cplib-cpp

This documentation is automatically generated by online-judge-tools/verification-helper

View the Project on GitHub hitonanode/cplib-cpp

:heavy_check_mark: Linear algebra on $\mathbb{F}_{2}$ using std::bitset (std::bitset を使用した $\mathbb{F}_{2}$ 線形代数)
(linear_algebra_matrix/linalg_bitset.hpp)

std::bitset<> を使用した $\mathbb{F}_{2}$ 用線形代数演算.64 倍程度の定数倍高速化が見込まれる.

使用方法

線形方程式系

int W;
vector<bitset<Wmax>> A;
vector<bool> b;

// Solve Ax = b (x: F_2^W)
auto [feasible, x0, freedoms] = f2_system_of_linear_equations<Wmax, vector<bool>>(A, b, W);

// Calc determinant (or check whether A is regular)
int det = f2_determinant<dim>(mat);

問題例

Verified with

Code

#pragma once
#include <bitset>
#include <cassert>
#include <tuple>
#include <utility>
#include <vector>

// Gauss-Jordan elimination of n * m matrix M
// Complexity: O(nm + nm rank(M) / 64)
// Verified: abc276_h (2000 x 8000)
template <int Wmax>
std::vector<std::bitset<Wmax>> f2_gauss_jordan(int W, std::vector<std::bitset<Wmax>> M) {
    assert(W <= Wmax);
    int H = M.size(), c = 0;
    for (int h = 0; h < H and c < W; ++h, ++c) {
        int piv = -1;
        for (int j = h; j < H; ++j) {
            if (M[j][c]) {
                piv = j;
                break;
            }
        }
        if (piv == -1) {
            --h;
            continue;
        }
        std::swap(M[piv], M[h]);
        for (int hh = 0; hh < H; ++hh) {
            if (hh != h and M[hh][c]) M[hh] ^= M[h];
        }
    }
    return M;
}

// Rank of Gauss-Jordan eliminated matrix
template <int Wmax> int f2_rank_gauss_jordan(int W, const std::vector<std::bitset<Wmax>> &M) {
    assert(W <= Wmax);
    for (int h = (int)M.size() - 1; h >= 0; h--) {
        int j = 0;
        while (j < W and !M[h][j]) ++j;
        if (j < W) return h + 1;
    }
    return 0;
}

// determinant of F2 matrix.
// Return 0 if the matrix is singular, otherwise return 1.
// Complexity: O(W^3 / 64)
template <int Wmax> int f2_determinant(const std::vector<std::bitset<Wmax>> &M) {
    const int H = M.size();
    if (H > Wmax) return 0;

    auto tmp = M;
    for (int h = 0; h < H; ++h) {
        int piv = -1;
        for (int j = h; j < H; ++j) {
            if (tmp.at(j).test(h)) {
                piv = j;
                break;
            }
        }
        if (piv == -1) return 0; // singular

        if (piv != h) std::swap(tmp.at(piv), tmp.at(h));
        for (int hh = h + 1; hh < H; ++hh) {
            if (tmp.at(hh).test(h)) tmp.at(hh) ^= tmp.at(h);
        }
    }

    return 1; // nonsingular
}

template <int W1, int W2>
std::vector<std::bitset<W2>>
f2_matmul(const std::vector<std::bitset<W1>> &A, const std::vector<std::bitset<W2>> &B) {
    int H = A.size(), K = B.size();
    std::vector<std::bitset<W2>> C(H);
    for (int i = 0; i < H; i++) {
        for (int j = 0; j < K; j++) {
            if (A.at(i).test(j)) C.at(i) ^= B.at(j);
        }
    }
    return C;
}

template <int Wmax>
std::vector<std::bitset<Wmax>> f2_matpower(std::vector<std::bitset<Wmax>> X, long long n) {
    int D = X.size();
    std::vector<std::bitset<Wmax>> ret(D);
    for (int i = 0; i < D; i++) ret[i][i] = 1;
    while (n) {
        if (n & 1) ret = f2_matmul<Wmax, Wmax>(ret, X);
        X = f2_matmul<Wmax, Wmax>(X, X), n >>= 1;
    }
    return ret;
}

// Solve Ax = b on F_2
// - retval: {true, one of the solutions, {freedoms}} (if solution exists)
//           {false, {}, {}} (otherwise)
// Complexity: O(HW + HW rank(A) / 64 + W^2 len(freedoms))
template <int Wmax, class Vec>
std::tuple<bool, std::bitset<Wmax>, std::vector<std::bitset<Wmax>>>
f2_system_of_linear_equations(std::vector<std::bitset<Wmax>> A, Vec b, int W) {
    int H = A.size();
    assert(W <= Wmax);
    assert(A.size() == b.size());

    std::vector<std::bitset<Wmax + 1>> M(H);
    for (int i = 0; i < H; ++i) {
        for (int j = 0; j < W; ++j) M[i][j] = A[i][j];
        M[i][W] = b[i];
    }
    M = f2_gauss_jordan<Wmax + 1>(W + 1, M);
    std::vector<int> ss(W, -1);
    std::vector<int> ss_nonneg_js;
    for (int i = 0; i < H; i++) {
        int j = 0;
        while (j <= W and !M[i][j]) ++j;
        if (j == W) return {false, 0, {}};
        if (j < W) {
            ss_nonneg_js.push_back(j);
            ss[j] = i;
        }
    }
    std::bitset<Wmax> x;
    std::vector<std::bitset<Wmax>> D;
    for (int j = 0; j < W; ++j) {
        if (ss[j] == -1) {
            // This part may require W^2 space complexity in output
            std::bitset<Wmax> d;
            d[j] = 1;
            for (int jj : ss_nonneg_js) d[jj] = M[ss[jj]][j];
            D.emplace_back(d);
        } else {
            x[j] = M[ss[j]][W];
        }
    }
    return std::make_tuple(true, x, D);
}
#line 2 "linear_algebra_matrix/linalg_bitset.hpp"
#include <bitset>
#include <cassert>
#include <tuple>
#include <utility>
#include <vector>

// Gauss-Jordan elimination of n * m matrix M
// Complexity: O(nm + nm rank(M) / 64)
// Verified: abc276_h (2000 x 8000)
template <int Wmax>
std::vector<std::bitset<Wmax>> f2_gauss_jordan(int W, std::vector<std::bitset<Wmax>> M) {
    assert(W <= Wmax);
    int H = M.size(), c = 0;
    for (int h = 0; h < H and c < W; ++h, ++c) {
        int piv = -1;
        for (int j = h; j < H; ++j) {
            if (M[j][c]) {
                piv = j;
                break;
            }
        }
        if (piv == -1) {
            --h;
            continue;
        }
        std::swap(M[piv], M[h]);
        for (int hh = 0; hh < H; ++hh) {
            if (hh != h and M[hh][c]) M[hh] ^= M[h];
        }
    }
    return M;
}

// Rank of Gauss-Jordan eliminated matrix
template <int Wmax> int f2_rank_gauss_jordan(int W, const std::vector<std::bitset<Wmax>> &M) {
    assert(W <= Wmax);
    for (int h = (int)M.size() - 1; h >= 0; h--) {
        int j = 0;
        while (j < W and !M[h][j]) ++j;
        if (j < W) return h + 1;
    }
    return 0;
}

// determinant of F2 matrix.
// Return 0 if the matrix is singular, otherwise return 1.
// Complexity: O(W^3 / 64)
template <int Wmax> int f2_determinant(const std::vector<std::bitset<Wmax>> &M) {
    const int H = M.size();
    if (H > Wmax) return 0;

    auto tmp = M;
    for (int h = 0; h < H; ++h) {
        int piv = -1;
        for (int j = h; j < H; ++j) {
            if (tmp.at(j).test(h)) {
                piv = j;
                break;
            }
        }
        if (piv == -1) return 0; // singular

        if (piv != h) std::swap(tmp.at(piv), tmp.at(h));
        for (int hh = h + 1; hh < H; ++hh) {
            if (tmp.at(hh).test(h)) tmp.at(hh) ^= tmp.at(h);
        }
    }

    return 1; // nonsingular
}

template <int W1, int W2>
std::vector<std::bitset<W2>>
f2_matmul(const std::vector<std::bitset<W1>> &A, const std::vector<std::bitset<W2>> &B) {
    int H = A.size(), K = B.size();
    std::vector<std::bitset<W2>> C(H);
    for (int i = 0; i < H; i++) {
        for (int j = 0; j < K; j++) {
            if (A.at(i).test(j)) C.at(i) ^= B.at(j);
        }
    }
    return C;
}

template <int Wmax>
std::vector<std::bitset<Wmax>> f2_matpower(std::vector<std::bitset<Wmax>> X, long long n) {
    int D = X.size();
    std::vector<std::bitset<Wmax>> ret(D);
    for (int i = 0; i < D; i++) ret[i][i] = 1;
    while (n) {
        if (n & 1) ret = f2_matmul<Wmax, Wmax>(ret, X);
        X = f2_matmul<Wmax, Wmax>(X, X), n >>= 1;
    }
    return ret;
}

// Solve Ax = b on F_2
// - retval: {true, one of the solutions, {freedoms}} (if solution exists)
//           {false, {}, {}} (otherwise)
// Complexity: O(HW + HW rank(A) / 64 + W^2 len(freedoms))
template <int Wmax, class Vec>
std::tuple<bool, std::bitset<Wmax>, std::vector<std::bitset<Wmax>>>
f2_system_of_linear_equations(std::vector<std::bitset<Wmax>> A, Vec b, int W) {
    int H = A.size();
    assert(W <= Wmax);
    assert(A.size() == b.size());

    std::vector<std::bitset<Wmax + 1>> M(H);
    for (int i = 0; i < H; ++i) {
        for (int j = 0; j < W; ++j) M[i][j] = A[i][j];
        M[i][W] = b[i];
    }
    M = f2_gauss_jordan<Wmax + 1>(W + 1, M);
    std::vector<int> ss(W, -1);
    std::vector<int> ss_nonneg_js;
    for (int i = 0; i < H; i++) {
        int j = 0;
        while (j <= W and !M[i][j]) ++j;
        if (j == W) return {false, 0, {}};
        if (j < W) {
            ss_nonneg_js.push_back(j);
            ss[j] = i;
        }
    }
    std::bitset<Wmax> x;
    std::vector<std::bitset<Wmax>> D;
    for (int j = 0; j < W; ++j) {
        if (ss[j] == -1) {
            // This part may require W^2 space complexity in output
            std::bitset<Wmax> d;
            d[j] = 1;
            for (int jj : ss_nonneg_js) d[jj] = M[ss[jj]][j];
            D.emplace_back(d);
        } else {
            x[j] = M[ss[j]][W];
        }
    }
    return std::make_tuple(true, x, D);
}
Back to top page
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy