Abstract
This paper presents a new method for reliably detecting retinal vessel tree using a local flow phase stretch transform (LF-PST). A local flow evaluator is proposed to increase the local contrast and the coherence of the local orientation of vessel tree. This is achieved by incorporating information about the local structure and direction of vessels, which is estimated by introducing a second curvature moment evaluation matrix (SCMEM). The SCMEM evaluates vessel patterns as only features having linearly coherent curvature. We present an oriented phase stretch transform to capture retinal vessels running at various diameters and directions. The proposed method exploits the phase angle of the transform, which includes structural features of lines and curved patterns. The LF-PST produces several phase maps, in which the vessel structure is characterized along various directions. To produce an orientation invariant response, all phases are linearly combined. The proposed method is tested on the publicly available DRIVE and IOSTAR databases with different imaging modalities and achieves encouraging segmentation results outperforming the state-of-the-art benchmark methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bibiloni, P., González-Hidalgo, M., Massanet, S.: A survey on curvilinear object segmentation in multiple applications. Pattern Recogn. 60, 949–970 (2016). https://doi.org/10.1016/j.patcog.2016.07.023
Annunziata, R., Garzelli, A., Ballerini, L., Mecocci, A., Trucco, E.: Leveraging multiscale Hessian-based enhancement with a novel exudate inpainting technique for retinal vessel segmentation. IEEE J. Biomed. Health Inf. 20, 1129–1138 (2016). https://doi.org/10.1109/jbhi.2015.2440091
Zhao, Y., Zheng, Y., Liu, Y., Zhao, Y., Luo, L., Yang, S., Na, T., Wang, Y., Liu, J.: Automatic 2-D/3-D vessel enhancement in multiple modality images using a weighted symmetry filter. IEEE Trans. Med. Imaging 37, 438–450 (2018). https://doi.org/10.1109/TMI.2017.2756073
Zhang, J., Dashtbozorg, B., Bekkers, E., Pluim, J., Duits, R., ter Haar Romeny, B.: Robust retinal vessel segmentation via locally adaptive derivative frames in orientation scores. IEEE Trans. Med. Imaging 35, 2631–2644 (2016). https://doi.org/10.1109/TMI.2016.2587062
Sazak, Ç., Nelson, C., Obara, B.: The multiscale bowler-hat transform for blood vessel enhancement in retinal images. Pattern Recogn. 88, 739–750 (2019). https://doi.org/10.1016/j.patcog.2018.10.011
Soares, J., Leandro, J., Cesar, R., Jelinek, H., Cree, M.: Retinal vessel segmentation using the 2-D Gabor wavelet and supervised classification. IEEE Trans. Med. Imaging 25, 1214–1222 (2006). https://doi.org/10.1109/tmi.2006.879967
MarÃn, D., Aquino, A., Gegundez-Arias, M., Bravo, J.: A new supervised method for blood vessel segmentation in retinal images by using gray-level and moment invariants-based features. IEEE Trans. Med. Imaging 30, 146–158 (2011). https://doi.org/10.1109/tmi.2010.2064333
Lam, B., Gao, Y., Liew, A.: General retinal vessel segmentation using regularization-based multiconcavity modeling. IEEE Trans. Med. Imaging 29, 1369–1381 (2010). https://doi.org/10.1109/tmi.2010.2043259
Zhao, Y., Wang, X., Wang, X., Shih, F.: Retinal vessels segmentation based on level set and region growing. Pattern Recogn. 47, 2437–2446 (2014). https://doi.org/10.1016/j.patcog.2014.01.006
Challoob, M., Gao, Y.: Retinal vessel segmentation using matched filter with joint relative entropy. In: International Conference on Computer Analysis of Images and Patterns, pp. 228–239. Springer (2017). https://doi.org/10.1007/978-3-319-64689-3_19
Frangi, A., Niessen, W., Vincken, K., Viergever, M.: Multiscale vessel enhancement filtering. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 130–137. Springer (1998). https://doi.org/10.1007/bfb0056195
Azzopardi, G., Strisciuglio, N., Vento, M., Petkov, N.: Trainable COSFIRE filters for vessel delineation with application to retinal images. Med. Image Anal. 19, 46–57 (2015). https://doi.org/10.1016/j.media.2014.08.002
Bankhead, P., Scholfield, C., McGeown, J., Curtis, T.: Fast retinal vessel detection and measurement using wavelets and edge location refinement. PLoS ONE 7, e32435 (2012). https://doi.org/10.1371/journal.pone.0032435
Zhao, Y., Liu, Y., Wu, X., Harding, S., Zheng, Y.: Retinal vessel segmentation: an efficient graph cut approach with retinex and local phase. PLoS ONE 10, e0122332 (2015). https://doi.org/10.1371/journal.pone.0122332
Vicas, C., Nedevschi, S.: Detecting curvilinear features using structure tensors. IEEE Trans. Image Process. 24, 3874–3887 (2015). https://doi.org/10.1109/tip.2015.2447451
Weickert, J.: Coherence-enhancing shock filters. In: Joint Pattern Recognition Symposium, pp. 1–8. Springer (2003). https://doi.org/10.1007/978-3-540-45243-0_1
Zana, F., Klein, J.: Segmentation of vessel-like patterns using mathematical morphology and curvature evaluation. IEEE Trans. Image Process. 10, 1010–1019 (2001). https://doi.org/10.1109/83.931095
Bhushan, A., Coppinger, F., Jalali, B.: Time-stretched analogue-to-digital conversion. Electron. Lett. 34, 839–841 (1998). https://doi.org/10.1049/el:19980629
Han, Y., Jalali, B.: Photonic time-stretched analog-to-digital converter: fundamental concepts and practical considerations. J. Lightwave Technol. 21, 3085–3103 (2003). https://doi.org/10.1109/jlt.2003.821731
Suthar, M., Asghari, H., Jalali, B.: Feature enhancement in visually impaired images. IEEE Access. 6, 1407–1415 (2018). https://doi.org/10.1109/access.2017.2779107
Cheng, E., Du, L., Wu, Y., Zhu, Y., Megalooikonomou, V., Ling, H.: Discriminative vessel segmentation in retinal images by fusing context-aware hybrid features. Mach. Vis. Appl. 25, 1779–1792 (2014). https://doi.org/10.1007/s00138-014-0638-x
Nguyen, U., Bhuiyan, A., Park, L., Ramamohanarao, K.: An effective retinal blood vessel segmentation method using multi-scale line detection. Pattern Recogn. 46, 703–715 (2013). https://doi.org/10.1016/j.patcog.2012.08.009
Zou, Q., Cao, Y., Li, Q., Mao, Q., Wang, S.: CrackTree: automatic crack detection from pavement images. Pattern Recogn. Lett. 33, 227–238 (2012). https://doi.org/10.1016/j.patrec.2011.11.004
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Challoob, M., Gao, Y. (2020). A Local Flow Phase Stretch Transform for Robust Retinal Vessel Detection. In: Blanc-Talon, J., Delmas, P., Philips, W., Popescu, D., Scheunders, P. (eds) Advanced Concepts for Intelligent Vision Systems. ACIVS 2020. Lecture Notes in Computer Science(), vol 12002. Springer, Cham. https://doi.org/10.1007/978-3-030-40605-9_22
Download citation
DOI: https://doi.org/10.1007/978-3-030-40605-9_22
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-40604-2
Online ISBN: 978-3-030-40605-9
eBook Packages: Computer ScienceComputer Science (R0)