Távolság
A távolság két pont közé eső szakasz hossza. Pont és egyenes távolsága a ponttól az egyenesre bocsátott merőleges hossza. Pont és sík távolsága a ponttól a síkra bocsátott merőleges szakasz hossza. Két párhuzamos egyenes távolsága az egyik egyenes egy pontjának távolsága a másik egyenestől. Két párhuzamos sík távolsága az egyik sík egy pontjának távolsága a másik síktól.
A fizikában, vagy a mindennapi életben a távolságot többnyire különböző hosszúságegységekben adják meg. SI-egysége a méter. A matematika ezt a fogalmat általánosítja, különböző mértékeket, metrikákat vezetve be.
A távolság egy nem negatív skalármennyiség, aminek nincs iránya, míg az elmozdulásra, mint vektormennyiségre jellemző annak iránya. Egy görbe úton megtett út hossza lényegesen nagyobb lehet a légvonalbeli távolságnál. Egy körút például hosszú lehet, de ilyenkor a kezdő-és végpont légvonalbeli távolsága nulla, mert e két pont egybeesik.
Geometria
szerkesztésAz abszolút geometriában két pont, x1 és x2 távolsága:
A koordinátageometriában az xy sík két pontja, (x1, y1) és (x2, y2) közötti távolság:
Hasonlóan, a háromdimenziós térben a pontok távolsága:
Ahol a két pont koordinátái (x1, y1, z1) és (x2, y2, z2).
A síkbeli képlet megkapható úgy, hogy tekintjük az egyik olyan derékszögű háromszöget, aminek átfogója az (x1, y1) és (x2, y2) közötti szakasz. Erre a háromszögre alkalmazva a Pitagorasz-tételt megkapjuk a képletet. A Pitagorasz-tétel többszöri alkalmazásával a magasabb dimenziós képletek is megkaphatók. Meg kell jegyeznünk, hogy ezek a képletek csak az euklideszi geometriában érvényesek, mert a nem euklideszi geometriákban nem teljesül a Pitagorasz-tétel.
A távolságképletek általánosítása az ívhossz kiszámítására szolgáló képlet.
Az euklideszi térben
szerkesztésA matematikában (elsősorban a numerikus analízisben és a diszkrét matematikában, de az euklideszi geometriában csak nagyon ritkán) néha más távolságokat is használnak (Hölder-metrikák), amik az euklideszi normától eltérő normán alapulnak.
Az (x1, x2, ...,xn) és az (y1, y2, ...,yn) pontok p paraméterű Hölder-távolsága:
1-normán alapuló távolság (Manhattan-metrika, Minkowski-metrika) | |
2-normán alapuló távolság (euklideszi metrika) | |
p-norma távolság | |
végtelen normán alapuló távolság (Csebisev-metrika) | |
ahol p egy egynél nem kisebb valós szám. Ugyanis, ha p kisebb lenne, mint egy, akkor nem teljesülhetne a háromszög-egyenlőtlenség.
Speciálisan, a 2-norma megegyezik a szokott értelemben vett, vonalzóval vagy fénysugárral mérhető távolsággal. Az 1-norma egy olyan út hosszát méri, ami egymásra merőleges szakaszokból összerakva vezet az egyik pontból a másikba, mintha csak egy úthálózaton haladhatnánk. Manhattan-távolságnak is nevezik. A végtelen normából kapott távolságot Csebisev-távolságnak is nevezik. A sakktáblán minimum ennyi lépéssel lehet átvinni a királyt az egyik mezőről a másikra. Ezekkel a távolságokkal leginkább különböző függvényterekben mérnek; leggyakrabban az euklideszi, a Manhattan- és a Csebisev-távolságok kerülnek szóba, a többi csak nagyon speciális esetben fordul elő.
Euklideszi norma
szerkesztésAz euklideszi norma az adott p pont origótól mért távolsága:
ahol az utolsó szorzás skalárszorzás. Ez egyben az origóból a p-be mutató vektor hossza.
Variációszámítás
szerkesztésA tér két pontja ( és ) közötti távolság variációs formulája:
ahol a távolság a formula minimumával egyenlő. A képletben jelöli a két pont közötti utat. A D integrál ennek a hossza. A képlet akkor veszi fel minimumát, ha , ahol az optimális trajektória, az euklideszi geometriában egy egyenes szakasz. Görbült terekben, ahol a tér természetét jelöli, az integrandus lesz.
Algebrai távolság
szerkesztésA számítógépi geometriában gyakran egy másik távolságfogalmat használnak: az algebrai távolságot, amit a legkisebb négyzetek módszerével minimalizálnak.[1][2] Az alakú egyenlettel adott görbék és felületek, például a kúpszeletek esetén az algebrai távolság egyszerűen .
Kiindulási alapként szolgál az euklideszi távolság számára a görbékre vonatkozó becslések finomításához. Ez megtehető például a nemlineáris legkisebb négyzetek módszerével.
Absztrakt távolság
szerkesztésA matematikában, különösen a geometriában egy d: H×H → R függvény a H halmazon értelmezett távolságfüggvény, ha:
- d(x,y) ≥ 0, és d(x,y) = 0 akkor és csak akkor, ha x = y. Két pont távolsága nem negatív, és nulla akkor és csak akkor, ha a két pont egybeesik.
- Szimmetrikus: d(x,y) = d(y,x). Az x és az y pont távolsága mindkét irányban ugyanaz.
- Teljesül a háromszög-egyenlőtlenség: d(x,z) ≤ d(x,y) + d(y,z). Két pont között az egyenes szakasz a legrövidebb út.
Az ilyen d függvényeket metrikának nevezik. A metrikák topológiát határoznak meg. Például a számok közötti szokásos d(x,y) = |x − y| metrika a számegyenes szokásos topológiáját adja, amiben a nyílt halmazok a szokásos nyíltak. Az absztrakt távolságra tett kikötések szerint ez is metrika: d(x,y) = 0 ha x = y, és 1 egyébként. Ez a szokásos topológiától különböző topológiát ad, amiben pontosan a véges halmazok nyíltak.
Egy alaphalmaz metrikus tér a rajta értelmezett metrikával.
Gráfelmélet
szerkesztésA gráfelméletben két csúcs távolsága az őket összekötő legrövidebb út hossza.
Halmazok közötti távolság
szerkesztésTöbbféleképpen is lehet kiterjedt halmaz között távolságot definiálni. A legtöbbször a következő definíciók valamelyikét használják:
- Két nem üres halmaz távolsága a pontjaik közötti távolságok infimuma, vagyis legnagyobb alsó korlátja. Megfelel a távolság szokásos értelmezésének. Szimmetrikus premetrika, de többnyire nem teljesíti a háromszög-egyenlőtlenséget, ezért nem pszeudometrika, így csak néhány speciális halmazrendszeren lehet metrika.
- Két halmaz, X és Y dH Hausdorff-távolsága:
ahol sup jelöli a szuprémumot (a legkisebb felső korlátot), és inf az infimumot.
Egy ekvivalens definíció:
ahol Xε azoknak a pontoknak a halmaza, amelyek ε-nál közelebb esnek az X halmazhoz a szokott értelemben.
A két halmaz közötti távolsághoz hasonlóan definiálható egy pont és egy halmaz távolsága.
Egyéb távolságok
szerkesztésA matematika egyes ágai más távolságokat definiálnak és használnak:
- Mahalanobis-távolság a statisztikában
- Hamming-távolság és Lee-távolság a kódelméletben
- Levenshtein-távolság avagy szerkesztési távolság az információelméletben és a számítástudományban
- Csebisev-távolság
- Ciklikus távolság: egy kör kerületén mért távolság. Ha a kör r sugara 1, akkor kerülete 2*π*r. A mérnöki tudományokban gyakran használják az ω=2*π*f összefüggést, ahol f a frekvencia jele.
Jegyzetek
szerkesztésForrások
szerkesztés- Deza, E. & Deza, M. (2006), Dictionary of Distances, Elsevier, ISBN 0444520872.
- Stoyan Gisbert–Takó Galina: Numerikus módszerek
- Munkres, James; Topology, Prentice Hall; 2nd edition (December 28, 1999). ISBN 0-13-181629-2.