Abstract
In this chapter, we motivate the use of densely-sampled light fields as the representation which can bring the required density of light rays for the correct recreation of 3D visual cues such as focus and continuous parallax and can serve as an intermediary between light field sensing and light field display. We consider the problem of reconstructing such a representation from few camera views and approach it in a sparsification framework. More specifically, we demonstrate that the light field is well structured in the set of so-called epipolar images and can be sparsely represented by a dictionary of directional and multi-scale atoms called shearlets. We present the corresponding regularization method, along with its main algorithm and speed-accelerating modifications. Finally, we illustrate its applicability for the cases of holographic stereograms and light field compression.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Adelson, E.H., Bergen, J.R.: The plenoptic function and the elements of early vision. In: Computational Models of Visual Processing, pp. 3–20 (1991)
Aharon, M., Elad, M., Bruckstein, A.: K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans. Signal Process. 54(11), 4311–4322 (2006)
Ahmad, W., Vagharshakyan, S., Sjöström, M., Gotchev, A., Bregovic, R., Olsson, R.: Shearlet transform based prediction scheme for light field compression. In: 2018 Data Compression Conference, pp. 396–396, March 2018
Alperovich, A., Johannsen, O., Strecke, M., Goldluecke, B.: Light field intrinsics with a deep encoder-decoder network. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2018
Blumensath, T., Davies, M.E.: Normalized iterative hard thresholding: guaranteed stability and performance. IEEE J. Sel. Top. Signal Process. 4(2), 298–309 (2010)
Bolles, R.C., Baker, H.H., Marimont, D.H.: Epipolar-plane image analysis: an approach to determining structure from motion. Int. J. Comput. Vis. 1(1), 7–55 (1987)
Bredies, K., Kunisch, K., Pock, T.: Total generalized variation. SIAM J. Imaging Sci. 3(3), 492–526 (2010)
Cai, J.F., Chan, R.H., Shen, Z.: A framelet-based image inpainting algorithm. Appl. Comput. Harmonic Anal. 24(2), 131–149 (2008)
Cai, J.F., Shen, Z.: Framelet based deconvolution. J. Comput. Math. 28(3), 289–308 (2010)
Camahort, E., Lerios, A., Fussell, D.: Uniformly sampled light fields. In: Drettakis, G., Max, N. (eds.) Rendering Techniques 1998, Eurographics, pp. 117–130. Springer, Vienna (1998). https://doi.org/10.1007/978-3-7091-6453-2_11
Candès, E.J., Romberg, J., Tao, T.: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52(2), 489–509 (2006)
Candes, E.J., Tao, T.: Decoding by linear programming. IEEE Trans. Inf. Theory 51(12), 4203–4215 (2005)
Candès, E.J., Donoho, D.L.: Ridgelets: a key to higher-dimensional intermittency? Philos. Trans. R. Soc. Lond. Ser. A: Math. Phys. Eng. Sci. 357(1760), 2495–2509 (1999)
Candès, E.J., Donoho, D.L.: New tight frames of curvelets and optimal representations of objects with piecewise \(c^2\) singularities. Commun. Pure Appl. Math. 57(2), 219–266 (2004)
Zhang, C., Chen, T.: Spectral analysis for sampling image-based rendering data. IEEE Trans. Circuits Syst. Video Technol. 13(11), 1038–1050 (2003)
Chai, J.X., Tong, X., Chan, S.C., Shum, H.Y.: Plenoptic sampling. In: 27th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 2000, pp. 307–318 (2000)
Chan, S.H., Wang, X., Elgendy, O.A.: Plug-and-play ADMM for image restoration: fixed-point convergence and applications. IEEE Trans. Comput. Imaging 3(1), 84–98 (2017)
Do, M.N., Marchand-Maillet, D., Vetterli, M.: On the bandwidth of the plenoptic function. IEEE Trans. Image Process. 21(2), 708–717 (2012)
Do, M.N., Vetterli, M.: The contourlet transform: an efficient directional multiresolution image representation. IEEE Trans. Image Process. 14(12), 2091–2106 (2005)
Genzel, M., Kutyniok, G.: Asymptotic analysis of inpainting via universal shearlet systems. SIAM J. Imaging Sci. 7(4), 2301–2339 (2014)
Georgiev, T., Intwala, C.: Light field camera design for integral view photography. Adobe Technical report (2006)
Gilliam, C., Dragotti, P., Brookes, M.: On the spectrum of the plenoptic function. IEEE Trans. Image Process. 23(2), 502–516 (2014)
Gilliam, C., Dragotti, P.L., Brookes, M.: A closed-form expression for the bandwidth of the plenoptic function under finite field of view constraints. In: IEEE International Conference on Image Processing (ICIP), pp. 3965–3968, September 2010
Gortler, S.J., Grzeszczuk, R., Szeliski, R., Cohen, M.F.: The lumigraph. In: 23rd Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 1996, pp. 43–54 (1996)
Heber, S., Pock, T.: Convolutional networks for shape from light field. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3746–3754, June 2016
Heber, S., Yu, W., Pock, T.: Neural EPI-volume networks for shape from light field. In: IEEE International Conference on Computer Vision (ICCV), pp. 2271–2279, October 2017
Heyden, A., Pollefeys, M.: Multiple view geometry. Emerg. Top. Comput. Vis. 3, 45–107 (2005)
Hirschmuller, H.: Stereo processing by semiglobal matching and mutual information. IEEE Trans. Pattern Anal. Mach. Intell. 30(2), 328–341 (2008)
Honauer, K., Johannsen, O., Kondermann, D., Goldluecke, B.: A dataset and evaluation methodology for depth estimation on 4D light fields. In: Lai, S.-H., Lepetit, V., Nishino, K., Sato, Y. (eds.) ACCV 2016. LNCS, vol. 10113, pp. 19–34. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-54187-7_2
Hosni, A., Rhemann, C., Bleyer, M., Rother, C., Gelautz, M.: Fast cost-volume filtering for visual correspondence and beyond. IEEE Trans. Pattern Anal. Mach. Intell. 35(2), 504–511 (2013)
Ihm, I., Park, S., Lee, R.K.: Rendering of spherical light fields. In: Fifth Pacific Conference on Computer Graphics and Applications, pp. 59–68, October 1997
Jeon, H., et al.: Accurate depth map estimation from a lenslet light field camera. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1547–1555, June 2015
Kalantari, N.K., Wang, T.C., Ramamoorthi, R.: Learning-based view synthesis for light field cameras. ACM Trans. Graph. (TOG) 35(6), 1–10 (2016)
Kim, C., Zimmer, H., Pritch, Y., Sorkine-Hornung, A., Gross, M.: Scene reconstruction from high spatio-angular resolution light fields. ACM Trans. Graph. (TOG) 32(4), 1–12 (2013)
Krishnan, D., Fergus, R.: Fast image deconvolution using hyper-laplacian priors. In: Advances in Neural Information Processing Systems, vol. 22, pp. 1033–1041 (2009)
Kutyniok, G., Lemvig, J., Lim, W.Q.: Shearlets: Multiscale Analysis for Multivariate Data. Springer, Heidelberg (2012). https://doi.org/10.1007/978-0-8176-8316-0
Kutyniok, G., Lim, W.Q.: Compactly supported shearlets are optimally sparse. J. Approx. Theory 163(11), 1564–1589 (2011)
Lee, H., Battle, A., Raina, R., Ng, A.Y.: Efficient sparse coding algorithms. In: Proceedings of the 19th International Conference on Neural Information Processing Systems, NIPS 2006, pp. 801–808. MIT Press (2006)
Levin, A., Lischinski, D., Weiss, Y.: A closed-form solution to natural image matting. IEEE Trans. Pattern Anal. Mach. Intell. 30(2), 228–242 (2008)
Levin, A., Lischinski, D., Weiss, Y.: Colorization using optimization. ACM Trans. Graph. (TOG) 23(3), 689–694 (2004)
Levoy, M., Hanrahan, P.: Light field rendering. In: 23rd Annual Conference on Computer Graphics and Interactive Techniques, pp. 31–42 (1996)
Lim, W.Q.: Nonseparable shearlet transform. IEEE Trans. Image Process. 22(5), 2056–2065 (2013)
Lin, Z., Shum, H.Y.: A geometric analysis of light field rendering. Int. J. Comput. Vis. 58(2), 121–138 (2004)
Mallat, S.: A Wavelet Tour of Signal Processing: The Sparse Way. Academic Press, Cambridge (2008)
McMillan, L., Bishop, G.: Plenoptic modeling: an image-based rendering system. In: 22nd Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 1995, pp. 39–46 (1995)
Ng, R., Levoy, M., Brédif, M., Duval, G., Horowitz, M., Hanrahan, P., et al.: Light field photography with a hand-held plenoptic camera. Comput. Sci. Techn. R. (CSTR) 2(11), 1–11 (2005)
Overbeck, R.S., Erickson, D., Evangelakos, D., Pharr, M., Debevec, P.: A system for acquiring, processing, and rendering panoramic light field stills for virtual reality. ACM Trans. Graph. (TOG) 37, 1–15 (2018)
Sahin, E., Vagharshakyan, S., Mäkinen, J., Bregovic, R., Gotchev, A.: Shearlet-domain light field reconstruction for holographic stereogram generation. In: IEEE International Conference on Image Processing (ICIP), pp. 1479–1483 (2016)
Shen, Z., Toh, K., Yun, S.: An accelerated proximal gradient algorithm for frame-based image restoration via the balanced approach. SIAM J. Imaging Sci. 4(2), 573–596 (2011)
Shi, L., Hassanieh, H., Davis, A., Katabi, D., Durand, F.: Light field reconstruction using sparsity in the continuous fourier domain. ACM Trans. Graph. (TOG) 34(1), 1–13 (2014)
Shin, C., Jeon, H., Yoon, Y., Kweon, I.S., Kim, S.J.: EPINET: a fully-convolutional neural network using epipolar geometry for depth from light field images. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4748–4757, June 2018
Shum, H.Y., He, L.W.: Rendering with concentric mosaics. In: 26th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 1999, pp. 299–306 (1999)
Tao, M.W., Hadap, S., Malik, J., Ramamoorthi, R.: Depth from combining defocus and correspondence using light-field cameras. In: IEEE International Conference on Computer Vision (ICCV), pp. 673–680, December 2013
Vagharshakyan, S., Bregovic, R., Gotchev, A.: Accelerated shearlet-domain light field reconstruction. IEEE J. Sel. Top. Signal Process. 11(7), 1082–1091 (2017)
Vagharshakyan, S., Bregovic, R., Gotchev, A.: Light field reconstruction using shearlet transform. IEEE Trans. Pattern Anal. Mach. Intell. 40(1), 133–147 (2018)
Vagharshakyan, S.: Densely-sampled light field reconstruction. Ph.D. thesis, Tampere University (2020)
Vaish, V., Adams, A.: The (new) stanford light field archive (2008). http://lightfield.stanford.edu
Wanner, S., Goldluecke, B.: Variational light field analysis for disparity estimation and super-resolution. IEEE Trans. Pattern Anal. Mach. Intell. 36(3), 606–619 (2014)
Wen, Z., Goldfarb, D., Yin, W.: Alternating direction augmented lagrangian methods for semidefinite programming. Math. Program. Comput. 2(3–4), 203–230 (2010)
Wilburn, B., et al.: High performance imaging using large camera arrays. ACM Trans. Graph. (TOG) 24(3), 765–776 (2005)
Wilburn, B.S., Smulski, M., Lee, H.H.K., Horowitz, M.A.: Light field video camera. In: Media Processors 2002, vol. 4674, pp. 29–37 (2001)
Wood, D.N., et al.: Surface light fields for 3D photography. In: 27th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 2000, pp. 287–296 (2000)
Wu, G., Liu, Y., Fang, L., Dai, Q., Chai, T.: Light field reconstruction using convolutional network on EPI and extended applications. IEEE Trans. Pattern Anal. Mach. Intell. 41(7), 1681–1694 (2018)
Wu, G., Zhao, M., Wang, L., Dai, Q., Chai, T., Liu, Y.: Light field reconstruction using deep convolutional network on EPI. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1638–1646, July 2017
Yu, Z., Guo, X., Ling, H., Lumsdaine, A., Yu, J.: Line assisted light field triangulation and stereo matching. In: IEEE International Conference on Computer Vision (ICCV), pp. 2792–2799, December 2013
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Vagharshakyan, S., Bregovic, R., Gotchev, A. (2020). Densely-Sampled Light Field Reconstruction. In: Magnor, M., Sorkine-Hornung, A. (eds) Real VR – Immersive Digital Reality. Lecture Notes in Computer Science(), vol 11900. Springer, Cham. https://doi.org/10.1007/978-3-030-41816-8_3
Download citation
DOI: https://doi.org/10.1007/978-3-030-41816-8_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-41815-1
Online ISBN: 978-3-030-41816-8
eBook Packages: Computer ScienceComputer Science (R0)