Approssimazione per angoli piccoli

L'approssimazione per angoli piccoli consiste nel semplificare le funzioni trigonometriche di base a funzioni più semplici quando l'angolo è molto piccolo e tende a zero. L'approssimazione si basa sugli sviluppi di Taylor-MacLaurin troncati al secondo ordine. Si ha:[1][2]

Comportamento simile di alcune funzioni (trigonometriche) per x tendente a 0.

dove è l'angolo in radianti.

Questa approssimazione è utile in molti ambiti di fisica e di ingegneria, tra cui meccanica, elettromagnetismo, ottica, e così via.

Spiegazione

modifica

Grafica

modifica

Geometrica

modifica
 

La parte in rosso,  , è la differenza tra l'ipotenusa   e il cateto   Questa differenza è piccola e, poiché  , si ha che il coseno è molto vicino a 1 e più precisamente

 

L'altro cateto,  , è circa uguale all'arco in blu,  . Per la definizione di radiante, si ha

 

Poiché inoltre

 

e dalla figura è facile notare come   e  , si giunge dunque alla seguente conclusione.

 

Algebrica

modifica
 
Approssimazione per piccoli angoli della funzione seno.

Gli sviluppi in serie di MacLaurin delle funzioni trigonometriche sono i seguenti:[3]

 
 
 

Nel primo caso, si nota che già il secondo termine decresce come il cubo del primo; quindi per valori abbastanza vicini a zero, come 0,01, il secondo termine e i successivi diventano molto piccoli, quindi trascurabili:

 

Pertanto, il seno di un angolo piccolo può essere approssimato al primo termine, cioè all'angolo stesso. Lo stesso ragionamento può essere applicato anche al coseno e alla tangente; ne segue che il coseno di un angolo piccolo è circa 1 e la tangente, rapporto tra seno e coseno, per angoli piccoli si comporta come il rapporto tra un angolo e 1; in conclusione, si hanno le seguenti equivalenze asintotiche:

 

Analisi

modifica

Si può dimostrare, con il teorema del confronto, che[4]

 

Allora si può dire che, per  :

 

Le precedenti approssimazioni si possono esprimere anche come

 

Errori nell'approssimazione

modifica
 
Figura 3. Grafico degli errori relativi dell'approssimazione per angoli piccoli.

La figura 3 mostra gli errori relativi dovuti a questa approssimazione. Gli angoli ai quali l'errore relativo supera l'1% sono i seguenti:

 

Utilizzi specifici

modifica

Moto di un pendolo

modifica

L'approssimazione del seno consente di semplificare il calcolo del periodo di un pendolo semplice. Ciò rende il moto del pendolo un moto armonico semplice.

  1. ^ (EN) Charles H. Holbrow e al., Modern Introductory Physics, 2ª ed., Springer Science & Business Media, 2010, pp. 30-32, ISBN 0387790799.
  2. ^ (EN) Micheal Plesha et al., Engineering Mechanics: Statics and Dynamics, 2ª ed., McGraw-Hill Higher Education, 2012, p. 12, ISBN 0077570618.
  3. ^ (EN) Mary L. Boas, Mathematical Methods in the Physical Sciences, Wiley, 2006, p. 26, ISBN 978-0-471-19826-0.
  4. ^ (EN) Ron Larson et al., Calculus of a Single Variable: Early Trascendental Functions, 4ª ed., Cengage Learning, 2006, p. 85, ISBN 0618606254.

Bibliografia

modifica
  • Tom Apostol, Calcolo 1, 9ª ed., Bollati Boringhieri, 1987 [1977], ISBN 88-339-5033-6.

Collegamenti esterni

modifica
  Portale Matematica: accedi alle voci di Wikipedia che trattano di matematica
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy