Hőmérséklet

intenzív mennyiség, amely meghatározza a hő áramlását
Ez a közzétett változat, ellenőrizve: 2023. december 27.

A hőmérséklet az anyagok egyik fizikai jellemzője, állapothatározó. Változása szorosan összefügg az anyag más makroszkopikus tulajdonságainak változásával. E jellemzőt az ember elsősorban tapintás útján, a hőérzettel észleli, másodsorban hőmérő segítségével. A hőtan, más néven termodinamika tudományának egyik alapfogalma, intenzív mennyiség, tehát nem additív, két test között hőáramlással kiegyenlítődésre törekszik. A hőmérőkben található folyadék - legtöbbször higany vagy etanol - folyadékszintje a hőmérséklet-változás hatására végbemenő hőtágulás miatt változik. Fizikai szempontból a termodinamikai hőmérséklet az anyagot felépítő részecskék átlagos mozgási energiájával kapcsolatos mennyiség. A részecskék egy szabadsági fokra (például egy kitüntetett irányú mozgásra) jutó mozgási energiájának hosszabb időtávon mért átlaga T hőmérsékleten kT, ahol k a Boltzmann-állandó. Hangsúlyozzuk tehát, hogy a hőmérséklet egy olyan fizikai mennyiség, amit meghatározásakor arányosnak választottak az anyagrészecskék mozgási energiájával, és a Boltzmann-állandó a választott skáláink miatt lesz adott értékű. Látszik, hogy a hőmérséklet statisztikus fogalom, ilyen szempontú leírása a statisztikus fizika témakörébe tartozik.

Egy alfa-hélix-szerkezetű fehérjemolekula hőrezgése. Az atomok léggömbszerűen pattognak

A hőmérséklet mértékegységei

szerkesztés

Kelvin-skála

szerkesztés

A mértékegység Lord Kelvin nevét viseli. Az elnevezést a tudós iránti tiszteletből 1954-ben a 10. CGPM határozta meg. Történelmileg megelőzi a Celsius-fok, de hivatalos meghatározása szempontjából elsődleges.

A kelvin SI-alapegység. A kelvinben és a Celsius-fokban mért hőmérséklet-különbség számértéke azonos. A Kelvin-skála a Celsius-fokhoz képest 273,15 fokkal el van tolva. 0 K egyenlő az abszolút nulla fokkal (-273,15 °C), ahol a részecskék hőenergiája nullára csökken. Tudományos és mérnöki számításokban használják.

Celsius-skála

szerkesztés

Bevezetője Anders Celsius.

A legelterjedtebb hőmérsékleti skála a hétköznapi életben, az európai kontinensen.

Ezen a skálán légköri nyomás mellett az olvadó jég hőmérséklete jelenti a 0° értéket, a forrásban levő víz hőmérséklete pedig a 100°. Egysége tehát ezen intervallum  -ad része. Mértékegysége: °C (Celsius-fok).

A mértékegységeket a hozzá tartozó fizikai mennyiség jelével is megkülönböztetik. Így a t betű a Celsius-fokban, a T betű a kelvinben megadott hőmérsékletre utal. Azonban nem összetévesztendő az idő t-jével. Ha például a környezeti hőmérsékletet kell az idő függvényében ábrázolni, célszerű azt nagy T-vel jelölni.

Fahrenheit-skála

szerkesztés

Bevezetője Daniel Gabriel Fahrenheit.

Az 1700-as évektől széles körben használják, napjainkban főképp az amerikai kontinensen.

A Fahrenheit-skála nullpontja az általa kísérleti úton előállított legjobban lehűlő sós oldat fagyáspontja, a másik alappontja az emberi test hőmérséklete volt, amely hőtartományt az oszthatóság kedvéért 96 egységre bontotta (így a víz fagyáspontja épp 32 °F). Mértékegysége: °F (Fahrenheit-fok) Nagy előnye a Celsius és Kelvin skálákhoz képest, hogy ennek tartománya fedi le a legjobban a hétköznapi életet. 100 °C-on a legtöbb élőlény elpusztul, és 0 Kelvin körül is megszűnik az élet. A Fahrenheit értékei a kettő között helyezkednek el.

Rankine-skála

szerkesztés

Bevezetője William John Macquorn Rankine.

A ritkán használt Rankine-skála ugyanakkora egységeket használ, mint a Fahrenheit, de a nullpontja az abszolút nullánál van. Mértékegysége: °R (Rankine-fok)

Réaumur-skála

szerkesztés

Bevezetője René Antoine Ferchault de Réaumur.

A Réaumur-skálának már csak történeti jelentősége van. Az alkotója a víz fagyáspontját adta meg nulla foknak, míg a forráspontját 80 foknak. Az egység nevét René Antoine Ferhault de Réaumur francia természettudós tiszteletére választották.

A skálák összehasonlítása

szerkesztés
A skálák összehasonlítása
Kelvin
K
Celsius
°C
Fahrenheit
°F
Rankine
°Ra (°R)
Delisle
°D
Newton
°N
Réaumur
°R (°Ré, °Re)
Rømer
°Rø (°R)
Abszolút nulla 0 −273,15 −459,67 0 559,725 −90,14 −218,52 −135,90
A Földön mért legalacsonyabb term. hőm.
(Vosztok, Antarktisz, 1983)
184 −89 −128 331 284 −29 −71 −39
A víz fagyáspontja (normál nyomáson) 273,15 0 32 491,67 150 0 0 7,5
Átlagos emberi testhőmérséklet 310,0 ± 0,7 36,8 ± 0,7 98,2 ± 1,3 557,9 ± 1,3 94,8 ± 1,1 12,1 ± 0,2 29,4 ± 0,6 26,8 ± 0,4
A Földfelszínen mért legmagasabb term hőm.
(Furnace Creek, CA, USA, 1913)
329,8 56,7 134 593,7 65,0 18,7 45,3 37,3
A víz forráspontja (normál nyomáson) 373,15 100 212 672 0 33 80 60
A titán olvadáspontja 1941 1668 3034 3494 −2352 550 1334 883
A Nap felszíne 5800 5526 9980 10 440 −8140 1823 4421 2909

Átszámítás a különböző hőmérsékleti skálák között

szerkesztés

Fahrenheit-fokra áttérés a Celsius-fokról:  

Kelvinre áttérés a Celsius-fokról:  [1]

Celsius-fokra áttérés a Fahrenheit-fokról:  [* 1]

A hideg–meleg fogalma

szerkesztés

A hideg és meleg a tudományban a környezethez viszonyított hőmérsékletet jelenti. Előjelét a hőáramlás iránya fejezi ki. Tehát hideg az az anyag, amely felé hőáramlást észlelünk; míg a meleg dolgokból kifelé észlelünk hőáramot. Az a hely, ahol bármely általunk vizsgált térbe hő áramlik be, pozitív forrásnak nevezzük.[* 2]

A fiziológia szempontjából a természetes hőszabályzás által fenntartott normális testhőmérsékletet nevezik "meleg"-nek, vagyis ami ideális az adott melegvérű (homeoterm) élőlény életműködéseihez. Azt a jelenséget, amikor a szervezet képtelen az állandó testhőmérséklet fenntartására, és az jelentősen a normális érték fölé emelkedik, hipertermiának nevezik. Ennek ellentéte a testhő normális érték alá történő csökkenése, a hipotermia.

Az élőlényeknél a hőmérséklet-érzékelés az alapvető érzékszervek közé tartozik.

Negatív hőmérséklet

szerkesztés

A termodinamika harmadik főtétele az entrópia határértékét a következőképpen rögzíti: a termodinamikai rendszerek entrópiája véges pozitív érték felé, az entrópia hőmérséklet szerinti deriváltja pedig a zéró felé tart akkor, amikor a rendszer hőmérséklete az abszolút nulla érték felé közelít. Ennek értelmében a Kelvin-skála a pozitív oldaláról haladva a 0 K irányába az tetszőlegesen megközelíthető, de el nem érhető. Léteznek azonban olyan elszigetelt, mikroszkopikus - tehát klasszikus termodinamikai értelemben nem vizsgálható - rendszerek, melyekben a részecskék eloszlásából, mikroszkopikus tulajdonságaiból visszakövetkeztethetünk a rendszer hőmérsékletére, ami az általánostól eltérő, fordított eloszlás esetén lehet negatív kelvin hőmérsékletű.

Kelvini szemléletben, negatív hőmérsékletű az a zártabb eseményhorizontú – kifele–befele ható – egyensúlyi rendszer, amely elvonja az energiát a kevésbé zárt eseményhorizontú rendszertől, amely ez esetben a pozitív értékű és egy nála is nyitottabb rendszer szempontjából negatív értékű. Ilyen a Nap negatív értéke a Föld viszonylatában, ami pozitív értékű a hidrogén atom szempontjából, amelyet nem képes megtartani a gravitációs légkörében a Föld.

Kapcsolódó szócikkek

szerkesztés

Megjegyzések

szerkesztés
  1. Az egyenletekben a ferde törtvonal nem az osztás jele, hanem a számértékegyenlet szabályos írásának jelzése, eszerint a számértéket a fizikai mennyiség jelének a mértékegység jelével való osztásával jelöljük
  2. A forrás fogalmáról lásd:[2] Hidraulikai példával, 7.2 ábra

Hivatkozások

szerkesztés
  1. Howard DeVoe: Thermodynamics and Chemistry. University of Maryland, 2014. [2017. január 31-i dátummal az eredetiből archiválva]. (Hozzáférés: 2017. március 25.) 41. oldal
  2. Monopolar flow: plane-symmetric. Kirby Research Group1. Cornell University. [2016. november 20-i dátummal az eredetiből archiválva]. (Hozzáférés: 2016. november 19.)Monopólus forrásképe

További információk

szerkesztés
Nézd meg a hőmérséklet címszót a Wikiszótárban!
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy