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Abstract

We study the problem of best arm identification with risk con-
straints within the setting of fixed confidence pure exploration
bandits (PAC bandits). The goal is to stop as fast as possible,
and with high confidence return an arm whose mean is ε-close
to the best arm among those that satisfy a risk constraint,
namely their α-quantile functions are larger than a threshold
β. For this risk-sensitive bandit problem, we propose an al-
gorithm and prove an upper-bound on its sample complexity
for the general case of sub-Gaussian arms’ distributions. We
also prove a lower-bound for this general case that shows our
derived upper-bound is near-optimal (up to logarithmic fac-
tors). Both our upper and lower bounds have similar form to
the risk-neutral PAC bandits results of (Even-Dar et al. 2006)
and (Mannor and Tsitsiklis 2004), respectively. We also prove
a lower-bound for our problem when the arms’ distributions
are Gaussian, which is smaller than our general lower-bound,
but is stronger in the sense that it applies to any instance of the
(Gaussian) problem. This lower-bound is in terms of the KL
divergence and has similar behavior to the risk-neutral PAC
bandits results of (Kaufmann et al. 2016).

1 Introduction
In stochastic multi-armed bandit problem, a learner inter-
acts with a number of (possibly infinite) unknown distri-
butions (each corresponds to an arm) by selecting an arm
and sampling from its distribution (pulling an arm) at each
round. There have been two main formulations of this prob-
lem: cumulative regret and pure exploration. In cumula-
tive regret, which is the classic formulation, the goal of the
learner is to come up with a strategy to pull the arms in a
way to maximize the sum of its (expected) rewards, or in
other words, to minimize its (pseudo) regret (Robbins 1952;
Thompson 1933; 1935). In the pure exploration formula-
tion, the learner is not evaluated while interacting with the
arms, its performance is only measured when it stops and an-
swers a pre-defined question about the arms, such as which
arm is the best (has the highest mean). The problem of
best arm identification, which is probably the most popu-
lar pure exploration bandit problem (e.g., (Even-Dar et al.
2006; Audibert et al. 2010; Kalyanakrishnan et al. 2012;
Gabillon et al. 2012; Kaufmann and Kalyanakrishnan 2013;
Kaufmann et al. 2016)), has been studied in two different
settings: 1) fixed budget in which the objective is to find an
arm whose mean is ε-close to the best arm with the largest

possible confidence 1 − δ, using a fixed budget of rounds,
and 2) fixed confidence or PAC bandits in which the goal is
to stop as soon as possible and return an arm whose mean
is ε-close to the best arm with a fixed confidence 1 − δ. In
this paper, we consider the fixed confidence pure exploration
setting, where the goal is to return an arm with the highest
mean among those that satisfy a risk constraint (are not too
risky).

Throughout the long and active history of the stochastic
multi-armed bandit problem, its different formulations and
settings have provided powerful tools in various domains
including finance, energy management, online marketing,
and robotics. However, most of the developed algorithms
in this area only focus on the mean rewards of the arms
and ignore the risk imposed by the variation in these ran-
dom variables, which can be costly in many applications.
For example, consider an arm whose distribution has ex-
tremely high reward with probability 0.1 and low reward
with probability 0.9. Although this arm might have the high-
est mean among the arms, its obtained reward is low most
of the time, which may not be acceptable in many appli-
cations (an investor may go bankrupt before this distribu-
tion hits the jackpot and returns the extremely high reward).
This is why bandit researchers have recently begun to study
the so called risk-averse bandits (e.g., (Sani et al. 2012;
Maillard 2013; Yu and Nikolova 2013; Vakili and Zhao
2016)). These papers aim at finding an arm with the optimal
risk measure (instead of the one with the highest mean) in
some form, such as mean-variance (Markowitz 1952), value
at risk (VaR) (Artzner et al. 1999), expected shortfall (Rock-
afellar and Uryasev 2000), or a dynamic entropic risk mea-
sure (Maillard 2013).

In this paper, we study risk averse fixed-confidence pure
exploration bandit, where our goal is “not” to return an arm
with an optimal risk measure, but instead is to find an arm
with the highest mean (similar to the classic best arm iden-
tification setting) among those that satisfy a risk constraint,
namely their α-quantile functions are larger than a threshold
β (see Section 2 for the detailed description of our setting).
Our objective is most closely related to that in (Galichet et
al. 2013; Zimin et al. 2014; Haskell et al. 2016), although
it is important to note that all these papers study the cu-
mulative regret formulation. (Galichet et al. 2013) utilizes
the strong assumption that the arm with the highest mean



has the lowest risk. This assumption significantly simpli-
fies the problem, but can be unrealistic in many scenarios.
In contrast, we derive bounds for the general case, without
utilizing such assumption. (Zimin et al. 2014) considers a
general setting for risk-constrained multi-armed bandit opti-
mization, where the objective function might depend on both
the means and variances of the distributions. They propose
an algorithm and prove an upper-bound for its regret. Some-
what similar, but distribution independent (i.e., worst-case)
results are also obtained in (Haskell et al. 2016). Our setting
can be cast into this framework for some special cases, like
the Gaussian bandits. However, the upper-bounds in these
papers depend on some parameters that are not clear how to
be computed in specific cases, and no matching lower-bound
has been presented, which leaves the tightness of the results
unclear. In contrast, our results are shown to be tight in some
specific cases and have clear interpretation. The contribu-
tions of this paper can be summarized as

1) We propose an algorithm for our risk constraint ban-
dit problem and prove an upper-bound on its sample com-
plexity (Section 4). The algorithm is for the general case of
sub-Gaussian arms’ distributions. Our upper-bound depends
mainly on (a) ∆∗k, i.e., the gap between the mean of arm k
and the optimal arm and (b) ∆β,k, i.e., a term that quantifies
how far the risk of arm k is from the threshold β (we prop-
erly define these terms in Section 2). This upper-bound has
a form similar to the classic result on risk-neutral PAC ban-
dits (Even-Dar et al. 2006), and in fact, reproduces it when
the risk constraints are removed.

2) We prove a lower-bound on the sample complexity of
our risk constraint bandit problem (in its general case of sub-
Gaussian arms’ distributions) that shows our derived upper-
bound is near-optimal (Section 3.1). More importantly, our
lower-bound has similar form as the existing results in risk-
neutral PAC bandits (Mannor and Tsitsiklis 2004).

3) We derive a lower-bound on the sample complexity
of our risk constraint bandit problem for the special case
of Gaussian arms’ distributions (Section 3.2). This lower-
bound is expressed in terms of the Kullback-Leibler diver-
gence and in one hand is smaller than our general lower-
bound (Section 3.1), and on the other hand, is stronger in the
sense that it applies to any instance of the (Gaussian) prob-
lem. Although we do not show a matching upper-bound for
this setting, similar to our general lower-bound, our Gaus-
sian result has similar behavior (up to the risk-related pa-
rameters) to those in risk-neutral PAC bandits (Kaufmann et
al. 2016).

2 Problem Formulation
We consider a finite set of K arms K = {1, . . . ,K}, where
each arm k ∈ K is characterized by a distribution νk (ei-
ther bounded, e.g., in [0, 1], or sub-Gaussian) with unknown
mean µk and CDF Fk. We measure the risk of each arm by
its quantile function defined as

Definition 1. For an arm k ∈ K, we define its quantile func-
tion for a probability 0 < α < 1 as

ρk(α) , inf
{
x ∈ R | 1− α ≤ Fk(x)

}
.

We denote by Kβ,0 ,
{
k ∈ K | ρk(α) ≥ β

}
and

Kβ,ερ ,
{
k ∈ K | ρk(α − ερ) ≥ β

}
the set of arms whose

quantile functions for levels α and (α − ερ) are larger than
a threshold β, respectively. We call these two sets, the set of
feasible arms and the set of ερ-approximately feasible arms,
respectively. We also denote by µ∗ , maxk∈Kβ,0 µk and
µ′ , maxk∈Kβ,ερ µk the highest means in these two sets.
Note that since whenever ρ(α) ≥ β then ρ(α − ερ) ≥ β,
we have Kβ,0 ⊆ Kβ,ερ and µ∗ ≤ µ′. Finally, we define
K∗ ,

{
k ∈ Kβ,ερ | µk ≥ µ∗ − εµ

}
as the set of ερ-

approximately feasible and εµ-approximately optimal arms.
We define our problem of finding the best low-risk arm as
the problem of returning an arm that belongs to the desir-
able set K∗.

Our problem can be formalized as a game between a
stochastic bandit environment and a learner. Before the
game begins, the learner is given the risk level α, the risk
threshold β, the accuracy parameters ερ and εµ, and the con-
fidence parameter δ. At each round t = 1, 2, . . ., the learner
pulls an arm kt ∈ K and observes a reward sampled from
its distribution νkt . The rewards obtained from each arm
are i.i.d. samples from its distribution. The goal is that the
learner stops in a finite number of rounds T and returns an
arm kT that with probability at least (1− δ) belongs to K∗,
i.e., P(kT 6∈ K∗) ≤ δ. We call such a learner (εµ, ερ, δ)-
correct. The performance of the learner is then measured by
the number of rounds T either in expectation or with high
probability.

Finally, for each arm k ∈ K, we define the following no-
tions of gap that we will use them throughout the paper:

∆∗k , max(0, max
k′∈Kβ,0

µk′ − µk) , max(0, µ∗ − µk),

∆′k , max(0, max
k′∈Kβ,ερ

µk′ − µk) , max(0, µ′ − µk),

and

∆k,β , sup
{
Fk(x) | x ≤ β

}
−(1−α) = Fk(β)−(1−α).

(1)

3 Lower Bounds
In this section, we present our lower-bound results for the
general case of sub-Gaussian and the special case of Gaus-
sian arms’ distributions in Sections 3.1 and 3.2, respectively.

3.1 Lower-Bound for the General Case of
Sub-Gaussian Arms

In this section, we consider the general case that the distribu-
tions of the arms are sub-Gaussian. The sample complexity
lower-bound result is based on several hand-crafted problem
instances, and has a form similar to the classic result on risk-
neutral PAC bandits (Mannor and Tsitsiklis 2004).

Theorem 2. Fix an algorithm and the parameters 0 < εµ <
1/32, 0 < ερ < 1/16, 7/8 < α < 1, 1/16 < β < 1/8, and
0 < δ < 0.01. If the expected number of samples used by



the algorithm is

E[T ] ≤ min
k′∈K

∑
k∈{K\k′}

ln(1/9δ−1)
900 max

(
(5εµ+4∆′k)2,(16∆k,β)2

) −K
(2)

for any set of sub-Gaussian1 arms K, then the algorithm is
not (εµ, ερ, δ)-correct.

Proof. In this proof we show that if for a given algorithm the
bound in Equation (2) is violated for a specific set of arms,
then, that algorithm can’t be (εµ, ερ, δ)-correct for another
set of arms. We use the notation fk(·) for the probability
density function (p.d.f.) of arm k ∈ K.

Let’s assume that the algorithm is (εµ, ερ, δ)-correct and
its sample complexity violates the bound in Equation (2)
for some hypothesis H0 for which the arms p.d.f. satisfy
Equation (3) for some constants 1/4 < ak < 3/4 and
1/4 < bk < 3/4.

fk(x) =



0 x < 0

ak 0 ≤ x < 1/8

2− ak 1/8 ≤ x < 1/4

bk 1/4 ≤ x < 1/2

2− bk 1/2 ≤ x < 3/4

2− ak 3/4 ≤ x < 7/8

ak 7/8 ≤ x < 1

0 x ≥ 1

. (3)

Note that by Equation (3) it follows that the constant ak de-
termines whether the arm is too risky or not, and the constant
bk determines the mean reward of the arm.

Now, we define the following set of hypotheses
{H1, ...,HK}, where fHkl (x) stands for the p.d.f. of arm
l under hypothesis k. For k = 1, ..,K, we define Hk as
follows, for l 6= k, Hk coincides with the true distribution,
namely,

fHkl (x) = fl(x), l 6= k.

For l = k, we construct fHkk (x) as follows

fHkk (x) =



0 x < 0

aHkk 0 ≤ x < 1/8

2− aHkk 1/8 ≤ x < 1/4

bHkk 1/4 ≤ x < 1/2

2− bHkk 1/2 ≤ x < 3/4

2− aHkk 3/4 ≤ x < 7/8

aHkk 7/8 ≤ x < 1

0 x ≥ 1

. (4)

where aHkk = min (ak, (1− α)/β) ,and bHkk =

min
(
bk,mink′∈Kβ,ερ bk′ − 5εµ

)
.

Note that under hypothesis Hk, arm k is the only cor-
rect arm. Therefore, under hypothesis Hk, k = 1, ..,K, an

1All the arm distributions in the proof have support [0, 1].
Nonetheless, the argument can be easily extended to sub-Gaussian
arms.

(εµ, ερ, δ)-correct algorithm should return arm k with proba-
bility larger than 1−δ. We use EHk and PHk to denote the ex-
pectation and probability, respectively, under the algorithm
being considered and hypothesis Hk. For every k ∈ K let
Tk stand for the number of samples from arm k and let

t′k =

 ln
(

1
9δ

)
900

(
max

((
bk−b

Hk
k

)2
,
(
ak−a

Hk
k

)2
))
 ,

As explained before, we suppose that the algorithm is
(εµ, ερ, δ)-correct under H0, and that Equation (2) is vio-
lated, so, EH0 [Tk] < t′k for some k ∈ K. We will show that
this algorithm cannot be (εµ, ερ, δ)-correct under hypothesis
Hk. Therefore, there are some sets of arms for which every
(εµ, ερ, δ)-correct algorithm must have EH0 [Tk] ≥ t′k for all
k ∈ K.

Define the following events , for k ∈ K:

• A′k = {Tk ≤ 4t′k}. It easily follows from
4t′k
(
1− PH0 (A′k)

)
≤ EH0 [Tk] that if EH0 [Tk] ≤ t′k, then

PH0 (A′k) ≥ 3
4 .

• Let B′k stand for the event under which the chosen arm
at termination is k, and B′Ck for its complement. Since
PH0 (B′k′) >

1
2 can hold for one arm at most, it follows

that (∃k′)(∀k 6= k′)PH0
(
B′Ck

)
> 1

2 ,

• Let xki (a), xki (a), xki (b) and xki (b) be the following R.V.

xki (a) =

{
1 fk(xki ) = ak
0 fk(xki ) 6= ak

xki (a) =

{
1 fk(xki ) = 2− ak
0 fk(xki ) 6= 2− ak

xki (b) =

{
1 fk(xki ) = bk
0 fk(xki ) 6= bk

xki (b) =

{
1 fk(xki ) = 2− bk
0 fk(xki ) 6= 2− bk

(5)

where xki is the i-th sample from arm k.
• Let Ck(a), Ck(a), Ck(b), Ck(b), be events under which

for every number of samples t ≤ 4tk obtained from
arm k, the sums

∑
i≤t x

k
i (a),

∑
i≤t x

k
i (a),

∑
i≤t x

k
i (b),∑

i≤t x
k
i (b) are bounded as follows

Ck(a) ,

 max
1≤t≤4t′k

∑
i≤t

[
xki (a)− ak

4

]
< φkak


Ck(a) ,

 max
1≤t≤4t′k

∑
i≤t

[
xki (a)− 2−ak

4

]
< φk(2− ak)


Ck(b) ,

 max
1≤t≤4t′k

∑
i≤t

[
xki (b)− bk

4

]
< φkbk


Ck(b) ,

 max
1≤t≤4t′k

∑
i≤t

[
xki (b)− 2−bk

4

]
< φk(2− bk)





where φk = 8
√

2
√
t′k. Now, by using Kolmogorov’s in-

equality we bound PH0 (Ck(a)), PH0 (Ck(a)), PH0 (Ck(b))
and PH0 (Ck(b)). Kolmogorov’s inequality states that the
sum St =

∑t
i=1 zi of zero-mean iid random variables

(zi) satisfies P(max1≤t≤n |St| ≥ a) ≤ Var[Sn]
a2 (Theorem

22.4, in p. 287 of (Billingsley 1995)). By applying it to
the RVs

yki (a) = xki (a)− ak/4
yki (a) = xki (a)− (2− ak)/4

yki (b) = xki (b)− bk/4
yki (b) = xki (b)− (2− bk)/4

and by using the fact that the variance of the sum of n iid
Bernoulli R.V.s with parameter p is np(1− p), we obtain
that

PH0
(
CCk (a)

)
≤ Var(

∑4t′k
i=1 y

k
i (a))

(8
√

2ak
√
t′k)

2 ≤ 1
32 ,

PH0
(
CCk (a)

)
≤ Var(

∑4t′k
i=1 y

k
i (a))

(8
√

2(2−ak)
√
t′k)

2 ≤ 1
32 ,

PH0
(
CCk (b)

)
≤ Var(

∑4t′k
i=1 y

k
i (b))

(8
√

2bk
√
t′k)

2 ≤ 1
32 ,

PH0
(
CCk (b)

)
≤ Var(

∑4t′k
i=1 y

k
i (b))

(8
√

2(2−bk)
√
t′k)

2 ≤ 1
32 ,

(6)

where CCk (·) is the complementary of Ck(·). So,
PH0 (Ck(·)) ≥ 31

32 for a, a, b and b. Hence, PH0 (C ′k) ≥ 7
8 ,

where C ′k = Ck(a) ∩ Ck(a) ∩ Ck(b) ∩ Ck(b).

Define now the intersection event S′k = A′k ∩ B′Ck ∩ C ′k.
We have just shown that for every k 6= k′ it holds that
PH0 (A′k) ≥ 3

4 , PH0 (B′Ck ) > 1
2 , PH0 (C ′k) ≥ 7

8 , from which
it follows that

PH0 (Sk) >
1

8
for k 6= k′. (7)

Now, we let h be the history of the process (the sequence
of chosen arms and obtained rewards). For a given history,
at time t′, for every k ∈ K, the probability of choosing
the next arm is the same under H0 and under Hk. Also,
by the hypotheses definition, the reward probability is the
same, unless the chosen arm is k. Furthermore, as PHk is
absolutely continuous w.r.t. PH0 , for any history h, by their
Radon-Nikodym derivative and by the definition of the hy-
potheses it follows that

dPHk
dPH0

(h) ≥ R(a)R(a)R(b)R(b), (8)

where

R(a) =
(
aHkk /ak

)∑Tk(h)

t=1 xki (a)

,

R(a) =
(

2− aHkk /2− ak
)∑Tk(h)

t=1 xki (a)

,

R(b) =
(
bHkk /bk

)∑Tk(h)

t=1 xki (b)

,

R(b) =
(

2− bHkk /2− bk
)∑Tk(h)

t=1 xki (b)

.

Now, when the events S′k holds, it is obtained that

R(a) ≥

(
1−

ak − aHkk
ak

)(ak/4)t′k+8
√

2ak
√
t′k

,

R(a) ≥

(
1 +

ak − aHkk
2− ak

)((2−ak)/4)t′k−8
√

2(2−ak)
√
t′k

,

R(b) ≥

(
1−

bk − bHkk
bk

)(bk/4)t′k+8
√

2bk
√
t′k

,

R(b) ≥

(
1 +

bk − bHkk
2− bk

)((2−bk)/4)t′k−8
√

2(2−bk)
√
t′k

.

(9)
Then, by the fact that for ε > 0 it follows that (1−ε) 1

ε ≥ e−1

and that (1 + ε)
1
ε ≥ e1−ε, by Equation (9) and the definition

of t′k it is obtained that

R(a)R(a) ≥ e
ln(9δ)

3600(2−ak)
− 16

√
2
√
− ln(9δ)

30 , h ∈ S′k ,

R(b)R(b) ≥ e
ln(9δ)

3600(2−bk)
− 16

√
2
√
− ln(9δ)

30 , h ∈ S′k.
(10)

Also, − ln(9δ) ≥ 1.55
√
− ln(9δ), so,

R(a)R(a)R(b)R(b) ≥ 9δ, h ∈ S′k . (11)

Therefore, we obtain the following inequalities,

PHk
(
B′Ck

)
≥ PHk (S′k) = EH0

[
dPHk
dPH0

(h)I{h∈S′k}

]
≥ 9δPH0 (S′k)

≥ 9

8
δ > δ, ∀k 6= k′,

where the last inequality follows from (7).
We found that if an algorithm is (εµ, ερ, δ)-correct under

hypothesis H0 and E0[Tk] ≤ t′k for some k 6= k′, then,
under hypothesis Hk this algorithm returns an arm that is
either not εµ or not satisfies the risk condition with proba-
bility of δ or more, hence the algorithm is not (εµ, ερ, δ)-
correct. Therefore, any (εµ, ερ, δ)-correct algorithm must
satisfy E0[Tk] ≥ t′k for all of arms except possibly for one
(namely, for the one k′ for which P0

(
B′Ck′

)
≤ 1

2 , if such k′
exists).

Now, since under H0, it follows that Fk(β) = akβ it is
obtained that

ak − aHkk =
1

β
max (∆k,β , 0) . (12)

Furthermore, as

∆′k =
1

4

(
bk −min

(
bk, min

k′∈Kβ,ερ
bk′

))
,

it easily obtained that

bk − bHkk ≤ 5εµ + 4∆′k , (13)



where ∆′k = max
(

0,maxk′∈Kβ,ερ µk′ − µk
)

.
Hence, by substituting Equations (12) and (13) in the def-

inition of t′k, Equation (2) is obtained.

3.2 Lower-Bound for Gaussian Arms
Our next lower-bound result is for the scenario in which all
the arms have normal distributions, i.e., νk = N (µk, σ

2
k),

∀k ∈ K. Our lower-bound behaves similarly (up to the risk-
related parameters) to the lower-bound for the unconstrained
PAC bandits (Kaufmann et al. 2016).
Theorem 3. Let all the arms have Gaussian distributions
and δ ≤ 0.04. Then, for every (εµ, ερ, δ)-correct algorithm,
we have

E[T ] ≥ min
k′∈K

∑
k∈K\k′

ln
(

1
9δ

)
222ηk

, (14)

where ηk , kl(νk, νHk) is the Kullback-Leibler divergence
from νHk to νk, the distribution νHk = N (µHk , σ

2
Hk

) is
Gaussian with mean µHk = max(µk, 2εµ + µ′) and stan-
dard deviation σHk = min(σk, σ̃k), where σ̃k is the maxi-
mum σ for which ρ(α) ≥ β, for the Gaussian distribution
N (µHk , σ

2).

Proof. We begin the proof by recalling that the kl-
divergence of two Gaussians may be written as

ηk = kl(νk, νHk) = ln

(
σHk
σk

)
+

∆2
k + σ2

k − σ2
Hk

2σ2
Hk

,

where ∆k = µHk − µk. We now define the following set of
hypotheses {H0, H1, . . . ,HK} and denote by µHkl and σHkl
the mean and standard deviation of arm l under hypothesis
Hk. The hypothesis H0 is the true hypothesis, i.e., µH0

k =

µk and σH0

k = σk, ∀k ∈ K. Each hypothesisHk, k ∈ K, is
defined as: for each arm l 6= k, its mean and standard devia-
tion are the true ones, i.e., µHkl = µl and σHkl = σl, l 6= k,
and the mean and standard deviation of arm k, denoted by
µHk and σHk , are defined as in the statement of Theorem 3.

We have defined the set of hypotheses {Hi}Ki=1 in a way
that under each hypothesis Hk in this set, arm k be the
unique arm in K∗Hk , i.e., the set of ερ-approximately fea-
sible and εµ-approximately optimal arms. Thus, under each
hypothesis Hk, any (εµ, ερ, δ)-correct algorithm should re-
turn arm k with probability at least 1 − δ. To see this, we
should show that for any arm l 6= k, if l ∈ KHkβ,ερ , then
µl < µ∗Hk − εµ to make sure that l 6∈ K∗Hk .

µ∗Hk − εµ
(a)
= µHk − εµ

(b)
≥ µ′H0

+ 2εµ − εµ
(c)
≥ µl + εµ > µl,

(a) from the definition of µHk , we have µHk ≥ µ′H0
+ 2εµ,

and since µ′H0
≥ µ∗H0

, we have µ∗Hk = max(µ∗H0
, µHk) =

µHk ,
(b) comes from µHk ≥ µ′H0

+ 2εµ,
(c) follows from the fact that if l ∈ KHkβ,ερ , then l ∈ KH0

β,ερ
,

and thus, µl ≤ µ′H0
.

For each k ∈ K, we denote by Tk the number of rounds

at which arm k has been pulled and define tk = b ln( 1
9δ )

222ηk
c.

Now suppose that an algorithm is (εµ, ερ, δ)-correct under
hypothesis H0 and EH0 [Tk] ≤ tk for some k ∈ K. We will
prove that this algorithm cannot be (εµ, ερ, δ)-correct under
hypothesis Hk. Therefore, an (εµ, ερ, δ)-correct algorithm
must have EH0

[Tk] > tk for all k ∈ K.
To prove the above statement, we define the following

events for the arm k for which EH0
[Tk] ≤ tk.

1) E1,k = {Tk ≤ 4tk}. It is easy to show that 4tk
(
1 −

PH0
(E1,k)

)
≤ EH0

[Tk], which together with EH0
[Tk] ≤ tk,

gives us PH0
(E1,k) ≥ 3

4 .
2) E2,k is the event that the arm returned by the algorithm

is k. We denote by EC2,k the complement of this event. Since
PH0

(E2,k′) > 1
2 can hold for at most one arm, we may write

∃k′ : PH0
(EC2,k) >

1

2
, ∀k 6= k′.

3) E3,k is the event that for any number of samples 1 ≤ t ≤
4tk obtained from arm k, we have the following bound on
the sum

∑t
i=1 ζk(xk,i),

E3,k ,
{

max
1≤t≤4tk

t∑
i=1

(
ζk(xk,i)− ηk

)
< 21

√
tk max (ηk, η2

k)
}
,

where xk,i is the value of the i’th sample from arm k and2

ζk(x) , ln

(
σHk
σk

)
+

(x− µHk)
2

2σ2
Hk

− (x− µk)2

2σ2
k

.

Kolmogorov’s inequality states that the sum of zero-mean
i.i.d. random variables {zi}ni=1, i.e., St =

∑t
i=1 zi, sat-

isfies P
(

max1≤t≤n |St| ≥ a
)
≤ Var[Sn]

a2 (Theorem 22.4,
pp. 287 of (Billingsley 1995)). Applying the Kolmogorov’s
inequality when random variables {zk,i}4tki=1 are defined as
zk,i = ζ(xk,i)− ηk, we obtain3

PH0(EC3,k) ≤
Var
[∑4tk

i=1 zk,i
](

21
√
tk max (ηk, η2

k)
)2

≤
4tk × 13 max

(
ηk, η

2
k

)(
21
√
tk max (ηk, η2

k)
)2 (15)

<
1

8
, (16)

where (15) comes from the following lemma whose proof is
omitted due to space constraints.

Lemma 4. Under the conditions of Eq. (16), we have
Var
[∑4tk

i=1 zk,i
]
≤ 4tk × 13 max(ηk, η

2
k).

We showed above that under our assumptions, for any arm
k 6= k′, we have PH0

(E1,k) ≥ 3
4 , PH0

(EC2,k) > 1
2 , and

PH0
(E3,k) ≥ 7

8 . Thus, for the intersection of these events,

2Note that ζk(x) = ln
(
dPHk (x)/dPH0(x)

)
.

3It is easy to show that the random variables {zk,i}4tki=1 are zero
mean, i.e., EH0 [zk,i] = 0, and i.i.d.



i.e., Ek = E1,k ∩ EC2,k ∩ E3,k, we may write PH0(Ek) > 1/8,
for k 6= k′, because

PH0
(Ek) = PH0

(E1,k ∩ EC2,k ∩ E3,k)

= 1− PH0
(EC1,k ∩ E2,k ∩ EC3,k)

≥ 1−
[
PH0

(EC1,k) + PH0
(E2,k) + PH0

(EC3,k)
]

= 1−
[
3− PH0

(E1,k)− PH0
(EC2,k)− PH0

(E3,k)
]

>
3

4
+

1

2
+

7

8
− 2 =

1

8
. (17)

Let ht be the history of the process (the sequence of the
selected arms and observed rewards) up to and not including
time t. Note that for a given history ht, the probability of
choosing an arm k ∈ K at time t is the same under the hy-
potheses H0 and Hk. Moreover, from the definition of these
hypotheses, the reward probability at time t is the same, un-
less arm k is selected, i.e., kt = k. Finally, since all the
arm distributions are Gaussian, PHk is absolutely continu-
ous w.r.t. PH0

, and thus, for any history h, we may write
their Radon-Nikodym derivative as

dPHk
dPH0

(h) ≥ e−
∑Tk(h)

t=1 ζk(xk,t), (18)

where Tk(h) is the number of times arm k selected in h. On
the intersection event Ek, we may write

Tk(h)∑
t=1

ζk(xk,t) < 4tkηk + 21
√
tk max(ηk, η2

k) (19)

≤ 4
ln(1/9δ)

222
+ 21

√
ln(1/9δ)

222ηk
max(ηk, η2

k)

(20)

= 4
ln(1/9δ)

222
+

21

22

√
ln(1/9δ) (21)

≤ ln(1/9δ), (22)

(19) comes from the definition of E3,k and the fact that on
E1,k, we have Tk(h) ≤ 4tk; (20) follows from the definition
of tk and under the assumption that ηk ≤ ln(1/9δ)

222 . Note that
tk = 0, for ηk >

ln(1/9δ)
222 ; (21) is under the assumption that

max(ηk, η
2
k) = ηk, which means ηk ≤ 1; (22) follows from√

ln(1/9δ) ≤ ln(1/9δ), which holds for δ ≤ 0.04.
From Eq. (22), on event Ek, we have dPHk

dPH0
(h) ≥ 9δ.

Therefore, we may write the following inequalities:

PHk(EC2,k) ≥ PHk(Ek)

= EH0

[
dPHk
dPH0

(h)I{h∈Ek}

]
≥ 9δ × PH0

(Ek)

>
9

8
δ (23)

> δ (24)

for all k 6= k′, where (23) follows from Eq. (17). Recall that
under hypothesis Hk, an algorithm is (εµ, ερ, δ)-correct, if

and only if it returns arm k. Therefore, what Eq. (24) shows
is that if an algorithm is (εµ, ερ, δ)-correct under hypothe-
sis H0 and EH0

[Tk] ≤ tk for some arm k 6= k′, then un-
der hypothesis Hk this algorithm does not return arm k with
probability larger than δ, and thus, is not (εµ, ερ, δ)-correct.
As a result, any (εµ, ερ, δ)-correct algorithm must satisfy
EH0

[Tk] > tk for all the arms, except possibly for one,
namely arm k′ for which PH0

(EC2,k) ≤ 1
2 . Thus, Eq. (14)

follows.

4 Algorithm
In this section, we first propose an algorithm for the general
case of sub-Gaussian arms; see Algorithm 1 for the pseu-
docode. It adapts the arm-elimination principle to the risk-
averse setting. At each round, it pulls the most promising
arm, and keeps track of both its mean and the relevant quan-
tile estimates. These values are used to discard an arm when
it turns out to be sub-optimal or violating the risk constraint,
and to decide if an arm is a good solution to the problem.

Then in Theorem 5, we show that the proposed algorithm
satisfies the PAC constraints—i.e., it is (εµ, ερ, δ)-correct for
any εµ, ερ, δ ∈ (0, 1)—, and derive an upper-bound on its
sample complexity. For σ-subgaussian arms, this bound is
expressed in terms of the constants

Ck , min

[(
2σ
∆∗k

)2

,
(

2
max{0,∆β,k}

)2

,

max

{(
2σ
εµ

)2

,
(

2
max{0,ερ−∆β,k}

)2
}]

, (25)

k ∈ K, which characterize the complexity of concluding one
of the followings: 1) the arm violates the risk constraint or its
mean is sub-optimal (bad arm), or 2) the arm nearly satisfies
both conditions (good arm).

Our upper-bound nearly matches (up to logarithmic fac-
tors) our general lower-bound reported in Section 3.1, and is
reminiscent (up to the risk-related parameters) to the results
in unconstrained PAC bandits (Even-Dar et al. 2006), with
more finely tuned complexity term that matches our risk
constraint. A slight difference in the nature of our upper and
lower bounds is that in the upper-bound, µk is compared to
maxk′∈Kβ,0 µk′ , whereas in the lower-bound, it is compared
to the potentially larger quantity maxk′∈Kβ,ερ µk′ . This is
due to the nature of relaxation, which is essential to keep
the requirements at a realistic level, and is thus unavoidable.
However, this difference vanishes as ερ approaches 0.

Before we describe and analyze the algorithm, we need
to introduce a number of notations. Let Nk,t denote the
set of samples drawn from arm k in the first t rounds
and Nk,t = |Nk,t| denote its cardinality. Let µ̂k,t =

1
Nk,t

∑
X∈Nk,t X , F̂k,t(x) = 1

Nk,t

∑
X∈Nk,t 1(X ≤ x),

and ρ̂k,t(τ) = inf
{
x ∈ R : 1 − τ ≤ F̂k,t(x)

}
denote

the empirical mean, CDF, and quantile function of arm k
at round t, where 1( · ) is the indicator function. The accu-
racy of these estimates are quantified using confidence terms

fµ(N) =
√

2σ2

N ln
(

6HK
δ

)
and fρ(N) =

√
2
N ln 6HK

δ .



Algorithm 1 RiskAverse-UCB-m-best
1: Input: quantile α ∈ (0, 1), risk threshold β ∈ R, ac-

curacy parameters εµ, ερ ∈ (0, 1) and confidence level
δ ∈ (0, 1)

2: for each k ∈ K do
3: sample arm k once, and update setsNk, counters Nk,

and estimates ρ̂k and µ̂k accordingly
4: Set t = |K| = K and H as in Theorem 5
5: repeat
6: Set K̂t =

{
k : ρ̂k,t

(
α− fρ(Nk,t)

)
≥ β

}
7: Select an optimistic arm

k†t+1 ∈ arg max
k∈K̂t

(
µ̂k,t + fµ(Nk,t)

)
8: Draw a sample from the selected arm k†t+1
9: Set t = t+ 1

10: Update sets Nk,t, counters Nk,t, and estimates ρ̂k,t
and µ̂k,t, accordingly

11: until
([
fµ(Nk†t ,t

) ≤ εµ/2 and

ρ̂k†t ,t
(
α− ερ + fρ(Nk†t ,t

)
)
≥ β

]
or t ≥ H

)
12: return k†t

Theorem 5. Let K be a collection of K σ-sub-Gaussian
arms for a σ > 0; εµ, ερ ∈ (0, 1) be the accuracy param-
eters; δ ∈ (0, 1) be the confidence level; α ∈ (0, 1) be
the quantile; and β ∈ R be the risk threshold. We define
H , 3K

(
2σ2

ε2µ
+ 4

ε2ρ

)
ln
[

6K
δ K

(
2σ2

ε2µ
+ 4

ε2ρ

)]
. Then, with

probability at least (1 − δ), Algorithm 1 outputs an arm
k† ∈ K with µk† ≥ µ∗ − ερ and ρk†(α − ερ) ≥ β af-
ter drawing at most

[
Ck ln

(
6HK
δ

)]
samples from each arm

k ∈ K, where Ck is defined as in (25). In particular, Algo-
rithm 1 is (εµ, ερ, δ)-correct with sample complexity at most∑
k∈K Ck ln

[
6KH
δ

]
.

Proof. We start the proof by defining events

Eρ,1 =
{
∀1 ≤ t ≤ H, ∀k ∈ K, ρ̂k,t

(
α− fρ(Nk,t)

)
≤ ρk

(
α− 2fρ(Nk,t)

)
ρ(Nk,t)

}
,

Eρ,2 =
{
∀1 ≤ t ≤ H, ∀k ∈K, ρ̂k,t

(
α− ερ + fρ(Nk,t)

)
≥ ρk

(
α− ερ + 2fρ(Nk,t)

)}
,

Eρ,3 =
{
∀1 ≤ t ≤ H, ∀k ∈ K,

ρ̂k,t
(
α− fρ(Nk,t)

)
≥ ρk(α)

}
and

Eρ,4 =
{
∀1 ≤ t ≤ H, ∀k ∈ K,

ρ̂k,t
(
α− ε+ fρ(Nk,t)

)
≤ ρk(α− ε)

}
,

and events Eρ =
⋃4
i=1 Eρ,i and Eµ =

{∀1 ≤ t ≤ H, ∀k ∈ K, |µ̂k,t − µk| ≤ fµ(Nk,t)}. Note
that Eµ is the event that all the mean estimates are within
the confidence interval in the first H rounds and Eρ is
the same for the α-quantile estimates. Using the Chernoff
bound for sub-Gaussian random variables and Lemma 6
(reported at the end of this section), we can show that
P[Eµ∩Eρ] ≥ 1−δ. From now on in this proof, we condition
on the event Eµ ∩ Eρ.

Let us define k∗ = argmaxk∈Kβ,0 µk. In the case that the
algorithm terminates before round H , the correctness fol-
lows, because

(i) On the event Eρ,3, k ∈ K̂t for all arm k with ρk(α) ≥
β, and in particular, k∗ ∈ K̂t, for all 1 ≤ t ≤ H .

(ii) On the event Eµ, the algorithm only terminates be-
fore round H , if the optimistic arm ρ̂k†t ,t

satisfies µk†t + ε ≥
µk†t

+ 2fµ(Nk†t ,t
) ≥ µ̂k†t ,t

+ fµ(Nk†t ,t
), that according

to the selection rule, also upper bounds maxk∈Kt µ̂k,t +
fµ(Nk,t) ≥ maxk∈Kt µk, and thus, we have µk†t + ε ≥ µ∗,

since k∗ ∈ K̂t.
(iii) The algorithm only terminates before roundH if β ≤

ρ̂k†t ,t
(
α− ερ + fρ(Nk†t ,t

)
)
, which on the event Eρ,4 implies

that k†t satisfies the relaxed risk condition ρk†t (α− ερ) ≥ β.
To show that the claimed sample complexity also holds

on the event Eµ ∩ Eρ, we first analyze several not necessar-
ily disjoint cases, and then combine them to obtain the final
result.

Case 1) For any arm with ρk(α) < β, it holds that

∀1 ≤ t ≤ H, fρ(Nk,t − 1) ≥ ∆k,β/2 , (26)

which means if arm k is sampled N times, for N big
enough to satisfy fρ(N) < ∆k,β/2, then its quantile esti-
mate clearly shows that it violates the risk constraint and gets
discarded. In fact, assume that fρ(Nk,t) < ∆k,β/2 holds for
some 1 ≤ t ≤ H (note that ∆k,β ≥ 0 when ρk(α) < β).
Then, on the event Eρ,1, we have ρ̂k,t

(
α − fρ(Nk,t)

)
≤

ρk
(
α−2fρ(Nk,t)

)
≤ ρk(α−∆k,β) = inf

{
x ∈ R : 1−α+

∆k,β ≤ Fk(x)
}

= inf
{
x ∈ R : Fk(β) ≤ Fk(x)

}
≤ β, and

thus, arm k is discarded from K̂t for the rest of the rounds.
Case 2) For any arm with β ≤ ρk(α− ερ), it holds that

∀1 ≤ t ≤ H,
(
fρ(Nk,t) ≥ ερ/2−∆k,β/2

or ρ̂k,t(α− ερ + fρ(Nk,t)) ≥ β
)
,

which means if arm k is sampled N times for N big enough
to satisfy fρ(N) < ερ/2−∆k,β/2, then its quantile estimate
clearly shows that arm k satisfies the relaxed risk constraint.
To see why this is true, note that fρ(Nk,t) < ερ/2−∆k,β/2
implies 1 − α + (ερ − 2fρ(Nk,t)) > (1 − α) + ∆k,β =
Fk(β), and thus, on the event Eρ,2, we have ρ̂k,t

(
α − ερ +

fρ(Nk,t)
)
≥ ρk

(
α−ερ+2fρ(Nk,t)

)
= inf

{
x : 1−

(
α−ερ+

2fρ(Nk,t)
)
≤ Fk(x)

}
> β (note that in this case ∆β,k ≤

ερ).
Case 3) For any arm k with µk ≤ µ∗, it holds that

∀1 ≤ t ≤ H, fµ(Nk,t − 1) > (µ∗ − µk)/2 , (27)



which means if arm k is sampled large enough time to have
fµ(Nk,t) < (1/2)(µ∗ − µk), it is concluded that its mean is
not big enough, and the algorithm does not sample it any-
more. In fact, assume that fµ(Nk,t) < (1/2)(µ∗ − µk)
for some 1 ≤ t ≤ H . Then, on event Eµ, we have
µ̂k,t + fµ(Nk,t) ≤ µk + 2fµ(Nk,t) < µ∗. Therefore, as
µ̂k∗,t′ + fµ(Nk∗,t′) ≥ µ∗ for each 1 ≤ t′ ≤ H , according
to the selection rule, arm k won’t be sampled for the rest of
the rounds.

Case 4) For any arm k with µk > µ∗ and ∀1 ≤ t ≤
H, fµ(Nk,t) > ∆∗k, we have that ∆∗k = 0.

Case 5) For any arm k with ρk(α) ≥ β and ∀1 ≤ t ≤
H, fρ(Nk,t) > ∆β,k, we have that ∆β,k ≤ 0.

Case 6) For any arm k with µk > µ∗ − εµ, if at round
t the selected arm k = k†t satisfies 2fµ(Nk,t) < ερ, then
ρ̂k,t(α − ερ + fρ(Nk,t)) < β or the algorithm terminates
immediately and returns arm k.

We conclude the proof by investigating the following
cases:

Case (a) An arm k with both µ∗ − ε ≤ µk and β ≤
ρ(α− ερ) is not sampled more than

min

[(
2σ
∆∗k

)2

,
(

2
max{0,∆β,k}

)2

,

max

{(
2σ
εµ

)2

,
(

2
ερ−∆β,k

)2
}]

ln
(

6HK
δ

)
times. Note also that in this case 0 ≤ ∆β,k ≤ ερ, and
thus, ερ − ∆β,k = max{0, ερ − ∆β,k}, which implies that
Ck ln(6KH/δ) is indeed an upper-bound, and also that
Ck ≤ 2σ/ε2µ + 4/ε2ρ.
Case (b) An arm k with ρk(α − ερ) < β can-
not be the output if the algorithm terminates be-
fore round H . Besides, it is sampled at most

min

{(
2σ
∆∗k

)2

,
(

2
∆β,k

)2
}

ln
(

6HK
δ

)
times. However,

for all these arms, it holds that ∆β,k ≥ ερ, and thus, it also

holds that max

{(
2σ
εµ

)2

,
(

2
max{0,ερ−∆β,k}

)2
}

= ∞. As

a result, Ck ln(6KH/δ) is indeed an upper-bound. It also
follows that Ck ≤ 2σ/ε2µ + 4/ε2ρ.
Case (c) An arm k with µk < µ∗−εµ cannot be the output if
the algorithm terminates before round H . Besides, it is sam-

pled at most min

{(
2σ
∆∗k

)2

,
(

2
max{0,∆β,k}

)2
}

ln
(

6HK
δ

)
times. Note that µk < µ∗ − εµ implies ∆∗k ≥ εµ, and thus,(

2σ
∆∗k

)2

≤ max

{(
2σ
εµ

)2

,
(

2
max{0,ερ−∆β,k}

)2
}

, implies

that Ck ln(6KH/δ) is indeed an upper-bound. It also
follows that Ck ≤ 2σ/ε2µ + 4/ε2ρ.

All that left is to show that the algorithm termi-
nates before round H . This follows from the fact that
Ck is upper-bounded by max{ε−1

µ , ε−1
ρ } due to the

claims given in the three cases (a)-(c), and the fact that
H ≥ K max{ε−1

µ , ε−1
ρ } ln( 6HK

δ ) because 3c ln(cr) =

c ln(c3r3) ≥ c ln (r[3c ln(cr)]), for any c, r > 0 such that
cr ≥ 6.

Lemma 6. For any t ≥ 1, k ∈ K, and τ ∈ (0, 1), it holds
that P

(
ρk(τ) < ρ̂k,t(τ + ∆)

)
≤ exp(∆2Nk,t/2), for ∆ ∈

(0, 1−τ), and P
(
ρk(τ) > ρ̂k,t(τ −∆)

)
≤ exp(∆2Nk,t/2),

for ∆ ∈ (0, τ).

The proof is based on the Chernoff bound and is omitted
due to space constraints,

5 Discussion and Concluding Remarks
As discussed in the paper, our lower-bound for the case of
Gaussian arms is stronger than that for the general case in the
sense that it applies to any instance of the Gaussian prob-
lem, whereas the general lower-bound only applies to spe-
cial problem instances. Although it would be nice to have a
lower-bound in the general case that applies to all problem
instances, it is not even clear what kind of interdependency
of the distributions we should expect to appear in such a
bound. This is in contrast to the Gaussian case, where the
nice underlying structure provides easy to exploit relations.

Regarding the tightness of our results, it should be noted
that the classic lower and upper bounds for risk-neutral ban-
dits that our results are based on (Even-Dar et al. 2006;
Mannor and Tsitsiklis 2004), are known to be suboptimal.
In particular, it was shown for a median-elimination-based
method that the log factor in the sample complexity upper
bound can be replaced by a log log factor (Karnin et al.
2013). Later, a matching lower bound was presented for a
special case (Jamieson et al. 2014). The same paper also
proposed a novel, index-based algorithm with much tighter
confidence bound sequences. This was also shown to re-
sult in an improved empirical performance. Subsequently,
the distance-based ∆ terms in the sample complexity upper
bound were also shown to be replaceable by the so called
Chernoff-information, as demonstrated by another index-
based method (Tánczos et al. 2017). In order to obtain sim-
ilar results in the risk-averse setting, one should derive first
similar confidence bounds for the risk measure. However, it
should also be noted that the above mentioned index-based
methods perform best arm identification only, and have no
adaptation for the relaxed problem yet that can halt early
when a near-optimal solution is found.

Finally, an important novelty that the risk-averse setup of-
fers is that it makes sense to work with linear (more pre-
cisely, convex) combinations of the arms. In the classical
bandit setting such a relaxation did not provide any bene-
fit; however, in our risk-constrained formulation, it is quite
possible that an arm that is too risky by itself, can be an in-
tegral part of the optimal solution, if its mean reward is high
enough. This is related to the Markowitz model in the case
of mean-variance optimization.
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aversion in multi-armed bandits. In Advances in Neural In-
formation Processing Systems, pages 3284–3292, 2012.
Ervin Tánczos, Robert Nowak, and Bob Mankoff. A kl-
lucb algorithm for large-scale crowdsourcing. In I. Guyon,
U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vish-
wanathan, and R. Garnett, editors, Advances in Neural In-
formation Processing Systems 30, pages 5896–5905. Curran
Associates, Inc., 2017.
William R. Thompson. On the likelihood that one unknown
probability exceeds another in view of the evidence of two
samples. Biometrika, 25:285–294, 1933.
William R. Thompson. On the theory of apportionment.
American Journal of Mathematics, 57(2):450–456, 1935.
S. Vakili and Q. Zhao. Risk-averse multi-armed bandit prob-
lems under mean-variance measure. IEEE Journal of Se-
lected Topics in Signal Processing, 10(6):1093–1111, Sept
2016.
Jia Yuan Yu and Evdokia Nikolova. Sample complexity
of risk-averse bandit-arm selection. In Proceedings of the
Twenty-Third International Joint Conference on Artificial
Intelligence, pages 2576–2582, 2013.
Alexander Zimin, Rasmus Ibsen-Jensen, and Krishnendu
Chatterjee. Generalized risk-aversion in stochastic multi-
armed bandits. CoRR, abs/1405.0833, 2014.


