Abstract
One of the traditional applications of relation algebras is to provide a setting for infinite-domain constraint satisfaction problems. Complexity classification for these computational problems has been one of the major open research challenges of this application field. The past decade has brought significant progress on the theory of constraint satisfaction, both over finite and infinite domains. This progress has been achieved independently from the relation algebra approach. The present article translates the recent findings into the traditional relation algebra setting, and points out a series of open problems at the interface between model theory and the theory of relation algebras.
Manuel Bodirsky—The author has received funding from the European Research Council under the European Community’s Seventh Framework Programme (FP7/2007-2013 Grant Agreement no. 257039, CSP-Infinity).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bodirsky, M., Grohe, M.: Non-dichotomies in constraint satisfaction complexity. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008. LNCS, vol. 5126, pp. 184–196. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70583-3_16
Bodirsky, M., Hils, M., Martin, B.: On the scope of the universal-algebraic approach to constraint satisfaction. In: Proceedings of the Annual Symposium on Logic in Computer Science (LICS), pp. 90–99. IEEE Computer Society, July 2010
Bodirsky, M., Jonsson, P.: A model-theoretic view on qualitative constraint reasoning. J. Artif. Intell. Res. 58, 339–385 (2017)
Bodirsky, M., Jonsson, P., Van Pham, T.: The complexity of phylogeny constraint satisfaction problems. ACM Trans. Comput. Logic (TOCL) 18(3) (2017). An extended abstract appeared in the conference STACS 2016
Bodirsky, M., Kára, J.: The complexity of temporal constraint satisfaction problems. In: Dwork, C. (ed.) Proceedings of the Annual Symposium on Theory of Computing (STOC), pp. 29–38. ACM, May 2008
Barto, L., Kozik, M.: Constraint satisfaction problems of bounded width. In: Proceedings of the Annual Symposium on Foundations of Computer Science (FOCS), pp. 595–603 (2009)
Bulatov, A.A., Krokhin, A.A., Jeavons, P.G.: Classifying the complexity of constraints using finite algebras. SIAM J. Comput. 34, 720–742 (2005)
Barto, L., Kompatscher, M., Olšák, M., Pinsker, M., Van Pham, T.: The equivalence of two dichotomy conjectures for infinite domain constraint satisfaction problems. In: Proceedings of the 32nd Annual ACM/IEEE Symposium on Logic in Computer Science - LICS 2017 (2017). Preprint arXiv:1612.07551
Bodirsky, M., Mottet, A.: Reducts of finitely bounded homogeneous structures, and lifting tractability from finite-domain constraint satisfaction. In: Proceedings of the 31th Annual IEEE Symposium on Logic in Computer Science - LICS 2016, pp. 623–632 (2016). Preprint available at ArXiv:1601.04520
Bodirsky, M., Madelaine, F., Mottet, A.: A universal-algebraic proof of the complexity dichotomy for Monotone Monadic SNP. In: Proceedings of the Symposium on Logic in Computer Science - LICS 2018 (2018). Preprint available under ArXiv:1802.03255
Bodirsky, M., Martin, B., Pinsker, M., Pongrácz, A.: Constraint satisfaction problems for reducts of homogeneous graphs. In: 43rd International Colloquium on Automata, Languages, and Programming, ICALP 2016, 11–15 July 2016, Rome, Italy, pp. 119:1–119:14 (2016)
Bodirsky, M.: Constraint satisfaction with infinite domains. Dissertation, Humboldt-Universität zu Berlin (2004)
Bodirsky, M.: Cores of countably categorical structures. Logical Methods Comput. Sci. 3(1), 1–16 (2007)
Bodirsky, M.: Constraint satisfaction problems with infinite templates. In: Creignou, N., Kolaitis, P.G., Vollmer, H. (eds.) Complexity of Constraints. LNCS, vol. 5250, pp. 196–228. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-92800-3_8
Bodirsky, M.: Complexity classification in infinite-domain constraint satisfaction. Mémoire d’habilitation à diriger des recherches, Université Diderot - Paris 7 arXiv:1201.0856 (2012)
Barto, L., Opršal, J., Pinsker, M.: The wonderland of reflections. Isr. J. Math. (2017, to appear) Preprint arXiv:1510.04521
Barto, L., Pinsker, M.: The algebraic dichotomy conjecture for infinite domain constraint satisfaction problems. In: Proceedings of the 31th Annual IEEE Symposium on Logic in Computer Science - LICS 2016, pp. 615–622 (2016). Preprint arXiv:1602.04353
Bodirsky, M., Schneider, F.M.: A topological characterisation of endomorphism monoids of countable structures. Algebra Universalis 77(3), 251–269 (2016). Preprint available at arXiv:1508.07404
Bulatov, A.A.: A dichotomy theorem for nonuniform CSPs. In: 58th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2017, Berkeley, CA, USA, 15–17 October 2017, pp. 319–330 (2017)
Düntsch, I.: Relation algebras and their application in temporal and spatial reasoning. Artif. Intell. Rev. 23, 315–357 (2005)
Fraïssé, R.: Sur l’extension aux relations de quelques propriétés des ordres. Annales Scientifiques de l’École Normale Supérieure 71, 363–388 (1954)
Fraïssé, R.: Theory of Relations. Elsevier Science Ltd, North-Holland (1986)
Hirsch, R., Hodkinson, I.: Representability is not decidable for finite relation algebras. Trans. Am. Math. Soc. 353(4), 1387–1401 (2001)
Hirsch, R.: Relation algebras of intervals. Artif. Intell. J. 83, 1–29 (1996)
Hirsch, R.: Expressive power and complexity in algebraic logic. J. Logic Comput. 7(3), 309–351 (1997)
Hirsch, R.: A finite relation algebra with undecidable network satisfaction problem. Logic J. IGPL 7(4), 547–554 (1999)
Huang, J., Li, J.J., Renz, J.: Decomposition and tractability in qualitative spatial and temporal reasoning. Artif. Intell. 195, 140–164 (2013)
Hodges, W.: A Shorter Model Theory. Cambridge University Press, Cambridge (1997)
Kompatscher, M., Van Pham, T.: A complexity dichotomy for poset constraint satisfaction. In: 34th Symposium on Theoretical Aspects of Computer Science (STACS 2017), volume 66 of Leibniz International Proceedings in Informatics (LIPIcs), pp. 47:1–47:12 (2017)
Li, J.J., Kowalski, T., Renz, J., Li, S.: Combining binary constraint networks in qualitative reasoning. In: ECAI 2008–18th European Conference on Artificial Intelligence, Patras, Greece, 21–25 July 2008, Proceedings, pp. 515–519 (2008)
Lyndon, R.: The representation of relational algebras. Ann. Math. 51(3), 707–729 (1950)
Zhuk, D.: A proof of CSP dichotomy conjecture. In: 58th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2017, Berkeley, CA, USA, 15–17 October 2017, pp. 331–342 (2017)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Bodirsky, M. (2018). Finite Relation Algebras with Normal Representations. In: Desharnais, J., Guttmann, W., Joosten, S. (eds) Relational and Algebraic Methods in Computer Science. RAMiCS 2018. Lecture Notes in Computer Science(), vol 11194. Springer, Cham. https://doi.org/10.1007/978-3-030-02149-8_1
Download citation
DOI: https://doi.org/10.1007/978-3-030-02149-8_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-02148-1
Online ISBN: 978-3-030-02149-8
eBook Packages: Computer ScienceComputer Science (R0)