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Journal de Théorie des Nombres
de Bordeaux 30 (2018), 609-635

Short intervals asymptotic formulae for binary
problems with prime powers

par ALESSANDRO LANGUASCO et ALESSANDRO ZACCAGNINI

RESUME. Nous montrons des formules asymptotiques dans des intervalles
courts pour le nombre moyen de représentations des entiers de la forme n =
pfl —i—ng et n = p’* + m®, ou 41,0, sont des entiers fixés, p,p1, p2 sont des
nombres premiers et m est un entier.

ABSTRACT. We prove results about the asymptotic formulae in short in-
tervals for the average number of representations of integers of the forms
n= p? + pg"’ and n = p* + m?2, where /1, (5 are fixed integers, p,p;,ps are
prime numbers and m is an integer.

1. Introduction

Let N be a sufficiently large integer and 1 < H < N. In our recent pa-
pers [5] and [7] we provided suitable asymptotic formulae in short intervals
for the number of representation of an integer n as a sum of a prime and a
prime square, as a sum of a prime and a square, as the sum of two prime
squares or as a sum of a prime square and a square.

In this paper we generalise the approach already used there to look for
the asymptotic formulae for more difficult binary problems. To be able to
formulate or statements in a precise way we need more definitions. Let
l1,45 > 2 be integers,

11 D(1/6)T(1/6s)

1.1 Ai=—+—-<1 d l1,03) := = c(ly,01).
( ) + = an C( 1, 2) £1€2F()\) C( 2, 1)

b b

Using these notations we can say that our results in [5] and [7] are about

A =3/2 and A = 1 while here we are interested in the case A < 1. We also

recall that Suzuki [11, 12] has recently sharpened our results in [7] for the
case A\ = 3/2.
Finally let

1
log N \3
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2010 Mathematics Subject Classification. 11P32, 11P55, 11P05.
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where d is a real parameter (positive or negative) chosen according to need,
and

N+H
Z 7“417@2 ), where r?lb(n): Z log p1 log po.
n=N-+1

pil +pg2 —n
N/A<p{t, p2 <N

Due to the available estimates on primes in almost all short intervals and
due to A < 1, we are unconditionally able to get a non-trivial result only
for 01,05 € {2,3}, {1 4+ 2 < 5; in fact, since for this additive problem we
can interchange the role of the prime powers involved, such a condition is
equivalent to ¢; = 2,05 € {2,3}.

Theorem 1.1. Let N > 2, 1 < H < N be integers. Moreover let {1 =
2,0y € {2,3}. Then, for every e > 0, there exists C = C(g) > 0 such that

N+H
> 184, (n) = ¢(2, L) HN ! 4+ Oy, (HN AN, C(e))),
n=N+1

3_ 11
uniformly for N2 6% < H < N'=¢ where \ and c(2,¢3) are defined
n (1.1).
Clearly for 5 = 2 Theorem 1.1 coincides with the result proved in [5],

but for /5 = 3 it is new.
Assuming the Riemann Hypothesis (RH) holds and taking

(1.3) R} ;,(n)= > logpilogps,
pfl +pe2:n
we get a non-trivial result for ZN N4l RZ1 ¢,(n) uniformly for every 2 <

{1 < s and H in some range. Let further
(1.4)

4
a(ly,lo) = :

1 34; 3
A B——— 0, = d b(ly) = ——— =, 3.
2001 — 1)l © ( ’2] and b(f) = 575775 € <2’ ]
We use throughout the paper the convenient notation f = oco(g) for g =

o (f)-

Theorem 1.2. Let N > 2,1 < H < N, 2 < {1 < ¥y be integers and
assume the Riemann Hypothesis holds. Then

N+H

S RYp,(n) = by, ) HN? ' 4 O, (H2NY 2 + HE N3 (log V)2 )
n=N+1
uniformly for oo(N1=2(142) (log N)Y()) < H < o (N), where A and ({1, l2)
are defined in (1.1), a(f1,£2),b(¢1) are defined in (1.4).



Asymptotic formulae for binary problems 611

Clearly for ¢; = ¢35 = 2, Theorem 1.2 coincides with the result proved
in [5] but in all the other cases it is new. To prove Theorem 1.2 we will
have to use the original Hardy—Littlewood generating functions to exploit
the wider uniformity over H they allow; see the remark after Lemma 3.10.

A slightly different problem is the one in which we replace a prime power
with a power. Letting

7"21,122 (TL) = Z Ing,
pzl erZZ:n
N/A<p“1, mf2<N
we have the following

Theorem 1.3. Let N > 2, 1 < H < N. Moreover let {1,£5 > 2. Then, for
every € > 0, there exists C = C(g) > 0 such that
N+H
Z 7“21’(2 (TL) = C(Elv 82)HN>\_1 + Of1,ﬁ2 (HNA_IA(]\L _0(5)))7
n=N-+1

11 1
uniformly for N BT < [ < N1-e for {1 =2 and 2 < 0y < 11, or
0y =3 and ly = 2, where X and c({1,42) are defined in (1.1).

Clearly for 1 = ¢35 = 2, Theorem 1.3 coincides with the result proved
in [5] but in all the other cases it is new. In this case we cannot interchange
the role of the prime powers as we can do for the first two theorems we
proved; hence the different condition on H.

In the conditional case, as for the proof of Theorem 1.2, we need to use
the Hardy-Littlewood original functions, but in this case we are forced to
restrict our analysis to the p’ +m? problem due to the lack of an analogue
of the functional equation (7.2) in the general case. It is well known that
this is crucial in these problems. Letting

RZ,Q(”) - Z logpv
pl+m2=n
we have the following

Theorem 1.4. Let N > 2,1 < H < N, £ > 2 be integers and assume the
Riemann Hypothesis holds. Then

N+H L
> Rjy(n)=c(f,2)HN7 2
n=N-+1

)=

H2  HNi7 3loglog N
1O, ——+ £ 0808
log N)2

(
uniformly for oo(Nl_%(logN)Q) < H < o(N), where c(¢,2) is defined
in (1.1).

+H%Ni logN>

N2
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Clearly for ¢ = 2, Theorem 1.4 coincides with the result proved in [5]
but in all the other cases it is new. The proof of Theorem 1.4 needs the
use of the functional equation (7.2) and hence it is different from the one
of Theorem 1.2.

We finally remark that we deal with a similar problem with a k-th power
of a prime and two squares of primes in [8].

Acknowledgement. We thank the anonymous referee for their precise
remarks.

2. Setting
Let ¢, (1,03 > 2 be integers, e(a) = > o € [-1/2,1/2],

Se(a) = D> A(m)e(m‘a), Vifa)= > logpe(p'a),

N/A<mE<N N/A<p!<N
1
1) Tl@= Y ema)  fil@)=; Y mie(ma),
N/A<m!<N N/A<m<N
U(a, H) = Z e(ma),
1<m<H

where A is defined in (1.2). We also have the usual numerically explicit
inequality

(2.2) |U(c, H)| Smin(H;\a\*l),

see e.g. Montgomery [9, p. 39], and, by Lemmas 2.8 and 4.1 of Vaughan [13],
we obtain

(23)  fila) <o min (N7;]a77);  [Te(a) = fu(a)] < (14 |a|N)3.
Recalling that € > 0, we let L =log N and

(2.4) B = B(N,c¢,{1,05) = N2 A(N, ¢),

where A is defined in (1.1) and ¢ = ¢(e) > 0 will be chosen later.

3. Lemmas
Lemma 3.1. Let H > 2, p e R, u > 1. Then

logH ifu=1
HA=1gf > 1.

1

/j U (e, H)" da < {

1
2

Proof. By (2.2) we can write that

1 1 1

3 * id
/2 \U(a,H)\“da<<H“/H da+/2—a
-} 4y

and the result follows immediately. O
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Lemma 3.2. Let £ > 0 be a real number. Then |Sy(a) — Vp(a)| <y N,

Proof. Clearly we have

AL o(L) )
Sife) = Vila)| < 3 3 logp < [ NV at < N,
k=2 pkl<N 2

where in the last but one inequality we used a weak form of the Prime
Number Theorem. 0

We need the following lemma which collects the results of Theorems 3.1
and 3.2 of [4]; see also [6, Lemma 1].

Lemma 3.3. Let { > 0 be a real number and € be an arbitrarily small
positive constant. Then there exists a positive constant ¢y = ci(e), which
does not depend on £, such that

1

K KIL?
7 18ie) - T da < N%—I(Auv, —a) + )
K

uniformly for Ni-g+e < K < N. Assuming further RH we get

N7 L2

L KNi72[2,

1
7 18ia) - @) da <
K

uniformly for NL-% <K <N.
Combining the two previous lemmas we get

Lemma 3.4. Let £ > 0 be a real number and € be an arbitrarily small
positive constant. Then there exists a positive constant ¢y = c1(g), which
does not depend on £, such that

1
L KL2
/Kl Vi) — Ty(a)]? do <o NE! (A(N, —c1) N )7
K

uniformly for Nl-gite < K < N. Assuming further RH we get
1 1.9

K NeL
7 Wid@) - TP da <0 =

K

L KN772L2,

uniformly for N1-% <K <N.
Proof. By Lemma 3.2 we have that

1 1

= Ne
7 15ute) = Vi) P da <0 =
K

and the result follows using the inequality |a + b|?> < 2|a|? + 2/|b|? and
Lemma 3.3. O
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Lemma 3.5. Let £ > 2 be an integer and 0 < £ < % Then

L ift=2

¢ )
Ty(a)]?d Nt
/_5’ )l da < § +{1 if 0> 2,

3 1 L? ift=2
Sy(a))?d N7¢L
/§|e(04)! a < N©¢ +{1 0>
and
3 1 L? ift=2
Vi(a)?da <y NTEL
[ Wit aa < §+{1 "

Proof. The first two parts were proved in Lemma 1 of [7]. Let’s see the
third part. By symmetry we can integrate over [0,£]. We use Corollary 2
of Montgomery—Vaughan [10] with 7' = &, a, = logr if r is prime, a, = 0
otherwise and A, = 277! thus getting

/OE ]Vg(a)|2 da = Z a(r)2 (f + O<5T1>>

NJA<rt<N
< NTEL+ Y (logp)?p'~,
p'<N

since 6, = A\ — A1 >, 771, The last error term is <, 1 if £ > 2 and
< L? otherwise. The third part of Lemma 3.5 follows. U

Lemma 3.6. Let ¢/ > 0 be a real number and recall that A is defined
n (1.2). Then

1 A% if £ > 2
2
/iUﬂ@Pda<JNT* log A if =2
2 1 if 0 < <2,

Proof. By Parseval’s theorem we have

[Pk Y mt

N/A<m<N

l\:)\»—‘

and the lemma follows at once. O

We also need similar lemmas for the Hardy-Littlewood functions since,
in the conditional case, we will use them. Let

ZA e MNe(n'a), Vi(a Zlogpep/N (p'a),
p=2
and
z=1/N — 2mic.
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We remark that
(3.1) |2|7! < min (N, |a|_1>.

Lemma 3.7 ([5, Lemma 3]). Let £ > 1 be an integer. Then
1Ss() — V(o) <¢ N2,

Lemma 3.8 ([6, Lemma 2]). Let ¢ > 1 be an integer, N > 2 and o €
[—1/2,1/2]. Then

Sy T/0 1 z_5F<§>—|—(’)3(1),

vzt L P

where p = 8+ iy runs over the non-trivial zeros of ((s).

Proof. Tt follows the line of Lemma 2 of [6]; we just correct an oversight
in its proof. In eq. (5) of [6, p. 48] the term —Zé\/gM [(—2m/€)2?>™/¢ is

m=1
missing. Its estimate is trivially < |z|‘/§/ 2 < 1. Hence such an oversight

does not affect the final result of Lemma 2 of [6]. O
Lemma 3.9 ([6, Lemma 4]). Let N be a positive integer, z = 1/N — 2ric,
a€[-1/2,1/2], and > 0. Then

1/2 n,u—l 1
—He(— — N =
/_1/2z e(—na)da =e () +O“<n)’

uniformly forn > 1.

Lemma 3.10 ([6, Lemma 3] and [5, Lemma 1]). Let ¢ be an arbitrarily
small positive constant, £ > 1 be an integer, N be a sufficiently large integer
and L =log N. Then there exists a positive constant ¢y = c¢1(g), which does
not depend on £, such that

3
[
uniformly for 0 < & < N=145/60=¢ " Assuming RH we get

3
/.

uniformly for 0 < & < %

2
. (1 2
3y(a) - I /£)| dor <o NT7YA(N, —¢1)

i
0z

2
Se(a) — Fél/f)' do < NT¢L?
ze

Proof. 1t follows the line of Lemma 3 of [6] and Lemma 1 of [5]; we just
correct an oversight in their proofs. Both eq. (8) of [6, p. 49] and eq. (6)
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of [5, p. 423] should read as

[l sy

where n = n, = £/2%, 1/N <n < /2 and K is a suitable integer satisfying
K = O(L). The remaining part of the proofs are left untouched. Hence
such oversights do not affect the final result of Lemma 3 of [6] and Lemma 1
of [5]. O

2

Z =PI p/€

p:v>0

S 2 Tp/0)

p: >0

Remark 3.11. The main difference between Lemma 3.10 and Lemma 3.4
is the larger uniformity over £ in the conditional estimate. Hence, under
the assumption of RH, Lemma 3.10 will allow us to avoid the unit interval
splitting (see (4.1) below). This will lead to milder conditions on H than

something like N l_ﬁB < H < N which Lemma 3.4 would require in the
conditional analogue of (4.10), for example. In conclusion, in the condi-
tional case Lemma 3.10 will give us a wider H and (¢1,/2) ranges, while,
unconditionally, Lemma 3.10 and Lemma 3.4 are essentially equivalent.

Lemma 3.12. Let ¢ > 1 be an integer, N be a sufficiently large integer
and L =log N. Assume RH. We have

H)| da < N7 L2,

Proof. Let Ey(a) := Sy(a) — T'(1/€)/(£27). By (2.2) we have

1

62 [ IEd@)PU(-a, )] da

da
<<H/ B )Pda+/ Bo(a \2 / [Br(a?<

2

l\‘:h—t

= My + M + M3,
say. By Lemma 3.10 we immediately get that

(3.3) M, <, Nt
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By a partial integration and Lemma 3.10 we obtain

My <</
(3.4) +/ (/ By()? da>§§

1L2

|By()? da+H/ 1By()]? da

M\H

<<eNeL2+/ dé <y N7 L3.

A similar computation leads to M3 < NtL3. By (3.2)-(3.4), the lemma
follows. O

4. Proof of Theorem 1.1

By now we let 2 < £ < fo; we'll see at the end of the proof how the
conditions in the statement of this theorem follow. Assume H > 2B. We
have

N+H %

Y. e = [ Va(@)Vey(@)U(-a,H)e(-Na)da
n=N+1 32
%

(4.1) = [, Vu(@)Vy(a)U(-a, H)e(—Na) da
"

—i—/ Vi, (@)Ve, (a)U(—a, H)e(—Na) da,
1(B,H)
where I(B,H) := [-1/2,—B/H] U [B/H,1/2]. By the Cauchy—Schwarz

inequality we have

/ Vi, (@) Vi, (@)U (—a, H)e(—Na) da
1(B,H)

(]
I(B,H)

)

1
2

Ve, (@)U (—a, H)| da)

“(
( I(B,H)

)

N|=

rw2<a>|2w<—a,ﬂ>|da> |
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By (

), Lemma 3.5 and a partial integration argument, it is clear that
@2 [ W@)PU(-a, D) da
(B,H)

3 v 5da
< [ Wala) P

H

HIL?
<) NTL + e /

d¢
2

, (ENTL + L?) &
HIL?

<, NTL? +

B )
for every ¢ > 2. Hence, recalling (2.4), we obtain

@3) [ Vi(@)Vi(@)U (-0, H)e(~Na)d
I(B,H)

1 1
N H:N?1[?
<oy 8o NELQ + 1

2

HIL?
B B
HI?
<Lby,0o B
By (4.1) and (4.3) we get
N+H
(44) Z 'I"Zl 12
n=N+1

= [} Vi@V (@)U (.

B

HIL?
H)e(—Na) do + Oh,b ()

H)e(—Na)da

fo,(a)U(—a, H)e(—Na) da
+/Z fo (@) (Vg, (@) = fo,(@))U(—a, H)e(—Na)d
+/_ﬁ§(vgl(a) fer (@) (Ve (@) = fo,

=Ti+DLh+I3+I4+ E

say. We now evaluate these terms
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4.1. Computation of the main term Z;. Recalling Definition (1.1) and
that I(B,H) = [-1/2,—B/H]U[B/H,1/2], a direct calculation and (2.3)

give

(4.5)
LA do
I, = — N)a)d @)
1= 3 [, (@@l (n+ Ny da+ On ( Lo |a|1+,\>
1 & A1 og H\
=D > mt omy + 0y <(>
6162 n=1 mi+mo=n+N o B
N/A<mi<N
N/A<mo<N

H A
= Mfl,fg(Hu N) + Ofl,fg ((B) ) )

say. Recalling Lemma 2.8 of Vaughan [13] we can see that order of magni-
tude of the main term My, ,(H, N) is HN*~L.

We first complete the range of summation for m; and ms to the interval
[1, N]. The corresponding error term is

1 L_q

u gl 5
<<f17€22 Z 77111 mo

n=1 mi+mo=n+N
1<m1<N/A
1<mo<N

H N/A
<y 05 Z Z m’52 n+N m)

n=1m=1

M

-1

A
1 _q 19 1 =L
oo HNTT DY m% <4y gy HNY AT

We deal with the main term My, o, (H, N') using Lemma 2.8 of Vaughan [13],
which yields the I' factors hidden in ¢(¢1, ¢2):

1 1 1

mzz > omt omg MZZZWQ (n+N—m)7

n=1 mi+mo=n+N n=1m=1
1<mi<N
1<mo<N
H

=l f2) ), [(n +N)P O <(n + Ny Né—lnei)]

n=1

1 1
c(t1, 6) Z (n+ NP4 Oy, (ENT 4 HET NG )

1 1 1
= (b1, L) HN 4+ Oy 4, (HPNY 2 4 HNT 4 HEINETY),
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Summing up,

(4'6) Mh,Zz (H, N) = c(gla KQ)HN)\—I

1 14 1y HNM!
+ Oy, 1, <H2NA_2+HN“ " patine Tt 4 )
AP
4.2. Estimate of Z,. Using (2.3) we obtain

Vi(a) = fe(@)| < [Vi(e) = Te(@)| + |Te(@) = fe(a)]

(@7) = Vi) ~ Ta(e)] + O (1 4 Jal M)} ).
Hence

Zo < [ 1 @)1V (0) = To (@)1=t ) do
(48) # [0 @I+ [0l N)2U (1) da

= El + E27
say. By (2.2) we have

H

1

N

1
By < H/N1 |fg2(a)|doz+HN%/
N

B
+ N3 /f fou (@)% da.
H

Hence, using the Cauchy—Schwarz inequality and Lemma 3.6, we get

L 2
1
Ey <¢, HN™2 (/Nl | fo, ()2 doz)
N

+ HN? (/111{ | fer (@) da) 2 (/1}{ ada)é

N

+ N (/*B’ o ()2 da>§</f31 ij‘)é

1 1 1 1
<1y (szz‘l + N7 4 N22L5> A2 75 (log A)?

111 1
<, N2 A2 2 L2(log A)2,
where A is defined in (1.2).
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Using (2.2), the Cauchy—Schwarz inequality, and Lemmas 3.4 and 3.6 we
obtain

B < H( [ e da> ( |7 Wat@) - Tu ()P da)

11
5 2

(4.10) N 2 L1
Lp 0 H A (log A)2N% 2A(N,—cy)
<oy 0y HNYTA(N, -C)
for a suitable choice of C' = C(g) > 0, provided that N™'*2 < B/H <

145 _ 5
N “: hence N TR < H < N'~7¢ suffices. Summarizing, by (1.1),
(4.8)—(4.10) we obtain that there exists C' = C(g) > 0 such that

(4.11) Ty gy HNYTA(N, —0)

€ 15 __5
provided that N™175 < B/H < N~ '8 7% hence N' o °B < H <
N1=¢ suffices.

4.3. Estimate of Zg. It’s very similar to Zy’s; we just need to interchange
01 with ¢5 thus getting that there exists C' = C(e) > 0 such that

(4.12) Ty <py.00 HNYLA(N, —0)

€ _1a5 __5
provided that N™175 < B/H < N~ '7827% hence N' 92 °B < H <
N1=¢ suffices.

4.4. Estimate of Zy. By (4.4) and (4.7) we can write
Ty <ot [, V(@) = T (@)[Via(@) = Tr(@)1U(~a 1) da
H 1
+ [ V@) = Tu @1+ 0l N)2[U (<o, 1) da
(4.13) % 1
+ [ V(@) = Tia(@)|(1 + |l N)*U(~a, 1) da

+/_H§(1 + || N)|U (=0, H)|da

= FE3+ By + E5 + Eg,
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say. By (1.1), (2.2), the Cauchy—Schwarz inequality and Lemma 3.4 we have

By < H(/_}; Vi (@) — Tgl(a)\2da> 2
o ([, Wt - e aa)

<0 HN*TA(N, —0),

for a suitable choice of C' = C(g) > 0, provided that N~'*3 < B/H <

5 _ _ 5
N o “: hence N TR < H < N'—¢ guffices.
By (2.2) and the Cauchy—Schwarz inequality we have

N

1 1
Ev< i [ V(o) = Tu (@)l da+ HN? [V, (0) - Ty (a)la? da
N

B

+ Nz /IH |Ve, (@) —Tgl(a)|a_%da.
"

By Lemma 3.4 we obtain

1 2
Ey,< HN™2 (/Nl [V, () —Tel(a)\Qda>

(4.15) +HNQ(/}V IVzl(a)Tel(a)Fda) </}V ada)

B 1 B i
1 " 7 do
+N2</1 \wa)—nl(a)\?da) (/ a)
H H

1
L0y NTA(N,-C),
for a suitable choice of C' = C(g) > 0, provided that N™'*3 < B/H <

5

145 5
N~ e E; hence N1 ot p < H < N1=¢ guffices.
The estimate of E5 runs analogously to the one of E4. We obtain

1
(416) E5 <<Z1,€2 Nt A(N? _0)7

for a suitable choice of C' = C(g) > 0, provided that N~'*3 < B/H <

N—1+%—e_ h 1—g—+e 1-e
; hence N© 627" B < H < N'~¢ suffices. Moreover by (2.2) we
get

~ yi 7 NB
(4.17) E6<<H/ ) da+HN/l ada+N/1 do < —.
- N N H
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Hence by (1.1) and (4.13)—(4.17) we obtain for ¢; > 2 that
(4.18) Ty <40, HNMLTA(N, —C),

for a suitable choice of C' = C(g) > 0, provided that N™'*2 < B/H <
5 5
N_H@_E; hence N' 78 7° B < H < N'=¢ suffices.

4.5. Final words. Summarizing, recalling that 2 < ¢; < /o, by (2.4),
(4.4)-(4.6), (4.11)—(4.12) and (4.18), we have that there exists C = C(g) >
0 such that

N+H

> 1h(n) = e(tr, ) HN L 4 Oy, 4, (HNYLA(N, =C)),

n=N+1
uniformly for N2_%_ﬁ+s < H < N'7¢ which is non-trivial only for ¢; =
2,0y € {2,3}. Theorem 1.1 follows.

5. Proof of Theorem 1.2

From now on we assume the Riemann Hypothesis holds. Recalling (1.3),
we have

N+H 1 N
Z 7n/NRZ1,£2( ) 1V£1( )Vg2(OJ)U<—Oz,H>6(—NOé) dov.
n=N-+1 2
Hence
N+H
S e "NR] ,(n)
n=N-+1
€1€2 7%
(1/61 fl< WQ)U —a, H)e(—Na) da
,l
(5.1) :
(1/e2 < r1/6) ) (_Na)da
7% 612[1
I(

D)
+/%< Elzfl ZZ( ) 622’22

x U(—a, H)e(—Na) do
=N+ T+ T3+ Ja,

say. Now we evaluate these terms.
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5.1. Computation of J;. By Lemma 3.9, (1.1) and using e /N = e~ +
O(H/N) forne [N+ 1,N+ H|,1 < H <N, a direct calculation gives

N+H

H
Ji=c(l,la) > N1 0y, <N)
n=N+1
01, 0) NHH H
(5.2) _ c(l1,£2) Z nA_1+Oz1,eQ(N+H2N’\_2)

n=N+1

HNA1 H

= 0(51,52) + Ogl’gQ (N + HQN)\—2 + NA—l).

5.2. Estimate of J5. From now on, we denote

(5.3) Eula) = So(a) — Fi/;).

Using Lemma 3.7 we remark that

T(1/¢)

2l

(5-4) ’%(a) - < |Eo()| + [Vi(a) — Se(a)| = | Eg(a)| + Op(N22).

Hence

1
L
* 2T |En ()]|U(~a, H)| da

55) %< [

NG

1
1 5 1
+N%/2 2| 1 |U(—a, H)|da = A+ B,

1
2
say. By (2.2) and (3.1) we have
1 1
1.1 9 1 fr _1 1 f3 _1_ 4
B <0 HN® " 202 =+ HN 26 /1 a “1da+ N2% /1 a 4 da

(5.6) ~ T
L+L,1 1 1
<<£17€2 HNEl 209 + Hel N2£2 .

By (2.2), (3.1), the Cauchy—Schwarz inequality, Lemma 3.10 and a partial
integration argument similar to the one used in the proof of Lemma 3.12
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(see the estimate of My there), we have

1
1 N~
A <0 HNT /N By, ()] da

H| 52( / ‘Efz
+H/ B ldo+ 21+1

1 _ 1 2
<p 0o HN O 2(/ ) |E52( )|2da>
-~

e [ o) ([ 4

N

1
1 3 1
2~ do 2 do
E 2=
+</1' = a2> ( i a>

H

1 1 3
2

<ty 4o HN& T2 'L 4 gu N LS,
By (5.5)—(5.7) we have

1, 1 1 1 1 1
(5.8)  Jo <pp HNUT2 'L HUN: L3 <4 4 HEN?2 L2,

5.3. Estimate of J3. The estimate of J3 is very similar to J>’s; we just
need to interchange ¢; with ¢5. We obtain

a1 11 11y

(5.9) T3 Ly HN?00" % "L+ H2 N L2 <y, gy H2 N2 L2,
5.4. Estimate of J4. Using (1.1) and (5.4) we get
Iy <o / |Bey(@)l| B (@) 1U(~a 1) da

5% [ By (@)U(-0,1)|do

l\:)\»—‘

(5.10)

D=

1
N [ B (@I (o, D+ N2 [0, 1) do

2

=&+ E +E+ &,
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say. By the Cauchy—Schwarz inequality, (1.1), (2.2) and Lemma 3.12 we
obtain

1

1 2

&1 <uty ( [ 1B @) Pl (-a, ) da)
2

(5.11) 1 :
x ( / |Ee2<a>|2rU<—a,H>|da>

1
2
273
<<gl7g2 N2L°.
By the Cauchy—Schwarz inequality, (1.1), Lemmas 3.1 and 3.12 we obtain

1 3~ 2
& <tes N7 ( | 1B (@ U (=, 1) da>
2

(5.12) 3

1
x (/1 |U(—a,H)\da>
—3

<0y N2L2.
By the Cauchy—Schwarz inequality, (1.1), Lemmas 3.1 and 3.12 we obtain
S 5
€3 pp e N1 (/_ |E42(a)|2]U(—a,H)|da>
2

x (/_%1 |U(—a,H)\da>2

(5.13)

372
<Kty,45 N2L~.
By (2.2) we immediately have

(5.14) &4 <4y 65 N%L.
Hence by (5.10)—(5.14) we finally can write that
(5.15) Ti <0y N2 L.

5.5. Final words. Summarizing, recalling 2 < ¢; < {3, by (1.1), (5.1)—
(5.2), (5.8)—(5.9) and (5.15), we have

N+-H

(5.16) > e ™NR] 4, (n)
n=N-+1

HN)\fl

= C(£1,£2)
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627
which is an asymptotic formula for co( N1~ b)) < H < o(N),
where a(f1,{2) and b(¢;) are defined in (1.4). From e”™/N = ¢~ 1+ O (H/N)
forne [N+ 1,N+ H|, 1< H<N, we get

N+H

1 1
> RY () = olly, ) HNY 4 Oy, g (HAN 2 + HA N2 L? )
n=N+1

N+H
( Y. Rl )
n=N+1

Using /N < €2 and (5.16), the last error term is <, s, H2N 2. Hence
we get

N+H

Z Rfl 42

1 1
= c(fy,b)HN " + Oy, 4, (H2NA_2 + HEN%L%),
n=N+1

uniformly for every 2 < ¢; < £y and co( N1—e(LE) [0(062)) < H < o (N)
where a({1,03) and b(¢) are defined in (1.4). Theorem 1.2 follows

6. Proof of Theorem 1.3
Assume H > 2B and #1, ¢ > 2; we’ll see at the end of the proof how the

conditions in the statement of this theorem follow; remark that in this case
we cannot interchange the role of £1, 2. We have

N+H %
Y )= [ Vi()Ty(a)U(—a, H)e(~Na) da
n=N+1 -2
(6.1) _Z Vi, ()T, (@)U (—a, H)e(—Na) da

+ / Vi, (@) Th, (@)U (—a, H)e(—Na) da,
[(B,H)

where I(B,H) = [-1/2,—-B/H] U

[B/H,1/2]. By the Cauchy-Schwarz
inequality we have

(6.2) /I(B,H) Vi, (@)Ty, (a)U(—a, H)e(—Na) d

(]
I(B,H)

)

Ve, ()?|U (—ar, H)) da)

“(
< I(B,H)

)

N|=

|T42<a>PrU<—a,H>|da> .
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A similar computation to the one in (4.2) leads to

3 da
68) [ TP e Mda < [ TP

«
) H
\  HL 31 d¢ \ HL
Nt +— N7+ L) — <, NiL+=—
<y +B+/g(§ +)§2<<e +B,

for every ¢ > 2. Hence, by (6.2)-(6.3) and recalling (2.4) and (4.2), we
obtain

64 [ Vil@)Tu(@U(-a, Hje(~Na)da
I(B,H)

ooy N2L3 + H;N%Lg + HL: <o HL:
) B§ B 1,€2 B
By (6.1) and (6.4), we get
N+H B 3
Z 7“21742 (n) = }; Vgl (a)sz (OZ)U(—OZ, H)e(_Na) da—}—Oh,@ (HéQ ) )
n=N+1 "
Hence
N+H
(6.5) > 7 n(n)
n=N+1

= [7 fu(@)fu(@)U(~a, H)e(~Na) da

+ I; ffz (a)(WI (a) - f€1 (Oé))U(—O(, H)e(—NCV) da

+ _; fo, (@) (T, () = fo,(0))U(—av, H)e(—Na) da
+ [z (W1 (04) - f€1 (Oé))(ng (Oé) — fﬁg(a))U(—Oé, H)E(—Noz) da

=L+ +1L3+I4+ F,

say. We now evaluate these terms. The main term Z; can be evaluated as
in §4.1; by (4.5)-(4.6) it is

H A
(66) Il = C(ElaEQ)HN)\—l =+ 051732 <(B> + HN)\_lA(Nv _C)> ’
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for a suitable choice of C' = C(g) > 0. Iy can be estimated as in §4.2;
by (4.11) it is

(6.7) Ty <40, HNMLA(N, —-C),

for a suitable choice of C' = C(g) > 0, provided that N™'*2 < B/H <
5 5
Nmefe; hence N' 8 7° B < H < N'=¢ suffices.

6.1. Estimate of Z3. Using (2.3) we obtain that

B

T < [ (@I + ol V)2 U (=0, H)| da

and the right hand side is equal to Ey of §4.2; hence by (4.9) we have

1
2

1 1
(6.8) T3 <0, NTTAZ T L3 (log A)2,

where A is defined in (1.2).

6.2. Estimate of Zy. By (4.4) and (4.7) we can write

B

H 1
69) Ti<ue [, 1V (@) = Tu (@)1 + ol N)}[U (=, )| da

H

B
+ /’; (1+ |a|N)|U(~a, H)|da = Ry + R,
-7
say. Ry is equal to Ey4 of §4.4; hence we have

1
(6.10) Ry <4y 0, NTA(N, -C),

for a suitable choice of C' = C(g) > 0, provided that N~'*2 < B/H <
5 5

N71+@7€; hence N' "B < H < N'7¢ suffices. Ry is equal to Fg of

§4.4; hence we get

NB
(6.11) Ry < —.

Summarizing, by (1.1) and (6.9)—(6.11), we obtain
(6.12) Ty <40, HNMTA(N, —-C),

for a suitable choice of C' = C(g) > 0, provided that N™'*2 < B/H <
5 5
N_H@_E; hence N' 85 B < H < N'—¢ guffices.
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6.3. Final words. Summarizing, recalling that ¢1, ¢ > 2, by (2.4), (6.5)—
(6.8) and (6.12), we have that there exists C' = C(¢) > 0 such that

N+H
S () = el ) HNY 4 Oy, (HN AN, ),
n=N-+1

11
uniformly for N 276 T e < H < N'=¢ which is non-trivial only for /1 = 2
and 2 < /y <11, or /1 = 3 and f5 = 2. Theorem 1.3 follows.

7. Proof of Theorem 1.4

In this section we need some additional definitions and lemmas. Letting
(7.1) we Zem/N e(mfa) Ze Z,

we have the following

Lemma 7.1 ([5, Lemma 2]|). Let { > 2 be an integer and 0 < £ < 1/2.

Then
3 1 L ift=2
2 1
we(a)|” da ENT +
/—§| Z( )| 4 {1 ifl>2

and
. ! L? ift=2
Se(a))? da <o ENEL +
[, 18etel do <€ L s
Recalling the definition of the #-function
Z e”/N e(na) Z e"2z:1—|—2w2(a),
n=-—oo n=-—o0o

its modular relation (see, e.g., Proposition V1.4.3 of Freitag and Busam [1,
p. 340]) gives that (z) = (77/2)%0(#2/,2) for R(z) > 0. Hence we have

Jun

1 1

(7.2) wo(a) = % (TF) : % + <W>2 ioe*jzﬂz/z, for R(z) >0

z =
For the series in (7.2) we have

Lemma 7.2 ([5, Lemma 4]). Let N be a large integer, z = 1/N — 2mic,
€[-1/2,1/2] and Y = R(1/z) > 0. We have

+o0 -2y
Ze_jzﬂz/z < e :rl forY >1
= Y72  forO<Y <1,
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Since

(7.3) Y =R(1/2) =

N 1 [N if |o| <1/N
e
1+4n2a?2N2? = 572 | (a®?N)~! if |a| > 1/N,

from Lemma 7.2 we get
e N/5 if ja| < 1/N

< {exp(~1/(502N)) if 1/N < |a| = o(N7%)
1+ N%|oz| otherwise.

“+oo

2.2
Do

Jj=1

(7.4)

Lemma 7.3. Let N be a sufficiently large integer and L = log N. We have

N|=

/ ()P U (o, H)|da < N3L + HL,

2
Proof. By (2.2) we have
9 3 sda
/1 w2 () |2|U (e, H)| da < H/ lwa ()| da+/1 lwa ()] -
2

H
1
(7.5) n / T ol zda

l\)\)—l

:M1+M2+M37

say. By Lemma 7.1 we immediately get that
(7.6) M, < N2+ HL.

By a partial integration and Lemma 7.1 we obtain
v [t
-3

(7.7) +/ (/ (o) da)?g

1 1
LNBE4+ L
<<N2+HL+/2 : + A6 < N3L+ HL.

o ()2 da+H/ lwa(@)[? da

A similar computation leads to My < N2L + HL. By (7.5)—(7.7), the
lemma follows. g

From now on we assume the Riemann Hypothesis holds. Let 1 < D
/

D(N) < H/2 to be chosen later and I(D, H) :=[-1/2,—D/H|U[D/H,1/2].
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By (2.1) and (7.1)—(7.2), and recalling (5.3), it is an easy matter to see that
N+H

(7.8) Z e_”/NRzQ(n)

n=N+1

= /_5 Vi(@)wa(a)U(—a, H)e(—Na) da

+
I(D,H)

=1Io+ 11 + I+ I3 + Iy,

say. Using Lemma 3.7 and the Cauchy—Schwarz inequality we have

Io <¢ N# (/_1 |wQ(a)mU(a,H)yda> 2 (/1 U(a, H)|da> B

2

By Lemmas 3.1 and 7.3 we obtain

(7.9) Ip<¢N2e(N2L + HL)2L? < Nit2 [+ HiN%L.

Now we evaluate I;. Using Lemma 3.9, (2.2) and e=™/N = ¢~14+ O (H/N)
forme [N+ 1,N+ H|, 1 < H < N, we immediately get

I'(1/¢) i T3 1_1 19\ /N
Il = o0 Z F(iné 2 —nt e /

n=N-+1

(7.10)

N'-% N2z D

To have that the first term in I; dominates in Iy + I; we need that D =
1 1 1

0o(N277), H=0(N) and H = co(N'"7L?), £ > 2.

2
HN%—§+04< H _H H)
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Now we estimate [3. Assuming H = oo(N%D), by (3.1) and (7.4), we
have, using the substitution u = 1/(5Na?) in the last integral, that

; H2+4/d+H/éda+/1’3 da
3 — N5 & T THZ/BN) 1oabtt | J1 o3/21 c1/(5Na?)

HNéfi HNE 2L 1,1 [H?/(GN) 1
(7.11) 1+ —3/a+d —u
TNt e N H2/(5ND2)U e
1 1
HN@ 2L 1,1 11
7+7_ = =
< ~geny N ze_o(HNe z),

provided that H = oo(N% logL) and H = oo(Nl_%), 0> 2.
Now we estimate [5. Recalling that H = oo(N%D), for every || < D/H
we have, by (7.2)—(7.4), that |wa ()| < ]z]_% Hence

D

H Ula, H
12<</H |Ey(a )]Mda.

—7 2|2

Using (3.1) and the Cauchy—Schwarz inequality we get

1 1
1 2 1 2
L < HN%</N1 da> (/N |Ee(oz)|2da>

N N
# da : 7~ da :
5 (o)
N 2 ~ 2
1
7 da)’ 7 do
< /. ) ( /. rEg<a>|23>
H a2 H a2
By Lemma 3.10 we get
1
\ % e\’
I, <y HN = 2L+H3/4NzeL< - 1)
2 L¢3
%
(7.12) +H4N2eL<Hz+/ 3>
3

<y H:N%L.

We remark that Io = O(HN%_%) provided that H = oo(Nl_%Lz), 0> 2.
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Now we estimate Iy. By (2.2), Lemma 7.1 and a partial integration ar-
gument we get

1

2 5 d
1< [ IS

H

< ( /! §e<a>|2dj‘>2< [ |w2<a>|2‘fj‘>2

HIL? d¢

(7.13) (N L+—+L/ )£2>
HL d¢
<N2+D+ H(ﬁN +L)£2>

3 1 1 H
Lz | Niter 4 — |
<y 2( 472 +D>

=
N[

Clearly we have that Iy = O(HNZ_%) provided that D = oo(N ~iL3
H=oo(Ni~2L32), (> 2.

Combining the previous conditions on H and D we can choose D =
Néf%LQ/(log L) and H = oo(le%LQ). Hence using (7.8)—(7.13) we can

write

) and

N+H
> e N Ryo(n)
n=N+1
2 S
:C(Q’E)HN}J_§+(9@< A HNE flOgL HéNzlzL>.
€ N2"7% L2

Theorem 1.4 follows for oo(Nl_%L2) < H <o0(N), £ > 2, since the expo-
nential weight e /N can be removed as we did at the bottom of the proof
of Theorem 1.2.
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