surface thresholds
Find:

The set P of candidate parcels
The de-spatialized resource time series and geographical features for each parcel

Such that the following geographical restrictions hold:
A candidate parcel is geographically disjoint from all layers of restricted areas
The surface of a candidate parcel is within given bounds
A candidate parcel is within a bounded distance from the threshold layers

For space reasons, we give the main procedure in Algorithm 1, the spatial
partitioning algorithm, and describe our spatial slicing and extraction methods,
developed with Python GIS packages. The general procedure is decomposed in
two main steps: 1) spatial placement and partitioning (Alg.1: line 2-10) , 2)
conversion of the resulting polygons defined by their geographical coordinates
into de-spatialized items with relevant features (Alg.1: line 11-20). The set of
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relevant built-in Python GIS functions for topological, raster, set and graph
operations is defined (packages used: geopandas, shapely, rtree, gdal [21], numpy
[43], and networkx).

Topological geometric and raster images operators
DISTANCE(p,P) Minimum euclidean distance between centroid

of polygon p and all elements in set P
UNION(p1, .., pn) geometric union of the polygons pi
RTREEIDX(P) Compute spatial index idx of all elements in P
INTERSECTS(p,P,idx) geometric intersection of p with elements in P
SHAPE(p) Shape factor of polygon p (e.g. roundness)
SURFACE(p) Surface of polygon p
SLOPE(h) Slope raster from the Digital Elevation Model h
ASPECT(h) Raster of slope orientation values from DEM h
Set and graph functions
HONEYCOMB(x,shex) Creates a honeycomb grid corresponding to polygon x

of x with hexagonal elements having surface shex
PARTGRAPH(G, n, Wpart) Partitions a graph G into n parts having weights Wpart

Algorithm 1: GREECE main algorithm

1 begin
2 /* Compute candidate parcels specified spatially as polygons */

3 P ← MASK(Blayer, Rlayers, Buffers)

4 for p ∈ P :
5 if SURFACE(p) >= smax:
6 P .DELETE(p)
7 P .INSERT(PARTITION(p, smax, fd))/* see algorithm 2 */

8 for p ∈ P :
9 if SURFACE(p) < smin ∨ DISTANCE(p, i ∈ Dlayer) > dti, dti ∈ DistT :

10 P .DELETE(p)

11 /* Compute, store de-spatialized features for each polygon p

(Section 3.2) */

12 for p ∈ P :
13 p.APPEND(DISTANCE(p, N ∈ NETlayers))

14 p.APPEND(SHAPE(p)), p.APPEND(SURFACE(p))
15 p.APPEND(sk ∈ SURFACE(p∩ INTERSECTS(p, LUlayer,

RTREEIDX(LUlayer))))

16 /* Aggregate raster cell values, terrain features, within p */

17 p.APPEND(µn ∈ ZONALSTAT({h, SLOPE(h), ASPECT(h)}, p, µ))
18 p.APPEND(σn ∈ ZONALSTAT({h, SLOPE(h), ASPECT(h)}, p, σ))
19 /* Mean energy resource values per raster time series */

20 p.APPEND({µ1, µ2, · · · , µt} ∈ ZONALSTAT(Rmaps, p, µ))

3.1 Spatial placement and partitioning of polygons

Slicing the base layer: extracting parcel polygons The slicing of the whole study
area is divided into two main steps. The first consists in identifying and removing

http://geopandas.org/
https://shapely.readthedocs.io/
http://toblerity.org/rtree/
https://gdal.org/python/
https://www.numpy.org/
https://networkx.github.io/
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the restricted areas that intersect a base polygon (our study area) as well as
zones beyond the distance threshold from given elements (electrical grid, road
network, etc.). The procedure MASK(Blayer, Rlayers, Buffers) applies set-based
topological operators, that mask out portions of restricted layers and buffered
zones, intersecting the base layer (Alg.1:line 3). It corresponds to a 2-dimensional
difference operation. The result of this first step is a finite set P of new polygons,
representing available land for potential power facilities, illustrated in Fig 2 (a).

The second step (Alg.1:lines 4-10), consists in filtering in a deterministic
manner the polygons belonging to this set, based on their surface and distance
to the grid. First we identify the parcels whose surface is beyond the allowed
threshold. We developed a 2D space partitioning approach based on a k-way
graph partitioning method, that partitions these parcels into smaller ones of
suitable sizes (Algorithm 1: line7). Then, we prune further the resulting set of
potential parcels according to the minimal surface threshold and distance to the
grid, illustrated in Fig 2 (b). This last step is best handled using GIS geographical
metric operators (Alg.1: lines 8-10). The extracted and computed parcels can all
contribute to a solution, without inconsistent pruning of viable parcels from the
standpoint of the threshold and land restriction constraints. Fig.2 illustrates the
spatial layers masking process as well as the pruning of parcels below a surface
threshold, and beyond a distance threshold to network layers (grid, roads, ...).

p

m1

m2
m3

p*

(a) Masking process

layer P

layer Di

DISTANCE(p, Di) > dmax

SURFACE(p) < smin

(b) Distance, area threshold constraint processing

Fig. 2: Pruning restricted areas and threshold layers

Spatial partitioning method To partition a polygon into smaller plots of equal 
size, we propose a k-way graph partitioning approach, depicted in Alg. 2. First, 
we specify the initial polygon as a honeycomb mesh, that is a set of connected 
hexagonal plots of given size (line 6). We then map the mesh to a graph, and 
apply a k-way graph partitioning (lines 7, 20-29). Each hexagon denotes a vertex 
connected to its concomitant neighbors by unweighted and undirected edges. The 
k value is first initialized using a desaggregation factor, that sets the size of each 
hexagon (lines 3-5). The bigger the factor value, the smaller each hexagon and 
thus the more refined is the mesh. Each vertex is weighted with the correspond-
ing hexagon surface. The weight of the sought clusters (final plots) is initialized 
(lines 8-13), to feed the k-way graph partitioning (line 15). The procedure derives 
k clusters of vertices, to reach the surface threshold of each plot. The algorithm 
minimizes the number of edge cuts and forces contiguous partitions [29], so that
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Algorithm 2: Surface partitioning

1 def PARTITION(p, smax, fd): /* Partition polygon p into a set of

polygons P of equal surface */
Input : polygon p, maximal area per partition smax, disaggregation

factor fd
Output : a set P of polygons

2 /* Initialization */

3 k ← b SURFACE(p)
smax

c /* Number of targeted plots */

4 if k <= 1 and SURFACE(p)− spart < spart/fd:
5 return {p}
6 H ← HONEYCOMB(p, area:smax/fd) /* create the mesh of hexagons */

7 G← TOGRAPH(H, SURFACE(hexa ∈ H))

8 for i ∈ {1, .., k}:
9 /* Set the weight for each sought plot */

10 Wplot.APPEND(smax)

11 if SURFACE(p) mod smax not = 0:
12 Wplot.APPEND(SURFACE(p)− n · smax)

13 k ← k + 1

14 /* k-way graph partitioning of G into a set of k clusters C */

15 C ← PARTGRAPH(G, k, Wplot)

16 /* Convert the clusters of vertices into a set polygons */

17 for set ∈ C:
18 P .INSERT(UNION(pi | i ∈ set))
19 return P

20 def TOGRAPH(H, Whexa): /* Convert the weighted mesh into a graph */
Input : set of hexagons H, set of corresponding weights Whexa

Output : a graph G
21 /* Initialization */

22 G← GRAPH()

23 for (h,w) ∈ (H,Whexa):
24 /* set of polygons concomitant to h, frontiers */

25 F ← INTERSECTS(h, H, RTREEIDX(H))

26 for f ∈ F :
27 G.INSERT(EDGE(h, f))

28 G.INSERT(NODE(p, weight:w))

29 return G

the final aggregates present round-like geometries. The algorithm was devel-
oped using Python library networkx and the METIS package [30]. Finally the
k-clusters are translated into k polygons (lines 17-18).

Example 1. The figure illustrate a 16-way graph partitioning of a 781 km2 poly-
gon into plots of 50 km2, using an hexagonal honeycomb mesh. k is initialized
to b 78150 c. The algorithm derives 15 plots between 49 km2 and 51 km2 plus one
(marked with an asterisk) which fills the leftover space (≈ 32 km2). The output

https://networkx.github.io/
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is a finite set of polygons of acceptable surface (below the maximum threshold).

*

1 1
1 1 1

1111

1 1 1 1
1 1 1 1

1112 2
222

2 2 2 2 2
22 2

2
2222

2 2 2
2 2

2

3 3 3
3 3 3

3333
3 3 3 3

333
3 3
3

3.2 Contextual data and resource time series de-spatialization

Geospatial data is an invaluable source of contextual information, to charac-
terize in general, multiple land features and resources, but also their proximity
with all sorts of infrastructure networks. The challenge when dealing with opti-
mization problems evolving around resources, costs and constraints, is to seek a
computational approach to specify and solve a problem as closely as possible to
its real setting. A contribution of the proposed GIS-RO framework is to achieve
this by using the qualitative and large spatio-temporal and contextual informa-
tion analyzed and extracted through GREECE, with a de-spatilization process.
The goal is to convert the polygons into items without their geo-referencing,
and to associate to each the features relevant to the optimization module. Re-
garding energy planning, the features must capture many land properties, and
resource time series, but also dimensions and distances that will allow a reliable
conversion to technical costs for each candidate parcel.

The localization and maximal surface of a candidate parcel can provide nu-
merous relevant information from the intersected data layers: 1) the distance
to specific infrastructures such as substations, electrical grid or road network
contributes to assessing energy losses as well as accessibility costs, 2) the maxi-
mal surface is linked to construction and maintenance costs [42,6,3]. In addition,
terrain slope is a critical criterion for establishing power facilities [4,46]; in the
same way, final cost might also be affected by land type and land use, or even the
shape of the parcel. In the case of solar and wind energies, geo-referenced resource
maps are available from satellite images or field studies [20,5,6]. By overlaying
the previously sliced polygons with these raster images, it is therefore possible
to aggregate the resource within each parcel. Essentially, the de-spatialization
consists in translating the geography of each candidate into either static or dy-
namic quantifiable features. These features can then be integrated into energy
models, converted into construction and operation costs, or used as constraints
or in the objective functions of the optimization model. In the case of solar PV,
GREECE extracts the following parameters from each candidate parcel: area,
shape, distance to the grid, land use share, elevation, slope, aspect and solar
GHI time series (Alg. 1:lines 13-20). The whole implementation has made use
of the python libraries referred earlier. SURFACE(p) provides information on the
maximum power plant capacity that could eventually be set up within the par-
cel. SHAPE ranges from 0 to 1 and measures the roundness of a parcel, that is
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how spread out a solar PV plant might eventually be. DISTANCE to the grid is
computed from the polygon centroid and is used to get both connection costs
and transmission losses. Land use share can be correlated to construction costs,
as well as elevation (from DEM h) using SLOPE and ASPECT. They may also
be used as exclusion thresholds. Land use share is retrieved by computing the
intersecting area between the given parcel and each attribute of a land use layer
LUlayer (line 15). Elevation, slope and aspect are retrieved from the 3 arc sec-
ond SRTM-based digital elevation model (DEM) [27] and by calculating average
and standard deviation from raster cells overlapping with each candidate parcel
(lines 17-18). Finally, solar GHI time series are obtained in the same way as
with the DEM but for as many time steps as available solar radiation maps (line
20). As a result, each candidate parcel is now a compound item with geometric
and terrain features, and time series of solar GHI values. In the case of solar PV,
we have also converted GHI into power by adapting the pvlib library from the
Sandia National Laboratory (SNL) [25].

4 Optimization module - fractional knapsack approach

The Optimal planning and sizing of PV plants (OPSPV) is an optimization
problem permeated with uncertainty, rooted in projection estimates from cur-
rent data relative to the growth of energy demand and the resource values. As
shown in Fig. 1, it takes the candidate parcels with their de-spatialized features
to select the ones and their optimal size such that the PV power penetration
in the network is maximized at minimal cost. We propose a robust optimiza-
tion approach based on the seminal works of [8,14], that specifies uncertainty
using deterministic intervals. They denote the robust bounds within which the
uncertain data is known to take its value. This modelling approach enables re-
liable best and worst case planning scenarios to guide the decision makers, and
to assess the impact of his risk adversity impact on the output scenarios. The
specification of the problem is given in Fig. 3.

Robust constraint optimization model

The OPSPV, energy strategy planning problem can be modelled as a fractional
knapsack problem with additional constraints. In this analogy, the knapsack
corresponds to the forecast energy demand to be provided by existing and new
intermittent RE sources (in KW/hr), and the items are the candidate parcels
with their potential supply (KW/hr) plus their associated technical costs (in-
stallation relative to the size thus production (e/KW ), and connection to the
grid and substation (e). The objective is to maximize hourly penetration of
additional RE power in the network while minimizing global costs.

We first specify the problem and then describe the model developed in terms
of variables, constraints and cost functions.

Variables We consider two sets of variables that need to be linked to each other.
Boolean variables relate to the selection or not of a candidate parcel, needed to
determine whether the unit connection cost is applied or not (Cconi). The area
variables, ranging over a real interval, are involved in the energy production

https://pvlib-python.readthedocs.io/en/stable/
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Given:

Unit: Hour (per year) t ∈ H = {1, · · · , 8760}
Unit: Candidate parcel i ∈ N = {1, · · · , n}
Current hourly production from intermittent energy sources (KWh) Eintt
Current hourly production from non-intermittent energy sources (KWh) Ept
Estimated global hourly power demand (KWh) Demt = [Demt, Demt]
Nominal power of a PV unit (to convert plant size into power) Pnom
Minimum and maximum area for each candidate parcel (m2) Smin, Smaxi
Estimated hourly production per PV unit (Wh/m2) Ppvt,i = [Ppvt,i, Ppvt,i]

Minimal distance from the grid to centroid of a candidate PV parcel (m) Dgi
Transmission line unit cost (e/m) Clan
Substation unit power cost (e/KW) Csta

Find:
The set of parcels where power stations will be built
The surface to consider for each candidate parcel that is selected

Cost functions:
Sum of all costs of PV plant installation C = Σi(Ccapi + Copi + Cconi + Cstai)
Unit capital cost for installing a PV power plant (e) Ccapi
Annual operational cost per new PV plant (e) Copi
Unit connection costs for each new PV plant, transmission lines (e) Cconi

Capital cost for new substation (e) Cstai
Total added PV energy production ΣtPVt

Such that the following constraints hold:
PV newly added production plus existing production are below the hourly demand
PV existing and new production are less than 35% of the total energy demand per hour
PV parcel size cannot exceed a maximal set size

Fig. 3: OPSPV problem specification

constraint and the installation, capital and operational costs, that depend on
the size of a new PV plant.

∀ i ∈ N,Bi ∈ {0, 1} 1 if parcel is selected, 0 otherwise

∀ i ∈ N,SAi ∈ [0.00..Smaxi] Area of a parcel

Knapsack constraints The first set of constraints relates to the forecast energy
demand, using existing resources augmented with new PV production. It seeks
to determine the capacity of new PV plants to contribute to the anticipated
demand. Two scenarios are considered: 1) best case scenario (highest PV energy
forecast and lowest forecast demand) and 2) worst case scenario (lowest PV
energy forecast and highest forecast demand). This allows to study the impact
of the decision maker risk adversity in planning the creation of new PV plants.

Best case scenario: ∀ t ∈ H, ΣiSAi × Ppvt,i + Eintt + Ept ≤ Demt

Worst case scenario: ∀ t ∈ H, Σi SAi × Ppvt,i + Eintt + Ept ≤ Demt

Network penetration constraints The second set of constraints states that the
amount of intermittent energy resource into the network should be less than 35
% of the total forecast energy demand per hour (upper bound) [17]. The time
stamp is the hour. It is also set for the best and worst case scenarios:
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Best case scenario: ∀ t ∈ H, ΣiSAi × Ppvt,i + Eintt ≤ 0.35×Demt

Worst case scenario: ∀ t ∈ H, ΣiSAi × Ppvt,i + Eintt ≤ 0.35×Demt

Connecting parcel selection and size The third set of constraints establishes
a link between the Boolean and PV plant area variables. This relationship is
needed to connect the energy production and the various costs. If a plant size is
not null then the parcel is selected, and conversely if a parcel is not selected its
size is forced to be null.

∀i ∈ N, SAi ≤ Smaxi ×Bi, Bi × Smin ≤ SAi

Objectives and cost functions The OPSPV problem has two main objective
functions: 1) to maximize the total hourly RE energy production over the year
through new PV energy production, 2) to minimize the total technical costs.
Since the functions are in different units, a single weighted function is not mean-
ingful, instead we seek the pareto frontier, by optimizing PV production function
while constraining the cost function with more restrictive values at each run.

Maximize PV production: depending on the scenario considered, Ppvt,i will
take its highest estimate (Ppvt,i for best case) or lowest estimate (Ppvt,i for the

worst case). The cost function to maximize is:

ΣiΣtSAi × Ppvt,i

Minimize costs: Modelling non-linear functions Four cost functions are involved
and relate to the installation and size of a PV plant as defined in Fig. 3. Typi-
cally, capital and operational costs are approximated as linear functions [9,24,19].
However, this approach is unrealistic as both the Capi and Copi costs are in fact
non-linear, since they depend on the size of the plant (linked to the related num-
ber of PV panels) [31]. Basically the fewer the number of panels the highest the
relative cost per panel. To get closer to reality, we thus consider an innovative
approach using a piece-wise linear function such that ai is the coefficient of the
slope, and yi the value of the coordinate where the new slope begins. It is il-
lustrated below for Capi, and Copi follows a similar specification with different
constants. Values have been set from [31]:

Capi =


a1 × Pnom× SAi + y1 if 0MW ≤ SAi × Pnom ≤ 1MW

a2 × Pnom× SAi + y2 if 1MW ≤ SAi × Pnom ≤ 10MW

a3 × Pnom× SAi + y3 if 10MW ≤ SAi × Pnom

On the other hand, the unit connection cost of a PV plant, and the capital
cost of a new station for a plant, are both linear functions that depend respec-
tively on the creation of the plant in a parcel with its Euclidian distance to the
grid, and the unit cost of a substation proportional to the computed size of the
plant. We have the following functions:

Cconi = Clan×Dgi ×Bi, Cstai = Csta× Pnom× SAi
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5 Experimental study and evaluation

The proposed GIS-RO framework seeks to make powerful use of multi-scale con-
textual information for spatial decision making and optimization. It is evaluated
on the timely challenge in the region of French Guiana, where the objective
is to reach the energy policy plan of 100% renewable by the year 2030, first
by increasing PV, then biomass. The challenge lies in the strategic planning of
solar PV scenarios using contextual real data characterized by spatio-temporal
patterns and permeated with uncertainty (resource projections). In this section
we present our results and analysis. Input data layers, retrieved from various
national and world databases [33,32,28,26], and associated buffer values are de-
picted in Table 1. In addition, maximum distance to both power grid and road
network has been set to 20 km, twice the value commonly used [6,39]. Land sur-
face area minimum and maximum thresholds for establishing solar PV plants
are respectively set to 1.5 ha [44] and 50 ha [17]. Finally, regarding plot resource,
monthly solar GHI time series derived from satellite-based raster images [5,20]
have been disaggregated at the hour using an updated version of a synthetic
generation model [1,2,38].

Table 1: Land management scenario used in this study for restricted areas.

Layer Protected Forest Urban Flood Water Shore Power Road Wetland Dune/ Rice/
areas areas savanna bodies grid network Sand Orchard

Buffer 500 200 200 100 100 100 100 30 0 0 0
(m)

Refs [45] [6] [45,3] [41] [40,41] [40] [39,3,41] [39,3,41] [41]

The GREECE module was implemented in Python using GIS-Python li-
braries recalled in the paper. It provides de-spatialized data items to the OPSPV
module, which was implemented using IBM ILOG OPL CPLEX Optimization
studio, on a 2 processors (Intel(R) Xeon(R) CPU E5-2609 v4 @1.70GHz) of 32
Go RAM. The GREECE module led to the extraction of 133 candidate parcels
with their relevant features. The execution CPU time for the GREECE mod-
ule is about 460 s. (reading files: 30 s; mask: 380 s.; partitioning: 3 s.; feature +
monthly resource extraction: 50 s.), handled as a one off spatial placement pre-
processing. The optimization CPU time varies from 23 s to 47 s depending on
the bound set on the constrained objective function (runtime differences come
from handling piece-wise linear functions that depend on the park sizes).

Data sets Restricted area layers handled in MASK correspond to a total of 21088
geographical objects. Here, the base layer Blayer corresponds to Guiana’s land
use LUlayer, which gathers 2643 polygons. Road network and power grid used in
distance threshold computation are made of 2247 lines. Monthly solar resource
is represented by a raster set of 12 × 3999 × 3999 cells. Global energy demand
and existing production data are known from the sources and extractions from
records of 2016 [18]. For the 2030 horizon we projected hourly energy demand
values according to EDF estimations of worst case 5% annual growth and best
case of 2% annual growth.
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Results and analysis

We analyzed three aspects of relevance to the decision maker and network man-
ager (power plant energy investors in Guiana and EDF) that are made possible
with the combination of geographical and temporal contextual information and
optimization: 1) the impact of the spatio-temporal energy patterns on the geo-
graphic selection process (Fig. 4 and 6 (b)), 2) the study of the risk adversity
comparing best and worst case scenarios (Fig. 5), 3) the identification of robust
planning investment scenarios where the optimal plants show to be identical re-
gardless of the degree of spatio-temporal uncertainty on the power resource (Fig.
6 (a)).

Fig. 4 depicts the resulting spatial variation of the solar GHI patterns (derived
by GREECE) on the produced power from the optimal solar PV plants (location
and size) whose placement is visible in Fig. 6 (b). P1 and P4 sites (P2 and P3)
have similar patterns for they are located in the same solar potential cluster
zone. Essentially, it shows how our GIS-RO approach manages real site spatial
arrangement so that the global output power is robust through time from the
optimal PV plants: impact of their RE intermittency on future network power
management is limited.

Fig. 4: Normalized output power from solar PV sites of Fig. 6.

Fig. 5 gives information about (a) the volume of solar PV plants one may
install within the region without threatening the power grid in the long-term,
and (b) its corresponding final share in the energy mix. As long as both Pareto
lines remain together in Fig. 5 (a), the solution is robust, i.e. power generation
over time from selected plants fills up the same free energy volume regardless of
the scenario: corresponding PV sites can be explored safely in the limits of their
maximum capacity estimated by the RO. In contrast, once the best case reaches
its plateau , and so Pareto lines split in half (around 40 Me), power generation
no longer fills up the same volume. At this point, the more the energy generated
in the worst case scenario, the more it exceeds the energy generation limit in the
best case: the risk grows as much as the gap between both lines.

Finally, Fig. 6 evaluates the robustness of the investment according to spatio-
temporal uncertainty on the resource: i) estimated GHI, energy potential (in
blue), ii) its mitigation by a random uniform noise per hour and per parcel,
between 0 and 10 % (in green) and iii) between 0 and 20 % (in red) respectively.
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(a) (b)
Fig. 5: Pareto charts for both scenarios with respect to (a) generated energy and
(b) PV penetration.

The safety zone lies below a cost of 70 Me (C70), meaning that the selected PV
sites are the same for all resource time series projections. Those sites are sorted
by ascending parcel size area from the smallest (P1) to the largest (P4). The
investment costs grow naturally when the optimal PV plant size grows within
its corresponding parcel area (fractional knapsack optimization).

C
70

P1 P2 P3 P4 P4

P1 P2

P4

Safety zone

(a) Pareto solution

(b) Corresponding PV sites in Guiana

Fig. 6: Robustness of the worst-case scenario solution with decreasing resource

6 Conclusion

In this paper we have proposed a two-step specification and novel computational
approach of the spatio-temporal placement and energy planning problem. We ad-
dressed key challenges of sustainable science in terms of spatial decision making
and usage of complex contextual data, constraints and time series of resources.
The presented GIS-RO framework allows for real world and large scale applica-
tions to be solved through an integrated approach at the interface of GIS science,
graph and robust optimization models and methods. The case study showed in
particular the importance of taking into account actual resource patterns and al-
lowing for fractional parcel selection to optimize power plants location and size,
and thus optimize the power penetration at minimal cost. Current work includes
its generalization to include the cost-effectiveness of energy storage considered
not profitable to this date in Guiana, and the generalization to biomass resources
that raises a complex temporal renewability issue of the resource.
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19. Ferrer-Mart́ı, L., Domenech, B., Garćıa-Villoria, A., Pastor, R.: A MILP model to
design hybrid wind-photovoltaic isolated rural electrification projects in develop-
ing countries. European Journal of Operational Research 226(2), 293–300 (2013).
https://doi.org/10.1016/j.ejor.2012.11.018

20. Fillol, E., Albarelo, T., Primerose, A., Wald, L., Linguet, L.: Spatiotemporal indica-
tors of solar energy potential in the Guiana Shield using GOES images. Renewable
Energy 111, 11–25 (2017). https://doi.org/10.1016/j.renene.2017.03.081

21. GDAL/OGR contributors: GDAL/OGR Geospatial Data Abstraction software Li-
brary. Open Source Geospatial Foundation (2019), https://gdal.org

22. Gervet, C., Atef, M.: Optimal allocation of renewable energy parks: a two-
stage optimization model. RAIRO-Operations Research (47), 125–150 (2013).
https://doi.org/10.1051/ro/2013031

23. Hache, E., Palle, A.: Renewable energy source integration into power
networks, research trends and policy implications: A bibliometric and
research actors survey analysis. Energy Policy 124, 23–35 (2019).
https://doi.org/10.1016/j.enpol.2018.09.036, https://doi.org/10.1016/j.enpol.
2018.09.036

24. Heydari, A., Askarzadeh, A.: Optimization of a biomass-based pho-
tovoltaic power plant for an off-grid application subject to loss of
power supply probability concept. Applied Energy 165, 601–611 (2016).
https://doi.org/10.1016/j.apenergy.2015.12.095

25. Holmgren, W.F., Hansen, C.W., Mikofski, M.A.: Pvlib Python: a Python package
for modeling solar energy systems. Journal of Open Source Software 3(29), 884
(month 2018). https://doi.org/10.21105/joss.00884

26. IGN: BD TOPOR© Version 2.2 - Descriptif de contenu. Institut Géographique Na-
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