Skip to main content

Person Re-identification with Neural Architecture Search

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11857))

Included in the following conference series:

Abstract

Most of the existing person re-identification (ReID) methods use a classification network pre-trained on external data as the backbone and then fine-tune it, which results in a network architecture that is fixed and dependent on pre-training of external data. There are also some methods that are specifically designed by human experts for ReID, but manual network design becomes more difficult as network requirements increase and often fails to achieve optimal settings. In this paper, we consider using emerging neural architecture search (NAS) technology as a tool to solve above problems. However, most of NAS methods deal with classification tasks, which causes NAS to not be directly extended to ReID. In order to coordinate the inconsistency between the two optimization goals, we propose to establish an objective function with the assistant of the triplet loss to guide the direction of architecture search. Finally, it is no longer dependent on external data to automatically generate a ReID network with excellent performance using NAS directly on the target dataset. The experimental results on three public datasets validate that our method can automatically and efficiently find the network architecture suitable for ReID.

S. Zhang and R. Cao—Denotes co-first authors. This work is partifically supported by Natural Science Basic Research Plan in Shaanxi Province of China (Program No. 2019JQ158), China Postdoctoral Science Foundation funded project under Grant No. 2018M633577, the Fundamental Research Funds for Central Universities of China under Grant No. G2018KY0303, and National Science Foundation of China under Grant No. 61801395, 61801393 and 61801391.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ahmed, E., Jones, M., Marks, T.K.: An improved deep learning architecture for person re-identification. In: CVPR (2015)

    Google Scholar 

  2. Arandjelovic, R., Gronat, P., Torii, A., Pajdla, T., Sivic, J.: NETVLAD: CNN architecture for weakly supervised place recognition. In: CVPR, pp. 5297–5307 (2016)

    Google Scholar 

  3. Baker, B., Gupta, O., Naik, N., Raskar, R.: Designing neural network architectures using reinforcement learning. In: ICLR (2017)

    Google Scholar 

  4. Cheng, D., Gong, Y., Zhou, S., Wang, J., Zheng, N.: Person re-identification by multi-channel parts-based CNN with improved triplet loss function. In: CVPR (2016)

    Google Scholar 

  5. Elsken, T., Metzen, J.H., Hutter, F.: Simple and efficient architecture search for convolutional neural networks. In: ICLR (2018)

    Google Scholar 

  6. Elsken, T., Metzen, J.H., Hutter, F.: Neural architecture search: a survey. J. Mach. Learn. Res. 20, 55:1–55:21 (2019)

    MathSciNet  MATH  Google Scholar 

  7. Geng, M., Wang, Y., Xiang, T., Tian, Y.: Deep transfer learning for person re-identification. CoRR (2016)

    Google Scholar 

  8. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778 (2016)

    Google Scholar 

  9. Hermans, A., Beyer, L., Leibe, B.: In defense of the triplet loss for person re-identification. CoRR (2017)

    Google Scholar 

  10. Huang, G., Liu, Z., Weinberger, K.Q.: Densely connected convolutional networks. CoRR (2016)

    Google Scholar 

  11. Kandasamy, K., Neiswanger, W., Schneider, J., Póczos, B., Xing, E.P.: Neural architecture search with Bayesian optimisation and optimal transport. In: NeurIPS, pp. 2020–2029 (2018)

    Google Scholar 

  12. Kim, E., Hannan, D., Kenyon, G.: Deep sparse coding for invariant multimodal halle berry neurons. In: CVPR (2018)

    Google Scholar 

  13. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: NIPS, pp. 1097–1105 (2012)

    Google Scholar 

  14. Lavi, B., Serj, M.F., Ullah, I.: Survey on deep learning techniques for person re-identification task. CoRR (2018)

    Google Scholar 

  15. Li, D., Chen, X., Zhang, Z., Huang, K.: Learning deep context-aware features over body and latent parts for person re-identification. In: CVPR, pp. 7398–7407 (2017)

    Google Scholar 

  16. Li, W., Zhao, R., Xiao, T., Wang, X.: DeepReID: deep filter pairing neural network for person re-identification. In: CVPR (2014)

    Google Scholar 

  17. Liao, S., Hu, Y., Zhu, X., Li, S.Z.: Person re-identification by local maximal occurrence representation and metric learning. In: CVPR, pp. 2197–2206 (2015)

    Google Scholar 

  18. Lin, J., Ren, L., Lu, J., Feng, J., Zhou, J.: Consistent-aware deep learning for person re-identification in a camera network. In: CVPR, pp. 3396–3405 (2017)

    Google Scholar 

  19. Lin, Y., Zheng, L., Zheng, Z., Wu, Y., Yang, Y.: Improving person re-identification by attribute and identity learning. CoRR (2017)

    Google Scholar 

  20. Liu, C., et al.: Progressive neural architecture search. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11205, pp. 19–35. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01246-5_2

    Chapter  Google Scholar 

  21. Liu, H., Simonyan, K., Yang, Y.: DARTS: differentiable architecture search. CoRR (2018)

    Google Scholar 

  22. Luo, R., Tian, F., Qin, T., Liu, T.: Neural architecture optimization. CoRR (2018)

    Google Scholar 

  23. Negrinho, R., Gordon, G.J.: DeepArchitect: automatically designing and training deep architectures. CoRR (2017)

    Google Scholar 

  24. Paisitkriangkrai, S., Shen, C., van den Hengel, A.: Learning to rank in person re-identification with metric ensembles. In: CVPR (2015)

    Google Scholar 

  25. Pham, H., Guan, M.Y., Zoph, B., Le, Q.V., Dean, J.: Efficient neural architecture search via parameter sharing. In: The International Conference on Machine Learning (ICML), pp. 4092–4101 (2018)

    Google Scholar 

  26. Real, E., Aggarwal, A., Huang, Y., Le, Q.V.: Regularized evolution for image classifier architecture search. CoRR (2018)

    Google Scholar 

  27. Real, E., et al.: Large-scale evolution of image classifiers. In: Proceedings of the 34th International Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6–11 August 2017, pp. 2902–2911 (2017)

    Google Scholar 

  28. Ristani, E., Solera, F., Zou, R., Cucchiara, R., Tomasi, C.: Performance measures and a data set for multi-target, multi-camera tracking. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9914, pp. 17–35. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48881-3_2

    Chapter  Google Scholar 

  29. Shen, Y., Xiao, T., Li, H., Yi, S., Wang, X.: End-to-end deep Kronecker-product matching for person re-identification. In: CVPR (2018)

    Google Scholar 

  30. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: ICLR (2015)

    Google Scholar 

  31. Su, C., Li, J., Zhang, S., Xing, J., Gao, W., Tian, Q.: Pose-driven deep convolutional model for person re-identification. In: ICCV (2017)

    Google Scholar 

  32. Szegedy, C., et al.: Going deeper with convolutions. In: CVPR (2015)

    Google Scholar 

  33. Varior, R.R., Haloi, M., Wang, G.: Gated siamese convolutional neural network architecture for human re-identification. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 791–808. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_48

    Chapter  Google Scholar 

  34. Wei, X., Zhang, Y., Gong, Y., Zhang, J., Zheng, N.: Grassmann pooling as compact homogeneous bilinear pooling for fine-grained visual classification. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11207, pp. 365–380. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01219-9_22

    Chapter  Google Scholar 

  35. Wei, X., Zhang, Y., Gong, Y., Zheng, N.: Kernelized subspace pooling for deep local descriptors. In: CVPR, pp. 1867–1875 (2018)

    Google Scholar 

  36. Xiao, T., Li, S., Wang, B., Lin, L., Wang, X.: Joint detection and identification feature learning for person search. In: CVPR, pp. 3376–3385 (2017)

    Google Scholar 

  37. Xie, S., Zheng, H., Liu, C., Lin, L.: SNAS: stochastic neural architecture search. CoRR (2018)

    Google Scholar 

  38. Yi, D., Lei, Z., Liao, S., Li, S.Z.: Deep metric learning for person re-identification. In: ICPR, pp. 34–39 (2014)

    Google Scholar 

  39. Zhang, H., Kiranyaz, S., Gabbouj, M.: Finding better topologies for deep convolutional neural networks by evolution. CoRR (2018)

    Google Scholar 

  40. Zhang, S., Zhang, Q., Wei, X., Zhang, Y., Xia, Y.: Person re-identification with triplet focal loss. IEEE Access 6, 78092–78099 (2018)

    Article  Google Scholar 

  41. Zhao, H., eet al.: Spindle net: Person re-identification with human body region guided feature decomposition and fusion. In: CVPR, pp. 907–915 (2017)

    Google Scholar 

  42. Zheng, L., Shen, L., Tian, L., Wang, S., Wang, J., Tian, Q.: Scalable person re-identification: a benchmark. In: ICCV, pp. 1116–1124 (2015)

    Google Scholar 

  43. Zheng, L., Yang, Y., Hauptmann, A.G.: Person re-identification: past, present and future. CoRR (2016)

    Google Scholar 

  44. Zheng, Z., Zheng, L., Yang, Y.: Unlabeled samples generated by GAN improve the person re-identification baseline in vitro. In: ICCV, pp. 3774–3782 (2017)

    Google Scholar 

  45. Zhong, Z., Zheng, L., Cao, D., Li, S.: Re-ranking person re-identification with k-reciprocal encoding. In: CVPR, pp. 3652–3661 (2017)

    Google Scholar 

  46. Zhou, J., Yu, P., Tang, W., Wu, Y.: Efficient online local metric adaptation via negative samples for person re-identification. In: ICCV, pp. 2439–2447 (2017)

    Google Scholar 

  47. Zoph, B., Le, Q.V.: Neural architecture search with reinforcement learning. In: ICLR (2017)

    Google Scholar 

  48. Zoph, B., Vasudevan, V., Shlens, J., Le, Q.V.: Learning transferable architectures for scalable image recognition. In: CVPR, pp. 8697–8710 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, S., Cao, R., Wei, X., Wang, P., Zhang, Y. (2019). Person Re-identification with Neural Architecture Search. In: Lin, Z., et al. Pattern Recognition and Computer Vision. PRCV 2019. Lecture Notes in Computer Science(), vol 11857. Springer, Cham. https://doi.org/10.1007/978-3-030-31654-9_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-31654-9_46

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-31653-2

  • Online ISBN: 978-3-030-31654-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy