Osmosi

diffusione del solvente attraverso una membrana semipermeabile

In chimica, il termine osmosi indica la diffusione del solvente (ad esempio acqua) attraverso una membrana semipermeabile (che fa passare solvente e non soluto). Il movimento del solvente avviene in modo da equilibrare la concentrazione nei due compartimenti, ovvero il solvente passa dal compartimento a minore concentrazione di soluto verso una regione a maggior concentrazione di soluto, quindi a differenza di quanto accade nel processo di osmosi inversa, dove invece il solvente passa dal compartimento a maggiore concentrazione di soluto verso una regione a minore concentrazione di soluto.

Membrana semipermeabile

L'osmosi è un processo fisico spontaneo, vale a dire senza apporto esterno di energia, che tende a diluire la soluzione più concentrata, e a ridurre la differenza di concentrazione. Si tratta di un fenomeno importante in biologia, dove interviene in alcuni processi di trasporto passivo attraverso membrane biologiche.

Pressione osmotica

modifica
  Lo stesso argomento in dettaglio: Pressione osmotica.

Ogni soluzione possiede una pressione osmotica che è direttamente proporzionale alla sua molarità. Quando sui due lati della membrana si trovano soluzioni a diversa concentrazione, le molecole di solvente si muovono in senso opposto alla differenza di pressione osmotica, dalla soluzione a concentrazione di soluto minore (ipotonica) verso la soluzione con concentrazione di soluto maggiore (ipertonica), fino a quando le concentrazioni di soluto nelle due soluzioni diventano identiche (isotoniche) e i due potenziali chimici si equivalgono. Il meccanismo attraverso cui avviene è ritenuto legato alle interazioni delle molecole del soluto con la membrana, i cui urti trasferirebbero momento di allontanamento dalla membrana alle molecole del solvente.[1]

Osmosi inversa

modifica
  Lo stesso argomento in dettaglio: Osmosi inversa.

L'osmosi inversa è invece il fenomeno che si verifica quando si applica, alla superficie di una membrana semipermeabile che separa due soluzioni di concentrazione diversa, una differenza di pressione contraria alla pressione osmotica e a essa superiore, per cui il flusso del solvente avviene dalla soluzione più concentrata a quella più diluita, aumentando così ulteriormente la differenza di concentrazione tra i due compartimenti. L'osmosi inversa è una delle tecnologie usate per rendere potabile l'acqua marina e purificare le acque degli acquedotti dal rubinetto di casa.

Elettro-osmosi

modifica

L'elettrosomosi è il fenomeno per il quale si genera un flusso di materia attraverso una membrana quando il fluido è sottoposto a una differenza di potenziale. Questo effetto diventa tanto più apprezzabile quanto più diminuiscono le dimensioni dei canali di passaggio del fluido. Questo effetto è fondamentale in alcune tecniche di separazione chimica come l'elettroforesi capillare.[2]

Termo-osmosi

modifica

La termo osmosi è il fenomeno per il quale si genera un flusso di materia attraverso una membrana quando viene applicato al sistema un gradiente termico.[3][4]

Conservazione degli alimenti

modifica
  Lo stesso argomento in dettaglio: Trasformazione agroalimentare.

L'osmosi costituisce un importante fattore di protezione degli alimenti contro le alterazioni microbiche. Infatti, in un ambiente ad alta pressione osmotica, è bassa la quantità di acqua biodisponibile e pochi microorganismi sono in grado di crescervi. Spesso l'osmosi interviene anche nella preparazione di questi alimenti.

Alcuni metodi di conservazione dei cibi che sfruttano l'effetto osmotico, sia a livello industriale che in ambito casalingo, sono la salatura, la salamoia.

Anche le marmellate e gli alimenti canditi, per la loro alta concentrazione di zucchero, presentano un'alta pressione osmotica che protegge questi alimenti dalla maggior parte delle degradazioni microbiche.

Negli alimenti essiccati o affumicati, si ottiene un ambiente con un'alta pressione osmotica facendo evaporare l'acqua originariamente presente.

  1. ^ Philip Nelson, Biological Physics, W.H. Freeman, 16 dicembre 2013, ISBN 978-0-7167-9897-2.
  2. ^ (EN) Christian J. C. Biscombe, The Discovery of Electrokinetic Phenomena: Setting the Record Straight, in Angewandte Chemie International Edition, vol. 56, n. 29, 10 luglio 2017, pp. 8338–8340, DOI:10.1002/anie.201608536. URL consultato il 6 luglio 2023.
  3. ^ (EN) M. Essalhi, N. T. Hassan Kiadeh e M. C. García-Payo, 10 - Thermo-osmosis, Elsevier, 1º gennaio 2021, pp. 279–312, DOI:10.1016/b978-0-12-821016-1.00001-2, ISBN 978-0-12-821016-1. URL consultato il 6 luglio 2023.
  4. ^ (EN) V. María Barragán e Signe Kjelstrup, Thermo-osmosis in Membrane Systems: A Review, in Journal of Non-Equilibrium Thermodynamics, vol. 42, n. 3, 1º luglio 2017, pp. 217–236, DOI:10.1515/jnet-2016-0088. URL consultato il 6 luglio 2023.

Voci correlate

modifica

Altri progetti

modifica

Collegamenti esterni

modifica
Controllo di autoritàThesaurus BNCF 25508 · LCCN (ENsh85095934 · GND (DE4043973-2 · BNF (FRcb119782463 (data) · J9U (ENHE987007553480705171 · NDL (ENJA00571168
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy