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1. Introduction

Lie algebras were first discovered by Sophus Lie (1842-1899) when he attempted
to classify certain smooth subgroups of general linear groups. The groups he
considered are now called Lie groups. By taking the tangent space at the identity
element of such a group, he obtained the Lie algebra and hence the problems
on groups can be reduced to problems on Lie algebras so that it becomes more
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tractable. There are many applications of Lie algebras in many branches of math-
ematics and physics.

In 1965, Zadeh [12] introduced the concept of fuzzy subset of a set. A fuzzy
set on a given set X is a mapping A : X → [0, 1]. In 1994, Zhang [13] extended
the idea of a fuzzy set and defined the notion of bipolar fuzzy set on a given
set X as a mapping A : X → [−1, 1], where the membership degree 0 of an
element x means that the element x is irrelevant to the corresponding property,
the membership degree in (0, 1] of an element x indicates that the element satisfies
the property, and the membership degree in [−1, 0) of an element x indicates that
the element somewhat satisfies the implicit counter-property. In 2014, Chen et al.
[6] introduced the notion of m-polar fuzzy sets as a generalization of bipolar fuzzy
set and showed that bipolar fuzzy sets and 2-polar fuzzy sets are cryptomorphic
mathematical notions and that we can obtain concisely one from the corresponding
one in [6]. The idea behind this is that “multipolar information” (not just bipolar
information which correspond to two-valued logic) exists because data for a real
world problems are sometimes from n agents (n ≥ 2). For example, the exact
degree of telecommunication safety of mankind is a point in [0, 1]n(n ≈ 7 × 109)
because different person has been monitored different times. There are many
examples such as truth degrees of a logic formula which are based on n logic
implication operators (n ≥ 2), similarity degrees of two logic formula which are
based on n logic implication operators (n ≥ 2), ordering results of a magazine,
ordering results of a university and inclusion degrees (accuracy measures, rough
measures, approximation qualities, fuzziness measures, and decision preformation
evaluations) of a rough set.

The notions of fuzzy ideals and fuzzy subalgebras of Lie algebras over a field
were considered first in [10] by Yehia. Since then, the concepts and results of Lie
algebras have been broadened to the fuzzy setting frames [1]–[5], [9]–[11]. In this
paper, we introduce the concept of m-polar fuzzy Lie subalgebras of a Lie algebra
and investigate some of their properties. The Cartesian product of m-polar fuzzy
Lie subalgebras will be discussed. In particular, the homomorphisms between the
Lie subalgebras of a Lie algebra and their relationship between the domains and
the co-domains of the m-polar fuzzy subalgebras under these homomorphisms will
be investigated.

2. Preliminaries

In this section, we first review some elementary aspects that are necessary for this
paper. A Lie algebra is a vector space L over a field F (equal to R or C) on which
L ×L → L denoted by (x, y) → [x, y] is defined satisfying the following axioms:

(L1) [x, y] is bilinear,

(L2) [x, x] = 0 for all x ∈ L ,

(L3) [[x, y], z] + [[y, z], x] + [[z, x], y] = 0 for all x, y, z ∈ L (Jacobi identity).
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Throughout this paper, L is a Lie algebra and F is a field. We note that the
multiplication in a Lie algebra is not associative, i.e., it is not true in general that
[[x, y], z] = [x, [y, z]]. But it is anti commutative, i.e., [x, y] = −[y, x]. A subspace
H of L closed under [·, ·] will be called a Lie subalgebra. A subspace I of L with
the property [I,L] ⊆ I is called a Lie ideal of L . Obviously, any Lie ideal is a
subalgebra.

Let µ be a fuzzy set on L , i.e., a map µ : L → [0, 1]. Then, we call a fuzzy
set µ : L → [0, 1] a fuzzy Lie subalgebra [10] of L if the following conditions are
satisfied:

(a) µ(x + y) ≥ min{µ(x), µ(y)},
(b) µ(αx) ≥ µ(x),

(c) µ([x, y]) ≥ min{µ(x), µ(y)},
for all x, y ∈ L and α ∈ F.

Definition 2.1. [6] An m-polar fuzzy set ( or a [0, 1]m-set) on X is a mapping
A : L → [0, 1]m. The set of all m-polar fuzzy sets on L is denoted by m(L ).

Note that [0, 1]m(m-power of [0, 1]) is considered a poset with the point-wise
order ≤, where m is an arbitrary ordinal number (we make an appointment that
m = {n | n < m} when m > 0), ≤ is defined by x ≤ y ⇔ pi(x) ≤ pi(y) for
each i ∈ m (x, y ∈ [0, 1]m), and pi : [0, 1]m → [0, 1] is the ith projection mapping
(i ∈ m). 0 = (0, 0, ..., 0) is the smallest element in [0, 1]m and 1 = (1, 1, ..., 1) is
the largest element in [0, 1]m.

3. m-polar fuzzy Lie subalgebras

Definition 3.1. An m-polar fuzzy set C on L is called an m-polar fuzzy Lie
subalgebra if the following conditions are satisfied:

(1) C(x + y) ≥ C(x) ∧ C(y)) ,

(2) C(αx) ≥ C(x),

(3) C([x, y]) ≥ C(x) ∧ C(y)) for all x, y ∈ L and α ∈ F.

That is,

(1) pi ◦ C(x + y) ≥ inf(pi ◦ C(x), pi ◦ C(y)) ,

(2) pi ◦ C(αx) ≥ pi ◦ C(x),

(3) pi ◦ C([x, y]) ≥ inf(pi ◦ C(x), pi ◦ C(y))

for all x, y ∈ L and α ∈ F, i = 1, 2, 3, ...,m.
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Definition 3.2. An m-polar fuzzy set C on L is called an m-polar fuzzy Lie ideal
if it satisfies the conditions (1),(2) and the following additional condition:

(4) C([x, y]) ≥ C(x)

for all x, y ∈ L .

From (2) it follows that:

(5) C(0) ≥ C(x),

(6) C(−x) ≥ C(x).

Example 3.3. Let R3 = {(x, y, z) : x, y, z ∈ R} be the set of all 3-dimensional
real vectors. Then R3 with the bracket [·, ·] defined as the usual cross product,
i.e., [x, y] = x × y, forms a real Lie algebra. We also define an m-polar fuzzy set
C : R3 → [0, 1]m by

C(x, y, z) =

{
(0.6, 0.6, ..., 0.6) if x = y = z = 0,

(0.2, 0.2, ..., 0.2) otherwise.

By routine computations, we can verify that the above m-polar fuzzy set C is an
m-polar fuzzy Lie subalgebra and Lie ideal of the Lie algebra R3.

Proposition 3.4. Every m-polar fuzzy Lie ideal is an m-polar fuzzy Lie sub-
algebra.

We note here that the converse of Proposition 3.4 does not hold in general as can
be seen in the following example.

Example 3.5. Consider F = R. Let L = R3 = {(x, y, z) : x, y, z ∈ R} be the set
of all 3-dimensional real vectors which forms a Lie algebra and define

R3 × R3 → R3

[x, y] → x× y,

where × is the usual cross product. We define an m-polar fuzzy set C : R3 →
[0, 1]m by

C(x, y, z) =





(1, 1, ..., 1) if x = y = z = 0,

(0.5, 0.5, ..., 0.5) if x 6= 0, y = z = 0,

(0, 0, ..., 0) otherwise.

Then C is an m-polar fuzzy Lie subalgebra of L but C is not an m-polar fuzzy
Lie ideal of L since

C([(1, 0, 0) (1, 1, 1)]) = C(0,−1, 1) = (0, 0, ..., 0),

C(1, 0, 0) = (0.5, 0.5, ..., 0.5)

That is,
C([(1, 0, 0) (1, 1, 1)]) � C(1, 0, 0).
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Theorem 3.6. Let C be an m-polar fuzzy Lie subalgebra in a Lie algebra L .
Then C is an m-polar fuzzy Lie subalgebra of L if and only if the non-empty
upper s-level cut C[s] = U(C; s) = {x ∈ L | C(x) ≥ s} is a Lie subalgebra of L,
for all s ∈ [0, 1]m.

Example 3.7. Consider the group algebra C[S3], where S3 is the Symmetric
group. Then C[S3] assumes the structure of a Lie algebra via the bracket (com-
mutator) operation. Clearly, the linear span of the elements ĝ = g − g−1 for
g ∈ S3 is the subalgebra of C[S3], which is also known as Plesken Lie algebra

and denoted by L (S3)C. It is easy to see that L (S3)C = SpanC{ ̂(1, 2, 3)} and
̂(1, 2, 3) = (1, 2, 3)− (1, 3, 2).

We define an m-polar fuzzy set C : L (S3)C → [0, 1]m by

C(g) =

{
(t1, t2, ..., tm), g = γ(1, 2, 3)− γ(1, 3, 2), where γ ∈ C, g ∈ C[S3]

(s1, s2, ..., sm), otherwise, where si < ti

By routine calculations, we have {g ∈ C[S3] : C(g) > (s1, s2, ..., sm)} = L (S3)C.
Then we see that L (S3)C can be realized C[s] as an upper si-level cut and C is
an m-polar fuzzy Lie ideal of L (S3)C.

Definition 3.8. Let C and D be two m-polar fuzzy sets of L . We define the
sup-inf product [CD] of C and D as follows: for all x, y, z ∈ L

[CD](x) =





sup
x=[yz]

{inf(C(y), D(z))}

0, if x 6= [yz].

Let C and D be m-polar fuzzy Lie subalgebras of the Lie algebra L . Then
[CD] may not be an m-polar fuzzy Lie subalgebra of L as this can be seen in the
following counterexample:

Example 3.9. Let {e1, e2, ..., e8} be a basis of a vector space over a field F.
Then,it is not difficult to see that, by putting:

[e1, e2] = e5, [e1, e3] = e6, [e1, e4] = e7, [e1, e5] = −e8,

[e2, e3] = e8, [e2, e4] = e6, [e2, e6] = −e7, [e3, e4] = −e5,

[e3, e5] = −e7, [e4, e6] = −e8, [ei, ej] = −[ej, ei]

and [ei, ej] = 0 for all i ≤ j, we can obtain a Lie algebra over a field F. The
following fuzzy sets

C(x) :=

{
(1, 1, ..., 1) if x ∈ {0, e1, e5, e6, e7, e8},
(0, 0, ..., 0) otherwise,

D(x) :=





(1, 1, ..., 1) if x = 0,

(0.5, 0.5, ..., 0.5) if x ∈ {e2, e5, e6, e7, e8},
(0, 0, ..., 0) otherwise,
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are clearly fuzzy Lie subalgebras of a Lie algebra L . Thus C and D are m-polar
fuzzy Lie subalgebras of L because the level Lie subalgebras

U(C; (1, 1, ..., 1)) = 〈e1, e5, e6, e7, e8〉 ,
U(D; (0.5, 0.5, ..., 0.5)) = 〈e2, e5, e6, e7, e8〉

are Lie subalgebras of L . But [CD] is not an m-polar fuzzy Lie subalgebra
because the following condition does not hold:

[CD](e7 + e8) ≥ inf{[CD](e7), [CD](e8)}.

(1) [CD](e7) = sup





inf{C(e1), D(e4)} = (0, 0, ..., 0), e7 = [e1, e4],

inf{C(e2), D(e6)} = (0, 0, ..., 0), e7 = −[e2, e6],

inf{C(e3), D(e5)} = (0, 0, ..., 0), e7 = −[e3, e5],

inf{C(e4), D(e1)} = (0, 0, ..., 0), e7 = −[e4, e1],

inf{C(e6), D(e2)} = (0.5, 0.5, ..., 0.5), e7 = [e6, e2],

inf{C(e5), D(e3)} = (0, 0, ..., 0), e7 = [e5, e3].

Thus [CD](e7) = (0.5, 0.5, ..., 0.5).

(2) By using similar arguments, we can show that [CD](e8) = (0.5, 0.5, · · · , 0.5).

(3) [CD](e7 + e8) = sup{(i)− (vi)}

(i) if e7+e8 = [e1(e4−e5)], then inf{C(e1), D(e4−e5)}= inf{C(e1), D(e4), D(e5)}
= (0, 0, ..., 0), since D(e4) = (0, 0, ..., 0), and if e7 + e8 = [(e5 − e4)e1], then,
inf{C(e5 − e4), D(e1)} = inf{C(e5), D(e4), D(e1)} = (0, 0, ..., 0),
since C(e4) = (0, 0, ..., 0).

By using similar method, we can also obtain the following numerical results:

(ii) If e7 + e8 = [e2(e3 − e6)], then inf(C(e2), D(e3 − e6)) = (0, 0, ..., 0).

(iii) If e7 + e8 = [e3(−e2 − e5)], then inf(C(e3), D(e2 − e5)) = (0, 0, ..., 0).

(iv) If e7 + e8 = [e4(−e1 − e6)], then inf(C(e4), D(−e3 − e1)) = (0, 0, ..., 0).

(v) If e7 + e8 = [e5(−e3 − e1)], then inf(C(e5), D(−e3 − e1)) = (0, 0, ..., 0).

(vi) If e7 + e8 = [e6(−e2 − e4)], then inf(C(e6), D(−e2 − e4)) = (0, 0, ..., 0).

Thus, [CD](e7+e8) = sup{(0, 0, ..., 0), (0, 0, ..., 0), (0, 0, ..., 0), (0, 0, ..., 0), (0, 0, ..., 0),
(0, 0, ..., 0)} = (0, 0, ..., 0). Hence, we have proved that

[CD](e7 + e8) � inf{[CD](e7), [CD](e8)}.

We now refine the product of two m-polar fuzzy Lie subalgebras C and D of
L to an extended form.
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Definition 3.10. Let C and D be two m-polar fuzzy sets of L . Then,we define
the sup-inf product ¿ CD À of C and D as follows, for all x, y, z ∈ L

¿ CD À (x) =





sup

x=
n∑

i=1
[xiyi]

{
inf
i∈N
{inf(C(xi), D(yi))}

}

0, if x 6=
n∑

i=1

[xiyi].

From the definitions of [CD] and¿ CD À, we can easily see that [CD] ⊆¿ CDÀ
and [CD] 6= ¿ CD À hold generally even if C and D are both m-polar fuzzy
Lie subalgebras of L , and in this case, ¿ CD À is also an m-polar fuzzy Lie
subalgebra of L .

Theorem 3.11. Let C be an m-polar fuzzy Lie subalgebra of Lie algebra L .
Define a binary relation ∼ on L by x ∼ y if and only if C(x− y) = C(0) for all
x, y ∈ L . Then ∼ is a congruence relation on L .

Proof. We first prove that “∼” is an equivalent relation.We only need to show the
transitivity of “∼” because the reflectivity and symmetry of “∼” hold trivially.
Let x, y, z ∈ L , If x ∼ y and y ∼ z, then C(x − y) = C(0) , C(y − z) = C(0).
Hence it follows that

C(x− z) = C(x− y + y − z) ≥ inf(C(x− y), C(y − z)) = C(0),

Consequently x ∼ z. We now verify that “∼” is a congruence relation on L . For
this purpose,we let x ∼ y and y ∼ z. Then C(x − y) = C(0), C(y − z) = C(0).
Now, for x1, x2, y1, y2 ∈ L , we have

C((x1 + x2)− (y1 + y2)) = C((x1 − y1) + (x2 − y2))

≥ inf(C(x1 − y1), C(x2 − y2)) = C(0),

C((αx1 − αy1) = C(α(x1 − y1)) ≥ C(x1 − y1) = C(0),

C([x1, x2]− [y1, y2]) = C([x1 − y1], [x2 − y2])

≥ inf{C(x1 − y1), C(x2 − y2)} = C(0).

That is, x1 + x2 ∼ y1 + y2, αx1 ∼ αy1 and [x1, x2] ∼ [y1, y2]. Thus, “∼” is indeed
a congruence relation on L .

Definition 3.12. Let C be an m -polar fuzzy set on a set L . An m-polar
fuzzy relation on C is an m-polar fuzzy set D of L × L such that D(xy) ≤
inf(C(x), C(y)) ∀x, y ∈ L .

Definition 3.13. Let C and D be m-polar fuzzy sets on a set L . If C is an
m-polar fuzzy relation on a set L , then C is said to be an m-polar fuzzy relation
on D if C(x, y) ≤ inf(D(x), D(y)) for all x, y ∈ L .
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Theorem 3.14. Let C and D be two m-polar fuzzy Lie subalgebras of a Lie
algebras L . Then C ×D is an m-polar fuzzy Lie subalgebra of L ×L .

Proof. Let x = (x1, x2) and y = (y1, y2) ∈ L ×L . Then

(C ×D)(x + y) = (C ×D)((x1, x2) + (y1, y2))

= (C ×D)((x1 + y1, x2 + y2))

= inf(C(x1 + y1), D(x2 + y2))

≥ inf(inf(C(x1), C(y1)), T (D(x2), D(y2)))

= inf(inf(C(x1), D(x2)), inf(C(y1), D(y2)))

= inf((C ×D)(x1, x2)), (C ×D)(y1, y2))

= inf((C ×D)(x), (C ×D)(y)),

(C ×D)(αx) = (C ×D)(α(x1, x2)) = (C ×D)((αx1, αx2))

= inf(C(αx1), D(αx2)) ≥ inf(C(x1), D(x2))

= (C ×D)(x1, x2) = (C ×D)(x),

(C ×D)([x, y]) = (C ×D)([(x1, x2), (y1, y2)])

≥ inf(inf(C(x1), D(x2)), inf(C(y1), D(y2)))

= inf((C ×D)(x1, x2)), (C ×D)(y1, y2))

= inf((C ×D)(x), (C ×D)(y)),

This shows that C ×D is an m-polar fuzzy Lie subalgebra of L ×L .

Definition 3.15. Let L1 and L2 be two Lie algebras over a field F. Then a
linear transformation f : L1 → L2 is called a Lie homomorphism if f([x, y]) =
[f(x), f(y)] holds for all x, y ∈ L1.

For the Lie algebras L1 and L2, it can be easily observed that if f : L1 → L2

is a Lie homomorphism and C is an m-polar fuzzy Lie subalgebra of L2, then the
m-polar fuzzy set f−1(CA) of L1 is also an m-polar fuzzy Lie subalgebra.

Definition 3.16. Let L1 and L2 be two Lie algebras. Then, a Lie homomorphism
f : L1 → L2 is said to have a natural extension f : IL1 → IL2 defined by for all
C ∈ IL1 , y ∈ L2:

f(C)(y) = sup{C(x) : x ∈ f−1(y)}.
We now call these sets the homomorphic images of the m-polar fuzzy set C.

Theorem 3.17. The homomorphic image of an m-polar fuzzy Lie subalgebra is
still an m-polar fuzzy Lie subalgebra of its co-domain.

Proof. Let y1, y2 ∈ L2. Then

{x | x ∈ f−1(y1 + y2)} ⊇ {x1 + x2 | x1 ∈ f−1(y1) and, x2 ∈ f−1(y2)}.

Now, we have
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f(C)(y1 + y2) = sup{C(x) | x ∈ f−1(y1 + y2)}
≥ {C(x1 + x2), | x1 ∈ f−1(y1) and x2 ∈ f−1(y2)}
≥ sup{inf{C(x1), C(x2)} | x1 ∈ f−1(y1) and x2 ∈ f−1(y2)}
= inf{sup{C(x1) | x1 ∈ f−1(y1)}, sup{C(x2) | x2 ∈ f−1(y2)}}
= inf{f(C)(y1), f(C)(y2)}.

For y ∈ L2 and α ∈ F, we have

{x | x ∈ f−1(αy)} ⊇ {αx | x ∈ f−1(y)}.
f(C)(αy) = sup{C(αx) | x ∈ f−1(y)}

≥ {C(αx) | x ∈ f−1(αy)}
≥ sup{C(x) | x ∈ f−1(y)}
= f(C)(y),

If y1, y2 ∈ L2 then

{x | x ∈ f−1([y1, y2])} ⊇ {[x1, x2] | x1 ∈ f−1(y1), x2 ∈ f−1(y2)}.
Now

f(C)([y1, y2]) = sup{C(x) | x ∈ f−1([y1, y2])}
≥ {C([x1, x2]) | x1 ∈ f−1(y1) and x2 ∈ f−1(y2)}
≥ sup{inf{C(x1), C(x2)} | x1 ∈ f−1(y1) and x2 ∈ f−1(y2)}
= inf{sup{C(x1) | x1 ∈ f−1(y1)}, sup{C(x2) | x2 ∈ f−1(y2)}}
= inf{f(C)(y1), f(C)(y2)}.

Thus, f(C) is a fuzzy Lie algebra of L2.

Theorem 3.18. Let f : L1 → L2 be a surjective Lie homomorphism. If C and
D are m-polar fuzzy Lie subalgebras of L1 then f(¿ CD À) =¿ f(C)f(D) À.

Proof. Assume that f(¿ CD À) <¿ f(C)f(D) À. Now, we choose a number
t ∈ [0, 1] such that f(¿ CD À)(x) < t <¿ f(C)f(D) À (x). Then,there exist
yi, zi ∈ L2 such that x =

∑n
i=1[yizi] with f(C)(yi) > t and f(D)(zi) > t. Since f

is surjective, there exists y ∈ L1 such that f(y) = x and y =
∑n

i=1[aibi] for some
ai ∈ f−1(yi), bi ∈ f−1(zi) with f(ai) = yi, f(bi) = zi, C(ai) > t and D(bi) > t.
Since f(

∑n
i=1[aibi]) = [

∑n
i=1 f([aibi]) = [

∑n
i=1[f(ai)f(bi)] = [

∑n
i=1[yizi] = x,

we have f(¿ CD À)(x) > t. This is a contradiction. Similarly, for the case
f(¿ CD À) >¿ f(C)f(D) À, we can also obtain a contradiction. Hence,
f(¿ CD À) =¿ f(C)f(D) À.

Definition 3.19. Let C and D be m-polar fuzzy subalgebras of L . Then C is
said to be of the same type of D if there exists f ∈ Aut(L) such that C = D ◦ f ,
i.e., C(x) = D(f(x)) for all x ∈ L .

Theorem 3.20. Let C and D be two m-polar fuzzy subalgebras of L . Then
C is an m-polar fuzzy subalgebra having the same type of D if and only if C is
isomorphic to D.

Proof. We only need to prove the necessity part because the sufficiency part is
trivial. Let C be an m-polar fuzzy subalgebra having the same type of D. Then
there exists φ ∈ Aut(L) such that C(x) = D(φ(x)) ∀x ∈ L .
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Let f : C(L) → D(L) be a mapping defined by f(C(x)) = D(φ(x)) for
all x ∈ L , that is, f(C(x)) = D(φ(x)) ∀x ∈ L . Then, it is clear that f is
surjective. Also, f is injective because if f(C(x)) = f(C(y)) for all x, y ∈ L ,
then D(φ(x)) = D(φ(y)) and hence C(x) = D(y). Finally, f is a homomorphism
because for x, y ∈ L ,

f(C(x + y)) = D(φ(x + y)) = D(φ(x) + φ(y)),

f(C(αx)) = D(φ(αx)) = αD(φ(x)),

f(C([x, y])) = D(φ([x, y])) = D([φ(x), φ(y)]).

Hence C is isomorphic to D. This completes the proof.
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