Skip to main content

A Local Flow Phase Stretch Transform for Robust Retinal Vessel Detection

  • Conference paper
  • First Online:
Advanced Concepts for Intelligent Vision Systems (ACIVS 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12002))

Abstract

This paper presents a new method for reliably detecting retinal vessel tree using a local flow phase stretch transform (LF-PST). A local flow evaluator is proposed to increase the local contrast and the coherence of the local orientation of vessel tree. This is achieved by incorporating information about the local structure and direction of vessels, which is estimated by introducing a second curvature moment evaluation matrix (SCMEM). The SCMEM evaluates vessel patterns as only features having linearly coherent curvature. We present an oriented phase stretch transform to capture retinal vessels running at various diameters and directions. The proposed method exploits the phase angle of the transform, which includes structural features of lines and curved patterns. The LF-PST produces several phase maps, in which the vessel structure is characterized along various directions. To produce an orientation invariant response, all phases are linearly combined. The proposed method is tested on the publicly available DRIVE and IOSTAR databases with different imaging modalities and achieves encouraging segmentation results outperforming the state-of-the-art benchmark methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bibiloni, P., González-Hidalgo, M., Massanet, S.: A survey on curvilinear object segmentation in multiple applications. Pattern Recogn. 60, 949–970 (2016). https://doi.org/10.1016/j.patcog.2016.07.023

    Article  Google Scholar 

  2. Annunziata, R., Garzelli, A., Ballerini, L., Mecocci, A., Trucco, E.: Leveraging multiscale Hessian-based enhancement with a novel exudate inpainting technique for retinal vessel segmentation. IEEE J. Biomed. Health Inf. 20, 1129–1138 (2016). https://doi.org/10.1109/jbhi.2015.2440091

    Article  Google Scholar 

  3. Zhao, Y., Zheng, Y., Liu, Y., Zhao, Y., Luo, L., Yang, S., Na, T., Wang, Y., Liu, J.: Automatic 2-D/3-D vessel enhancement in multiple modality images using a weighted symmetry filter. IEEE Trans. Med. Imaging 37, 438–450 (2018). https://doi.org/10.1109/TMI.2017.2756073

    Article  Google Scholar 

  4. Zhang, J., Dashtbozorg, B., Bekkers, E., Pluim, J., Duits, R., ter Haar Romeny, B.: Robust retinal vessel segmentation via locally adaptive derivative frames in orientation scores. IEEE Trans. Med. Imaging 35, 2631–2644 (2016). https://doi.org/10.1109/TMI.2016.2587062

    Article  Google Scholar 

  5. Sazak, Ç., Nelson, C., Obara, B.: The multiscale bowler-hat transform for blood vessel enhancement in retinal images. Pattern Recogn. 88, 739–750 (2019). https://doi.org/10.1016/j.patcog.2018.10.011

    Article  Google Scholar 

  6. Soares, J., Leandro, J., Cesar, R., Jelinek, H., Cree, M.: Retinal vessel segmentation using the 2-D Gabor wavelet and supervised classification. IEEE Trans. Med. Imaging 25, 1214–1222 (2006). https://doi.org/10.1109/tmi.2006.879967

    Article  Google Scholar 

  7. Marín, D., Aquino, A., Gegundez-Arias, M., Bravo, J.: A new supervised method for blood vessel segmentation in retinal images by using gray-level and moment invariants-based features. IEEE Trans. Med. Imaging 30, 146–158 (2011). https://doi.org/10.1109/tmi.2010.2064333

    Article  Google Scholar 

  8. Lam, B., Gao, Y., Liew, A.: General retinal vessel segmentation using regularization-based multiconcavity modeling. IEEE Trans. Med. Imaging 29, 1369–1381 (2010). https://doi.org/10.1109/tmi.2010.2043259

    Article  Google Scholar 

  9. Zhao, Y., Wang, X., Wang, X., Shih, F.: Retinal vessels segmentation based on level set and region growing. Pattern Recogn. 47, 2437–2446 (2014). https://doi.org/10.1016/j.patcog.2014.01.006

    Article  Google Scholar 

  10. Challoob, M., Gao, Y.: Retinal vessel segmentation using matched filter with joint relative entropy. In: International Conference on Computer Analysis of Images and Patterns, pp. 228–239. Springer (2017). https://doi.org/10.1007/978-3-319-64689-3_19

    Chapter  Google Scholar 

  11. Frangi, A., Niessen, W., Vincken, K., Viergever, M.: Multiscale vessel enhancement filtering. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 130–137. Springer (1998). https://doi.org/10.1007/bfb0056195

    Chapter  Google Scholar 

  12. Azzopardi, G., Strisciuglio, N., Vento, M., Petkov, N.: Trainable COSFIRE filters for vessel delineation with application to retinal images. Med. Image Anal. 19, 46–57 (2015). https://doi.org/10.1016/j.media.2014.08.002

    Article  Google Scholar 

  13. Bankhead, P., Scholfield, C., McGeown, J., Curtis, T.: Fast retinal vessel detection and measurement using wavelets and edge location refinement. PLoS ONE 7, e32435 (2012). https://doi.org/10.1371/journal.pone.0032435

    Article  Google Scholar 

  14. Zhao, Y., Liu, Y., Wu, X., Harding, S., Zheng, Y.: Retinal vessel segmentation: an efficient graph cut approach with retinex and local phase. PLoS ONE 10, e0122332 (2015). https://doi.org/10.1371/journal.pone.0122332

    Article  Google Scholar 

  15. Vicas, C., Nedevschi, S.: Detecting curvilinear features using structure tensors. IEEE Trans. Image Process. 24, 3874–3887 (2015). https://doi.org/10.1109/tip.2015.2447451

    Article  MathSciNet  MATH  Google Scholar 

  16. Weickert, J.: Coherence-enhancing shock filters. In: Joint Pattern Recognition Symposium, pp. 1–8. Springer (2003). https://doi.org/10.1007/978-3-540-45243-0_1

    Google Scholar 

  17. Zana, F., Klein, J.: Segmentation of vessel-like patterns using mathematical morphology and curvature evaluation. IEEE Trans. Image Process. 10, 1010–1019 (2001). https://doi.org/10.1109/83.931095

    Article  MATH  Google Scholar 

  18. Bhushan, A., Coppinger, F., Jalali, B.: Time-stretched analogue-to-digital conversion. Electron. Lett. 34, 839–841 (1998). https://doi.org/10.1049/el:19980629

    Article  Google Scholar 

  19. Han, Y., Jalali, B.: Photonic time-stretched analog-to-digital converter: fundamental concepts and practical considerations. J. Lightwave Technol. 21, 3085–3103 (2003). https://doi.org/10.1109/jlt.2003.821731

    Article  Google Scholar 

  20. Suthar, M., Asghari, H., Jalali, B.: Feature enhancement in visually impaired images. IEEE Access. 6, 1407–1415 (2018). https://doi.org/10.1109/access.2017.2779107

    Article  Google Scholar 

  21. Cheng, E., Du, L., Wu, Y., Zhu, Y., Megalooikonomou, V., Ling, H.: Discriminative vessel segmentation in retinal images by fusing context-aware hybrid features. Mach. Vis. Appl. 25, 1779–1792 (2014). https://doi.org/10.1007/s00138-014-0638-x

    Article  Google Scholar 

  22. Nguyen, U., Bhuiyan, A., Park, L., Ramamohanarao, K.: An effective retinal blood vessel segmentation method using multi-scale line detection. Pattern Recogn. 46, 703–715 (2013). https://doi.org/10.1016/j.patcog.2012.08.009

    Article  Google Scholar 

  23. Zou, Q., Cao, Y., Li, Q., Mao, Q., Wang, S.: CrackTree: automatic crack detection from pavement images. Pattern Recogn. Lett. 33, 227–238 (2012). https://doi.org/10.1016/j.patrec.2011.11.004

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsin Challoob .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Challoob, M., Gao, Y. (2020). A Local Flow Phase Stretch Transform for Robust Retinal Vessel Detection. In: Blanc-Talon, J., Delmas, P., Philips, W., Popescu, D., Scheunders, P. (eds) Advanced Concepts for Intelligent Vision Systems. ACIVS 2020. Lecture Notes in Computer Science(), vol 12002. Springer, Cham. https://doi.org/10.1007/978-3-030-40605-9_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-40605-9_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-40604-2

  • Online ISBN: 978-3-030-40605-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy