Vai al contenuto

Onda stazionaria

Da Wikipedia, l'enciclopedia libera.
(Reindirizzamento da Onde stazionarie)
Un'onda stazionaria come interferenza di due onde contrarie della stessa frequenza.

Un'onda stazionaria è una perturbazione periodica di un mezzo materiale, le cui oscillazioni sono limitate nello spazio: in pratica non c'è propagazione lungo una certa direzione nello spazio, ma solo un'oscillazione nel tempo. Pertanto, è soltanto il profilo dell'onda stazionaria a muoversi, oscillando "su e giù" in alcuni punti. I punti ove l'onda raggiunge ampiezza massima sono detti antinodi (o ventri), i punti che invece rimangono fissi (ove l'onda è sempre nulla) sono detti nodi.[1]

All'equazione d'onda unidimensionale devono essere fornite opportune condizioni al contorno, che limitano il moto. Se è lo spazio di propagazione dell'onda, l'equazione diventa:

alla quale imponiamo le condizioni al contorno: . La soluzione più generale è della forma:

Le onde stazionare possono essere viste, in base alla prima formula di Werner, come l'interferenza tra un'onda sinusoidale progressiva e una regressiva della stessa frequenza e di ampiezza dimezzata, come illustrato in figura:

Una caratteristica delle onde stazionarie è che ad esse non è associato alcun trasporto di energia, corrispondentemente al fatto che l'onda non si propaga nello spazio.

Illustrazione pratica del concetto

[modifica | modifica wikitesto]
Onde stazionarie in una corda

Un esempio di onda stazionaria è la corda di una chitarra, cioè una corda fissata a due estremi e messa in vibrazione. Dopo una fase transitoria, nella corda in vibrazione si sovrappongono, punto per punto, due "movimenti". Il primo movimento si verifica spostando la corda verso l'alto o verso il basso (lungo un asse perpendicolare alla corda), per esempio pizzicandola come nel caso di una chitarra. Poiché la corda, elasticamente, tende a tornare nella posizione iniziale, questo spostamento perpendicolare si propaga per tutta la lunghezza della corda, finché giunge ad un estremo. Il "secondo movimento", allora, rimbalza e torna indietro. Intanto, però, la corda possiede ancora il primo movimento, per inerzia; allora, lo spostamento che "ritorna" si sovrappone a quello che "arriva". Ecco che due onde uguali si propagano lungo la corda in sensi opposti. Sovrapponendosi, esse possono produrre un'interferenza distruttiva, fino ad annullarsi, oppure costruttiva, fino a raggiungere un'ampiezza di oscillazione massima.

Le due onde hanno caratteristiche (periodo, lunghezza d'onda…) identiche. A causa della loro uguaglianza e degli estremi della corda fissi, esse si sovrappongono in un modo ben determinato: allora i punti in cui si annullano sono sempre gli stessi e allo stesso modo risultano stabiliti anche quelli in cui l'ampiezza può risultare massima. La forma d'onda che si ottiene, cioè l'onda risultante, non si propaga verso l'uno o l'altro estremo: si è ottenuta un'onda stazionaria[1].

Un altro esempio è quello di un secchio (o una vasca) pieno d'acqua, dove un'onda incidente riflette contro la superficie verticale del bordo, provocando un'onda riflessa: questa non si può distinguere da quella incidente, perché (come prima) sono sovrapposte ed hanno i nodi in comune.

Onde luminose stazionarie

[modifica | modifica wikitesto]

Nel 1890 il fisico tedesco Otto Wiener scopre sperimentalmente che la luce può formare onde stazionarie. A partire dalle esperienze del 1888 di Hertz, egli riesce ad imprimere gli antinodi luminosi su di una sottilissima pellicola fotografica, posta fra una sorgente luminosa e uno specchio metallico. Suppone poi che, all'interno della teoria elettromagnetica ancora in evoluzione in quegli anni, essi siano gli antinodi del campo elettromagnetico: campo elettrico e campo magnetico, infatti, in un'onda luminosa stazionaria risultano sfasati di mezza lunghezza d'onda l'uno con l'altro, a causa dei diversi comportamenti nella riflessione[1].

Questo esperimento si trovò dunque in accordo con i risultati di Hertz e fu, così, dimostrato che le radiazioni elettromagnetiche provenienti dai circuiti (dipolo hertziano) e la luce hanno gli stessi comportamenti (rifrazione, riflessione, formazione di onde stazionarie): la luce è una radiazione elettromagnetica.

L'onda elettromagnetica stazionaria assume particolare importanza pratica nelle radio trasmissioni, in quanto il rapporto di onda stazionaria è una misura del disaccoppiamento di impedenza tra la linea di trasmissione ed il suo carico elettrico. Quanto più questo rapporto si discosta da 1 (valore ideale), tanta più energia erogata dal trasmettitore viene riflessa indietro, piuttosto che trasmessa, con la possibilità concreta di danneggiare irrimediabilmente il trasmettitore stesso.

In idrodinamica un liquido può configurarsi con onde di pressione stazionarie (come si vede per esempio sul ciclone esagonale di Saturno).

  1. ^ a b c Enrico Perghem, Studiare la luce quando è ferma; in (PDF) gratuito: [1]. Linx Magazine, Pearson Paravia Bruno Mondadori. 18 settembre 2009.
  • (EN) David T. Blackstock, Fundamentals of Physical Acoustics, Wiley–IEEE, 2000, ISBN 0-471-31979-1.
  • (EN) M.B. Bauza, R.J Hocken, S.T Smith, S.C Woody,, The development of a virtual probe tip with application to high aspect ratio microscale features, Rev. Sci Instrum, 76 (9) 095112, 2005.

Voci correlate

[modifica | modifica wikitesto]

Altri progetti

[modifica | modifica wikitesto]

Collegamenti esterni

[modifica | modifica wikitesto]
Controllo di autoritàThesaurus BNCF 37562 · LCCN (ENsh85127322 · GND (DE4183006-4 · J9U (ENHE987007531602505171
  Portale Elettromagnetismo: accedi alle voci di Wikipedia che trattano di elettromagnetismo
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy