A matematikában az asszociativitás vagy csoportosíthatóság a kétváltozós (binér/bináris) matematikai műveletek egy tulajdonsága, fontos algebrai azonosság: ha egy tetszőleges halmaz és egy rajta értelmezett kétváltozós művelet (szokásos jelölés tetszőleges elemekre a helyett ); ezt akkor mondjuk asszociatívnak, ha tetszőleges elemeire teljesül:[1]

Ez a függvény fordított lengyel jelöléssel (RPN — Reverse Polish Notation) így írható:

Például a természetes, valós vagy akár a komplex számokon értelmezett szokásos összeadás és szorzás mind asszociatív: , szorzás esetében . (Itt mindkét példa esetében tetszőleges természetes, egész, racionális, valós vagy akár komplex szám.)

Azokat az matematikai struktúrákat, melyek művelete asszociatív, félcsoportoknak nevezzük.

Az általánosított asszociativitás tétele

szerkesztés

Az asszociativitás fenti követelménye valójában csak speciális esete a következő tulajdonságnak:

Tétel: Ugyanazt jelentik (ekvivalensek) a következő állítások:

  • Az A halmazon értelmezett   kétváltozós művelet asszociatív;
  • Tetszőleges   db. (nem feltétlenül különböző)   elemekre az   műveletsorozat bármilyen szabályos zárójelezéssel ugyanazt a rögzített   elemet adja; itt  .[2]
  • Legyenek   tetszőleges A-beli véges sorozatok, ekkor  , ahol   a sorozatok A-beli produktumát (elemeinek sorrendben való összeszorzását), míg   az adott sorrendben való „egyesítésüket” jelöli.

Egységelemes félcsoportban megengedhetjük azt is, hogy a fent említett sorozatok üresek legyenek, azaz nulla tagjuk legyen.

(A fenti állítások igazolása értelemszerűen végzett teljes indukcióval történhet.)

Asszociativitás és Cayley-tábla: a Light-teszt

szerkesztés

Egy művelet asszociativitása a művelettáblájáról (Cayley-tábla) általában nem olvasható le olyan könnyen, mint például a kommutativitás. Az asszociativitás megállapítására át kell alakítani a táblázatot, erre alkalmas az ún. Light-féle eljárás.

Megjegyzés a halmazműveletek asszociativitásáról

szerkesztés

Bár nincs szakkönyv, amely ne tekintené-nevezné a halmazműveleteket asszociatívnak, hiszen formálisan érvényes   (az unió „asszociativitása”) és   is (a metszetképzés „asszociativitása”), meg kell jegyeznünk, hogy az asszociativitás fogalma csak műveletekre van definiálva, a halmazműveletek pedig nem szigorú értelemben vett matematikai műveletek, hiszen műveletet csak valamilyen alaphalmaz felett értelmezhetünk (az összes halmaz halmazáról viszont, aminek a halmazműveletek alaphalmazának kellene lennie, ellentmondásossága miatt nem beszélhetünk). Azok a szakkönyvek, amelyek a halmazműveleteket valamely U halmaz hatványhalmazának elemeire, azaz egy U részhalmazaira szorítkozva definiálják, matematikai szempontból teljesen kifogástalanul járnak el, és ez esetben valóban beszélhetünk a halmazműveletek asszociativitásáról.

További információk

szerkesztés

Lásd még

szerkesztés
  1. Megjegyzés:   helyett egyszerűen   is írható annak a szokásos zárójelezési konvenciónak az értelmében, miszerint a zárójelek nélküli, egy műveletet tartalmazó műveletsorozatokat balról jobbra kell kiolvasni és csoportosítani (tehát például   automatikusan így zárójelezendő:  ).
  2. E tétel az   kikötés nélkül is értelmes, és – a lehetséges nem-triviális szabályos zárójelezések kisszámú (1) volta miatt   esetében – automatikusan igaz.
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy