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Abstract

Developing automatic diagnostic tools for the early detection of skin cancer
lesions in dermoscopic images can help to reduce melanoma-induced mortal-
ity. Image segmentation is a key step in the automated skin lesion diagnosis
pipeline. In this paper, a fast and fully-automatic algorithm for skin lesion
segmentation in dermoscopic images is presented. Delaunay Triangulation is
used to extract a binary mask of the lesion region, without the need of any
training stage. A quantitative experimental evaluation has been conducted
on a publicly available database, by taking into account six well-known state-
of-the-art segmentation methods for comparison. The results of the experi-
mental analysis demonstrate that the proposed approach is highly accurate
when dealing with benign lesions, while the segmentation accuracy signifi-
cantly decreases when melanoma images are processed. This behavior led us
to consider geometrical and color features extracted from the binary masks
generated by our algorithm for classification, achieving promising results for
melanoma detection.
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1. Introduction1

Melanoma is one of the most aggressive tumors in humans [1] and it can2

be lethal, if not diagnosed on time. The incidence of melanoma among all3

dermatologic cancers is 4%, while melanoma-induced mortality accounts for4

about 80% of deaths from skin cancer; only 14% of patients with metastatic5

melanoma survive for five years [2]. Moreover, malignant melanoma has a6

cure rate of more than 95% if detected at an early stage [3]. The above7

statistics demonstrate that there is an urgent need to develop innovative8

strategies able to increase the diagnostic accuracy and to help dermatologists9

making early diagnosis. Indeed, given the current lack of effective therapeutic10

approaches, the early diagnosis is the main way to achieve a real impact on11

mortality from melanoma.12

Novel approaches are being developed to help early diagnosis according to13

bio-physics analyses [4], molecular targets identifications [5], and novel image14

analysis criteria [6, 7]. In particular, the development of robust and reliable15

image analysis tools can reduce the number of presumptive diagnoses that16

have to be confirmed histologically on skin biopsy. Dermoscopy is one of the17

most important tool in the early diagnosis of melanoma. Dermoscopic images18

are obtained by combining optical magnification with either cross-polarized19

lighting or liquid immersion, with a low angle-of-incidence lighting. The use20

of dermoscopy gives a magnification of the images of the nevus lesions and21

it allows for the analysis of particular characteristics of the lesion, including22

symmetry, size, borders, presence and distribution of color features.23

The typical computer-aided diagnosis (CAD) pipeline for automated skin24

lesion diagnosis (ASLD) from digital dermoscopic images can be subdivided25

into the following steps [8]:26

1. Image acquisition;27

2. Noise and artifact filtering;28

3. Lesion segmentation;29

4. Feature extraction;30

5. Classification.31

The lesion segmentation step is fundamental in order to increase the ef-32

fectiveness of the subsequent steps, since it strongly affects the results of33

the whole pipeline [9]. Indeed, an accurate segmentation allows for deriving34
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Figure 1: Difficulties in lesion segmentation on dermoscopic images. a) Presence of hair.
b) Reflections. c) Air/oil bubbles. Images are from the PH2 database [11, 12].

border structure information, such as the asymmetry and the irregularity of35

the lesion area, which are essential for a correct presumptive diagnosis. Fur-36

thermore, important clinical features like blue-white areas, atypical pigment37

networks, and globules can be automatically extracted only when the accu-38

racy of the detected lesion border is high [10]. However, the great variety of39

lesion shapes, size and colors, the different skin types and textures, as well as40

the possible presence of hair and air/oil bubbles make segmentation a hard41

task (three examples of typical challenges are shown in Fig. 1).42

In this paper, we describe a fully-automatic lesion segmentation method,43

able to process dermoscopic images even when reflections, oil bubbles, hairs44

or other imperfections are present, extending the work presented in [13]. The45

proposed algorithm, called ASLM, does not require any training stage and46

comprises four steps: (i) artifact removal; (ii) skin detection and (iii) lesion47

segmentation, which generate two different images containing the detected le-48

sion region; and (iv) a final stage where a binary mask is obtained by merging49

those images. In particular, ASLM is designed to be sensitive with respect50

to images containing irregular borders, multiple shades of pigmentation, and51

varying texture. This is demonstrated by experimental results, carried out52

on the publicly available PH2 database [11, 12], showing that the accuracy53

of the segmentation by ASLM is extremely high when dealing with benign54

lesions (common and atypical nevi), while the precision of the segmentation55

results significantly decreases when malignant lesions (melanoma) are ana-56

lyzed. This behavior led us to consider the use of the binary masks generated57

by ASLM as input for a classification stage. The results for melanoma de-58

tection, obtained by considering only three geometrical features and three59

16-bin color histograms, achieved 93.5% sensitivity and 87.1% specificity on60

a set of 200 dermoscopic images, demonstrating that ASLM can be a suitable61
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tool for the development of CAD support systems for the early detection of62

malignant lesions.63

The remainder of the paper is organized as follows. Related work is dis-64

cussed in Section 2, while the details of the proposed skin lesion segmentation65

method are presented in Section 3. The description of the data set used for66

the experiments as well as a quantitative comparison of our method with67

six well-known segmentation algorithms are given in Section 4. Melanoma68

detection is discussed in Section 5 and conclusions are drawn in Section 6.69

2. Related Work70

Automatic segmentation in dermoscopic images presents many difficulties71

related to the possible presence of hair, specular reflections, multiple colored72

lesion, low contrast between the lesion area and the surrounding skin, irreg-73

ular and fuzzy lesion borders, and artifacts such as skin lines, blood vessels74

and air bubbles caused by dermoscopic gel [14]. Several segmentation al-75

gorithms have been proposed in the literature to deal with the problem of76

accurately segmenting skin lesion images and two surveys in this field have77

been realized by Celebi et al. [14, 15]. According to Xie and Bovick [9] and78

to Silveira et al. [16], existing approaches can be grouped into three main79

categories:80

Thresholding methods. Approaches in this category aim at comparing visual81

feature values for single or group of pixels in the dermoscopic image with82

threshold values (e.g., a pixel is labelled as a lesion point if it is darker83

than a given color threshold value). The output of the thresholding process84

is a binary image, which can be further processed to filter out outliers, to85

fill small holes, or to select the largest connected component. Examples of86

thresholding methods are adaptive thresholding [17], histogram thresholding87

[18], and clustering. In particular, a clustering-based segmentation method88

for dermoscopy images is described in [19], where K-means++ (KPP), a89

variation of the standard k-means algorithm with random seeding, is used.90

Different thresholding methods can be combined together. In [20], pixel-91

based and region-based methods are used in combination with a region-92

growing approach for automatically extracting the lesion area. In [10], the93

results generated by an ensemble of different thresholding methods are fused94

together, thus obtaining a final mask that exploits the peculiarities of each95
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specific method. In particular, four techniques are considered for construct-96

ing the ensemble: fuzzy similarity, maximum entropy, minimum error thresh-97

olding, and Otsu’s clustering.98

Thresholding methods performs well if there is a high contrast between99

the lesion area and the surrounding skin region, otherwise the segmenta-100

tion accuracy can decrease. Moreover, thresholding methods can fail when101

processing images with significant amount of hair or air/oil bubbles [10].102

Edge and contour-based methods. Algorithms in this group aim at identifying103

the discontinuities (i.e., the edges) in the dermoscopic images to detect the104

lesion borders. For example, an active contour method, which is based on105

gradient vector flow (GVF) snakes for contour extraction, is described in106

[21]. An extension of GVF based on mean shift (MSGVF) is proposed in107

[22]. Two contour based methods are applied to skin lesion images in [16],108

namely adaptive snake and active contour by level set. In the adaptive snake109

algorithm, detailed in [23], edge points are first grouped in strokes and then110

each stroke is classified as valid or not. A confidence level is associated to111

each stroke and the Expectation-Maximization (EM) algorithm is used to112

update the confidence levels and to estimate the object contour. The active113

contour by level set method, illustrated in [24], creates a model of the contour114

that does not exploit any edge detection function to stop the evolving curve115

on the boundary, but uses instead a stopping term based on Mumford-Shah116

segmentation techniques.117

Edge and contour-based methods usually fail in presence of hair or air118

bubbles and if the transition between the lesion and the surrounding skin is119

smooth.120

Region-based methods. This category includes algorithms working at a global121

image level. The basic assumption is that the image in input contains always122

two different regions: lesion and skin. A method called JSEG [25], based on123

color quantization and spatial segmentation, has been applied to skin lesion124

images in [8]. JSEG uses J-images, corresponding to measurements of local125

homogeneities at different scales, to find potential boundary locations. The126

final segmentation is obtained by growing regions from seed areas of the J-127

images. Statistical region merging (SRM) [26] is used in [27]. SRM treats128

the image as an observed instance of an unknown theoretical image, whose129

statistical regions are to be reconstructed.130

Region-based algorithms are prone to over-segmentation when the skin131
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Figure 2: Skin lesion segmentation. a) Dermoscopic image in input. b) Binary mask in
output. Images are from the PH2 database [11, 12].

or lesion regions are textured or when the interior of the lesion exhibit multi-132

colored areas.133

From the analysis of the literature it can be noted that:134

• Existing solutions are reliable only when the dermoscopic image shows a135

high contrast between the lesion area and the surrounding skin region,136

the color intensity values inside the lesion area are uniform, and no137

artifacts are present. As an example, region based algorithms, like138

JSEG, tends to over-segment the lesion area.139

• Segmentation results are in most cases obtained by using data sets140

that are not publicly available, thus making it difficult to perform a141

quantitative comparison with related work.142

In this paper, a novel region-based, fully-automatic, and fast segmen-143

tation algorithm for skin lesion segmentation is presented. The proposed144

method can deal with the presence of hair, reflections, air/oil bubbles and145

it has been experimentally validated on a publicly available database of der-146

moscopic images. As a difference with previous work, we compute two par-147

allel processes of skin detection and lesion segmentation and then merge the148

results, thus obtaining an accurate representation of the lesion area. The149

functional architecture of our approach is described in the next section along150

with the details of the four main functions, i.e., noise removal, skin detection,151

lesion segmentation, and merging.152

3. Skin Lesion Segmentation153

Given a dermoscopic image (Fig. 2a), the goal of the skin lesion segmen-154

tation process is to generate a binary mask providing an accurate separation155
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between the lesion area and the surrounding healthy skin (Fig. 2b). The156

mask can be used for extracting information about the lesion border.157

We propose an approach called ASLM that is shown in Fig. 3 and is158

structured in four steps:159

1. Artifact removal and image equalization;160

2. Skin detection;161

3. Lesion segmentation;162

4. Merging.163

In the first step, outliers are removed by morphological closing and the im-164

age contrast is enhanced by equalization. Then, two segmentation processes165

(steps 2 and 3) are carried out in parallel, yielding two different images. The166

first one is built by detecting the skin region and then filtering it out. The167

second image is created by applying edge detection and Delaunay Triangu-168

lation. In the final step, the final lesion area is extracted by combining the169

two images generated in steps 2 and 3.170

As shown in Fig. 3, the dermoscopic image I in input is processed to re-171

move artifacts (e.g., hair) and then equalized to produce an image E, which172

represents the input for both the skin detection and the lesion segmentation173

modules. The former generates an image S (called skin image) by using a174

color thresholding mechanism, while the latter uses the Delaunay Triangula-175

tion to create an image L (called lesion image), which contains the different176

color regions in E. During the merging step, S and L are analysed for possi-177

bly fusing adjacent regions, obtaining the final binary image B. The details178

about the above sketched steps are given in the rest of this section.179

Figure 3: Functional architecture of the ASLM method.
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Figure 4: Artifact removal: original input image, filtered image, and final mask.

It is possible to test ASLM on-line by uploading any dermoscopic im-180

age through the web service available at: www.dis.uniroma1.it/~pennisi/181

skin_lesion_segmentation182

3.1. Artifact Removal and Image Equalization183

The RGB dermoscopic image I in input is processed through a morpho-184

logical transformation in order to remove hair, thus obtaining a new RGB185

image F (called filtered image). The morphological transformation aims at186

removing the outlier pixels that can be introduced in the image acquisition187

phase, while preserving the visual properties of the lesion region.188

In particular, F is the result of a closing operation with an 11×11 kernel189

having each element eij = 1. The size of the kernel has been selected with190

the following considerations. Given that the diameter of a hair varies from191

17 to 180 µm [28] and the PH2 image size is 768×574 pixels, it follows that192

the average diameter of a hair in a PH2 image corresponds to about 5 pixels.193

Thus, by using a 11×11 kernel, it is possible to close the pixels of the hair194

with the pixels of its surrounding area and to preserve the shape of the195

lesion. The closing operation is performed on the three RGB color channels196

of I separately.197

The artifact removal process tends to highlight reflections and air/oil198

bubbles in the image, but this does not influence the final mask (see Fig. 4).199

The filtered image F , coming from the artifact removal phase, is processed200
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Figure 5: Image equalization process. a) Input image and the corresponding luminance
spectrum before equalization. b) Equalized Image: the luminance spectrum is modified.

Figure 6: An example of binary masks generated with (ASLM) and without (ASLM*)
equalization. Equalization can improve the segmentation accuracy.

to get an equalized image E. The equalization step, performed by applying201

the OpenCV1 function equalizeHist on the Y channel, helps in highlighting202

the lesion borders and in obtaining a more accurate output, since the color203

difference between the lesion area and the surrounding skin are stressed (see204

Fig. 5). As a demonstration of the importance of equalization for ASLM, an205

example where the binary masks generated with and without equalization206

are compared is shown in Fig. 6. The mask generated by using equalization207

has a higher segmentation accuracy. The image E is used as input for both208

the parallel processes of Skin Detection and Lesion Segmentation.209

3.2. Skin Detection210

After equalization, pixels belonging to the skin are identified. A number211

of methods for skin segmentation in color images are available in the litera-212

ture. The simplest methods define boundaries in the chosen color space for213

identifying skin clusters. The main advantage of such methods is that they214

do not require a training phase. However, it is difficult to define the bound-215

aries that give good results by considering a single color space only [29]. For216

1www.opencv.org
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Figure 7: Skin detection process.

Algorithm 1: Skin Detection
Input: RGB equalized image E;

thresholds: thcb = 127, thcr = 145, thh = 160, thv = 15
Output: HSV image S
Data structures: YCrCb images E′ and T ; HSV images Z and N

E′ ← RGBtoY CrCb(E)
initialize ∀ i, j T (i, j) =< 0, 0, 0 >
foreach < y, cr, cb > pixel E′(i, j) do

if (cr ≤ thcr) ∧ (cb ≤ thcb) then
T (i, j)←< y, cr, cb >

Z ← Y CrCbtoHSV (T )
foreach < h, s, v > pixel Z(i, j) do

h′ ← h/(h+ s+ v)
s′ ← s/(h+ s+ v)
v′ ← v/(h+ s+ v)
N(i, j)←< h′, s′, v′ >

initialize ∀ i, j S(i, j) =< 0, 0, 0 >
foreach < h, s, v > pixel N(i, j) do

if (h ≤ thh) ∧ (v ≤ thv) then
S(i, j)←< h, s, v >

such a reason, in our ASLM algorithm, we adopt a combination of multiple217

color spaces.218

The main steps in the skin detection process are shown in Fig. 7, while219

Algorithm 1 provides the details. E is converted into the YCrCb color space220

and the skin region is detected by using a thresholding on the luminance and221

chrominance values, producing an image T . YCrCb has been chosen for two222
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Algorithm 2: Lesion Segmentation
Input: RGB equalized image E;

thresholds: σ = 5,min canny 1 = 0.03,max canny 1 = 2.0, ω = 0.5
Output: HSV image L
Data structures: RGB image Q; grayscale image G; binary image C; set of

triangles < x, y, z > D, set of tuples < a, l, x, y, z > R

Q← GaussianBlurring(E, σ)
G← RGBtoGray(Q)
C ← CannyEdgeDetection(G,min canny 1,max canny 1)
D ← DelaunayTriangulation(C)
initialize ∀ i, j L(i, j) =< 0, 0, 0 >; l = 0
foreach triangle t :< x, y, z >∈ D do

a = 1
n

∑n
p=1(hp + sp + vp) where p is an HSV pixel ∈ t with values (hp,sp,vp)

and n is the total number of pixels in t
R← R ∪ < a, l, x, y, z >
l← l + 1

foreach pair of adjacent tuples r1 :< a1, l1, x1, y1, z1 > and
r2 :< a2, l2, x2, y2, z2 >∈ R do

if (|a1 − a2| ≤ ω) then
l2 ← l1

reasons: 1) it is good for skin detection through thresholding [29] and 2) the223

luminance component does not influence skin segmentation in YCrCb [30].224

However, considering the YCrCb color space only is not sufficient for225

obtaining accurate results, since illumination variations and shadows can226

generate false positive detections. This is why T is converted into the HSV227

color space and then normalized to form a new image N . Subsequently, N228

is further filtered by applying a second thresholding, this time on the HSV229

values, thus obtaining an HSV image S, which contains the lesion area only,230

with the skin region filtered out. The YCrCb and HSV threshold values231

can be predefined depending on the skin type of the analyzed images. The232

threshold values used in ASLM are thcb = 127, thcr = 145, thh = 160, and233

thv = 15, which are suitable for skin colors varying from white to cream234

white.235

3.3. Lesion Segmentation236

The process of extracting the contours of the lesion area is shown in237

Algorithm 2. It is derived from the method proposed in [31] and comprises238

four main steps (see Fig. 8).239
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Figure 8: Image Segmentation process.

The image E is filtered along the Red, Green and Blue channels separately240

by a Gaussian blur filter with a kernel size σ = 5. The resulting images are241

merged to create a new RGB image Q, which is a blurred version of E. Then,242

Q is converted to grayscale and the Edge Detection procedure begins with a243

Canny edge extraction, which leads to the creation of a grayscale image C244

containing the intensity edges in Q. The two parameters min canny 1 and245

max canny 1 in the Canny algorithm have been set to the values 0.03 and246

2.0 respectively, in order to focus on short edges in the input image. The247

detected edges are then vectorized into connected line segments — generated248

as described in [32] — and passed as input for the Delaunay Triangulation249

procedure, which computes a triangular tessellation of the image.250

The Delaunay Triangulation of a point set P is characterized by the251

empty circumdisk property: no point in P lies in the interior of any triangle’s252

circumscribing disk.253

Definition [33]. In the context of the finite point set P, a triangle is Delau-254

nay if its vertices are in P and its open circumdisk is empty (i.e., it contains255

no point in P). It is worth noting that any number of points in P can lie on256

a Delaunay triangle’s circumcircle. An edge is Delaunay if its vertices are257

in P and it has at least one empty open circumdisk. A Delaunay Triangula-258

tion of P, denoted Del P, is a triangulation of P in which every triangle is259

Delaunay.260

The connected line segments are passed as input to the Delaunay function261

12



Figure 9: Delaunay Triangulation. a) Input image from the PH2 database [11, 12]. b)
Detail of the Delaunay Triangulation. c) Resulting polygons after the association step.

of the CGAL2 library, in order to carry out the triangulation. The nodes of262

the planar triangular graph obtained from the triangulation represent the set263

of triangles, while the edges indicate adjacency relations between them, i.e.,264

there is an edge between two nearby triangles. Deriving a triangular graph265

from an edge map has two remarkable properties [34]:266

1. The triangle boundaries conform to the extracted edges by construc-267

tion;268

2. The tessellation naturally adapts to the content in the images.269

This means that large triangles are produced in homogeneous regions of the270

image, where few edges are detected, while small triangles are generated in271

the regions where the number of edges is high.272

The triangular graph is segmented by using a Region Association proce-273

dure, which iteratively finds and associates the two regions with the lowest274

normalized boundary cost, by considering a predefined association threshold275

ω. In particular, each of the triangles in the graph is considered in turn, by276

calculating the average HSV color of all the pixels that lie within its circum-277

circle: If a pair of triangles have a similar HSV value, then they are fused278

to obtain a new geometric figure. The output of the fusion process between279

two or more triangles is a polygon made by the union of the fused similar280

triangles (see the example in Fig. 9). The value for the association threshold281

ω has been set to 0.5, after measuring the segmentation accuracy on a set of282

30 randomly selected samples (10 common, 10 atypical, and 10 melanoma)283

from PH2, with ω varying within the range [0.2, 0.9] (see Fig. 10).284

2www.cgal.org
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Figure 10: Value for threshold ω. The curve is obtained by measuring the sensitivity on
a set of 30 randomly selected images from PH2.

The C++ source code for the image segmentation procedure is available285

on-line at: www.dis.uniroma1.it/~pennisi/fhis.html286

3.4. Merging287

The final step in the ASLM method concerns merging the results gener-288

ated by the two parallel processes of Skin Detection and Lesion Segmentation289

(see Algorithm 3). The idea is that a correctly extracted lesion blob from a290

binary mask can be circumscribed by a circle with a diameter equal to the291

major axis of the detected blob. First, the merging procedure detects if one292

(or more lesion areas) is (are) present in each image S and L. To this end, S293

and L are converted into binary images (called SB and LB, respectively) by294

assigning the value 255 to the pixels having color values different from the295

HSV value <0,0,0>. In presence of multiple lesion areas, only the biggest296

blob is considered.297

Then, the probabilistic Hough transform is applied to each one of the298

two images, in order to obtain the number of circles that can be inscribed299

or circumscribed to the skin lesion area. We adopt the OpenCV function300

HoughCircles with the inverse ratio of resolution dp = 1.0, the minimum301

distance between detected centers mindist = 90 pixels, and the thresholds302

for the internal Canny detector min canny 2 = 10 and max canny 2 = 255,303

which are good parameters to detect long edges.304
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Algorithm 3: Merging
Input: HSV images S and L; thresholds: inverse ratio resolution dp = 1.0,

minimum distance between detected centers mindist = 90, Canny
thresholds min canny 2 = 10 and max canny 2 = 255

Output: binary image B
Data structures: Binary images SB and LB ; number of detected circles nS and
nL

SB ← HSV 2Binary(S)
LB ← HSV 2Binary(L)
nS ← HoughCircles(SB , dp,mindist,min canny 2,max canny 2)
nL ← HoughCircles(LB , dp,mindist,min canny 2,max canny 2)
if nS 6= 0 and nL 6= 0 then

B ← AND(SB , LB)

else if nS 6= 0 then
B ← SB

else if nL 6= 0 then
B ← LB

Three cases are possible:305

1. One or more detected circles in SB and one or more in LB. Then, B is306

the result of the pixel-wise logical AND of SB and LB.307

2. One or more detected circles in SB, but no detections in LB. Then,308

B = SB.309

3. No detections in SB, but one or more detected circles in LB. Then,310

B = LB.311

Fig. 11 shows three examples for the merging procedure. The first row312

illustrates an example where a circle can be detected both in SB and LB,313

thus the final image B is the pixel-wise logical AND of the two images. It314

can happen that the skin detection process generates an SB image where315

HoughCircles, by using the predefined parameters, cannot find any circle316

(see the second row). However, since a circle can be detected in the LB317

image, then B = LB. The third row shows an example where the final image318

B corresponds to SB, since no circles can be detected in LB by applying319

HoughCircles. It is worth noting that, for all the 200 images in the PH2
320

database, it was always possible to find at least a circle in one of the two321

images SB and LB by using the above listed parameters.322
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Figure 11: The results of the skin detection and the lesion segmentation processes are
merged to obtain the final binary image B. Images are from the PH2 database [11, 12].

4. Experimental Results323

The experimental validation for the ASLM method has been conducted324

on a publicly available database of dermoscopic images, containing ground325

truth annotations. In such a way, the ASLM performance can be quantita-326

tively compared with other existing skin lesion segmentation algorithms. The327

aim of this section is to show that 1) ASLM demonstrates good segmentation328

capacity on dermoscopic images in average; 2) When benign lesions are pro-329

cessed, ASLM has particularly high performance; 3) Only when malignant330

lesion are considered, the segmentation results are less accurate. This behav-331

ior is very interesting since, as discussed in Section 5, it can be exploited for332

melanoma detection.333

4.1. Data Set Description334

The PH2 database [11, 12] has been realized by the Universidade do Porto,335

Tecnico Lisboa in collaboration with the Hospital Pedro Hispano in Matosin-336

hos, Portugal. The database is composed of 200 RGB dermoscopic images,337

with a resolution of 768×574 pixels and a magnification of 20×, annotated338

with ground truth data. The 200 images are divided into benign lesions339

(80 common and 80 dysplastic nevi) and malignant lesions (40 melanomas),340

with a skin color that varies from white to cream white, i.e., type II and III341

according to the Fitzpatrick skin type classification scale [35].342

For each image, the ground truth data include the following information:343
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Figure 12: ASLM results on PH2 images IMD046 (common nevus, first row), IMD048
(atypical mole, second row) and IMD058 (melanoma, third row).

• A ground truth binary image, manually generated by expert dermatol-344

ogists, containing the skin lesion area;345

• Clinical and histological diagnosis;346

• Dermoscopic criteria.347

In particular, in the provided ground truth binary image, the pixels with348

value 1 belong to the segmented lesion, while pixels with value 0 correspond349

to the background. Dermoscopic criteria include asymmetry, colors, pigment350

network, dots/globules, streaks, regression areas, and blue-whitish veil.351

4.2. Qualitative Analysis352

All the 200 images in the PH2 database have been segmented using ASLM353

method with the same parameters and can be downloaded at: www.dis.354

uniroma1.it/~pennisi/skin_lesion_segmentation/results.zip355

Three examples of application for the ASLM skin lesion segmentation356

algorithm are shown in Fig. 12: in the first row a common nevus is shown,357

in the second row an atypical mole, and in the third row a melanoma. It is358

worth noting that, for the images in the first and second rows of Fig. 12,359

the binary images obtained by ASLM are: 1) in very good accordance with360
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Table 1: List of the fully-automatic and semi-automatic methods used for the comparison.
For each method, the used implementation is cited.

Method Fully-Automatic Category
JSEG [36] NO region-based
SRM [37] NO region-based
KPP (MATLAB 2014a) NO thresholding
K-means (OpenCV 2.4) NO thresholding
Otsu (MATLAB 2014a) YES thresholding
Level Set [38] YES contour-based
ASLM YES region-based

respect to the corresponding ground truth images in PH2 and 2) the results361

are not affected by the presence of hair.362

A situation where ASLM provides a binary image containing an under-363

estimated lesion area is shown in the third row of Fig. 12: This is an in-364

teresting behavior of ASLM algorithm when dealing with melanoma images,365

which is discussed in the next section.366

4.3. Quantitative Analysis367

In order to carry out a quantitative evaluation of the ASLM algorithm,368

we took into account six well-known segmentation methods, namely JSEG,369

SRM, KPP, K-means, Otsu, and Level Set, which have been already con-370

sidered for skin lesion images [8, 16]. All the above listed approaches have371

been used for skin lesion segmentation in dermoscopy images and they can372

be classified according to the categories provided in Section 2.373

It is important to underline that, since we were unable to find the original374

source code, we relied on publicly available third-party implementations of375

the considered six methods, maintaining the default parameters. This means376

that the experimental results can change if the original implementations are377

used. The references to the used implementations are given in Table 1. As378

a difference with the JSEG, SRM, and KPP lesion segmentation methods379

reported in the literature, not all the six considered implementations are fully-380

automatic, four of them (i.e., JSEG, SRM, KPP, and K-means) requiring an381

active interaction with the user to select the regions of interest.382

Four different metrics have been selected to calculate the segmentation383

results: sensitivity, specificity, accuracy, and F-measure. The definitions for384

the used metrics are given in the following equations, where TP is the number385
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Figure 13: a) IMD043 dermoscopic image from PH2 database. b) Ground truth provided
in PH2. c) Binary mask produced by ASLM. d) Error evaluation: White pixels are true
positives (TP), blue pixels are true negatives (TN), pixels red are false negatives (FN) and
green pixels are false positives (FP).

of true positive pixels, FP is the number of false positive pixels, TN is the386

number of true negative pixels, and FN is the number of false negative pixels387

(see Fig. 13). The chosen metrics are widely used in the literature to measure388

the performance of skin lesion segmentation methods [39].389

Sensitivity =
TP

TP + FN
(1)

Specificity = 1− TN

TN + FP
(2)

Accuracy =
TP + TN

TP + FN + TN + FP
(3)

F -measure =
1

n

n∑
i=1

2
Preci ×Reci
Preci +Reci

(4)
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Table 2: Skin lesion segmentation results on 200 images from the PH2 dermoscopic image
database.

Method Sensitivity Specificity Accuracy F-measure
JSEG 0.7108 0.9714 0.8947 ± 0.0176 0.7554
SRM 0.1035 0.8757 0.6766 ± 0.0346 0.1218
KPP 0.4147 0.9581 0.7815 ± 0.0356 0.5457
K-means 0.7291 0.8430 0.8249 ± 0.0107 0.6677
Otsu 0.5221 0.7064 0.6518 ± 0.0203 0.4293
Level Set 0.7188 0.8003 0.7842 ± 0.0295 0.6456
ASLM 0.8024 0.9722 0.8966 ± 0.0276 0.8257

where n is the total number of images and:

Reci (P ) = TPi/ (TPi + FNi) Preci (P ) = TPi/ (TPi + FPi)

Reci (N) = TNi/ (TNi + FPi) Preci (N) = TNi/ (TNi + FNi)

Reci = (Reci (P ) +Reci (N)) /2 Preci = (Preci (P ) + Preci (N)) /2

Table 2 shows the segmentation results obtained by considering the com-390

plete PH2 data set (200 images). ASLM achieves the best performance with391

respect to the other considered segmentation algorithms on all the used evalu-392

ation metrics. Moreover, the only comparable results on accuracy and speci-393

ficity are obtained by JSEG — we have considered the implementation in394

[36]. It is important to point out that, in the computation of the experimen-395

tal measures, JSEG has been used as a semi-automatic method, manually396

merging, in case of over-segmentation, the correctly detected lesion regions.397

ASLM is a fully-automatic method and no adjustments to the generated398

binary mask have been performed.399

Since the dermoscopic images in PH2 are labeled according to their med-400

ical diagnosis, it is possible to carry out a finer analysis, by considering401

separately the three diagnostic classes (common nevi, atypical moles, and402

melanomas). Table 3 shows the segmentation results that are obtained when403

processing the 80 images of common nevi only. It can be noted that, for404

the ASLM method, the sensitivity increases from 0.8024 to 0.8717, the accu-405

racy raises from 0.8966 to 0.9477, and the F-measure becomes 0.8690 from406

0.8257. This means that the ASLM algorithm achieves very good results in407

segmenting images of common nevi.408

The same behavior can be observed by considering the segmentation per-409
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Table 3: Skin lesion segmentation results on 80 melanocytic nevi (common healthy lesions)
images from the PH2 dermoscopic image database.

Method Sensitivity Specificity Accuracy F-measure
JSEG 0.6977 0.9783 0.9370 ± 0.0027 0.7265
SRM 0.0751 0.9332 0.7250 ± 0.0277 0.0611
KPP 0.3360 0.9566 0.7912 ± 0.0241 0.3960
K-means 0.7008 0.8767 0.8466 ± 0.8467 0.6004
Otsu 0.4777 0.7832 0.6911 ± 0.0193 0.3658
Level Set 0.7069 0.8262 0.7996 ± 0.0264 0.5856
ASLM 0.8717 0.9760 0.9477 ± 0.0032 0.8690

Table 4: Skin lesion segmentation results on 80 dysplasic nevi (atypical moles) images
from the PH2 dermoscopic image database.

Method Sensitivity Specificity Accuracy F-measure
JSEG 0.7435 0.9708 0.9236 ± 0.0065 0.7768
SRM 0.1042 0.8954 0.6812 ± 0.0358 0.0919
KPP 0.2895 0.9446 0.7512 ± 0.0261 0.3568
K-means 0.7650 0.8804 0.8501 ± 0.0065 0.6914
Otsu 0.5515 0.7579 0.6779 ± 0.0193 0.4372
Level Set 0.7364 0.8237 0.7985 ± 0.0346 0.6532
ASLM 0.8640 0.9733 0.9271 ± 0.0099 0.8689

Table 5: Skin lesion segmentation results on 40 melanoma (malignant lesions) images from
the PH2 dermoscopic image database.

Method Sensitivity Specificity Accuracy F-measure
JSEG 0.6746 0.9593 0.7591 ± 0.0456 0.7710
SRM 0.2234 0.7512 0.4148 ± 0.0366 0.2852
KPP 0.2648 0.7623 0.4324 ± 0.0336 0.3589
Otsu 0.5971 0.4870 0.5524 ± 0.0211 0.6064
Level Set 0.7073 0.7015 0.7249 ± 0.0214 0.7503
K-means 0.7141 0.7010 0.7313 ± 0.0230 0.7550
ASLM 0.5404 0.9597 0.6615 ± 0.0506 0.6524

formance on the 80 images of atypical moles only (see Table 4). In such410

a case, the ASLM method performs better than the other six considered411
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Table 6: Average computational time per image applying the ASLM algorithm on the
whole PH2 database.

Image Size
i3-2370M 4GB

avg. ms
i5-3320M 4GB

avg. ms
i7-4760HQ 16GB

avg. ms
768×574 1990.68 1826.31 1151.1

methods on all the used metrics. In particular, the sensitivity for ASLM412

method increases from 0.8024 to 0.8640, the accuracy raises from 0.8966 to413

0.9271, and F-measures achieves 0.8689 from 0.8257. Thus, even in the case414

of dysplasic lesions (i.e., atypical moles), which are benign lesions, the ASLM415

algorithm obtains very good segmentation results.416

On the other hand, a strong decrease in the quality of the segmentation417

results can be observed, on the totality of the used metrics, when only images418

containing melanomas are processed (see Table 5). In particular, ASLM419

presents the larger decrease among all the considered methods in the average420

accuracy, which becomes rather low (i.e., 0.6615) when compared to the421

accuracy obtained on all the PH2 images (i.e., 0.8024 — see Table 2).422

Summarizing, ASLM achieves a very high accuracy when dealing with423

benign lesions, namely common nevi and atypical moles, while the accuracy424

decreases when melanoma images are processed.425

4.4. Run-time Performance426

The average milliseconds (ms) needed by ASLM for generating a single427

binary image has been measured by considered all the 200 images in the428

PH2 database. The results obtained with three different CPUs are shown in429

Table 6, demonstrating that the proposed approach can achieve a remarkable430

speed with commercial CPUs. We used a single-thread C++ implementation431

and better results can be obtained by adopting a multi-thread version. In432

particular, the skin detection and the lesion segmentation processes can be433

parallelized.434

5. Using ASLM Binary Masks for Classification435

The analysis of the segmentation results generated by evaluating the three436

classes of nevi separately leads to the following considerations:437
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Figure 14: ASLM results on PH2 melanoma images IMD088 (streaks, regression areas,
blue-whitish veil), IMD284 (blue-whitish veil, second row), IMD405 (blue-whitish veil),
IMD419 (blue-whitish veil), IMD424 (streaks, blue-whitish veil), and IMD425 (regression
areas, blue-whitish veil).

1. For benign lesions (i.e., common and atypical nevi), the average accu-438

racy is rather high (0.9477 and 0.9271, respectively);439

2. For malignant lesions (i.e., melanoma images), the accuracy signifi-440

cantly decreases (0.6615).441

This means that only in the case of malignant lesions the ASLM algorithm442

gives less accurate results.443

Examples of ASLM under-segmentation results in case of melanoma im-444

ages are shown in Fig. 14, where images containing streaks, regression areas,445
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and blue-whitish veil are considered. A possible motivation for this behavior446

can be found in the studies described in [40] and in [41]. In those stud-447

ies emerge that the presence of light brown structureless areas in atypical448

melanocytic lesions maybe very useful in differentiating atypical nevi from449

melanomas. According to [40], particular attention is needed to melanocytic450

lesions that, over time, reveal a loss of network in favor of structureless areas451

and exhibit new colors such as dark brown, black, gray, blue, red, and white.452

Homogeneous areas and light brown structureless regions were the most sen-453

sitive and specific epiluminescence microscopy features for thin melanomas454

[41]. Since the ASLM algorithm is based on a color region merging pro-455

cedure for computing the segmentation results, it is strongly sensitive to456

structureless areas and homogeneous regions with a color different from the457

surrounding one.458

5.1. Feature Extraction459

In order to understand if the binary masks generated by ASLM can be460

employed for classification purposes, three features have been considered to461

represent the geometric properties of the detected lesion region:462

• Convex Area: Scalar that specifies the number of pixel of the convex463

hull that contains the binary image;464

• Filled Area: Scalar specifying the number of lesion pixels in the binary465

image with all holes filled in.466

• Solidity : Scalar specifying the proportion of the pixels in the convex467

hull that are also in the region. It is computed as Area/ConvexArea.468

The above listed features have been selected since they can be used to469

measure the border irregularity. Fig. 15 shows the results obtained by plot-470

ting the normalized values of Filled Area against Convex Area for the 200471

binary masks. The majority of melanoma images (red circles) deviate from472

the distribution of the non-melanoma ones (blue triangles). Fig. 16 shows473

the results obtained by plotting the normalized values of Filled Area against474

Solidity: Non-melanoma samples (blue triangles) are concentrated in the475

top-left part of the diagram. Fig. 17 shows the results obtained by plotting476

the normalized values of Solidity against Convex Area, with non-melanoma477

samples (blue triangles) grouped in the top-left corner.478
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Figure 15: Filled Area plotted against Convex Area. Melanoma images are represented as
red circles and benign lesion images (common and atypical nevi) as blue triangles.

Figure 16: Filled Area plotted against Solidity. Melanoma images are represented as red
circles and benign lesion images (common and atypical nevi) as blue triangles.
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Figure 17: Solidity plotted against Convex Area. Melanoma images are represented as red
circles and benign lesion images (common and atypical nevi) as blue triangles.

In addition to the three above described geometrical features, three 16-479

bin color histograms for each dermoscopic image are computed. The first480

histogram of 16 bins represents the distribution of the normalized hue (H)481

values extracted from the original dermoscopic image I by using the binary482

image B as a mask. Each bin i, 0 ≤ i ≤ 15, contains the number of pixels483

from I∧B in the range [16∗i, 16∗i+15], normalized with respect to the total484

number of pixels of I ∧B (see Fig. 18). The second and the third histograms485

contain the values for V and S, respectively, calculated in the same way of486

the H values.487

5.2. Classification Results488

For classifying the binary masks, we decided to train four classifiers: (i)489

Naive Bayes, (ii) Adaboost, (iii) K-Nearest Neighbors (KNN), and (iv) Ran-490

dom Trees. The classifiers take as input a feature set made of the above listed491

geometrical and color properties. We selected the aforementioned classifier492

since they are preferred when the number of images in each class varies.493

We tested the proposed classification methods by adopting the implemen-
tation provided by Weka [42] and a leave-one-out approach: The classifiers
are trained by using all the images except one, which is used for testing.
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Figure 18: Three normalized color histograms are computed in the HSV color space for
each image in the data set by using the binary images generated by ASLM as masks.

Then, the process is repeated by changing the test image. The parameters
of each classifier have been automatically chosen by Weka. The metrics se-
lected for calculating the goodness of the classification process have been:
sensitivity, specificity, precision, and F-measure. Sensitivity, Specificity and
F-measure have been computed as described in Section 4, while Precision,
that represents the fraction of retrieved instances that are relevant, has been
calculated as follows:

Precision =
TP

TP + FP
(5)

The obtained results, reported in Table 7, show that by analysing the494

binary masks generated by ASLM it is possible to achieve good results in495

terms of classification. The Adaboost classifier, thanks to the characteristic496

of combining rough and moderately inaccurate rules of thumb, obtains a497

sensitivity of about 93.5% and a specificity of 87.1%. This classifier is based498

on the observation that finding many rough rules of thumb can be easier than499

finding a single one, thus obtaining a highly accurate classifier. Adaboost500

classifier is able to correctly recognize 153 over 160 benign lesions and 34501

over 40 melanoma images.502
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Table 7: Classification with Naive Bayes, KNN, Adaboost, and Random Trees classifiers.

Classifier Sensitivity Specificity Precision F-measure
KNN 0.875 0.706 0.872 0.873
Bayes 0.825 0.806 0.863 0.836
Adaboost 0.935 0.871 0.936 0.935
Random Trees 0.890 0.804 0.895 0.892

The Naive Bayes classifier considers the contribution of each feature as503

being independent of the correlation probability between the single feature504

and the rest of the considered features. Moreover, it also achieve good results505

when the number of images in each class varies. In our case, the classifier506

can correctly classify 32 over 40 images of malignant lesions, obtaining a507

sensitivity of 82.5% and a specificity of 80.6%.508

The KNN and the RT classifiers are based on the majority vote approach,509

which is influenced by the distribution of the features. For this reason, the510

feature distribution influences the classification performance. The KNN clas-511

sifier correctly classifies 26 over 40 melanoma images, with a sensitivity of512

87.5% and a specificity of 70.6%. The RT classifier presents 89.0% sensitivity513

and 80.4% specificity, with 31 over 40 melanomas correctly recognized.514

These preliminary classification results, obtained by considering only three515

geometrical features (i.e., convex area, filled area, and solidity) and three 16-516

bin color histograms, are promising and allow to consider the use of ASLM517

as a suitable tool for the development of CAD support systems for melanoma518

detection.519

6. Summary and Conclusions520

In this paper, an automatic skin lesion image segmentation method, de-521

signed to deal with multiple types of lesion shapes, size and colors, and the522

presence of hair and air/oil bubbles, has been presented. The proposed al-523

gorithm, called ASLM, is fully-automatic, it does not require any training524

stage, and it is computationally fast. ASLM uses different parameters to525

carry out the segmentation, however most of them are related to the size526

of the images in input and to the considered skin types, thus they can be527

predefined.528

ASLM has been experimentally evaluated on publicly available data from529
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the PH2 dermoscopic image database [11, 12], in order to allow a quantitative530

comparison with other existing segmentation techniques. Furthermore, the531

source code of our lesion segmentation algorithm is publicly available and we532

also provide a web service to test ASLM on-line by freely loading dermoscopic533

images.534

The quantitative analysis of the performance of our method has been535

carried out by considering four different quality metrics. The results demon-536

strate that ASLM can achieve better accuracy in extracting the portion of537

the dermoscopic image containing the skin lesion compared to six well-known538

image segmentation algorithms. Moreover, the ASLM method shows an in-539

teresting behavior when applied on the images from the PH2 database: The540

segmentation results are in very good accordance with ground truth data541

only when images of benign lesions, namely common and dysplastic nevi, are542

considered, while the segmentation accuracy decreases considerably when543

ASLM is applied to images of malignant lesions (i.e., melanomas). This be-544

havior can be explained by the the presence in malignant lesion images of545

streaks, regression areas, and blue-whitish veil. Indeed, the ASLM algorithm546

is strongly sensitive to structureless areas and homogeneous regions with a547

color different from the surrounding one and it generates a binary mask that548

presents a lesion area that is smaller than the actual one.549

The particular ASLM characteristic of being sensitive to images contain-550

ing irregular borders (which is often the case of reticular pattern and atyp-551

ical network in melanoma images), brown globules/black dots irregularly552

arranged at the periphery, pseudopods and radial streaming (bulbous and553

finger-like projections seen at the edge a lesion), inspired us to use geomet-554

rical features of the binary masks generated by ASLM as input for a binary555

classifier, obtaining promising results. In particular, the classification exper-556

iments achieved a sensitivity of 93.5% and a specificity of 87.1% on a set of557

200 dermoscopic images with a leave-one-out cross-validation.558

Although non suitable for diagnostic applications, the obtained classifi-559

cation results represents, in our opinion, a relevant starting point to further560

develop an automated analysis. Furthermore, since the segmentation errors561

made by ASLM, when dealing with melanoma images, can be visually de-562

tected, the ASLM method can be suitable to be used as part of a computer-563

aided diagnosis (CAD) system.564
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