Abstract
Author profiling is an important statistical and semantic processing task Author profiling is an important statistical and semantic processing task in the field of natural language processing (NLP). It refers to the extraction of information from author’s texts such as gender, age and other kinds of personality traits. Author profiling can be applied in various fields like marketing, security and forensics. In this work, we explore how bi-directional deep learning architectures can be used to learn the abstract and higher-level features of the document, which could be employed to identify the author’s gender. To deal with this, we extend Bidirectional Long Short-Term Memory Networks Language Models with an attention mechanism. The originality of our approach lays in its ability to capture the most important semantic information in a sentence. The experimental results on Facebook and twitter corpus show that our method outperformed the majority of the existing methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
Wikipedia, “WikimediaDownloads.” https://dumps.wikimedia.org/arwiki/20170401/, 2017. [Online; accessed 10-April-2017].
References
Poulston, A., Stevenson, M., Bontcheva, K.: Topic models and n–gram language models for author profiling. In: Proceedings of CLEF 2015 Evaluation Labs (2015)
Alvarez-Carmona, M.A., et al.: INAOE’s participation at PAN’15: Author profiling task. Working Notes Papers of the CLEF (2015)
Argamon, S., Koppel, M., Fine, J., Shimoni, A.R.: Gender, genre, and writing style in formal written texts. Text-The Hague Then Amsterdam Then Berlin 23(3), 321–346 (2003)
Aslam, T., Krsul, I., Spafford, E.H.: Use of a taxonomy of security faults (1996)
Bamman, D., Eisenstein, J., Schnoebelen, T.: Gender identity and lexical variation in social media. J. Sociolinguistics 18(2), 135–160 (2014)
Bassem, B., Zrigui, M.: Enhancing deep learning gender identification with gated recurrent units architecture in social text. Computación y Sistemas 22(3), 757–766 (2018)
González-Gallardo, C.E., et al.: Tweets classification using corpus dependent tags, character and POS N-grams. In: Proceedings of CLEF 2015 Evaluation Labs (2015)
Chaski, C.E.: Who wrote it? Steps toward a science of authorship identification. Natl. Inst. Justice J. 233, 15–22 (1997)
Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078 (2014)
Clauset, A., Moore, C., Newman, M.E.: Hierarchical structure and the prediction of missing links in networks. Nature 453(7191), 98 (2008)
Collobert, R., et al.: Natural language processing (almost) from scratch. J. Mach. Learn. Res. 12, 2493–2537 (2011)
Ding, H., Samadzadeh, M.H.: Extraction of Java program fingerprints for software authorship identification. J. Syst. Softw. 72(1), 49–57 (2004)
Estival, D., et al.: Author Profiling for English and Arabic Emails (2008)
Gehring, W.J., et al.: A neural system for error detection and compensation. Psychol. Sci. 4(6), 385–390 (1993)
Gokturk, S.B., et al.: System and method for providing objectified image renderings using recognition information from images. U.S. Patent No. 9,430,719, 30 August 2016
Hochreiter, S., Schmidhuber, J.: LSTM can solve hard long time LAG problems. In: Advances in Neural Information Processing Systems, pp. 473–479 (1997)
Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)
Inches, G., Crestani, F.: Overview of the International Sexual Predator Identification Competition at PAN-2012. CLEF (Online working notes/labs/workshop), vol. 30 (2012)
Joachims, T.: Text categorization with support vector machines: learning with many relevant features. In: Nédellec, C., Rouveirol, C. (eds.) ECML 1998. LNCS, vol. 1398, pp. 137–142. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0026683
Kalchbrenner, N., Blunsom, P.: Recurrent continuous translation models. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing (2013)
Kalchbrenner, N., Grefenstette, E., Blunsom, P.: A convolutional neural network for modelling sentences. arXiv preprint arXiv:1404.2188 (2014)
Kodiyan, D., et al.: Author profiling with bidirectional RNNs using attention with GRUs: notebook for PAN at CLEF 2017. In: CLEF 2017 Evaluation Labs and Workshop–Working Notes Papers, Dublin, Ireland, 11–14 September 2017 (2017)
LeCun, L.B., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)
Werlen, L.M.: Statistical learning methods for profiling analysis. In: Proceedings of CLEF 2015 Evaluation Labs (2015)
Maraoui, M., Terbeh, N., Zrigui, M.: Arabic discourse analysis based on acoustic, prosodic and phonetic modeling: elocution evaluation, speech classification and pathological speech correction. Int. J. Speech Technol. 21(4), 1071–1090 (2018)
Martinc, M., Škrjanec, I., Zupan, K., Pollak, S.: Pan 2017: Author Profiling, gender and Language Variety Prediction. CLEF (Working Notes) 2017. CEUR Workshop Proceedings 1866, CEUR-WS.org (2017)
Miura, Y. et al.: Author Profiling with Word+Character Neural Attention Network. CLEF (Working Notes) 2017. CEUR Workshop Proceedings 1866, CEUR-WS.org (2017)
Peersman, C., Daelemans, W., Van Vaerenbergh, L.: Predicting age and gender in online social networks. In: Proceedings of the 3rd International Workshop on Search and Mining User-Generated Contents, pp. 37–44. ACM (2011)
Pham, D.D., Tran, G.B., Pham, S.B.: Author profiling for Vietnamese blogs. In: International Conference on Asian Language Processing, IALP 2009, pp. 190–194. IEEE (2009)
Rangel, F., et al.: Overview of the 5th author profiling task at PAN 2017: gender and language variety identification in Twitter. Working Notes Papers of the CLEF (2017)
Rangel, F., Rosso, P., Montes-y-Gómez, M., et al.: Overview of the 6th author profiling task at PAN 2018: multimodal gender identification in Twitter. Working Notes Papers of the CLEF (2018)
Säily, T.: Variation in morphological productivity in the BNC: Sociolinguistic and methodological considerations. Corpus Linguist. Linguist. Theory 7(1), 119–141 (2011)
Sallis, P.J., et al.: Identified: software authorship analysis with case-based reasoning (1998)
Sap, M., et al.: Developing age and gender predictive lexica over social media. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1146–1151 (2014)
Socher, R., et al.: Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing (2013)
Wang, P., et al.: Semantic clustering and convolutional neural network for short text categorization. In: Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 2: Short Papers), vol. 2, pp. 352–357 (2015)
Wang, Y., Huang, M., Zhao, L.: Attention-based LSTM for aspect-level sentiment classification. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 606–615 (2016)
Williams, J.D., Zweig, G.: End-to-end LSTM-based dialog control optimized with supervised and reinforcement learning. arXiv preprint arXiv:1606.01269 (2016)
Yang, Z., Yang, D., Dyer, C., He, X., Smola, A., Hovy, E.: Hierarchical attention networks for document classification. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 1480–1489 (2016)
Yih, X.H., Meek, C.: Semantic parsing for single-relation question answering. In: Proceedings of ACL 2014 (2014)
Yin, W., et al.: Comparative study of CNN and RNN for natural language processing. arXiv preprint arXiv:1702.01923 (2017)
Zhou, C., Sun, C., Liu, Z., Lau, F.: A C-LSTM neural network for text classification. arXiv preprint arXiv:1511.08630 (2015)
Zhou, P., et al.: Attention-based bidirectional long short-term memory networks for relation classification. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), vol. 2, pp. 207–212 (2016)
Zhou, T., Shen, T., Long, G., Jiang, J., Pan, S., Zhang, C.: DiSAN: directional self-attention network for RNN/CNN-free language understanding. In: Thirty-Second AAAI Conference on Artificial Intelligence, April 2018
Zrigui, M., Ayadi, R., Mars, M., Maraoui, M.: Arabic text classification framework based on latent Dirichlet allocation. J. Comput. Inform. Technol. 20(2), 125–140 (2012)
Zrigui, M., Charhad, M., Zouaghi, A.: A framework of indexation and document video retrieval based on the conceptual graphs. J. Comput. Inform. Technol. 18(3), 245–256 (2010)
Zouaghi, A., Zrigui, M., Antoniadis, G.: Compréhension automatique de la parole arabe spontanée. Traitement Automatique des Langues 49(1), 141–166 (2008)
Zouaghi, A., Merhbene, L., Zrigui, M.: A hybrid approach for Arabic word sense disambiguation. Int. J. Comput. Process. Lang. 24(02), 133–151 (2012)
Zouaghi, A., Zrigui, M., Antoniadis, G., Merhbene, L.: Contribution to semantic analysis of Arabic language. In: Adv. Artif. Intell. (2012)
Zouaghi, A., Merhbene, L., Zrigui, M.: Combination of information retrieval methods with LESK algorithm for Arabic word sense disambiguation. Artif. Intell. Rev. 38(4), 257–269 (2012)
Zouaghi, A., Zrigui, M., Ahmed, M.B., Riadi, L.: Évaluation des performances d’un modèle de langage stochastique pour la compréhension de la parole arabe spontanée. In: Proceedings of the TALN (2007)
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Bsir, B., Zrigui, M. (2019). Document Model with Attention Bidirectional Recurrent Network for Gender Identification. In: Rojas, I., Joya, G., Catala, A. (eds) Advances in Computational Intelligence. IWANN 2019. Lecture Notes in Computer Science(), vol 11506. Springer, Cham. https://doi.org/10.1007/978-3-030-20521-8_51
Download citation
DOI: https://doi.org/10.1007/978-3-030-20521-8_51
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-20520-1
Online ISBN: 978-3-030-20521-8
eBook Packages: Computer ScienceComputer Science (R0)