בתורת הסיבוכיות, המחלקה BQP ‏ (Bounded error, Quantum, Polynomial time) היא מחלקת סיבוכיות המכילה את כלל הבעיות הניתנות להכרעה על ידי מכונת טיורינג קוונטית, בעלת זמן ריצה פולינומי אשר צודקת בהסתברות "טובה", כלומר ההסתברות שהמכונה תחזיר תשובה נכונה (עבור הרצה נתונה) היא גבוהה מ-2/3, ובאופן דומה, הסתברות הכישלון חסומה (מלעיל) ב–1/3.

הקשר המשוער בין מחלקות סיבוכיות שונות

כבכל המחלקות בהם הסתברות הכישלון חסומה, ניתן להפעיל את האלגוריתם הקוונטי שוב ושוב, על מנת להקטין את הסתברות השגיאה באופן אקספוננציאלי. כמו כן, כלל המחלקות בהן הסתברות הכישלון חסומה על ידי שקולות זו לזו.

בעיות ידועות

עריכה

המחלקה BQP מכילה את בעיית הפירוק של מספר שלם לגורמים ראשוניים, וכן את בעיית הלוגריתם הדיסקרטי.

קשרים עם מחלקות סיבוכיות אחרות

עריכה

המקבילה הקלאסית למחלקה זו היא המחלקה BPP, בה מכונת הטיורינג היא אקראית, אך לא קוונטית. מכיוון שמכונה קלאסית היא מקרה פרטי של מכונה קוונטית (בה לא מנוצל ה"כוח הקוונטי"), המחלקה BQP מכילה את המחלקה BPP, כלומר  . מכיוון שהמחלקה P מוכלת בBPP, מתקבל כי

 .
  בעיות פתוחות במדעי המחשב:
מהו הקשר בין BQP למחלקה NP?
(בעיות פתוחות נוספות במדעי המחשב)

המחלקה PSPACE מכילה את המחלקה BQP. אם נבטא את המכונה הקוונטית כרצף של שערים קוונטים, ניתן יהיה להמיר כל שער במטריצה יוניטרית. התוצאה הסופית של רצף השערים נתון כמכפלה של המטריצות המתאימות. על ידי ביצוע פעולת הכפלת המטריצות (בצורה יעילה מבחינת הזיכרון) ניתן לבצע את החישוב בזיכרון פולינומי שגודלו כגודל המטריצות. לפיכך מתקבל כי

 .

מכיוון שהקשר בין P ובין PSPACE הוא שאלה פתוחה, כך גם היחס המדויק בין המחלקות לעיל.

הקשר בין BQP לבין NP אינו ידוע גם כן.


pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy