Abstract
Establishing robust and accurate correspondences is a fundamental backbone to many computer vision algorithms. While recent learning-based feature matching methods have shown promising results in providing robust correspondences under challenging conditions, they are often limited in terms of precision. In this paper, we introduce S2DNet, a novel feature matching pipeline, designed and trained to efficiently establish both robust and accurate correspondences. By leveraging a sparse-to-dense matching paradigm, we cast the correspondence learning problem as a supervised classification task to learn to output highly peaked correspondence maps. We show that S2DNet achieves state-of-the-art results on the HPatches benchmark, as well as on several long-term visual localization datasets.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Phototourism Challenge: CVPR 2019 Image Matching Workshop (2019)
Arandjelovic, R., Gronát, P., Torii, A., Pajdla, T., Sivic, J.: NetVLAD: CNN architecture for weakly supervised place recognition. In: Conference on Computer Vision and Pattern Recognition (2016)
Arandjelovic, R., Zisserman, A.: Three things everyone should know to improve object retrieval. In: Conference on Computer Vision and Pattern Recognition (2012)
Balntas, V., Johns, E., Tang, L., Mikolajczyk, K.: PN-Net: conjoined triple deep network for learning local image descriptors. arXiv Preprint (2016)
Balntas, V., Lenc, K., Vedaldi, A., Mikolajczyk, K.: HPatches: a benchmark and evaluation of handcrafted and learned local descriptors. In: Conference on Computer Vision and Pattern Recognition (2017)
Balntas, V., Riba, E., Ponsa, D., Mikolajczyk, K.: Learning local feature descriptors with triplets and shallow convolutional neural networks. In: British Machine Vision Conference (2016)
Bay, H., Tuytelaars, T., Gool, L.V.: SURF: speeded up robust features. In: European Conference on Computer Vision (2006)
Brachmann, E., Rother, C.: Neural-guided RANSAC: learning where to sample model hypotheses. In: ICCV (2019)
Brown, M.A., Hua, G., Winder, S.A.J.: Discriminative learning of local image descriptors. IEEE Trans. Pattern Anal. Mach. Intell. 33, 43–57 (2011)
Calonder, M., Lepetit, V., Strecha, C., Fua, P.: BRIEF: binary robust independent elementary features. In: European Conference on Computer Vision (2010)
Choy, C.B., Gwak, J., Savarese, S., Chandraker, M.: Universal correspondence network. In: Advances in Neural Information Processing Systems, vol. 30 (2016)
Cummins, M.J., Newman, P.: FAB-MAP: probabilistic localization and mapping in the space of appearance. Int. J. Robot. Res. 27, 647–665 (2008)
DeTone, D., Malisiewicz, T., Rabinovich, A.: SuperPoint: self-supervised interest point detection and description. In: CVPR Workshop (2018)
Dong, J., Soatto, S.: Domain-size pooling in local descriptors: DSP-SIFT. In: Conference on Computer Vision and Pattern Recognition (2014)
Dusmanu, M., et al.: D2-Net: a trainable CNN for joint description and detection of local features. In: Conference on Computer Vision and Pattern Recognition (2019)
Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24, 381–395 (1981)
Gauglitz, S., Höllerer, T., Turk, M.: Evaluation of interest point detectors and feature descriptors for visual tracking. Int. J. Comput. Vision 94, 335 (2011)
Germain, H., Bourmaud, G., Lepetit, V.: Sparse-to-dense hypercolumn matching for long-term visual localization. In: International Conference on 3D Vision (2019)
Hariharan, B., Arbeláez, P.A., Girshick, R.B., Malik, J.: Hypercolumns for object segmentation and fine-grained localization. In: Conference on Computer Vision and Pattern Recognition (2014)
Harris, C., Stephens, M.: A combined corner and edge detector. In: Proceedings of Fourth Alvey Vision Conference (1988)
Heinly, J., Schönberger, J.L., Dunn, E., Frahm, J.M.: Reconstructing the world* in six days *(as captured by the Yahoo 100 million image dataset). In: Conference on Computer Vision and Pattern Recognition (2015)
Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. arXiv Preprint (2015)
Kim, H., Lee, D., Sim, J., Kim, C.: SOWP: spatially ordered and weighted patch descriptor for visual tracking. In: International Conference on Computer Vision (2015)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. CoRR abs/1412.6980 (2014)
Lebeda, K., Matas, J.E.S., Chum, O.: Fixing the locally optimized RANSAC. In: British Machine Vision Conference (2012)
Li, Z., Snavely, N.: MegaDepth: learning single-view depth prediction from internet photos. In: Conference on Computer Vision and Pattern Recognition (2018)
Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision 60(2), 91–110 (2004)
Maddern, W., Pascoe, G., Linegar, C., Newman, P.: 1 year, 1000 km: the Oxford RobotCar dataset. Int. J. Robot. Res. 36, 3–15 (2017)
Mikolajczyk, K., Schmid, C.: Scale & affine invariant interest point detectors. Int. J. Comput. Vision 60, 63–86 (2004)
Mikolajczyk, K., et al.: A comparison of affine region detectors. Int. J. Comput. Vision 65, 43–72 (2005)
Mishchuk, A., Mishkin, D., Radenović, F., Matas, J.: Working hard to know your neighbor’s margins: local descriptor learning loss. In: Advances in Neural Information Processing Systems (2017)
Mishkin, D., Radenović, F., Matas, J.: Repeatability is not enough: learning affine regions via discriminability. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11213, pp. 287–304. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01240-3_18
Noh, H., Araujo, A., Sim, J., Weyand, T., Han, B.: Large-scale image retrieval with attentive deep local features. In: International Conference on Computer Vision (2016)
Ono, Y., Trulls, E., Fua, P., Yi, K.M.: LF-Net: learning local features from images. In: NeurIPS (2018)
Perdoch, M., Chum, O., Matas, J.: efficient representation of local geometry for large scale object retrieval. In: Conference on Computer Vision and Pattern Recognition (2009)
Philbin, J., Chum, O., Isard, M., Sivic, J., Zisserman, A.: Object retrieval with large vocabularies and fast spatial matching. In: Conference on Computer Vision and Pattern Recognition (2007)
Revaud, J., et al.: R2D2: repeatable and reliable detector and descriptor. In: Advances in Neural Information Processing Systems (2019)
Rocco, I., Cimpoi, M., Arandjelović, R., Torii, A., Pajdla, T., Sivic, J.: Neighbourhood consensus networks. In: Advances in Neural Information Processing Systems (2018)
Rublee, E., Rabaud, V., Konolige, K., Bradski, G.R.: ORB: an efficient alternative to SIFT or SURF. In: International Conference on Computer Vision (2011)
Sarlin, P.E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: robust hierarchical localization at large scale. In: Conference on Computer Vision and Pattern Recognition (2019)
Sarlin, P.E., DeTone, D., Malisiewicz, T., Rabinovich, A.: SuperGlue: learning feature matching with graph neural networks. In: CVPR (2020). https://arxiv.org/abs/1911.11763
Sattler, T., Havlena, M., Radenovic, F., Schindler, K., Pollefeys, M.: Hyperpoints and fine vocabularies for large-scale location recognition. In: International Conference on Computer Vision (2015)
Sattler, T., Leibe, B., Kobbelt, L.: Efficient & effective prioritized matching for large-scale image-based localization. IEEE Trans. Pattern Anal. Mach. Intell. 39, 1744–1756 (2017)
Sattler, T., et al.: Benchmarking 6DOF outdoor visual localization in changing conditions. In: Conference on Computer Vision and Pattern Recognition (2018)
Sattler, T., et al.: Are large-scale 3D models really necessary for accurate visual localization? In: Conference on Computer Vision and Pattern Recognition (2017)
Sattler, T., Weyand, T., Leibe, B., Kobbelt, L.: Image retrieval for image-based localization revisited. In: British Machine Vision Conference (2012)
Savinov, N., Seki, A., Ladicky, L., Sattler, T., Pollefeys, M.: Quad-networks: unsupervised learning to rank for interest point detection. In: Conference on Computer Vision and Pattern Recognition (2016)
Schönberger, J.L., Frahm, J.M.: Structure-from-motion revisited. In: Conference on Computer Vision and Pattern Recognition (2016)
Schönberger, J.L., Zheng, E., Pollefeys, M., Frahm, J.M.: Pixelwise view selection for unstructured multi-view stereo. In: European Conference on Computer Vision (2016)
Simo-Serra, E., Trulls, E., Ferraz, L., Kokkinos, I., Fua, P., Moreno-Noguer, F.: Discriminative learning of deep convolutional feature point descriptors. In: International Conference on Computer Vision (2015)
Simonyan, K., Vedaldi, A., Zisserman, A.: Learning local feature descriptors using convex optimisation. IEEE Trans. Pattern Anal. Mach. Intell. 36, 1573–1585 (2014)
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. CoRR abs/1409.1556 (2014)
Svärm, L., Enqvist, O., Kahl, F., Oskarsson, M.: City-scale localization for cameras with known vertical direction. IEEE Trans. Pattern Anal. Mach. Intell. 39(7), 1455–1461 (2017)
Svärm, L., Enqvist, O., Oskarsson, M., Kahl, F.: Accurate localization and pose estimation for large 3D models. In: Conference on Computer Vision and Pattern Recognition (2014)
Sweeney, C., Fragoso, V., Höllerer, T., Turk, M.: Large scale SfM with the distributed camera model. In: International Conference on 3D Vision (2016)
Taira, H., et al.: InLoc: indoor visual localization with dense matching and view synthesis. CoRR abs/1803.10368 (2018)
Thomee, B., et al.: YFCC100M: the new data in multimedia research. Commun. ACM 59, 64–73 (2016)
Tian, Y., Fan, B., Wu, F.: L2-Net: deep learning of discriminative patch descriptor in euclidean space. In: Conference on Computer Vision and Pattern Recognition (2017)
Tian, Y., Yu, X., Fan, B., Wu, F., Heijnen, H., Balntas, V.: SOSNet: second order similarity regularization for local descriptor learning. In: Conference on Computer Vision and Pattern Recognition (2019)
Toft, C., et al.: Semantic match consistency for long-term visual localization. In: European Conference on Computer Vision (2018)
Torii, A., Arandjelovic, R., Sivic, J., Okutomi, M., Pajdla, T.: 24/7 place recognition by view synthesis. IEEE Trans. Pattern Anal. Mach. Intell. 40 (2015)
Tuytelaars, T., Mikolajczyk, K.: Local invariant feature detectors: a survey. Found. Trends Comput. Graph. Vision 3 (2007)
Wijmans, E., Furukawa, Y.: Exploiting 2D floorplan for building-scale panorama RGBD alignment. In: Conference on Computer Vision and Pattern Recognition (2016)
Yang, H., Shao, L., Zheng, F., Wang, L., Song, Z.: Recent advances and trends in visual tracking: a review. Neurocomputing 74, 3823–3831 (2011)
Yi, K.M., Trulls, E., Lepetit, V., Fua, P.: LIFT: learned invariant feature transform. In: European Conference on Computer Vision (2016)
Yi, K.M., Trulls, E., Ono, Y., Lepetit, V., Salzmann, M., Fua, P.: Learning to find good correspondences. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2018)
Acknowledgement
This project has received funding from the Bosch Research Foundation (Bosch Forschungsstiftung).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Germain, H., Bourmaud, G., Lepetit, V. (2020). S2DNet: Learning Image Features for Accurate Sparse-to-Dense Matching. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12348. Springer, Cham. https://doi.org/10.1007/978-3-030-58580-8_37
Download citation
DOI: https://doi.org/10.1007/978-3-030-58580-8_37
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-58579-2
Online ISBN: 978-3-030-58580-8
eBook Packages: Computer ScienceComputer Science (R0)