Borel–Lebesgue-tétel

matematikai állítás
Ez a közzétett változat, ellenőrizve: 2018. július 20.

A Borel–Lebesgue lefedési tétel vagy Heine–Borel-tétel a matematikai analízis egy a zárt, korlátos intervallumok lényeges tulajdonságára rámutató tétel, mely a topologikus terek elméletében a kompakt halmaz fogalmának motivációjául szolgál.

Tétel – (Dirichlet 1862, Heine 1872) – Ha KR korlátos és zárt halmaz és K-nak   nyílt lefedése, akkor ebből kiválasztható véges sok elem, mely még mindig lefedi K-t.

(A K nyílt lefedésén olyan nyílt halmazokból álló   halmazrendszert értünk, amire teljesül, hogy K részhalmaza   uniójának.)

Bizonyítás

szerkesztés

Cantor-tétellel

szerkesztés

Egy halmazrendszer véges metszet tulajdonságú, ha bármely véges részrendszerének a metszete nemüres. Az alábbi állítások ekvivalensek a valós számok körében.

  1. (Cantor-féle közösrész-tétel) Egymásba skatulyázott nemüres, korlátos és zárt intervallumok metszete nemüres.
  2. Korlátos sorozatnak van konvergens részsorozata. (Bolzano–Weierstrass-tétel)
  3. Egymásba skatulyázott nemüres, korlátos és zárt halmazok metszete nemüres.
  4. Megszámlálhatóan sok zárt halmaz véges metszet tulajdonságú nemüres rendszerének a metszete nemüres, ha van legalább egy korlátos halmaz közöttük.
  5. Zárt halmazok véges metszet tulajdonságú nemüres rendszerének a metszete nemüres, ha van legalább egy korlátos halmaz közöttük.

A fenti állítások ekvivalenciája Rn-ben is teljesül, ha intervallum alatt n darab valós intervallum direkt szorzatát értjük. Könnyen lehetne igazolni, hogy az 5-ös állítás ekvivalens a bizonyítandó Borel-Lebesgue tétellel. Ehelyett az 5-ös állítás egy ekvivalens megfogalmazását fogjuk használni. Ha   R-beli korlátos és zárt halmazok olyan nemüres rendszere, hogy minden α, βA indexre létezik olyan γA index, hogy Fγ ⊆ Fα∩Fβ (azaz lefelé irányított), akkor az   halmazrendszer metszete nem üres.

Jelölje A az   véges részhalmazainak halmazát és legyen tetszőleges αA-ra:

 

Ekkor a   halmazrendszer olyan, hogy minden eleme korlátos és zárt R-ben és tetszőleges α, βA-ra a γ := α U β elem olyan, hogy Fγ ⊆ Fα∩Fβ. A tételt azt igazolná, ha belátnánk, hogy van olyan αA, hogy Fα = ∅, ugyanis ekkor

 

teljesülne.

Ha   minden eleme nemüres volna, akkor a Cantor-axióma fenti alakjából következne, hogy

 

ami ellentmondás, hiszen   definíciójából és a halmazkivonásra vonatkozó de Morgan-szabályból következik, hogy

 

Tehát van  -nak olyan eleme, mely üres, és az ezt indexező αA-val a   a kívánt tulajdonságú lefedés lesz.

Bolzano–Weierstrass-tétellel

szerkesztés

1. bizonyítás

Mivel R teljesíti a második megszámlálhatósági kritériumot, azaz van megszámlálható környezetbázisa (például a racionális végpontú nyílt intervallumok ilyet alkotnak), a K korlátos és zárt halmazt lefedő rendszerből kiválasztható megszámlálható részlefedés. Legyen ez (Ωi)i=1. Definiálunk egy K-ban haladó (xn) sorozatot. Ha Ω1 lefedi K-t, akkor megtaláltuk a véges részlefedést. Ha Ω1 nem fedi le K-t, legyen x1K \ Ω1. Ha Ω1 ∪ Ω2 már lefedi K-t, akkor szintén megtaláltuk a véges részlefedést. Ha nem, legyen x2K \ (Ω1 ∪ Ω2). Így folytatva biztos lesz olyan n, hogy (Ωi)i=1n már lefedi K-t. Tegyük fel ugyanis, hogy nem fedné le. Akkor (xn) egy végtelen, K-ban haladó sorozat lenne, aminek a Bolzano–Weierstrass-tétel szerint lenne uK sűrűsödési pontja. Mivel (Ωi)i=1 lefedi K-t ezért u-t is tartalmazza egy Ωm nyílt halmaz. u-nak van Ωm-be eső nyílt környezete, és ebben a környezetben végtelen sok (xn)-beli tag. (xn) konstrukciója szerint minden n-re (Ωi)i=1n-ben csak véges sok tag lehet. Ez azonban ellentmond annak, hogy már magában Ωm-ben is végtelen sok tag van.

Tehát a véges nyílt lefedés kiválasztásának fenti konstrukciója véges sok lépésben véget ér (bár, hogy mi lesz ez a szám, előre nem tudjuk megmondani sehogyan sem; sőt, már magát (Ωi)i=1 sem fogjuk tudni megadni konstruktívan, kézzelfogható módon).

2. bizonyítás

Legyen C ⊆ ℝn korlátos és zárt halmaz, {Ωi}i∈I nyílt fedése C-nek. Fedjük le C-t véges sok 1/k sugarú gömbbel. C korlátossága miatt ez megtehető. Minden Bj gömbhöz válasszunk ki {Ωi}i∈I-ből egy Ωj nyílt halmazt úgy, hogy Ωj fedje Bj-t. Ha Bj nem volna fedhető, akkor válasszuk hozzá Ωj-t tetszőlegesen. Ezzel minden k∈ℕ-re definiáltuk {Ωi}i∈I -nek egy véges Φk részhalmazát. Ha Φk fedi C-t, akkor készen vagyunk. Ellenkező esetben létezik egy {xk}⊆C sorozat amire teljesül, hogy xk-t Φk egyik tagja sem fedi. C korlátossága és a Bolzano–Weierstrass-tétel alapján feltehető, hogy {xk} konvergens, azaz xk → x∈ℝn. C zártsága miatt x∈C, tehát létezik egy s∈I index amire x∈Ωs. Viszont létezik egy 1/k sugarú Bk gömb is, amire xk∈Bk. Erre elég nagy k esetén Bk⊆Ωs teljesül, hiszen Ωs nyílt, xk → x∈Ωs és 1/k→0, ami ellentmond Φk és xk választásának.

A tétel megfordítása

szerkesztés

A lefedési tulajdonság motiválja a kompakt halmaz fogalmát. A KR halmaz kompakt, ha minden nyílt lefedéséből kiválasztható véges részlefedés. Ekkor a Borel–Lebesgue-tétel megfordítása érvényes:

TételR-ben minden kompakt halmaz korlátos és zárt.

Bizonyítás. Legyen K kompakt halmaz.

Először a korlátosságot látjuk be. Legyen u tetszőleges R-beli pont. Ekkor világos, hogy a (B(u,n))nN rendszer lefedi K-t. Ebből kiválasztható véges részlefedés, melyek közül a legnagyobb sugarú lefedi K-t, így K átmérője legfeljebb ennek a sugárnak a kétszerese.

Vegyünk egy tetszőleges x pontot K komplementeréből (xK). A

 

rendszer lefedi K-t így létezik n darab y1, …, yn K-beli elem, hogy

 

Ha r a legkisebb sugár mind közül, akkor a B(x,r) halmaz nem metsz bele az iménti lefedés egyik elemébe sem, így K-ba sem. Tehát K komplementere nyílt, K pedig zárt.

Általánosítás

szerkesztés

Mind a tétel, mind a megfordítása igaz Rn-re is:

Rn egy részhalmaza akkor és csak akkor kompakt, ha korlátos és zárt.

Ám, tetszőleges M metrikus térben csak a megfordítás érvényes:

Ha H az M metrikus tér részhalmaza, akkor:
H kompakt   H korlátos és zárt
H kompakt  H korlátos és zárt

Létezik ugyanis olyan metrikus tér és benne olyan korlátos és zárt halmaz, ami nem kompakt. Ilyen például a korlátos számsorozatok   tere, ahol a norma: ||(xn)||=supn{|xn|}, az ellenpélda pedig a   zárt gömb (itt 0 az azonosan 0 sorozat).

Metrikus terekben a kompaktság ekvivalens a sorozatkompaktság fogalmával, így a Borel–Lebesgue-tétel és a Bolzano–Weierstrass-tétel ugyanannak a fogalomnak két ekvivalens megfogalmazását mondják ki. Ilyen általános közegben a kompaktság jellemzésére vonatkozik a tétel egy általánosítása:

Tétel – Egy metrikus tér tetszőleges részhalmaza akkor és csak akkor kompakt, ha teljes és teljesen korlátos.

Tetszőleges (legalább Hausdorff-féle) topologikus térben kompakt halmazokra a Borel–Lebesgue-tétel állítása definíció szerint teljesül, hiszen ezeken a terekben a kompaktság a lefedési tulajdonsággal van definiálva. (Itt a korlátosság más kontextusban vetődik fel, hiszen ezekben a terekben a kompakt halmazok részhalmazait nevezik korlátosnak. A zártság ugyanúgy fennáll.)

További információk

szerkesztés
  • Ivan Kenig, Dr. Prof. Hans-Christian Graf v. Botthmer, Dmitrij Tiessen, Andreas Timm, Viktor Wittman. (2004). The Heine-Borel Theorem (avi • mp4 • mov • swf • stream-elt videó). Hannover: Leibniz Universität. [2011. július 19-i dátummal az eredetiből archiválva]. (Hozzáférés ideje: 2008-03-10.)
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy