SOME TYPES OF $(\in, \in \lor q)$ -INTERVAL-VALUED FUZZY IDEALS OF BCI ALGEBRAS

X. MA, J. ZHAN AND Y. B. JUN

ABSTRACT. In this paper, we introduce the notions of interval-valued and $(\in, \in \lor q)$ -interval-valued fuzzy (p-,q- and a-) ideals of BCI algebras and investigate some of their properties. We then derive characterization theorems for these generalized interval-valued fuzzy ideals and discuss their relationship.

1. Introduction

In recent years, because of its applicability, the study of t-norm-based logical systems has become an increasingly important topic in the field of logic. As it is well known, BCK and BCI algebras, introduced by Imai and Iséki [12,15], are two classes of algebras of logic which have been extensively investigated by many researchers [7,8,15-33,35]. Iorgulescu [13,14] showed that pocrims and BCK algebras with condition (S) are categorically isomorphic. Hence, most of the algebras related to an t-norm based logic, for example, MTL algebras [10], BL algebras [11], hoop, MV algebras (i.e., lattice implication algebras) and Boolean algebras, are subclasses of BCK algebras. This shows that BCK/BCI algebras are very general structures.

After the introduction of fuzzy sets by Zadeh [34], there have been a number of generalizations of this fundamental concept. A new type of fuzzy subgroups, called $(\in, \in \lor q)$ -fuzzy subgroups, were introduced in a paper of Bhakat and Das [2] using the combined notions of "belongingness" and "quasicoincidence" of fuzzy points and fuzzy sets, introduced by Pu and Liu [31]. In fact, the $(\in, \in \lor q)$ -fuzzy subgroup is an important generalization of Rosenfeld's fuzzy subgroup. It is now natural to investigate similar type of generalizations of existing fuzzy subsystems with other algebraic structures. Jun [21,22] introduced the concept of (α, β) -fuzzy subalgebras (ideals) of a BCK/BCI algebra and investigated related results. Recently, Davvaz [4] applied this theory to near-rings and obtained some useful results. Davvaz and Corsini [5,6] also redefined fuzzy H_v -submodules and fuzzy H_v -ideals. We discuss this topic further in this paper.

In section 2, we recall some basic definitions and results of BCI algebras. In section

Received: September 2007; Revised: November 2008; Accepted: February 2009

Key words and phrases: BCI algebra, (p-, q- and a-) ideal, Interval-valued fuzzy (p-, q- and a-) ideal, $(\in, \in \lor q)$ -interval-valued fuzzy (p-, q- and a-) ideal.

This research is partially supported by a grant of the National Natural Science Foundation of China (60875034); a grant of the Natural Science Foundation of Education Committee of Hubei Province, China (D20092901; Q20092907; D20082903; B200529001) and also the support of the Natural Science Foundation of Hubei Province, China (2008CDB341).

3, we introduce the notions of interval-valued fuzzy (p-, q- and a-) ideals of BCI algebras, which are, respectively, generalizations of fuzzy (p-, q- and a-) ideals, and investigate some of their properties. Section 4 is divided into four subsections. In section 4.1, we briefly review $(\in, \in \lor q)$ -interval-valued fuzzy ideals of BCI algebras. In section 4.2, we investigate the properties of $(\in, \in \lor q)$ -interval-valued fuzzy p-ideals of BCI algebras. The notions of $(\in, \in \lor q)$ -interval-valued fuzzy (q- and a-) ideals of BCI algebras and the relationship among these generalized interval-valued fuzzy ideals of BCI algebras are discussed in section 4.3 and 4.4, respectively.

2. Preliminaries

By a BCI algebra we mean an algebra (X, *, 0) of type (2,0) satisfying the axioms: (i) ((x * y) * (x * z)) * (z * y) = 0;

- (i) (x * (x * y)) * (x + z)) + (z + y)(ii) (x * (x * y)) * y = 0;
- (iii) x * x = 0;
- (iv) x * y = 0 and y * x = 0 imply x = y.

We can define a partial ordering " \leq " by $x \leq y$ if and only if x * y = 0. In what follows, X will denote a BCI algebra unless otherwise specified.

Proposition 2.1. [7, 8, 16, 17] In any BCI algebra X, we have:

- (1) (x * y) * z = (x * z) * y,
- (2) $(x * z) * (y * z) \le x * y$,
- (3) $(x * y) * (x * z) \le z * y$,
- (4) x * 0 = x,
- (5) 0 * (x * y) = (0 * x) * (0 * y),
- (6) x * (x * (x * y)) = x * y.

A non-empty subset I of X is called an ideal of X if it satisfies (I1) $0 \in I$; (I2) $x * y \in I$ and $y \in I$ imply $x \in I$. A non-empty subset I of X is called a p-ideal of X if it satisfies (I1) and (I3) $(x * z) * (y * z) \in I$ and $y \in I$ imply $x \in I$. A non-empty subset I of X is called a q-ideal of X if it satisfies (I1) and (I3) $(x * z) * (y * z) \in I$ and $y \in I$ imply $x * (y * z) \in I$ and $y \in I$ imply $x * z \in I$. A non-empty subset I of X is called an q-ideal of X if it satisfies (I1) and (I4) $x * (y * z) \in I$ and $y \in I$ imply $x * z \in I$. A non-empty subset I of X is called an q-ideal of X if it satisfies (I1) and (I5) $(x * z) * (0 * y) \in I$ and $z \in I$ imply $y * x \in I$ (see [25,27]).

Theorem 2.2. [22] (i) Every p- (resp., q-, a-) ideal of a BCI algebra is an ideal, but the converse is not true.

(ii) A non-empty subset I of a BCI algebra X is an a-ideal of X if and only if it is both a p-ideal and a q-ideal.

We now review some fuzzy logic concepts. Recall that the real unit interval [0,1] with the totally ordered relation " \leq " is a complete lattice, with $\wedge =$ min and $\vee =$ max, 0 and 1 being the least and greatest element respectively.

Definition 2.3. [34] (i) A fuzzy set of X is a function $\mu: X \to [0, 1]$;

(ii) For a fuzzy set μ of X and $t \in (0, 1]$, the crisp set $\mu_t = \{x \in X \mid \mu(x) \ge t\}$ is called the *level subset* of μ .

Definition 2.4. [23] A fuzzy set μ of X is called a fuzzy ideal of X if it satisfies: (F1) $\mu(0) \ge \mu(x), \forall x \in X$,

Some Types of $(\in, \in \lor q)$ -interval- valued Fuzzy I deals of BCI Algebras

(F2) $\mu(x) \ge \min\{\mu(x * y), \mu(y)\}, \forall x, y \in X.$

Definition 2.5 (23,25,29). (i) A fuzzy set μ of X is called a fuzzy *p*-ideal of X if it satisfies (F1) and (F3) $\mu(x) \ge \min\{\mu((x * z) * (y * z)), \mu(y)\}$, for all $x, y, z \in X$.

- (ii) A fuzzy set μ of X is called a fuzzy q-ideal of X if it satisfies (F1) and
- (F4) $\mu(x * z) \ge \min\{\mu(x * (y * z)), \mu(y)\}, \text{ for all } x, y, z \in X.$
- (iii) A fuzzy set μ of X is called a fuzzy *a*-ideal of X if it satisfies (F1) and (F5) $\mu(y * x) \ge \min\{\mu((x * z) * (0 * y)), \mu(z)\}$, for all $x, y, z \in X$.

Theorem 2.6. [29] A fuzzy set μ of X is a fuzzy (p,q-, a-) ideal of X if and only if, for all $t \in (0,1]$, each non-empty level subset μ_t is a (p,q-, a-) ideal of X, respectively.

The following theorem, which is a consequence of Theorem 2.2 and Theorem 2.6, shows the connection between these four types of fuzzy ideals of BCI algebras.

Theorem 2.7. [29] (i) Every fuzzy p-(resp.,q-, a-)ideal of a BCI algebra is a fuzzy ideal, but the converse is not true.

(ii) A fuzzy set μ of any BCI algebra X is a fuzzy a-ideal of X if and only if it is both a fuzzy p-ideal and a fuzzy q-ideal.

3. Some Types of Interval-valued Fuzzy Ideals

We now review some interval-valued fuzzy logic concepts. Let $\overline{a} = [a^-, a^+]$ be a closed interval of [0,1], where $0 \le a^- \le a^+ \le 1$. We denote by D[0,1] the set of all such closed intervals of [0,1]. The reader can see [30] for more details on the order relation " \le ".

Definition 3.1. [3,32] (i) An interval-valued fuzzy set of X is $\overline{F} : X \to D[0,1]$, where, for each $x \in X, \overline{F}(x) = [F^{-}(x), F^{+}(x)] \in D[0,1]$.

(ii) Let \overline{F} be an interval-valued fuzzy set of X. Then, for every $[0,0] < \overline{t} \le [1,1]$, the crisp set $\overline{F}_{\overline{t}} = \{x \in X | \overline{F}(x) \ge \overline{t}\}$ is called the level subset of \overline{F} .

Note that since every $a \in [0,1]$ is in correspondence with the interval $[a,a] \in D[0,1]$, hence a fuzzy set is a particular case of interval-valued fuzzy sets. Also, we can consider an interval-valued fuzzy set \overline{F} of X to be a pair of fuzzy sets (F^-, F^+) of X such that $F^-(x) \leq F^+(x)$ for all $x \in X$.

We refer the reader to [30] for more details on operations on two interval-valued fuzzy sets of X.

Define rmin by rmin{ $\overline{a}_i, \overline{b}_i$ } = [min{ a_i^-, b_i^- }, min{ a_i^+, b_i^+ }], where $\overline{a}_i = [a_i^-, a_i^+], \overline{b}_i = [b_i^-, b_i^+] \in D[0, 1], i \in I.$

Definition 3.2 (20). An interval-valued fuzzy set \overline{F} of X is called an intervalvalued fuzzy ideal of X if \overline{F} satisfies:

(intF1) $\overline{F}(0) \ge \overline{F}(x)$, for all $x \in X$,

(intF2) $\overline{F}(x) \ge \min\{\overline{F}(x * y), \overline{F}(y)\}$, for all $x, y \in X$.

Remark 3.3. Every fuzzy ideal of X is a particular case of an interval-valued fuzzy ideal.

Theorem 3.4. [20] An interval-valued fuzzy set \overline{F} of X is an interval-valued fuzzy ideal of X if and only if the set $\overline{F}_{\overline{t}}(\neq \emptyset)$ is an ideal of X for all $[0,0] < \overline{t} \leq [1,1]$.

Definition 3.5. (i) An interval-valued fuzzy ideal \overline{F} of X is called an interval-valued fuzzy p-ideal of X if

(intF3) $\overline{F}(x) \ge \min\{\overline{F}((x*z)*(y*z)), \overline{F}(y)\}, \text{ for all } x, y, z \in X.$

(ii) An interval-valued fuzzy ideal \overline{F} of X is called an interval-valued fuzzy q-ideal of X if

(intF4) $\overline{F}(x * z) \ge \min\{\overline{F}(x * (y * z)), \overline{F}(y)\}, \text{ for all } x, y, z \in X.$

(iii) An interval-valued fuzzy ideal \overline{F} of X is called an interval-valued fuzzy *a*-ideal of X if

(intF5)
$$\overline{F}(y * x) \ge \min\{\overline{F}((x * z) * (0 * y)), \overline{F}(z)\}, \text{ for all } x, y, z \in X.$$

Example 3.6. (i) Let $X = \{0, 1, 2, 3\}$ be a proper BCI algebra with Cayley table as follows:

*	0	1	2	3
0	0	1	2	3
1	1	0	3	2
$\begin{array}{c} 1 \\ 2 \\ 3 \end{array}$	$\begin{array}{c} 0 \\ 1 \\ 2 \\ 3 \end{array}$	$ \begin{array}{c} 1 \\ 0 \\ 3 \\ 2 \end{array} $	0	1
3	3	2	1	0

Define an interval-valued fuzzy set \overline{F} of X by $\overline{F}(0) = [0.8, 0.9], \overline{F}(1) = \overline{F}(2) = [0.7, 0.8]$, and $\overline{F}(3) = [0.2, 0.3]$. It is easy to verify that \overline{F} is an interval-valued fuzzy p-ideal of X.

(ii)Let $X = \{0, 1, 2\}$ be a proper BCI algebra with Cayley table as follows:

$$\begin{array}{c|cccc} * & 0 & 1 & 2 \\ \hline 0 & 0 & 0 & 2 \\ 1 & 1 & 0 & 2 \\ 2 & 2 & 2 & 0 \end{array}$$

Define an interval-valued fuzzy set \overline{F} of X by $\overline{F}(0) = [0.8, 0.9]$, and $\overline{F}(1) = \overline{F}(2) = [0.2, 0.3]$. It is easy to verify that \overline{F} is an interval-valued fuzzy q-ideal of X.

(iii) Consider the BCI algebra X as in Example 3.6 (i). Define an interval-valued fuzzy set \overline{F} in X by $\overline{F}(0) = [0.8, 0.9], \overline{F}(1) = [0.7, 0.8], \text{ and } \overline{F}(2) = \overline{F}(3) = [0.2, 0.3].$ It is easy to verify that \overline{F} is an interval-valued fuzzy *a*-ideal of X.

Remark 3.7. Every fuzzy (p,q-, a) ideal of X is a particular case of intervalvalued fuzzy (p,q-, a) ideal, respectively.

Now we characterize the interval-valued fuzzy (p -, q-, a-) ideals by their level subsets.

Theorem 3.8. An interval-valued fuzzy set \overline{F} of X is an interval-valued fuzzy (p, q-, a-) ideal of X if and only if the set $\overline{F}_{\overline{t}}(\neq \emptyset)$ is respectively a (p, -, q-, a-) ideal of X for all $[0, 0] < \overline{t} \leq [1, 1]$.

Proof. Similar to the proof of Theorem 2.6.

The following theorem, a consequence of Theorem 2.6 and Theorem 3.8, shows the connections between these four types of interval-valued fuzzy ideals of BCI algebras.

Theorem 3.9. (i) Every interval-valued fuzzy p- (resp., q-, a-)ideal of X is an interval-valued fuzzy ideal, but the converse is not true;

(ii) An interval-valued fuzzy set \overline{F} of X is an interval-valued fuzzy a-ideal if and only if it is both an interval-valued fuzzy p-ideal and an interval- valued fuzzy q-ideal.

4. Some Types of $(\in, \in \lor q)$ -interval-valued Fuzzy Ideals

For any $\overline{F}(x) = [F^-(x), F^+(x)]$ and $\overline{t} = [t^-, t^+]$, we define $\overline{F}(x) + \overline{t} = [F^-(x) + t^-, F^+(x) + t^+]$, for all $x \in X$. In particular, if $t^- + F^-(x) > 1$, we write $\overline{F}(x) + \overline{t} > [1, 1]$.

Let $x \in X$ and $\overline{t} \in D[0, 1]$. An interval-valued fuzzy set \overline{G} of a BCI algebra X is said to be an interval-valued fuzzy point $x_{\overline{t}}$, with support x and interval value \overline{t} , if

$$\overline{G}(y) = \begin{cases} \overline{t}(\neq [0,0]) & \text{if } y = x, \\ [0,0] & \text{if } y \neq x, \end{cases}$$

for all $y \in X$. We say $x_{\overline{t}}$ belongs to (resp., is quasi-coincident with) an intervalvalued fuzzy set \overline{F} , written by $x_{\overline{t}} \in \overline{F}$ (resp., $x_{\overline{t}} q\overline{F}$) if $\overline{F}(x) \geq \overline{t}$ (resp. $\overline{F}(x) + \overline{t} > [1,1]$). If $x_{\overline{t}} \in \overline{F}$ or $x_{\overline{t}} q\overline{F}$, then we write $x_{\overline{t}} \in \lor q \overline{F}$; if $\overline{F}(x) < \overline{t}$ (resp., $\overline{F}(x) + \overline{t} \leq [1,1]$), then we say that $x_{\overline{t}} \in \overline{F}$ (resp., $x_{\overline{t}} q\overline{F}$). The symbol $\in \lor q$ means that $\in \lor q$ does not hold.

An interval-valued fuzzy set $\overline{F}(x) = [F^{-}(x), F^{+}(x)]$ of X is said to satisfy the condition (E) if the following holds:

(E) $\overline{F}(x) \le [0.5, 0.5]$ or $[0.5, 0.5] < \overline{F}(x)$, for all $x \in X$.

In what follows, unless otherwise specified, we all interval-valued fuzzy sets of X must satisfy the comparability conditions and condition (E).

4.1. $(\in, \in \lor q)$ -interval-valued Fuzzy Ideals. In this subsection, we review $(\in, \in \lor q)$ -interval-valued fuzzy ideals of X and state some of their properties [30].

Definition 4.1.1. [30] An interval-valued fuzzy set \overline{F} of X is said to be an $(\in, \in \lor q)$ - interval-valued fuzzy ideal of X if, for all $[0,0] < \overline{t} \leq [1,1], [0,0] < \overline{r} \leq [1,1]$ and for all $x, y \in X$,

(F1')
$$x_{\overline{t}} \in \overline{F}$$
 implies $0_{\overline{t}} \in \lor q\overline{F}$,

(F2') $(x * y)_{\overline{t}} \in \overline{F}$ and $y_{\overline{r}} \in \overline{F}$ imply $x_{\min\{\overline{t},\overline{r}\}} \in \lor q\overline{F}$.

Definition 4.1.2. [30] An interval-valued fuzzy set \overline{F} of X is said to be an $(\overline{\in}, \overline{\in} \lor \overline{q})$ interval-valued fuzzy ideal of X if, for all $[0,0] < \overline{t} \leq [1,1], [0,0] < \overline{r} \leq [1,1]$ and all $x, y \in X$,

(F3') $0_{\overline{t}} \in \overline{F}$ implies $x_{\overline{t}} \in \lor \overline{q} \ \overline{F}$,

(F4') $x_{\mathrm{rmin}\{\overline{t},\overline{r}\}} \in \overline{F}$ implies $(x * y)_{\overline{t}} \in \lor \overline{q} \ \overline{F}$ or $y_{\overline{r}} \in \lor \overline{q} \ \overline{F}$.

Theorem 4.1.3. [30] An interval-valued fuzzy set \overline{F} of X is an $(\in, \in \lor q)$ -intervalvalued fuzzy ideal (resp., $(\overline{\in}, \overline{\in} \lor \overline{q})$ -interval-valued fuzzy ideal) of X if and only if $\overline{F}_{\overline{t}}(\neq \emptyset)$ is an ideal of X for all $[0,0] < \overline{t} \leq [0.5, 0.5]$ (resp., $[0.5, 0.5] < \overline{t} \leq [1,1]$).

4.2. $(\in, \in \lor q)$ -interval-valued Fuzzy *p*-ideals. In this subsection, we introduce the concept of $(\in, \in \lor q)$ -interval-valued fuzzy *p*-ideals of X and derive their properties.

Definition 4.2.1. An $(\in, \in \lor q)$ -interval-valued fuzzy ideal \overline{F} of X is called an $(\in, \in \lor q)$ -interval-valued fuzzy p- ideal of X if

(F5') $F(x) \ge \min\{F((x * z) * (y * z)), F(y), [0.5, 0.5]\}, \text{ for all } x, y, z \in X.$

Example 4.2.2. Consider the BCI algebra X of Example 3.6(i) and define an interval-valued fuzzy set \overline{F} in X by $\overline{F}(0) = [0.7, 0.8], \overline{F}(1) = \overline{F}(2) = [0.8, 0.9]$, and $\overline{F}(3) = [0.2, 0.3]$. Then \overline{F} is an $(\in, \in \lor q)$ - interval-valued fuzzy *p*-ideal of X, but it is not an interval-valued fuzzy *p*-ideal.

Proposition 4.2.3. Every interval-valued fuzzy p-ideal of X is an $(\in, \in \lor q)$ -interval-valued fuzzy p-ideal, but the converse is not true in general.

Proof. Similar to the proof of Theorem 5.2.3 in [30].

Proposition 4.2.4. Let \overline{F} be an $(\in, \in \lor q)$ -interval-valued fuzzy ideal of X. Then the following are equivalent:

- (i) \overline{F} is an $(\in, \in \lor q)$ interval-valued fuzzy p-ideal.
- (ii) $\forall x \in X, \quad \overline{F}(x) \ge \min\{\overline{F}(0 * (0 * x)), [0.5, 0.5]\}.$

Proof. The proposition follows from Proposition 2.3 and Theorem 2.10 in [23]. \Box

Next, we characterize the $(\in, \in \lor q)$ -interval-valued fuzzy p-ideals by their level subsets.

Theorem 4.2.5. An interval-valued fuzzy set \overline{F} of X is an $(\in, \in \lor q)$ -intervalvalued fuzzy p-ideal of X if and only if $\overline{F}_{\overline{t}}(\neq \emptyset)$ is a p-ideal of X for all $[0,0] < \overline{t} \leq [0.5, 0.5]$.

Proof. Similar to the proof of Theorem 4.1.3.

We have a corresponding result when $\overline{F}_{\overline{t}}$ is a p-ideal of X, for all $[0.5, 0.5] < \overline{t} \leq [1, 1]$.

Definition 4.2.6. An $(\overline{\in}, \overline{\in} \lor \overline{q})$ -interval-valued fuzzy ideal \overline{F} of X is called an $(\overline{\in}, \overline{\in} \lor \overline{q})$ - interval-valued fuzzy p-ideal of X if

 $(F6') \operatorname{rmax}\{\overline{F}(x), [0.5, 0.5]\} \ge \operatorname{rmin}\{\overline{F}((x*z)*(y*z)), \overline{F}(y)\}, \text{ for all } x, y, z \in X.$

Example 4.2.7. Consider the BCI algebra X of Example 3.6(i) and define an interval-valued fuzzy set \overline{F} of X by $\overline{F}(0) = [0.8, 0.9], \overline{F}(1) = [0.6, 0.7], \overline{F}(2) = [0.2, 0.3]$ and $\overline{F}(3) = [0.3, 0.4]$. Then \overline{F} is an $(\overline{\in}, \overline{\in} \lor \overline{q})$ -interval-valued fuzzy p-ideal of X, but it is not an interval-valued fuzzy p-ideal of X.

Theorem 4.2.8. An interval-valued fuzzy set \overline{F} of X is an $(\overline{\in}, \overline{\in} \lor \overline{q})$ - intervalvalued fuzzy p-ideal of X if and only if $\overline{F}_{\overline{t}}(\neq \emptyset)$ is a p-ideal of X for all $[0.5, 0.5] < \overline{t} \leq [1, 1]$.

Proof. Similar to the proof of Theorem 4.1.3.

Remark 4.2.9. Let \overline{F} be an interval-valued fuzzy set of X and $J = \{\overline{t} \mid \overline{a} < \overline{t} \le \overline{b} \ and \overline{F_t}$ is an empty set or a p-ideal of $X\}$. In particular, if $\overline{a} = [0,0]$ and $\overline{b} = [1,1]$, then \overline{F} is an ordinary interval-valued fuzzy p-ideal of X (Theorem 3.8); if $\overline{a} = [0,0]$ and $\overline{b} = [0.5,0.5]$, then \overline{F} is an $(\in, \in \lor q)$ -interval-valued fuzzy p-ideal of X (Theorem 4.2.5); if $\overline{a} = [0.5,0.5]$ and $\overline{b} = [1,1]$, then \overline{F} is an $(\overline{\in}, \overline{\in} \lor \overline{q})$ -interval-valued fuzzy p-ideal of X (Theorem 4.2.8).

4.3. $(\in, \in \lor q)$ -interval-valued Fuzzy *q*-ideals. In this subsection, we introduce the concept of $(\in, \in \lor q)$ -interval-valued fuzzy *q*-ideals of X and obtain some related properties.

Definition 4.3.1. An $(\in, \in \lor q)$ -interval-valued fuzzy ideal \overline{F} of X is called an $(\in, \in \lor q)$ -interval-valued fuzzy q- ideal of X if

 $(F7') \ \overline{F}(x*z) \ge \min\{\overline{F}(x*(y*z)), \overline{F}(y), [0.5, 0.5]\}, \ for \ all \ x, y, z \in X.$

Example 4.3.2. Consider the BCI algebra X of Example 3.6(ii) and define an interval-valued fuzzy set \overline{F} of X by $\overline{F}(0) = [0.7, 0.8], \overline{F}(1) = [0.8, 0.9]$ and $\overline{F}(2) = [0.2, 0.3]$. Then \overline{F} is an $(\in, \in \lor q)$ - interval-valued fuzzy q-ideal of X, but it is not an interval-valued fuzzy q-ideal.

Proposition 4.3.3. Every interval-valued fuzzy q-ideal of X is an $(\in, \in \lor q)$ -intervalvalued fuzzy q-ideal, but the converse is not true in general.

Proof. Similar to the proof of Proposition 4.2.3.

Proposition 4.3.4. Let \overline{F} be an $(\in, \in \lor q)$ -interval-valued fuzzy ideal of X. Then the following are equivalent:

- (i) \overline{F} is an $(\in, \in \lor q)$ interval-valued fuzzy q-ideal.
- (ii) $\overline{F}(x * y) \ge \min\{\overline{F}(x * (0 * y)), [0.5, 0.5]\}, \forall x, y \in X.$

Proof. the proof follows from Proposition 3.16 in [23].

Next, we characterize the $(\in, \in \lor q)$ -interval-valued fuzzy q-ideals by their level subsets.

Theorem 4.3.5. An interval-valued fuzzy set \overline{F} of X is an $(\in, \in \lor q)$ -intervalvalued fuzzy q-ideal of X if and only if $\overline{F}_{\overline{t}}(\neq \emptyset)$ is a q-ideal of X for all $[0,0] < \overline{t} \leq [0.5, 0.5]$.

Proof. Similar to the proof of Theorem 4.1.3.

We have a corresponding result when $\overline{F}_{\overline{t}}$ is a q-ideal of X, for all $[0.5, 0.5] < \overline{t} \leq [1, 1]$.

Definition 4.3.6. An $(\overline{\in}, \overline{\in} \lor \overline{q})$ -interval-valued fuzzy ideal \overline{F} of X is called an $(\overline{\in}, \overline{\in} \lor \overline{q})$ - interval-valued fuzzy q-ideal of X if

 $(F8') \operatorname{rmax}\{\overline{F}(x*z), [0.5, 0.5]\} \ge \operatorname{rmin}\{\overline{F}(x*(y*z)), \overline{F}(y)\}, \text{ for all } x, y, z \in X.$

Example 4.3.7. Consider the BCI algebra X of Example 3.6(ii) and define an interval-valued fuzzy set \overline{F} of X by $\overline{F}(0) = [0.8, 0.9], \overline{F}(1) = [0.2, 0.3]$ and $\overline{F}(2) = [0.5, 0.5]$. Then \overline{F} is an $(\overline{c}, \overline{c} \vee \overline{q})$ -interval-valued fuzzy q-ideal of X, but it is not an interval-valued fuzzy q-ideal of X.

Theorem 4.3.8. An interval-valued fuzzy set \overline{F} of X is an $(\overline{\in}, \overline{\in} \lor \overline{q})$ - intervalvalued fuzzy q-ideal of X if and only if $\overline{F}_{\overline{t}}(\neq \emptyset)$ is a q-ideal of X for all $[0.5, 0.5] < \overline{t} \leq [1, 1]$.

Proof. Similar to the proof of Theorem 4.1.3.

Remark 4.3.9. Let \overline{F} be an interval-valued fuzzy set of X and $J = \{\overline{t} \mid \overline{a} < \overline{t} \le \overline{b} \text{ and } \overline{F}_{\overline{t}} \text{ is an empty set or a q-ideal of } X\}$. In particular, if $\overline{a} = [0,0]$ and $\overline{b} = [1,1]$, then \overline{F} is an ordinary interval-valued fuzzy q-ideal of X (Theorem 3.8). If $\overline{a} = [0,0]$ and $\overline{b} = [0.5,0.5]$, then \overline{F} is an $(\in, \in \lor q)$ -interval-valued fuzzy q-ideal of X (Theorem 4.3.5). If $\overline{a} = [0.5,0.5]$ and $\overline{b} = [1,1]$, then \overline{F} is an $(\overline{e}, \overline{e} \lor \overline{q})$ -interval-valued fuzzy q-ideal of X (Theorem 4.3.5).

4.4. $(\in, \in \lor q)$ -interval-valued Fuzzy *a*-ideals. In this subsection, we introduce the concept of $(\in, \in \lor q)$ -interval-valued fuzzy *a*-ideals of X and obtain some related properties.

Definition 4.4.1. An $(\in, \in \lor q)$ -interval-valued fuzzy ideal \overline{F} of X is called an $(\in, \in \lor q)$ -interval-valued fuzzy a- ideal of X if

 $(F9') \ \overline{F}(y * x) \ge \min\{\overline{F}((x * z) * (0 * y)), \overline{F}(z), [0.5, 0.5]\}, \ for \ all \ x, y, z \in X.$

Example 4.4.2. Let $X = \{0, 1, 2\}$ be a proper BCI algebra with Cayley table as follows:

Now define an interval-valued fuzzy set \overline{F} of X by $\overline{F}(0) = [0.7, 0.8]$ and $\overline{F}(1) = \overline{F}(2) = [0.8, 0.9]$. Then \overline{F} is an $(\in, \in \lor q)$ - interval-valued fuzzy a-ideal of X, but it is not an interval-valued fuzzy a- ideal.

Proposition 4.4.3. Every interval-valued fuzzy a-ideal of X is an $(\in, \in \lor q)$ -interval-valued fuzzy a-ideal, but the converse is not true in general.

Proof. Similar to the proof of Proposition 4.2.3.

Proposition 4.4.4. Let \overline{F} be an $(\in, \in \lor q)$ -interval-valued fuzzy ideal of X. Then the following are equivalent:

- (i) \overline{F} is an $(\in, \in \lor q)$ interval-valued fuzzy a-ideal.
- (ii) $\overline{F}(y * (x * z)) \ge \min\{\overline{F}((x * z) * (0 * y)), [0.5, 0.5]\}, \forall x, y, z \in X.$

Some Types of $(\in,\in\,\vee\,\mathbf{q})\text{-interval- valued Fuzzy I$ deals of BCI Algebras

(iii)
$$\overline{F}(y * x) \ge \min\{\overline{F}(x * (0 * y)), [0.5, 0.5]\}, \forall x, y \in X.$$

Proof. The theorem follows from Theorem 3.5 in [29].

Next, we characterize the $(\in,\in\vee\,q)\text{-interval-valued fuzzy a-ideals by their level subsets.}$

Theorem 4.4.5. An interval-valued fuzzy set \overline{F} of X is an $(\in, \in \lor q)$ -intervalvalued fuzzy a-ideal of X if and only if $\overline{F_t}(\neq \emptyset)$ is an a-ideal of X for all $[0,0] < \overline{t} \leq [0.5, 0.5]$.

Proof. Similar to the proof of Theorem 4.1.3.

We have a corresponding result when $\overline{F}_{\overline{t}}$ is an a-ideal of X, for all $[0.5, 0.5] < \overline{t} \leq [1, 1]$.

Definition 4.4.6. An $(\overline{\in}, \overline{\in} \lor \overline{q})$ -interval-valued fuzzy ideal \overline{F} of X is called an $(\overline{\in}, \overline{\in} \lor \overline{q})$ - interval-valued fuzzy a-ideal of X if

 $(F10') \max\{\overline{F}(y*x), [0.5, 0.5]\} \ge \min\{\overline{F}((x*z)*(0*y)), \overline{F}(z)\}, \text{ for all } x, y, z \in X.$

Example 4.4.7. Consider the BCI algebra X of Example 3.6(i) and define an interval-valued fuzzy set \overline{F} of X by $\overline{F}(0) = \overline{F}(1) = [0.8, 0.9], \overline{F}(2) = [0.5, 0.5]$ and $\overline{F}(3) = [0.2, 0.3]$. Then \overline{F} is an $(\overline{\in}, \overline{\in} \lor \overline{q})$ -interval-valued fuzzy a-ideal of X, but it is not an interval-valued fuzzy a-ideal of X.

Theorem 4.4.8. An interval-valued fuzzy set \overline{F} of X is an $(\overline{\in}, \overline{\in} \lor \overline{q})$ - intervalvalued fuzzy a-ideal of X if and only if $\overline{F}_{\overline{t}} (\neq \emptyset)$ is an a-ideal of X for all $[0.5, 0.5] < \overline{t} \leq [1, 1]$.

Proof. Similar to the proof of Theorem 4.1.3.

Remark 4.4.9. Let
$$\overline{F}$$
 be an interval-valued fuzzy set of X and $J = \{\overline{t} \mid \overline{a} < \overline{t} \leq \overline{b}$
and $\overline{F}_{\overline{t}}$ is an empty set or an a-ideal of $X\}$. In particular, if $\overline{a} = [0,0]$ and $\overline{b} = [1,1]$, then \overline{F} is an ordinary interval-valued fuzzy a-ideal of X (Theorem 3.8). If
 $\overline{a} = [0,0]$ and $\overline{b} = [0.5,0.5]$, then \overline{F} is an $(\in, \in \lor q)$ -interval-valued fuzzy a-ideal
of X (Theorem 4.4.5). If $\overline{a} = [0.5,0.5]$ and $\overline{b} = [1,1]$, then \overline{F} is an $(\overline{\in}, \overline{\in} \lor \overline{q})$ -
interval-valued fuzzy a-ideal of X (Theorem 4.4.8).

Theorem 4.4.10. Every $(\in, \in \lor q)$ -interval-valued fuzzy a-ideal of X is an $(\in, \in \lor q)$ -interval-valued fuzzy p-ideal, but the converse may not be true.

Proof. The theorem is an immediate consequence of Theorem 2.2(ii), 4.3.5 and 4.4.5. The last part is shown in Example 3.6 (i), where \overline{F} is an $(\in, \in \lor q)$ -interval-valued fuzzy *p*-ideal of *X*, but not an $(\in, \in \lor q)$ -interval-valued fuzzy *a*-ideal of *X*.

Theorem 4.4.11. Every $(\in, \in \lor q)$ -interval-valued fuzzy a-ideal of X is an $(\in, \in \lor q)$ -interval-valued fuzzy q-ideal, but the converse may not be true.

Proof. The theorem is an immediate consequence of Theorem 2.2(ii), 4.2.5 and 5.4.5. The last part is shown in Example 3.6 (ii), where \overline{F} is an $(\in, \in \lor q)$ -intervalvalued fuzzy q-ideal of X, but not an $(\in, \in \lor q)$ -interval-valued fuzzy a-ideal of X.

The following theorem shows the relationship between these generalized intervalvalued fuzzy ideals of BCI algebras.

Theorem 4.4.12. An interval-valued fuzzy set \overline{F} of X is an $(\in, \in \lor q)$ -intervalvalued fuzzy a-ideal of X if and only if it is both an $(\in, \in \lor q)$ -interval-valued fuzzy p-ideal and an $(\in, \in \lor q)$ -interval-valued fuzzy q-ideal.

Proof. Necessity: Theorem 4.4.10 and 4.4.11. Sufficiency: Proposition 4.3.4, 4.2.4 and 4.4.4.

Acknowledgements. Authors would like to express their sincere thanks to the referees for their valuable comments and suggestions.

 \Box

References

- S. K. Bhakat, (∈, ∈ ∨ q)-fuzzy normal, quasinormal and maximal subgroups, Fuzzy Sets and Systems, 112 (2000), 299-312.
- [2] S. K. Bhakat and P. Das, $(\in, \in \lor q)$ -fuzzy subgroups, Fuzzy Sets and Systems, **80** (1996), 359-368.
- [3] R. Biswas, Rosenfeld's fuzzy subgroups with interval- valued membership functions, Fuzzy Sets and Systems, 63 (1994), 87-90.
- [4] B. Davvaz, $(\in, \in \lor q)$ -fuzzy subnear-rings and ideals, Soft Computing, 10 (2006), 206-211.
- [5] B. Davvaz and P. Corsini, Redefined fuzzy H_v-submodules and many valued implications, Inform. Sci., 177 (2007), 865-875.
- [6] B. Davvaz and P. Corsini, On (α, β)-fuzzy H_v-ideals of H_v-rings, Iranian J. Fuzzy Systems, 5(2) (2008), 35-48.
- [7] W. A. Dudek, On group-like BCI-algebras, Demonstratio Math., 21 (1998), 369-376.
- [8] W. A. Dudek and J. Thomys, On decompositions of BCH-algebras, Math. Japon., 35 (1990), 1131-1138.
- [9] G. Deschrijver, Arithmetric operators in interval-valued fuzzy theory, Inform. Sci., 177 (2007), 2906-2924.
- [10] F. Esteva and L. Godo, Monoidal t-norm based logic: towards a logic for left-continuous t-norms, Fuzzy Sets and Systems, 124 (2001), 271-288.
- [11] P. Hájek, Metamathematics of fuzzy logic, Kluwer Academic Press, Dordrecht, 1998.
- [12] Y. Imai and K. Iséki, On axiom system of propositional calculus, Proc. Japan Acad., 42 (1966), 19-22.
- [13] A. Iorgulescu, Some direct ascendents of Wajsberg and MV algebras, Sci. Math. Japon., 57 (2003), 583-647.
- [14] A. Iorgulescu, Iseki algebras, connection with BL algebras, Soft Computing, 8 (2004), 449-463.
- [15] K. Iséki, An algebra related with a propositional calculus, Proc. Japan Acad., 42 (1966), 26-29.
- [16] K. Iséki, On BCI-algebras, Math. Seminar Notes (now Kobe Math J.), 8 (1980), 125-130.
- [17] K. Iséki and S. Tanaka, Ideal theory of BCK-algebras, Math. Japon., 21 (1966), 351-366.
- [18] K. Iséki and S. Tanaka, An introduction to the theory of BCK- algebras, Math. Japon., 23 (1978), 1-26.

- [19] Y. B. Jun, Interval-valued fuzzy subalgebras/ideals in BCK-algebras, Sci. Math., 3 (2000), 435-444.
- [20] Y. B. Jun, Interval-valued fuzzy ideals in BCI- algebras, J. Fuzzy Math., 9 (2001), 807-814.
- [21] Y. B. Jun, On (α, β) -fuzzy ideals of BCK/BCI- algebras, Sci. Math. Japon., **60** (2004), 613-617.
- [22] Y. B. Jun, On (α, β) -fuzzy subalgebras of BCK/BCI-algebras, Bull. Korean Math. Soc., 42 (2005), 703-711.
- [23] Y. B. Jun and J. Meng, Fuzzy p-ideals in BCI-algebras, Math. Japon, 40 (1994), 271-282.
- [24] Y. B. Jun and J. Meng, Fuzzy commutative ideals in BCI-algebras, Comm. Korean Math. Soc., 9 (1994), 19-25.
- [25] Y. L. Liu and J. Meng, Fuzzy q-ideals of BCI-algebras, J. Fuzzy Math., 8 (2000), 873-881.
- [26] Y. L. Liu and J. Meng, Fuzzy ideals in BCI-algebras, Fuzzy Sets and Systems, 123 (2001), 227-237.
- [27] Y. L. Liu, J. Meng, X. H. Zhang and Z. C. Yue, q-ideals and a-ideals in BCI-algebras, SEA Bull. Math., 24 (2000), 243-253.
- [28] Y. L. Liu, Y. Xu and J. Meng, BCI-implicative ideals of BCI-algebras, Inform. Sci., 177 (2007), 4987-4996.
- [29] Y. L. Liu and X. H. Zhang, Fuzzy a-ideals in BCI-algebras, Adv. in Math. (China), 31 (2002), 65-73.
- [30] X. Ma, J. Zhan, B. Davvaz and Y. B. Jun, Some kinds of (∈, ∈ ∨q)-interval-valued fuzzy ideals of BCI-algebras, Inform. Sci., 178 (2008), 3738-3754.
- [31] P. M. Pu and Y. M. Liu, Fuzzy topology I: Neighourhood structure of a fuzzy point and Moore-Smith convergence, J. Math. Anal. Appl., 76 (1980), 571-599.
- [32] A. B. Saeid and Y. B. Jun, Redefined fuzzy subalgebras of BCK/BCI-algebras, Iranian J. Fuzzy Systems, 5(2) (2008), 63-70.
- [33] L. Torkzadeh, M. Abbasi and M. M. Zahedi, Some results of intuitionistic fuzzy weak dual hyper K-ideals, Iranian J. Fuzzy Systems, 5(1) (2008), 65-78.
- [34] L. A. Zadeh, Fuzzy sets, Inform. Control, 8 (1965), 338-353.
- [35] J. Zhan and Z. Tan, Intuitionistic fuzzy a-ideals in BCI- algebras, Soochow Math. J., 30 (2004), 207-216.

Xueling. Ma, Jianming. Zhan, Department of Mathematics, Hubei Institute for Nationalities, Enshi, Hubei Province, 445000, P. R. China

 $E\text{-}mail\ address:\ \texttt{zhanjianming} @\texttt{hotmail.com}$

Young Bea Jun*, Department of Mathematics Education, Gyeongsang National University, Chinju 660-701, Korea

E-mail address: skywine@gmail.com

*Corresponding Author