This documentation is automatically generated by online-judge-tools/verification-helper
#define PROBLEM "https://judge.yosupo.jp/problem/static_rectangle_add_rectangle_sum"
#include "../rectangle_add_rectangle_sum.hpp"
#include "../../modint.hpp"
#include <iostream>
using namespace std;
using mint = ModInt<998244353>;
int main() {
cin.tie(nullptr), ios::sync_with_stdio(false);
RectangleAddRectangleSum<int, mint> rect_sum;
const int bias = 500000000;
int N, Q;
cin >> N >> Q;
while (N--) {
int l, r, d, u;
mint w;
cin >> l >> d >> r >> u >> w;
l -= bias;
d -= bias;
r -= bias;
u -= bias;
rect_sum.add_rectangle(l, r, d, u, w);
}
while (Q--) {
int l, r, d, u;
cin >> l >> d >> r >> u;
l -= bias;
d -= bias;
r -= bias;
u -= bias;
rect_sum.add_query(l, r, d, u);
}
auto ret = rect_sum.solve();
for (auto x : ret) cout << x << '\n';
}
#line 1 "data_structure/test/rectangle_add_rectangle_sum.test.cpp"
#define PROBLEM "https://judge.yosupo.jp/problem/static_rectangle_add_rectangle_sum"
#line 2 "segmenttree/binary_indexed_tree.hpp"
#include <algorithm>
#include <vector>
// CUT begin
// 0-indexed BIT (binary indexed tree / Fenwick tree) (i : [0, len))
template <class T> struct BIT {
int n;
std::vector<T> data;
BIT(int len = 0) : n(len), data(len) {}
void reset() { std::fill(data.begin(), data.end(), T(0)); }
void add(int pos, T v) { // a[pos] += v
pos++;
while (pos > 0 and pos <= n) data[pos - 1] += v, pos += pos & -pos;
}
T sum(int k) const { // a[0] + ... + a[k - 1]
T res = 0;
while (k > 0) res += data[k - 1], k -= k & -k;
return res;
}
T sum(int l, int r) const { return sum(r) - sum(l); } // a[l] + ... + a[r - 1]
template <class OStream> friend OStream &operator<<(OStream &os, const BIT &bit) {
T prv = 0;
os << '[';
for (int i = 1; i <= bit.n; i++) {
T now = bit.sum(i);
os << now - prv << ',', prv = now;
}
return os << ']';
}
};
#line 4 "data_structure/rectangle_add_rectangle_sum.hpp"
#include <tuple>
#line 6 "data_structure/rectangle_add_rectangle_sum.hpp"
// Static rectangle add rectangle sum
// Calculate sums of rectangular weights inside the given rectangles
// Complexity: O(q log q), q = # of rectangles / queries
template <class Int, class T> class RectangleAddRectangleSum {
struct AddQuery {
Int xl, xr, yl, yr;
T val;
};
struct SumQuery {
Int xl, xr, yl, yr;
};
std::vector<AddQuery> add_queries;
std::vector<SumQuery> sum_queries;
public:
RectangleAddRectangleSum() = default;
// A[x][y] += val for (x, y) in [xl, xr) * [yl, yr)
void add_rectangle(Int xl, Int xr, Int yl, Int yr, T val) {
add_queries.push_back(AddQuery{xl, xr, yl, yr, val});
}
// Get sum of A[x][y] for (x, y) in [xl, xr) * [yl, yr)
void add_query(Int xl, Int xr, Int yl, Int yr) {
sum_queries.push_back(SumQuery{xl, xr, yl, yr});
}
std::vector<T> solve() const {
std::vector<Int> ys;
for (const auto &a : add_queries) {
ys.push_back(a.yl);
ys.push_back(a.yr);
}
std::sort(ys.begin(), ys.end());
ys.erase(std::unique(ys.begin(), ys.end()), ys.end());
const int Y = ys.size();
std::vector<std::tuple<Int, int, int>> ops;
for (int q = 0; q < int(sum_queries.size()); ++q) {
ops.emplace_back(sum_queries[q].xl, 0, q);
ops.emplace_back(sum_queries[q].xr, 1, q);
}
for (int q = 0; q < int(add_queries.size()); ++q) {
ops.emplace_back(add_queries[q].xl, 2, q);
ops.emplace_back(add_queries[q].xr, 3, q);
}
std::sort(ops.begin(), ops.end());
BIT<T> b00(Y), b01(Y), b10(Y), b11(Y);
std::vector<T> ret(sum_queries.size());
for (auto o : ops) {
int qtype = std::get<1>(o), q = std::get<2>(o);
if (qtype >= 2) {
const AddQuery &query = add_queries.at(q);
int i = std::lower_bound(ys.begin(), ys.end(), query.yl) - ys.begin();
int j = std::lower_bound(ys.begin(), ys.end(), query.yr) - ys.begin();
T x = std::get<0>(o);
T yi = query.yl, yj = query.yr;
if (qtype & 1) std::swap(i, j), std::swap(yi, yj);
b00.add(i, x * yi * query.val);
b01.add(i, -x * query.val);
b10.add(i, -yi * query.val);
b11.add(i, query.val);
b00.add(j, -x * yj * query.val);
b01.add(j, x * query.val);
b10.add(j, yj * query.val);
b11.add(j, -query.val);
} else {
const SumQuery &query = sum_queries.at(q);
int i = std::lower_bound(ys.begin(), ys.end(), query.yl) - ys.begin();
int j = std::lower_bound(ys.begin(), ys.end(), query.yr) - ys.begin();
T x = std::get<0>(o);
T yi = query.yl, yj = query.yr;
if (qtype & 1) std::swap(i, j), std::swap(yi, yj);
ret[q] += b00.sum(i) + b01.sum(i) * yi + b10.sum(i) * x + b11.sum(i) * x * yi;
ret[q] -= b00.sum(j) + b01.sum(j) * yj + b10.sum(j) * x + b11.sum(j) * x * yj;
}
}
return ret;
}
};
#line 2 "modint.hpp"
#include <cassert>
#include <iostream>
#include <set>
#line 6 "modint.hpp"
template <int md> struct ModInt {
using lint = long long;
constexpr static int mod() { return md; }
static int get_primitive_root() {
static int primitive_root = 0;
if (!primitive_root) {
primitive_root = [&]() {
std::set<int> fac;
int v = md - 1;
for (lint i = 2; i * i <= v; i++)
while (v % i == 0) fac.insert(i), v /= i;
if (v > 1) fac.insert(v);
for (int g = 1; g < md; g++) {
bool ok = true;
for (auto i : fac)
if (ModInt(g).pow((md - 1) / i) == 1) {
ok = false;
break;
}
if (ok) return g;
}
return -1;
}();
}
return primitive_root;
}
int val_;
int val() const noexcept { return val_; }
constexpr ModInt() : val_(0) {}
constexpr ModInt &_setval(lint v) { return val_ = (v >= md ? v - md : v), *this; }
constexpr ModInt(lint v) { _setval(v % md + md); }
constexpr explicit operator bool() const { return val_ != 0; }
constexpr ModInt operator+(const ModInt &x) const {
return ModInt()._setval((lint)val_ + x.val_);
}
constexpr ModInt operator-(const ModInt &x) const {
return ModInt()._setval((lint)val_ - x.val_ + md);
}
constexpr ModInt operator*(const ModInt &x) const {
return ModInt()._setval((lint)val_ * x.val_ % md);
}
constexpr ModInt operator/(const ModInt &x) const {
return ModInt()._setval((lint)val_ * x.inv().val() % md);
}
constexpr ModInt operator-() const { return ModInt()._setval(md - val_); }
constexpr ModInt &operator+=(const ModInt &x) { return *this = *this + x; }
constexpr ModInt &operator-=(const ModInt &x) { return *this = *this - x; }
constexpr ModInt &operator*=(const ModInt &x) { return *this = *this * x; }
constexpr ModInt &operator/=(const ModInt &x) { return *this = *this / x; }
friend constexpr ModInt operator+(lint a, const ModInt &x) { return ModInt(a) + x; }
friend constexpr ModInt operator-(lint a, const ModInt &x) { return ModInt(a) - x; }
friend constexpr ModInt operator*(lint a, const ModInt &x) { return ModInt(a) * x; }
friend constexpr ModInt operator/(lint a, const ModInt &x) { return ModInt(a) / x; }
constexpr bool operator==(const ModInt &x) const { return val_ == x.val_; }
constexpr bool operator!=(const ModInt &x) const { return val_ != x.val_; }
constexpr bool operator<(const ModInt &x) const {
return val_ < x.val_;
} // To use std::map<ModInt, T>
friend std::istream &operator>>(std::istream &is, ModInt &x) {
lint t;
return is >> t, x = ModInt(t), is;
}
constexpr friend std::ostream &operator<<(std::ostream &os, const ModInt &x) {
return os << x.val_;
}
constexpr ModInt pow(lint n) const {
ModInt ans = 1, tmp = *this;
while (n) {
if (n & 1) ans *= tmp;
tmp *= tmp, n >>= 1;
}
return ans;
}
static constexpr int cache_limit = std::min(md, 1 << 21);
static std::vector<ModInt> facs, facinvs, invs;
constexpr static void _precalculation(int N) {
const int l0 = facs.size();
if (N > md) N = md;
if (N <= l0) return;
facs.resize(N), facinvs.resize(N), invs.resize(N);
for (int i = l0; i < N; i++) facs[i] = facs[i - 1] * i;
facinvs[N - 1] = facs.back().pow(md - 2);
for (int i = N - 2; i >= l0; i--) facinvs[i] = facinvs[i + 1] * (i + 1);
for (int i = N - 1; i >= l0; i--) invs[i] = facinvs[i] * facs[i - 1];
}
constexpr ModInt inv() const {
if (this->val_ < cache_limit) {
if (facs.empty()) facs = {1}, facinvs = {1}, invs = {0};
while (this->val_ >= int(facs.size())) _precalculation(facs.size() * 2);
return invs[this->val_];
} else {
return this->pow(md - 2);
}
}
constexpr ModInt fac() const {
while (this->val_ >= int(facs.size())) _precalculation(facs.size() * 2);
return facs[this->val_];
}
constexpr ModInt facinv() const {
while (this->val_ >= int(facs.size())) _precalculation(facs.size() * 2);
return facinvs[this->val_];
}
constexpr ModInt doublefac() const {
lint k = (this->val_ + 1) / 2;
return (this->val_ & 1) ? ModInt(k * 2).fac() / (ModInt(2).pow(k) * ModInt(k).fac())
: ModInt(k).fac() * ModInt(2).pow(k);
}
constexpr ModInt nCr(int r) const {
if (r < 0 or this->val_ < r) return ModInt(0);
return this->fac() * (*this - r).facinv() * ModInt(r).facinv();
}
constexpr ModInt nPr(int r) const {
if (r < 0 or this->val_ < r) return ModInt(0);
return this->fac() * (*this - r).facinv();
}
static ModInt binom(int n, int r) {
static long long bruteforce_times = 0;
if (r < 0 or n < r) return ModInt(0);
if (n <= bruteforce_times or n < (int)facs.size()) return ModInt(n).nCr(r);
r = std::min(r, n - r);
ModInt ret = ModInt(r).facinv();
for (int i = 0; i < r; ++i) ret *= n - i;
bruteforce_times += r;
return ret;
}
// Multinomial coefficient, (k_1 + k_2 + ... + k_m)! / (k_1! k_2! ... k_m!)
// Complexity: O(sum(ks))
template <class Vec> static ModInt multinomial(const Vec &ks) {
ModInt ret{1};
int sum = 0;
for (int k : ks) {
assert(k >= 0);
ret *= ModInt(k).facinv(), sum += k;
}
return ret * ModInt(sum).fac();
}
// Catalan number, C_n = binom(2n, n) / (n + 1)
// C_0 = 1, C_1 = 1, C_2 = 2, C_3 = 5, C_4 = 14, ...
// https://oeis.org/A000108
// Complexity: O(n)
static ModInt catalan(int n) {
if (n < 0) return ModInt(0);
return ModInt(n * 2).fac() * ModInt(n + 1).facinv() * ModInt(n).facinv();
}
ModInt sqrt() const {
if (val_ == 0) return 0;
if (md == 2) return val_;
if (pow((md - 1) / 2) != 1) return 0;
ModInt b = 1;
while (b.pow((md - 1) / 2) == 1) b += 1;
int e = 0, m = md - 1;
while (m % 2 == 0) m >>= 1, e++;
ModInt x = pow((m - 1) / 2), y = (*this) * x * x;
x *= (*this);
ModInt z = b.pow(m);
while (y != 1) {
int j = 0;
ModInt t = y;
while (t != 1) j++, t *= t;
z = z.pow(1LL << (e - j - 1));
x *= z, z *= z, y *= z;
e = j;
}
return ModInt(std::min(x.val_, md - x.val_));
}
};
template <int md> std::vector<ModInt<md>> ModInt<md>::facs = {1};
template <int md> std::vector<ModInt<md>> ModInt<md>::facinvs = {1};
template <int md> std::vector<ModInt<md>> ModInt<md>::invs = {0};
using ModInt998244353 = ModInt<998244353>;
// using mint = ModInt<998244353>;
// using mint = ModInt<1000000007>;
#line 5 "data_structure/test/rectangle_add_rectangle_sum.test.cpp"
using namespace std;
using mint = ModInt<998244353>;
int main() {
cin.tie(nullptr), ios::sync_with_stdio(false);
RectangleAddRectangleSum<int, mint> rect_sum;
const int bias = 500000000;
int N, Q;
cin >> N >> Q;
while (N--) {
int l, r, d, u;
mint w;
cin >> l >> d >> r >> u >> w;
l -= bias;
d -= bias;
r -= bias;
u -= bias;
rect_sum.add_rectangle(l, r, d, u, w);
}
while (Q--) {
int l, r, d, u;
cin >> l >> d >> r >> u;
l -= bias;
d -= bias;
r -= bias;
u -= bias;
rect_sum.add_query(l, r, d, u);
}
auto ret = rect_sum.solve();
for (auto x : ret) cout << x << '\n';
}