
Copyright 1991–1993 RSA Laboratories, a division of RSA Data Security, Inc. License to copy this
document is granted provided that it is identified as "RSA Data Security, Inc. Public-Key Cryptography
Standards (PKCS)" in all material mentioning or referencing this document.
003-903022-150-000-000

PKCS #7: Cryptographic Message
Syntax Standard

An RSA Laboratories Technical Note
Version 1.5
Revised November 1, 1993*

1. Scope

This standard describes a general syntax for data that may have cryptography applied
to it, such as digital signatures and digital envelopes. The syntax admits recursion, so
that, for example, one envelope can be nested inside another, or one party can sign some
previously enveloped digital data. It also allows arbitrary attributes, such as signing
time, to be authenticated along with the content of a message, and provides for other
attributes such as countersignatures to be associated with a signature. A degenerate case
of the syntax provides a means for disseminating certificates and certificate-revocation
lists.

This standard is compatible with Privacy-Enhanced Mail (PEM) in that signed-data and
signed-and-enveloped-data content, constructed in a PEM-compatible mode, can be
converted into PEM messages without any cryptographic operations. PEM messages
can similarly be converted into the signed-data and signed-and-enveloped data content
types.

This standard can support a variety of architectures for certificate-based key
management, such as the one proposed for Privacy-Enhanced Mail in RFC 1422.
Architectural decisions such as what certificate issuers are considered "top-level," what
entities certificate issuers are authorized to certify, what distinguished names are
considered acceptable, and what policies certificate issuers must follow (such as signing
only with secure hardware, or requiring entities to present specific forms of
identification) are left outside the standard.

*Supersedes June 3, 1991 version, which was also published as NIST/OSI Implementors' Workshop document SEC-
SIG-91-22. PKCS documents are available by electronic mail to <pkcs@rsa.com>.

Page 2 PKCS #7: CRYPTOGRAPHIC MESSAGE SYNTAX STANDARD

The values produced according to this standard are intended to be BER-encoded, which
means that the values would typically be represented as octet strings. While many
systems are capable of transmitting arbitrary octet strings reliably, it is well known that
many electronic-mail systems are not. This standard does not address mechanisms for
encoding octet strings as (say) strings of ASCII characters or other techniques for
enabling reliable transmission by re-encoding the octet string. RFC 1421 suggests one
possible solution to this problem.

2. References

FIPS PUB 46–1 National Bureau of Standards. FIPS PUB 46–1: Data Encryption Standard. January 1988.

PKCS #1 RSA Laboratories. PKCS #1: RSA Encryption Standard. Version 1.5, November 1993.

PKCS #6 RSA Laboratories. PKCS #6: Extended-Certificate Syntax Standard. Version 1.5, November
1993.

PKCS #9 RSA Laboratories. PKCS #9: Selected Attribute Types. Version 1.1, November 1993.

RFC 1421 J. Linn. RFC 1421: Privacy Enhancement for Internet Electronic Mail: Part I: Message
Encryption and Authentication Procedures. February 1993.

RFC 1422 S. Kent. RFC 1422: Privacy Enhancement for Internet Electronic Mail: Part II: Certificate-Based
Key Management. February 1993.

RFC 1423 D. Balenson. RFC 1423: Privacy Enhancement for Internet Electronic Mail: Part III: Algorithms,
Modes, and Identifiers. February 1993.

RFC 1424 B. Kaliski. RFC 1424: Privacy Enhancement for Internet Electronic Mail: Part IV: Key
Certification and Related Services. February 1993.

RFC 1319 B. Kaliski. RFC 1319: The MD2 Message-Digest Algorithm. April 1992.

RFC 1321 R. Rivest. RFC 1321: The MD5 Message-Digest Algorithm. April 1992.

X.208 CCITT. Recommendation X.208: Specification of Abstract Syntax Notation One (ASN.1). 1988.

X.209 CCITT. Recommendation X.209: Specification of Basic Encoding Rules for Abstract Syntax
Notation One (ASN.1). 1988.

X.500 CCITT. Recommendation X.500: The Directory—Overview of Concepts, Models and Services.
1988.

X.501 CCITT. Recommendation X.501: The Directory—Models. 1988.

X.509 CCITT. Recommendation X.509: The Directory—Authentication Framework. 1988.

[NIST91] NIST. Special Publication 500-202: Stable Implementation Agreements for Open Systems
Interconnection Protocols. Version 5, Edition 1, Part 12. December 1991.

3. DEFINITIONS Page 3

[RSA78] R.L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures and
public-key cryptosystems. Communications of the ACM, 21(2):120–126, February 1978.

3. Definitions

For the purposes of this standard, the following definitions apply.

AlgorithmIdentifier: A type that identifies an algorithm (by object identifier) and
associated parameters. This type is defined in X.509.

ASN.1: Abstract Syntax Notation One, as defined in X.208.

Attribute: A type that contains an attribute type (specified by object identifier) and
one or more attribute values. This type is defined in X.501.

BER: Basic Encoding Rules, as defined in X.209.

Certificate: A type that binds an entity's distinguished name to a public key with a
digital signature. This type is defined in X.509. This type also contains the distinguished
name of the certificate issuer (the signer), an issuer-specific serial number, the issuer's
signature algorithm identifier, and a validity period.

CertificateSerialNumber: A type that uniquely identifies a certificate (and thereby
an entity and a public key) among those signed by a particular certificate issuer. This
type is defined in X.509.

CertificateRevocationList: A type that contains information about certificates
whose validity an issuer has prematurely revoked. The information consists of an issuer
name, the time of issue, the next scheduled time of issue, and a list of certificate serial
numbers and their associated revocation times. The CRL is signed by the issuer. The
type intended by this standard is the one defined RFC 1422.

DER: Distinguished Encoding Rules for ASN.1, as defined in X.509, Section 8.7.

DES: Data Encryption Standard, as defined in FIPS PUB 46-1.

desCBC: The object identifier for DES in cipher-block chaining (CBC) mode, as defined
in [NIST91].

ExtendedCertificate: A type that consists of an X.509 public-key certificate and a
set of attributes, collectively signed by the issuer of the X.509 public-key certificate. This
type is defined in PKCS #6.

MD2: RSA Data Security, Inc.'s MD2 message-digest algorithm, as defined in RFC 1319.

Page 4 PKCS #7: CRYPTOGRAPHIC MESSAGE SYNTAX STANDARD

md2: The object identifier for MD2, as defined in RFC 1319.

MD5: RSA Data Security, Inc.'s MD5 message-digest algorithm, as defined in RFC 1321.

md5: The object identifier for MD5, as defined in RFC 1321.

Name: A type that uniquely identifies or "distinguishes" objects in an X.500 directory.
This type is defined in X.501. In an X.509 certificate, the type identifies the certificate
issuer and the entity whose public key is certified.

PEM: Internet Privacy-Enhanced Mail, as defined in RFCs 1421–1424.

RSA: The RSA public-key cryptosystem, as defined in [RSA78].

rsaEncryption: The object identifier for RSA encryption, as defined in PKCS #1.

4. Symbols and abbreviations

No symbols or abbreviations are defined in this standard.

5. General overview

The following nine sections specify useful types, general syntax, six content types, and
object identifiers.

The syntax is general enough to support many different content types. This standard
defines six: data, signed data, enveloped data, signed-and-enveloped data, digested
data, and encrypted data. Other content types may be added in the future. The use of
content types defined outside this standard is possible, but is subject to bilateral
agreement between parties exchanging content.

This standard exports one type, ContentInfo, as well as the various object identifiers.

There are two classes of content types: base and enhanced. Content types in the base
class contain "just data," with no cryptographic enhancements. Presently, one content
type is in this class, the data content type. Content types in the enhanced class contain
content of some type (possibly encrypted), and other cryptographic enhancements. For
example, enveloped-data content can contain (encrypted) signed-data content, which
can contain data content. The four non-data content types fall into the enhanced class.
The content types in the enhanced class thus employ encapsulation, giving rise to the
terms "outer" content (the one containing the enhancements) and "inner" content (the
one being enhanced).

6. USEFUL TYPES Page 5

The standard is designed such that the enhanced content types can be prepared in a
single pass using indefinite-length BER encoding, and processed in a single pass in any
BER encoding. Single-pass operation is especially helpful if content is stored on tapes, or
is "piped" from another process. One of the drawbacks of single-pass operation,
however, is that it is difficult to output a DER encoding in a single pass, since the
lengths of the various components may not be known in advance. Since DER encoding
is required by the signed-data, signed-and-enveloped data, and digested-data content
types, an extra pass may be necessary when a content type other than data is the inner
content of one of those content types.

6. Useful types

This section defines types that are useful in at least two places in the standard.

6.1 CertificateRevocationLists

The CertificateRevocationLists type gives a set of certificate-revocation lists. It
is intended that the set contain information sufficient to determine whether the
certificates with which the set is associated are "hot listed," but there may be more
certificate-revocation lists than necessary, or there may be fewer than necessary.

CertificateRevocationLists ::=

 SET OF CertificateRevocationList

6.2 ContentEncryptionAlgorithmIdentifier

The ContentEncryptionAlgorithmIdentifier type identifies a content-
encryption algorithm such as DES. A content-encryption algorithm supports encryption
and decryption operations. The encryption operation maps an octet string (the message)
to another octet string (the ciphertext) under control of a content-encryption key. The
decryption operation is the inverse of the encryption operation. Context determines
which operation is intended.

ContentEncryptionAlgorithmIdentifier ::=

 AlgorithmIdentifier

6.3 DigestAlgorithmIdentifier

The DigestAlgorithmIdentifier type identifies a message-digest algorithm.
Examples include MD2 and MD5. A message-digest algorithm maps an octet string (the
message) to another octet string (the message digest).

Page 6 PKCS #7: CRYPTOGRAPHIC MESSAGE SYNTAX STANDARD

DigestAlgorithmIdentifier ::= AlgorithmIdentifier

6.4 DigestEncryptionAlgorithmIdentifier

The DigestEncryptionAlgorithmIdentifier type identifies a digest-encryption
algorithm under which a message digest can be encrypted. One example is PKCS #1's
rsaEncryption. A digest-encryption algorithm supports encryption and decryption
operations. The encryption operation maps an octet string (the message digest) to
another octet string (the encrypted message digest) under control of a digest-encryption
key. The decryption operation is the inverse of the encryption operation. Context
determines which operation is intended.

DigestEncryptionAlgorithmIdentifier ::=

 AlgorithmIdentifier

6.5 ExtendedCertificateOrCertificate

The ExtendedCertificateOrCertificate type gives either a PKCS #6 extended
certificate or an X.509 certificate. This type follows the syntax recommended in Section
6 of PKCS #6:

ExtendedCertificateOrCertificate ::= CHOICE {

 certificate Certificate, -- X.509

 extendedCertificate [0] IMPLICIT ExtendedCertificate

}

6.6 ExtendedCertificatesAndCertificates

The ExtendedCertificatesAndCertificates type gives a set of extended
certificates and X.509 certificates. It is intended that the set be sufficient to contain chains
from a recognized "root" or "top-level certification authority" to all of the signers with
which the set is associated, but there may be more certificates than necessary, or there
may be fewer than necessary.

ExtendedCertificatesAndCertificates ::=

 SET OF ExtendedCertificateOrCertificate

Note. The precise meaning of a "chain" is outside the scope of this standard. Some
applications of this standard may impose upper limits on the length of a chain; others
may enforce certain relationships between the subjects and issuers of certificates in a
chain. An example of such relationships has been proposed for Privacy-Enhanced Mail
in RFC 1422.

7. GENERAL SYNTAX Page 7

6.7 IssuerAndSerialNumber

The IssuerAndSerialNumber type identifies a certificate (and thereby an entity and a
public key) by the distinguished name of the certificate issuer and an issuer-specific
certificate serial number.

IssuerAndSerialNumber ::= SEQUENCE {

 issuer Name,

 serialNumber CertificateSerialNumber }

6.8 KeyEncryptionAlgorithmIdentifier

The KeyEncryptionAlgorithmIdentifier type identifies a key-encryption
algorithm under which a content-encryption key can be encrypted. One example is
PKCS #1's rsaEncryption. A key-encryption algorithm supports encryption and
decryption operations. The encryption operation maps an octet string (the key) to
another octet string (the encrypted key) under control of a key-encryption key. The
decryption operation is the inverse of the encryption operation. Context determines
which operation is intended.

KeyEncryptionAlgorithmIdentifier ::=

 AlgorithmIdentifier

6.9 Version

The Version type gives a syntax version number, for compatibility with future
revisions of this standard.

Version ::= INTEGER

7. General syntax

The general syntax for content exchanged between entities according to this standard
associates a content type with content. The syntax shall have ASN.1 type ContentInfo:

ContentInfo ::= SEQUENCE {

 contentType ContentType,

 content

 [0] EXPLICIT ANY DEFINED BY contentType OPTIONAL }

ContentType ::= OBJECT IDENTIFIER

The fields of type ContentInfo have the following meanings:

Page 8 PKCS #7: CRYPTOGRAPHIC MESSAGE SYNTAX STANDARD

• contentType indicates the type of content. It is an object identifier, which
means it is a unique string of integers assigned by the authority that
defines the content type. This standard defines six content types (see
Section 14): data, signedData, envelopedData,
signedAndEnvelopedData, digestedData, and encryptedData.

• content is the content. The field is optional, and if the field is not present,
its intended value must be supplied by other means. Its type is defined
along with the object identifier for contentType.

Notes.

1. The methods below assume that the type of content can be determined
uniquely by contentType, so the type defined along with the object
identifier should not be a CHOICE type.

2. When a ContentInfo value is the inner content of signed-data, signed-
and-enveloped-data, or digested-data content, a message-digest algorithm
is applied to the contents octets of the DER encoding of the content field.
When a ContentInfo value is the inner content of enveloped-data or
signed-and-enveloped-data content, a content-encryption algorithm is
applied to the contents octets of a definite-length BER encoding of the
content field.

3. The optional omission of the content field makes it possible to construct
"external signatures," for example, without modification to or replication
of the content to which the signatures apply. In the case of external
signatures, the content being signed would be omitted from the "inner"
encapsulated ContentInfo value included in the signed-data content
type.

8. Data content type

The data content type is just an octet string. It shall have ASN.1 type Data:

Data ::= OCTET STRING

The data content type is intended to refer to arbitrary octet strings, such as ASCII text
files; the interpretation is left to the application. Such strings need not have any internal
structure (although they may; they could even be DER encodings).

9. SIGNED-DATA CONTENT TYPE Page 9

9. Signed-data content type

The signed-data content type consists of content of any type and encrypted message
digests of the content for zero or more signers. The encrypted digest for a signer is a
"digital signature" on the content for that signer. Any type of content can be signed by
any number of signers in parallel. Furthermore, the syntax has a degenerate case in
which there are no signers on the content. The degenerate case provides a means for
disseminating certificates and certificate-revocation lists.

It is expected that the typical application of the signed-data content type will be to
represent one signer's digital signature on content of the data content type. Another
typical application will be to disseminate certificates and certificate-revocation lists.

The process by which signed data is constructed involves the following steps:

1. For each signer, a message digest is computed on the content with a
signer-specific message-digest algorithm. (If two signers employ the same
message-digest algorithm, then the message digest need be computed for
only one of them.) If the signer is authenticating any information other
than the content (see Section 9.2), the message digest of the content and the
other information are digested with the signer's message digest algorithm,
and the result becomes the "message digest."

2. For each signer, the message digest and associated information are
encrypted with the signer's private key.

3. For each signer, the encrypted message digest and other signer-specific
information are collected into a SignerInfo value, defined in Section 9.2.
Certificates and certificate-revocation lists for each signer, and those not
corresponding to any signer, are collected in this step.

4. The message-digest algorithms for all the signers and the SignerInfo
values for all the signers are collected together with the content into a
SignedData value, defined in Section 9.1.

A recipient verifies the signatures by decrypting the encrypted message digest for each
signer with the signer's public key, then comparing the recovered message digest to an
independently computed message digest. The signer's public key is either contained in a
certificate included in the signer information, or is referenced by an issuer distinguished
name and an issuer-specific serial number that uniquely identify the certificate for the
public key.

This section is divided into five parts. The first part describes the top-level type
SignedData, the second part describes the per-signer information type SignerInfo,

Page 10 PKCS #7: CRYPTOGRAPHIC MESSAGE SYNTAX STANDARD

and the third and fourth parts describe the message-digesting and digest-encryption
processes. The fifth part summarizes compatibility with Privacy-Enhanced Mail.

9.1 SignedData type

The signed-data content type shall have ASN.1 type SignedData:

SignedData ::= SEQUENCE {

 version Version,

 digestAlgorithms DigestAlgorithmIdentifiers,

 contentInfo ContentInfo,

 certificates

 [0] IMPLICIT ExtendedCertificatesAndCertificates

 OPTIONAL,

 crls

 [1] IMPLICIT CertificateRevocationLists OPTIONAL,

 signerInfos SignerInfos }

DigestAlgorithmIdentifiers ::=

 SET OF DigestAlgorithmIdentifier

SignerInfos ::= SET OF SignerInfo

The fields of type SignedData have the following meanings:

• version is the syntax version number. It shall be 1 for this version of the
standard.

• digestAlgorithms is a collection of message-digest algorithm
identifiers. There may be any number of elements in the collection,
including zero. Each element identifies the message-digest algorithm (and
any associated parameters) under which the content is digested for a some
signer. The collection is intended to list the message-digest algorithms
employed by all of the signers, in any order, to facilitate one-pass
signature verification. The message-digesting process is described in
Section 9.3.

• contentInfo is the content that is signed. It can have any of the defined
content types.

• certificates is a set of PKCS #6 extended certificates and X.509
certificates. It is intended that the set be sufficient to contain chains from a
recognized "root" or "top-level certification authority" to all of the signers
in the signerInfos field. There may be more certificates than necessary,
and there may be certificates sufficient to contain chains from two or more
independent top-level certification authorities. There may also be fewer

9. SIGNED-DATA CONTENT TYPE Page 11

certificates than necessary, if it is expected that those verifying the
signatures have an alternate means of obtaining necessary certificates (e.g.,
from a previous set of certificates).

• crls is a set of certificate-revocation lists. It is intended that the set
contain information sufficient to determine whether or not the certificates
in the certificates field are "hot listed," but such correspondence is not
necessary. There may be more certificate-revocation lists than necessary,
and there may also be fewer certificate-revocation lists than necessary.

• signerInfos is a collection of per-signer information. There may be any
number of elements in the collection, including zero.

Notes.

1. The fact that the digestAlgorithms field comes before the
contentInfo field and the signerInfos field comes after it makes it
possible to process a SignedData value in a single pass. (Single-pass
processing is described in Section 5.)

2. The differences between version 1 SignedData and version 0
SignedData (defined in PKCS #7, Version 1.4) are the following:

• the digestAlgorithms and signerInfos fields may
contain zero elements in version 1, but not in version 0

• the crls field is allowed in version 1, but not in version 0

 Except for the difference in version number, version 0 SignedData values
are acceptable as version 1 values. An implementation can therefore
process SignedData values of either version as though they were version
1 values. It is suggested that PKCS implementations generate only version
1 SignedData values, but be prepared to process SignedData values of
either version.

3. In the degenerate case where there are no signers on the content, the
ContentInfo value being "signed" is irrelevant. It is recommended in
that case that the content type of the ContentInfo value being "signed"
be data, and the content field of the ContentInfo value be omitted.

9.2 SignerInfo type

Per-signer information is represented in the type SignerInfo:

Page 12 PKCS #7: CRYPTOGRAPHIC MESSAGE SYNTAX STANDARD

SignerInfo ::= SEQUENCE {

 version Version,

 issuerAndSerialNumber IssuerAndSerialNumber,

 digestAlgorithm DigestAlgorithmIdentifier,

 authenticatedAttributes

 [0] IMPLICIT Attributes OPTIONAL,

 digestEncryptionAlgorithm

 DigestEncryptionAlgorithmIdentifier,

 encryptedDigest EncryptedDigest,

 unauthenticatedAttributes

 [1] IMPLICIT Attributes OPTIONAL }

EncryptedDigest ::= OCTET STRING

The fields of type SignerInfo have the following meanings:

• version is the syntax version number. It shall be 1 for this version of the
standard.

• issuerAndSerialNumber specifies the signer's certificate (and thereby
the signer's distinguished name and public key) by issuer distinguished
name and issuer-specific serial number.

• digestAlgorithm identifies the message-digest algorithm (and any
associated parameters) under which the content and authenticated
attributes (if present) are digested. It should be among those in the
digestAlgorithms field of the superior SignerInfo value. The
message-digesting process is described in Section 9.3.

• authenticatedAttributes is a set of attributes that are signed (i.e.,
authenticated) by the signer. The field is optional, but it must be present if
the content type of the ContentInfo value being signed is not data. If
the field is present, it must contain, at a minimum, two attributes:

1. A PKCS #9 content-type attribute having as its value the
content type of the ContentInfo value being signed.

2. A PKCS #9 message-digest attribute, having as its value the
message digest of the content (see below).

 Other attribute types that might be useful here, such as signing time, are
also defined in PKCS #9.

• digestEncryptionAlgorithm identifies the digest-encryption
algorithm (and any associated parameters) under which the message
digest and associated information are encrypted with the signer's private
key. The digest-encryption process is described in Section 9.4.

9. SIGNED-DATA CONTENT TYPE Page 13

• encryptedDigest is the result of encrypting the message digest and
associated information with the signer's private key.

• unauthenticatedAttributes is a set of attributes that are not signed
(i.e., authenticated) by the signer. The field is optional. Attribute types that
might be useful here, such as countersignatures, are defined in PKCS #9.

Notes.

1. It is recommended in the interest of PEM compatibility that the
authenticatedAttributes field be omitted whenever the content type
of the ContentInfo value being signed is data and there are no other
authenticated attributes.

2. The difference between version 1 SignerInfo and version 0
SignerInfo (defined in PKCS #7, Version 1.4) is in the message-digest
encryption process (see Section 9.4). Only the PEM-compatible processes
are different, reflecting changes in Privacy-Enhanced Mail signature
methods. There is no difference in the non-PEM-compatible message-
digest encryption process.

 It is suggested that PKCS implementations generate only version 1
SignedData values. Since the PEM signature method with which version
0 is compatible is obsolescent, it is suggested that PKCS implementations
be prepared to receive only version 1 SignedData values.

9.3 Message-digesting process

The message-digesting process computes a message digest on either the content being
signed or the content together with the signer's authenticated attributes. In either case,
the initial input to the message-digesting process is the "value" of the content being
signed. Specifically, the initial input is the contents octets of the DER encoding of the
content field of the ContentInfo value to which the signing process is applied. Only
the contents octets of the DER encoding of that field are digested, not the identifier
octets or the length octets.

The result of the message-digesting process (which is called, informally, the "message
digest") depends on whether the authenticatedAttributes field is present. When
the field is absent, the result is just the message digest of the content. When the field is
present, however, the result is the message digest of the complete DER encoding of the

Page 14 PKCS #7: CRYPTOGRAPHIC MESSAGE SYNTAX STANDARD

Attributes value containted in the authenticatedAttributes field.1 Since the
Attributes value, when the field is present, must contain as attributes the content
type and the message digest of the content, those values are indirectly included in the
result.

When the content being signed has content type data and the
authenticatedAttributes field is absent, then just the value of the data (e.g., the
contents of a file) is digested. This has the advantage that the length of the content being
signed need not be known in advance of the encryption process. This method is
compatible with Privacy-Enhanced Mail.

Although the identifier octets and the length octets are not digested, they are still
protected by other means. The length octets are protected by the nature of the message-
digest algorithm since it is by assumption computationally infeasible to find any two
distinct messages of any length that have the same message digest. Furthermore,
assuming that the content type uniquely determines the identifier octets, the identifier
octets are protected implicitly in one of two ways: either by the inclusion of the content
type in the authenticated attributes, or by the use of the PEM-compatible alternative in
Section 9.4 which implies that the content type is data.

Note. The fact that the message digest is computed on part of a DER encoding does not
mean that DER is the required method of representing that part for data transfer.
Indeed, it is expected that some implementations of this standard may store objects in
other than their DER encodings, but such practices do not affect message-digest
computation.

9.4 Digest-encryption process

The input to the digest-encryption process—the value supplied to the signer's digest-
encryption algorithm—includes the result of the message-digesting process (informally,
the "message digest") and the digest algorithm identifier (or object identifier). The result
of the digest-encryption process is the encryption with the signer's private key of the
BER encoding of a value of type DigestInfo:

DigestInfo ::= SEQUENCE {

 digestAlgorithm DigestAlgorithmIdentifier,

 digest Digest }

Digest ::= OCTET STRING

1For clarity: The IMPLICIT [0] tag in the authenticatedAttributes field is not part of the Attributes value.
The Attributes value's tag is SET OF, and the DER encoding of the SET OF tag, rather than of the IMPLICIT [0]
tag, is to be digested along with the length and contents octets of the Attributes value.

9. SIGNED-DATA CONTENT TYPE Page 15

The fields of type DigestInfo have the following meanings:

• digestAlgorithm identifies the message-digest algorithm (and any
associated parameters) under which the content and authenticated
attributes are digested. It should be the same as the digestAlgorithm
field of the superior SignerInfo value.

• digest is the result of the message-digesting process.

Notes.

1. The only difference between the signature process defined here and the
signature algorithms defined in PKCS #1 is that signatures there are
represented as bit strings, for consistency with the X.509 SIGNED macro.
Here, encrypted message digests are octet strings.

2. The input to the encryption process typically will have 30 or fewer octets.
If digestEncryptionAlgorithm is PKCS #1's rsaEncryption, then
this means that the input can be encrypted in a single block as long as the
length of the RSA modulus is at least 328 bits, which is reasonable and
consistent with security recommendations.

3. A message-digest algorithm identifier is included in the DigestInfo
value to limit the damage resulting from the compromise of one message-
digest algorithm. For instance, suppose an adversary were able to find
messages with a given MD2 message digest. That adversary could then
forge a signature by finding a message with the same MD2 message digest
as one that a signer previously signed, and presenting the previous
signature as the signature on the new message. This attack would succeed
only if the signer previously used MD2, since the DigestInfo value
contains the message-digest algorithm. If a signer never trusted the MD2
algorithm and always used MD5, then the compromise of MD2 would not
affect the signer. If the DigestInfo value contained only the message
digest, however, the compromise of MD2 would affect signers that use any
message-digest algorithm.

4. There is potential for ambiguity due to the fact that the DigestInfo value
does not indicate whether the digest field contains just the message
digest of the content or the message digest of the complete DER encoding
of the authenticatedAttributes field. In other words, it is possible
for an adversary to transform a signature on authenticated attributes to
one that appears to be just on content by changing the content to be the
DER encoding of the authenticatedAttributes field, and then
removing the authenticatedAttributes field. (The reverse

Page 16 PKCS #7: CRYPTOGRAPHIC MESSAGE SYNTAX STANDARD

transformation is possible, but requires that the content be the DER
encoding of an authenticated attributes value, which is unlikely.) This
ambiguity is not a new problem, nor is it a significant one, as context will
generally prevent misuse. Indeed, it is also possible for an adversary to
transform a signature on a certificate or certificate-revocation list to one
that appears to be just on signed-data content.

9.5 Compatibility with Privacy-Enhanced Mail

Compatibility with the MIC-ONLY and MIC-CLEAR process types in PEM occurs when
the content type of the ContentInfo value being signed is data, there are no
authenticated attributes, the message-digest algorithm is md2 or md5, and the digest-
encryption algorithm is PKCS #1's rsaEncryption. Under all those conditions, the
encrypted message digest produced here matches the one produced in PEM because:

1. The value input to the message-digest algorithm in PEM is the same as in
this standard when there are no authenticated attributes. MD2 and MD5 in
PEM are the same as md2 and md5.

2. The value encrypted with the signer's private key in PEM (as specified in
RFC 1423) is the same as in this standard when there are no authenticated
attributes. RSA private-key encryption in PEM is the same as PKCS #1's
rsaEncryption.

The other parts of the signed-data content type (certificates, CRLs, algorithm identifiers,
etc.) are easily translated to and from their corresponding PEM components.

10. Enveloped-data content type

The enveloped-data content type consists of encrypted content of any type and
encrypted content-encryption keys for one or more recipients. The combination of
encrypted content and encrypted content-encryption key for a recipient is a "digital
envelope" for that recipient. Any type of content can be enveloped for any number of
recipients in parallel.

It is expected that the typical application of the enveloped-data content type will be to
represent one or more recipients' digital envelopes on content of the data, digested-data,
or signed-data content types.

The process by which enveloped data is constructed involves the following steps:

1. A content-encryption key for a particular content-encryption algorithm is
generated at random.

10. ENVELOPED-DATA CONTENT TYPE Page 17

2. For each recipient, the content-encryption key is encrypted with the
recipient's public key.

3. For each recipient, the encrypted content-encryption key and other
recipient-specific information are collected into a RecipientInfo value,
defined in Section 10.2.

4. The content is encrypted with the content-encryption key. (Content
encryption may require that the content be padded to a multiple of some
block size; see Section 10.3 for discussion.)

5. The RecipientInfo values for all the recipients are collected together
with the encrypted content into a EnvelopedData value, defined in
Section 10.1.

A recipient opens the envelope by decrypting the one of the encrypted content-
encryption keys with the recipient's private key and decrypting the encrypted content
with the recovered content-encryption key. The recipient's private key is referenced by
an issuer distinguished name and an issuer-specific serial number that uniquely identify
the certificate for the corresponding public key.

This section is divided into four parts. The first part describes the top-level type
EnvelopedData, the second part describes the per-recipient information type
RecipientInfo, and the third and fourth parts describe the content-encryption and
key-encryption processes.

This content type is not compatible with Privacy-Enhanced Mail (although some
processes it defines are compatible with their PEM counterparts), since Privacy-
Enhanced Mail always involves digital signatures, never digital envelopes alone.

10.1 EnvelopedData type

The enveloped-data content type shall have ASN.1 type EnvelopedData:

EnvelopedData ::= SEQUENCE {

 version Version,

 recipientInfos RecipientInfos,

 encryptedContentInfo EncryptedContentInfo }

RecipientInfos ::= SET OF RecipientInfo

EncryptedContentInfo ::= SEQUENCE {

 contentType ContentType,

 contentEncryptionAlgorithm

 ContentEncryptionAlgorithmIdentifier,

Page 18 PKCS #7: CRYPTOGRAPHIC MESSAGE SYNTAX STANDARD

 encryptedContent

 [0] IMPLICIT EncryptedContent OPTIONAL }

EncryptedContent ::= OCTET STRING

The fields of type EnvelopedData have the following meanings:

• version is the syntax version number. It shall be 0 for this version of the
standard.

• recipientInfos is a collection of per-recipient information. There must
be at least one element in the collection.

• encryptedContentInfo is the encrypted content information.

The fields of type EncryptedContentInfo have the following meanings:

• contentType indicates the type of content.

• contentEncryptionAlgorithm identifies the content-encryption
algorithm (and any associated parameters) under which the content is
encrypted. The content-encryption process is described in Section 10.3.
This algorithm is the same for all recipients.

• encryptedContent is the result of encrypting the content. The field is
optional, and if the field is not present, its intended value must be supplied
by other means.

Note. The fact that the recipientInfos field comes before the
encryptedContentInfo field makes it possible to process an EnvelopedData value
in a single pass. (Single-pass processing is described in Section 5.)

10.2 RecipientInfo type

Per-recipient information is represented in the type RecipientInfo:

RecipientInfo ::= SEQUENCE {

 version Version,

 issuerAndSerialNumber IssuerAndSerialNumber,

 keyEncryptionAlgorithm

 KeyEncryptionAlgorithmIdentifier,

 encryptedKey EncryptedKey }

EncryptedKey ::= OCTET STRING

The fields of type RecipientInfo have the following meanings:

10. ENVELOPED-DATA CONTENT TYPE Page 19

• version is the syntax version number. It shall be 0 for this version of the
standard.

• issuerAndSerialNumber specifies the recipient's certificate (and
thereby the recipient's distinguished name and public key) by issuer
distinguished name and issuer-specific serial number.

• keyEncryptionAlgorithm identifies the key-encryption algorithm (and
any associated parameters) under which the content-encryption key is
encrypted with the recipient's public key. The key-encryption process is
described in Section 10.4.

• encryptedKey is the result of encrypting the content-encryption key
with the recipient's public key (see below).

10.3 Content-encryption process

The input to the content-encryption process is the "value" of the content being
enveloped. Specifically, the input is the contents octets of a definite-length BER
encoding of the content field of the ContentInfo value to which the enveloping
process is applied. Only the contents octets of the BER encoding are encrypted, not the
identifier octets or length octets; those other octets are not represented at all.

When the content being enveloped has content type data, then just the value of the data
(e.g., the contents of a file) is encrypted. This has the advantage that the length of the
content being encrypted need not be known in advance of the encryption process. This
method is compatible with Privacy-Enhanced Mail.

The identifier octets and the length octets are not encrypted. The length octets may be
protected implicitly by the encryption process, depending on the encryption algorithm.
The identifier octets are not protected at all, although they can be recovered from the
content type, assuming that the content type uniquely determines the identifier octets.
Explicit protection of the identifier and length octets requires that the signed-and-
enveloped-data content type be employed, or that the digested-data and enveloped-data
content types be applied in succession.

Notes.

1. The reason that a definite-length BER encoding is required is that the bit
indicating whether the length is definite or indefinite is not recorded
anywhere in the enveloped-data content type. Definite-length encoding is
more appropriate for simple types such as octet strings, so definite-length
encoding is chosen.

Page 20 PKCS #7: CRYPTOGRAPHIC MESSAGE SYNTAX STANDARD

2. Some content-encryption algorithms assume the input length is a multiple
of k octets, where k > 1, and let the application define a method for
handling inputs whose lengths are not a multiple of k octets. For such
algorithms, the method shall be to pad the input at the trailing end with k

− (l mod k) octets all having value k − (l mod k), where l is the length of the
input. In other words, the input is padded at the trailing end with one of
the following strings:

01 — if l mod k = k-1
02 02 — if l mod k = k-2

⋅

⋅

⋅

k k … k k — if l mod k = 0

 The padding can be removed unambiguously since all input is padded and
no padding string is a suffix of another. This padding method is well-
defined if and only if k < 256; methods for larger k are an open issue for
further study.

10.4 Key-encryption process

The input to the key-encryption process—the value supplied to the recipient's key-
encryption algorithm—is just the "value" of the content-encryption key.

11. Signed-and-enveloped-data content type

This section defines the signed-and-enveloped-data content type. For brevity, much of
this section is expressed in terms of material in Sections 9 and 10.

The signed-and-enveloped-data content type consists of encrypted content of any type,
encrypted content-encryption keys for one or more recipients, and doubly encrypted
message digests for one or more signers. The "double encryption" consists of an
encryption with a signer's private key followed by an encryption with the content-
encryption key.

The combination of encrypted content and encrypted content-encryption key for a
recipient is a "digital envelope" for that recipient. The recovered singly encrypted
message digest for a signer is a "digital signature" on the recovered content for that
signer. Any type of content can be enveloped for any number of recipients and signed
by any number of signers in parallel.

11. SIGNED-AND-ENVELOPED-DATA CONTENT TYPE Page 21

It is expected that the typical application of the signed-and-enveloped-data content type
will be to represent one signer's digital signature and one or more recipients' digital
envelopes on content of the data content type.

The process by which signed-and-enveloped data is constructed involves the following
steps:

1. A content-encryption key for a particular content-encryption algorithm is
generated at random.

2. For each recipient, the content-encryption key is encrypted with the
recipient's public key.

3. For each recipient, the encrypted content-encryption key and other
recipient-specific information are collected into a RecipientInfo value,
defined in Section 10.2.

4. For each signer, a message digest is computed on the content with a
signer-specific message-digest algorithm. (If two signers employ the same
message-digest algorithm, then the message digest need be computed for
only one of them.)

5. For each signer, the message digest and associated information are
encrypted with the signer's private key, and the result is encrypted with
the content-encryption key. (The second encryption may require that the
result of the first encryption be padded to a multiple of some block size;
see Section 10.3 for discussion.)

6. For each signer, the doubly encrypted message digest and other signer-
specific information are collected into a SignerInfo value, defined in
Section 9.2.

7. The content is encrypted with the content-encryption key. (See Section 10.3
for discussion.)

8. The message-digest algorithms for all the signers, the SignerInfo values
for all the signers and the RecipientInfo values for all the recipients are
collected together with the encrypted content into a
SignedAndEnvelopedData value, defined in Section 11.1.

A recipient opens the envelope and verifies the signatures in two steps. First, the one of
the encrypted content-encryption keys is decrypted with the recipient's private key, and
the encrypted content is decrypted with the recovered content-encryption key. Second,
the doubly encrypted message digest for each signer is decrypted with the recovered

Page 22 PKCS #7: CRYPTOGRAPHIC MESSAGE SYNTAX STANDARD

content-encryption key, the result is decrypted with the signer's public key, and the
recovered message digest is compared to an independently computed message digest.

Recipient private keys and signer public keys are contained or referenced as discussed
in Sections 9 and 10.

This section is divided into three parts. The first part describes the top-level type
SignedAndEnvelopedData and the second part describes the digest-encryption
process. Other types and processes are the same as in Sections 9 and 10. The third part
summarizes compatibility with Privacy-Enhanced Mail.

Note. The signed-and-enveloped-data content type provides cryptographic
enhancements similar to those resulting from the sequential combination of signed-data
and enveloped-data content types. However, since the signed-and-enveloped-data
content type does not have authenticated or unauthenticated attributes, nor does it
provide enveloping of signer information other than the signature, the sequential
combination of signed-data and enveloped-data content types is generally preferable to
the SignedAndEnvelopedData content type, except when compatibility with the
ENCRYPTED process type in Privacy-Enhanced Mail in intended.

11.1 SignedAndEnvelopedData type

The signed-and-enveloped-data content type shall have ASN.1 type
SignedAndEnvelopedData:

SignedAndEnvelopedData ::= SEQUENCE {

 version Version,

 recipientInfos RecipientInfos,

 digestAlgorithms DigestAlgorithmIdentifiers,

 encryptedContentInfo EncryptedContentInfo,

 certificates

 [0] IMPLICIT ExtendedCertificatesAndCertificates OPTIONAL,

 crls

 [1] IMPLICIT CertificateRevocationLists OPTIONAL,

 signerInfos SignerInfos }

The fields of type SignedAndEnvelopedData have the following meanings:

• version is the syntax version number. It shall be 1 for this version of the
standard.

• recipientInfos is a collection of per-recipient information, as in Section
10. There must be at least one element in the collection.

11. SIGNED-AND-ENVELOPED-DATA CONTENT TYPE Page 23

• digestAlgorithms is a collection of message-digest algorithm
identifiers, as in Section 9. The message-digesting process is the same as in
Section 9 in the case when there are no authenticated attributes.

• encryptedContentInfo is the encrypted content, as in Section 10. It can
have any of the defined content types.

• certificates is a set of PKCS #6 extended certificates and X.509
certificates, as in Section 9.

• crls is a set of certificate-revocation lists, as in Section 9.

• signerInfos is a collection of per-signer information. There must be at
least one element in the collection. SignerInfo values have the same
meaning as in Section 9 with the exception of the encryptedDigest field
(see below).

Notes.

1. The fact that the recipientInfos and digestAlgorithms fields come
before the contentInfo field and the signerInfos field comes after it
makes it possible to process a SignedAndEnvelopedData value in a
single pass. (Single-pass processing is described in Section 5.)

2. The difference between version 1 SignedAndEnvelopedData and
version 0 SignedAndEnvelopedData (defined in PKCS #7, Version 1.4)
is that the crls field is allowed in version 1, but not in version 0. Except
for the difference in version number, version 0
SignedAndEnvelopedData values are acceptable as version 1 values.
An implementation can therefore process SignedAndEnvelopedData
values of either version as though they were version 1 values. It is
suggested that PKCS implementations generate only version 1
SignedAndEnvelopedData values, but be prepared to process
SignedAndEnvelopedData values of either version.

11.2 Digest-encryption process

The input to the digest-encryption process is the same as in Section 9, but the process
itself is different. Specifically, the process involves two steps. First, the input to the
process is supplied to the signer's digest-encryption algorithm, as in Section 9. Second,
the result of the first step is encrypted with the content-encryption key. There is no DER
encoding between the two steps; the "value" output by the first step is input directly to
the second step. (See Section 10.3 for discussion.)

Page 24 PKCS #7: CRYPTOGRAPHIC MESSAGE SYNTAX STANDARD

This process is compatible with the ENCRYPTED process type in Privacy-Enhanced Mail.

Note. The purpose of the second step is to prevent an adversary from recovering the
message digest of the content. Otherwise, an adversary would be able to determine
which of a list of candidate contents (e.g., "Yes" or "No") is the actual content by
comparing the their message digests to the actual message digest.

11.3 Compatibility with Privacy-Enhanced Mail

Compatibility with the ENCRYPTED process type of PEM occurs when the content type
of the ContentInfo value being signed and enveloped is data, the message-digest
algorithm is md2 or md5, the content-encryption algorithm is DES in CBC mode, the
digest-encryption algorithm is PKCS #1's rsaEncryption, and the key-encryption
algorithm is PKCS #1's rsaEncryption. Under all those conditions, the doubly
encrypted message digest and the encrypted content encryption key match the ones
produced in PEM because of reasons similar to those given in Section 9.5, as well as the
following:

1. The value input to the content-encryption algorithm in PEM is the same as
in this standard. DES in CBC mode is the same as desCBC.

2. The value input to the key-encryption algorithm in PEM is the same as in
this standard (see Section 10.4). RSA public-key encryption in PEM is the
same as PKCS #1's rsaEncryption.

3. The double-encryption process applied to the message digest in this
standard and in PEM are the same.

The other parts of the signed-and-enveloped-data content type (certificates, CRLs,
algorithm identifiers, etc.) are easily translated to and from their corresponding PEM
components. (CRLs are carried in a separate PEM message.)

12. Digested-data content type

The digested-data content type consists of content of any type and a message digest of
the content.

It is expected that the typical application of the digested-data content type will be to add
integrity to content of the data content type, and that the result would become the
content input to the enveloped-data content type.

The process by which digested-data is constructed involves the following steps:

13. ENCRYPTED-DATA CONTENT TYPE Page 25

1. A message digest is computed on the content with a message-digest
algorithm.

2. The message-digest algorithm and the message digest are collected
together with the content into a DigestedData value.

A recipient verifies the message digest by comparing the message digest to an
independently computed message digest.

The digested-data content type shall have ASN.1 type DigestedData:

DigestedData ::= SEQUENCE {

 version Version,

 digestAlgorithm DigestAlgorithmIdentifier,

 contentInfo ContentInfo,

 digest Digest }

Digest ::= OCTET STRING

The fields of type DigestedData have the following meanings:

• version is the syntax version number. It shall be 0 for this version of the
standard.

• digestAlgorithm identifies the message-digest algorithm (and any
associated parameters) under which the content is digested. (The message-
digesting process is the same as in Section 9 in the case when there are no
authenticated attributes.)

• contentInfo is the content that is digested. It can have any of the
defined content types.

• digest is the result of the message-digesting process.

Note. The fact that the digestAlgorithm field comes before the contentInfo field
and the digest field comes after it makes it possible to process a DigestedData value
in a single pass. (Single-pass processing is described in Section 5.)

13. Encrypted-data content type

The encrypted-data content type consists of encrypted content of any type. Unlike the
enveloped-data content type, the encrypted-data content type has neither recipients nor
encrypted content-encryption keys. Keys are assumed to be managed by other means.

Page 26 PKCS #7: CRYPTOGRAPHIC MESSAGE SYNTAX STANDARD

It is expected that the typical application of the encrypted-data content type will be to
encrypt content of the data content type for local storage, perhaps where the encryption
key is a password.

The encrypted-data content type shall have ASN.1 type EncryptedData:

EncryptedData ::= SEQUENCE {

 version Version,

 encryptedContentInfo EncryptedContentInfo }

The fields of type EncryptedData have the following meanings:

• version is the syntax version number. It shall be 0 for this version of the
standard.

• encryptedContentInfo is the encrypted content information, as in
Section 10.

14. Object identifiers

This standard defines seven object identifiers: pkcs-7, data, signedData,
envelopedData, signedAndEnvelopedData, digestedData, and
encryptedData.

The object identifier pkcs-7 identifies this standard.

pkcs-7 OBJECT IDENTIFIER ::=

 { iso(1) member-body(2) US(840) rsadsi(113549)

 pkcs(1) 7 }

The object identifiers data, signedData, envelopedData,
signedAndEnvelopedData, digestedData, and encryptedData, identify,
respectively, the data, signed-data, enveloped-data, signed-and-enveloped-data,
digested-data, and encrypted-data content types defined in Sections 8–13.

data OBJECT IDENTIFIER ::= { pkcs-7 1 }

signedData OBJECT IDENTIFIER ::= { pkcs-7 2 }

envelopedData OBJECT IDENTIFIER ::= { pkcs-7 3 }

signedAndEnvelopedData OBJECT IDENTIFIER ::=

 { pkcs-7 4 }

digestedData OBJECT IDENTIFIER ::= { pkcs-7 5 }

encryptedData OBJECT IDENTIFIER ::= { pkcs-7 6 }

These object identifiers are intended to be used in the contentType field of a value of
type ContentInfo (see Section 5). The content field of that type, which has the
content-type-specific syntax ANY DEFINED BY contentType, would have ASN.1

14. OBJECT IDENTIFIERS Page 27

type Data, SignedData, EnvelopedData, SignedAndEnvelopedData,
DigestedData, and EncryptedData, respectively. These object identifiers are also
intended to be used in a PKCS #9 content-type attribute.

Page 28 PKCS #7: CRYPTOGRAPHIC MESSAGE SYNTAX STANDARD

Revision history

Versions 1.0–1.3

Versions 1.0–1.3 were distributed to participants in RSA Data Security, Inc.'s Public-Key
Cryptography Standards meetings in February and March 1991.

Version 1.4

Version 1.4 is part of the June 3, 1991 initial public release of PKCS. Version 1.4 was
published as NIST/OSI Implementors' Workshop document SEC-SIG-91-22.

Version 1.5

Version 1.5 incorporates several editorial changes, including updates to the references
and the addition of a revision history. The following substantive changes were made:

• Section 6: CertificateRevocationLists type is added.

• Section 9.1: SignedData syntax is revised. The new version allows for the
dissemination of certificate-revocation lists along with signatures. It also
allows for the dissemination of certificates and certificate-revocation lists
alone, without any signatures.

• Section 9.2: SignerInfo syntax is revised. The new version includes a
message-digest encryption process compatible with Privacy-Enhanced
Mail as specified in RFC 1423.

• Section 9.3: Meaning of "the DER encoding of the
authenticatedAttributes field" is clarified as "the DER encoding of
the Attributes value."

• Section 10.3: Padding method for content-encryption algorithms is
described.

• Section 11.1: SignedAndEnvelopedData syntax is revised. The new
version allows for the dissemination of certificate-revocation lists.

• Section 13: Encrypted-data content type is added. This content type
consists of encrypted content of any type.

• Section 14: encryptedData object identifier is added.

AUTHOR'S ADDRESS Page 29

Author's address

RSA Laboratories (415) 595-7703
100 Marine Parkway (415) 595-4126 (fax)
Redwood City, CA 94065 USA pkcs-editor@rsa.com

