Távolság

geometriai fogalom
Ez a közzétett változat, ellenőrizve: 2024. november 24.

A távolság két pont közé eső szakasz hossza. Pont és egyenes távolsága a ponttól az egyenesre bocsátott merőleges hossza. Pont és sík távolsága a ponttól a síkra bocsátott merőleges szakasz hossza. Két párhuzamos egyenes távolsága az egyik egyenes egy pontjának távolsága a másik egyenestől. Két párhuzamos sík távolsága az egyik sík egy pontjának távolsága a másik síktól.

A fizikában, vagy a mindennapi életben a távolságot többnyire különböző hosszúságegységekben adják meg. SI-egysége a méter. A matematika ezt a fogalmat általánosítja, különböző mértékeket, metrikákat vezetve be.

A távolság egy nem negatív skalármennyiség, aminek nincs iránya, míg az elmozdulásra, mint vektormennyiségre jellemző annak iránya. Egy görbe úton megtett út hossza lényegesen nagyobb lehet a légvonalbeli távolságnál. Egy körút például hosszú lehet, de ilyenkor a kezdő-és végpont légvonalbeli távolsága nulla, mert e két pont egybeesik.

Az abszolút geometriában két pont, x1 és x2 távolsága:

 

A koordinátageometriában az xy sík két pontja, (x1, y1) és (x2, y2) közötti távolság:

 

Hasonlóan, a háromdimenziós térben a pontok távolsága:

 

Ahol a két pont koordinátái (x1, y1, z1) és (x2, y2, z2).

A síkbeli képlet megkapható úgy, hogy tekintjük az egyik olyan derékszögű háromszöget, aminek átfogója az (x1, y1) és (x2, y2) közötti szakasz. Erre a háromszögre alkalmazva a Pitagorasz-tételt megkapjuk a képletet. A Pitagorasz-tétel többszöri alkalmazásával a magasabb dimenziós képletek is megkaphatók. Meg kell jegyeznünk, hogy ezek a képletek csak az euklideszi geometriában érvényesek, mert a nem euklideszi geometriákban nem teljesül a Pitagorasz-tétel.

A távolságképletek általánosítása az ívhossz kiszámítására szolgáló képlet.

Az euklideszi térben

szerkesztés

A matematikában (elsősorban a numerikus analízisben és a diszkrét matematikában, de az euklideszi geometriában csak nagyon ritkán) néha más távolságokat is használnak (Hölder-metrikák), amik az euklideszi normától eltérő normán alapulnak.

Az (x1, x2, ...,xn) és az (y1, y2, ...,yn) pontok p paraméterű Hölder-távolsága:

1-normán alapuló távolság (Manhattan-metrika, Minkowski-metrika)  
2-normán alapuló távolság (euklideszi metrika)  
p-norma távolság  
végtelen normán alapuló távolság (Csebisev-metrika)  
 

ahol p egy egynél nem kisebb valós szám. Ugyanis, ha p kisebb lenne, mint egy, akkor nem teljesülhetne a háromszög-egyenlőtlenség.

Speciálisan, a 2-norma megegyezik a szokott értelemben vett, vonalzóval vagy fénysugárral mérhető távolsággal. Az 1-norma egy olyan út hosszát méri, ami egymásra merőleges szakaszokból összerakva vezet az egyik pontból a másikba, mintha csak egy úthálózaton haladhatnánk. Manhattan-távolságnak is nevezik. A végtelen normából kapott távolságot Csebisev-távolságnak is nevezik. A sakktáblán minimum ennyi lépéssel lehet átvinni a királyt az egyik mezőről a másikra. Ezekkel a távolságokkal leginkább különböző függvényterekben mérnek; leggyakrabban az euklideszi, a Manhattan- és a Csebisev-távolságok kerülnek szóba, a többi csak nagyon speciális esetben fordul elő.

Euklideszi norma

szerkesztés

Az euklideszi norma az adott p pont origótól mért távolsága:

 

ahol az utolsó szorzás skalárszorzás. Ez egyben az origóból a p-be mutató vektor hossza.

Variációszámítás

szerkesztés

A tér két pontja (  és  ) közötti távolság variációs formulája:

 

ahol a távolság a formula minimumával egyenlő. A képletben   jelöli a két pont közötti utat. A D integrál ennek a hossza. A képlet akkor veszi fel minimumát, ha  , ahol   az optimális trajektória, az euklideszi geometriában egy egyenes szakasz. Görbült terekben, ahol a tér természetét   jelöli, az integrandus   lesz.

Algebrai távolság

szerkesztés

A számítógépi geometriában gyakran egy másik távolságfogalmat használnak: az algebrai távolságot, amit a legkisebb négyzetek módszerével minimalizálnak.[1][2] Az   alakú egyenlettel adott görbék és felületek, például a kúpszeletek esetén az algebrai távolság egyszerűen  .

Kiindulási alapként szolgál az euklideszi távolság számára a görbékre vonatkozó becslések finomításához. Ez megtehető például a nemlineáris legkisebb négyzetek módszerével.

Absztrakt távolság

szerkesztés

A matematikában, különösen a geometriában egy d: H×H → R függvény a H halmazon értelmezett távolságfüggvény, ha:

  • d(x,y) ≥ 0, és d(x,y) = 0 akkor és csak akkor, ha x = y. Két pont távolsága nem negatív, és nulla akkor és csak akkor, ha a két pont egybeesik.
  • Szimmetrikus: d(x,y) = d(y,x). Az x és az y pont távolsága mindkét irányban ugyanaz.
  • Teljesül a háromszög-egyenlőtlenség: d(x,z) ≤ d(x,y) + d(y,z). Két pont között az egyenes szakasz a legrövidebb út.

Az ilyen d függvényeket metrikának nevezik. A metrikák topológiát határoznak meg. Például a számok közötti szokásos d(x,y) = |xy| metrika a számegyenes szokásos topológiáját adja, amiben a nyílt halmazok a szokásos nyíltak. Az absztrakt távolságra tett kikötések szerint ez is metrika: d(x,y) = 0 ha x = y, és 1 egyébként. Ez a szokásos topológiától különböző topológiát ad, amiben pontosan a véges halmazok nyíltak.

Egy alaphalmaz metrikus tér a rajta értelmezett metrikával.

Gráfelmélet

szerkesztés

A gráfelméletben két csúcs távolsága az őket összekötő legrövidebb út hossza.

Halmazok közötti távolság

szerkesztés
 
Nem teljesül a háromszög-egyenlőtlenség: d(A,B)>d(A,C)+d(C,B)

Többféleképpen is lehet kiterjedt halmaz között távolságot definiálni. A legtöbbször a következő definíciók valamelyikét használják:

  • Két nem üres halmaz távolsága a pontjaik közötti távolságok infimuma, vagyis legnagyobb alsó korlátja. Megfelel a távolság szokásos értelmezésének. Szimmetrikus premetrika, de többnyire nem teljesíti a háromszög-egyenlőtlenséget, ezért nem pszeudometrika, így csak néhány speciális halmazrendszeren lehet metrika.
  • Két halmaz, X és Y dH Hausdorff-távolsága:
 

ahol sup jelöli a szuprémumot (a legkisebb felső korlátot), és inf az infimumot.

Egy ekvivalens definíció:

 

ahol Xε azoknak a pontoknak a halmaza, amelyek ε-nál közelebb esnek az X halmazhoz a szokott értelemben.

A két halmaz közötti távolsághoz hasonlóan definiálható egy pont és egy halmaz távolsága.

Egyéb távolságok

szerkesztés

A matematika egyes ágai más távolságokat definiálnak és használnak:

  • Mahalanobis-távolság a statisztikában
  • Hamming-távolság és Lee-távolság a kódelméletben
  • Levenshtein-távolság avagy szerkesztési távolság az információelméletben és a számítástudományban
  • Csebisev-távolság
  • Ciklikus távolság: egy kör kerületén mért távolság. Ha a kör r sugara 1, akkor kerülete 2*π*r. A mérnöki tudományokban gyakran használják az ω=2*π*f összefüggést, ahol f a frekvencia jele.
  • Deza, E. & Deza, M. (2006), Dictionary of Distances, Elsevier, ISBN 0444520872.
  • Stoyan Gisbert–Takó Galina: Numerikus módszerek
  • Munkres, James; Topology, Prentice Hall; 2nd edition (December 28, 1999). ISBN 0-13-181629-2.

Külső hivatkozások

szerkesztés
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy